Aurélie Fischer
Adresse :
UFR de Mathématiques
Bâtiment Sophie Germain
75205 Paris Cedex 13
France
Bureau : 504
Tél. : 01 57 27 91 10
Courriel : aurelie.fischer -at- u-paris.fr
English version of this page.
Curriculum Vitae
Mon CV.
Fonctions occupées
- Depuis sept. 2024
- 2008-2011 : Allocataire de recherche et monitrice au LSTA à l'Université Pierre et Marie Curie.
Mémoires
Thèse effectuée sous la direction de Gérard Biau, soutenue en juin 2011.
Mémoire d'Habilitation à Diriger des Recherches, présenté en juin 2022.
Recherche
Thèmes
Apprentissage statistique supervisé et non supervisé :
- Quantification, clustering
- Divergences de Bregman
- Courbes principales
- Grande dimension
- Sélection de modèle
- Agrégation d'estimateurs
- Applications en sciences du climat et en sociologie
Projet ANR GeoDSIC
Lien vers la page du projet.
Site Math-IA
Lien vers le site MATH-IA, site d'information sur les formations et la recherche universitaire en Mathématiques et Intelligence Artificielle en région parisienne.
Publications et prépublications
- Fischer, A. (2010). Quantization and clustering with Bregman divergences, Journal of Multivariate Analysis, Vol. 101, p. 2207-2221.
- Fischer, A. (2011). On the number of groups in clustering, Statistics and Probability Letters, Vol. 81, p. 1771–1781.
- Biau, G. & Fischer, A. (2012). Parameter selection for principal curves, IEEE Transactions on Information Theory, Vol. 58, p. 1924-1939.
- Auder, B. & Fischer, A. (2012). Projection-based curve clustering, Journal of Statistical Computation and Simulation, Vol. 82, p. 1145-1168.
- Fischer, A. (2013). Selecting the length of a principal curve within a Gaussian Model, Electronic Journal of Statistics, Vol. 7, p. 342-363.
- Alsheh Ali, M., Seguin., J, Fischer, A., Mignet, N., Wendling, L. and Hurtut, T. (2013). Comparison of the spatial organization in colorectal tumors using second-order statistics and functional ANOVA, ISPA 2013.
- Fischer, A. (2014). Deux méthodes d’apprentissage non supervisé : synthèse sur la méthode des centres mobiles et présentation des courbes principales, Journal de la Société Française de Statistique, Vol. 155(2), p. 2-35.
- Dedecker, J., Fischer, A. and Michel, B. (2015). Improved rates for Wasserstein deconvolution with ordinary smooth error in dimension one, Electronic Journal of Statistics, Vol. 9, p. 234-265.
- Fischer, A. (2015). On two extensions of the vector quantization scheme, Journal de la Société Française de Statistique, Vol. 156(1), p. 51-75.
- Biau, G., Fischer, A., Guedj, B. and Malley, J. (2016). COBRA: A combined regression strategy, Journal of Multivariate Analysis, Vol. 146, p. 18-28.
- Fischer, A., Montuelle, L., Mougeot, M. and Picard, D. (2017). Statistical learning for wind power : a modeling and stability study towards forecasting, Wind Energy, Vol. 20, p. 2037–2047.
- Alonzo B., Plougonven R., Mougeot M., Fischer, A. Dupre, A. and Drobinski, P. (2018). From Numerical Weather Prediction outputs to accurate local surface Wind speed : statistical modelling and forecasts, In Renewable Energy : Forecasting and Risk Management, Springer Proceedings in Mathematics & Statistics.
- Fischer, A. & Mougeot, M. (2019). Aggregation using input-output trade-off, Journal of Statistical Planning and Inference, Vol. 200, p. 1-19.
- Delattre, S. & Fischer, A. (2020). On principal curves with a length constraint, Annales de l'Institut Henri Poincaré, Vol. 56, p. 2108-2140.
- Fischer, A. & Picard, D. (2020). On change-point estimation under Sobolev sparsity, Electronic Journal of Statistics, Vol. 14, p. 1648-1689.
- Brécheteau, C., Fischer, A. & Levrard, C. (2020). Robust Bregman Clustering, The Annals of Statistics, Vol. 49, p. 1679-1701.
- Goutham, N., Alonzo, B., Dupré, A., Plougonven, R., Doctors, R., Liao, L., Mougeot, M., Fischer, A. and Drobinski, P. (2021). Using machine learning methods to improve surface wind from the outputs of a Numerical Weather Prediction model, Boundary-Layer Meteorology, Vol. 179, p. 133-161.
- Fischer, A., Has, S. and Mougeot, M. (2021). A clusterwise supervised learning procedure based on aggregation of distances, Journal of Statistical Computation and Simulation, Vol. 91, p. 2307-2327.
- Kluth, G., Ripoll, J.-F., Has, S., Fischer, A., Mougeot, M. and Camporeale, E. (2022). Machine Learning Methods Applied to the Global Modeling of Event-Driven Pitch Angle Diffusion Coefficients During High-Speed Streams, Frontiers in Physics, Space Physics.
- Delattre, S. & Fischer, A. (2024). Estimation via length-constrained generalized empirical principal curves under small noise.
- Has, S., Plougonven, R., Fischer, A., Rani, R., Lott, F., Hertzog, A., Podglajen, A. and Corcos, M. (2024). Reconstructing balloon-observed gravity wave momentum fluxes using machine learning and input from ERA5, Journal of Geophysical Research: Atmospheres, 129.
- Delattre, S. & Fischer, A. (2024). Convergence rates in curve estimation.
Enseignement
2024/2025
Premier Semestre
- Cours Introduction to Machine Learning (M2 MO + MIDS).
Lien vers la page du cours d'Introduction au Machine Learning sur Moodle.
- Cours d'Apprentissage Statistique (M2 ISIFAR).
Lien vers la page du cours d'Apprentissage Statistique sur Moodle.
Deuxième Semestre
- Cours AI & Society (M1) à Sciences Po.