Send via e-MailImprimer × Table des matières Aurélie Fischer Curriculum Vitae Past and current positions Reports Research Research interests Publications and preprints Teaching 2021/2022 Aurélie Fischer Assistant Professor Laboratoire de Probabilités, Statistique et Modélisation Université de Paris Address : UFR de Mathématiques Bâtiment Sophie Germain 75205 Paris Cedex 13 France Office : 504 Phone : +33 1 57 27 91 10 E-mail : aurelie.fischer -at- univ-paris-diderot.fr Version française de cette page. Curriculum Vitae My CV. Past and current positions Since sept. 2012 : Assistant Professor at LPSM, Université Paris Diderot, in the statistics team. 2011/2012 : Temporary teaching and research position at MAP5 and IUT Paris Descartes. 2008/2011 : PhD student and teaching assistant at LSTA, Université Pierre et Marie Curie. Reports PhD thesis, Advisor Gérard Biau, Defense June 2011. Mémoire d'Habilitation à Diriger des Recherches, 2021. Research Research interests Supervised and unsupervised statistical learning : Quantization, clustering Bregman divergences Principal curves High dimension Model selection Aggregation Applications in biology, wind energy, linguistics Publications and preprints Fischer, A. (2010). Quantization and clustering with Bregman divergences, Journal of Multivariate Analysis, Vol. 101, p. 2207-2221. Fischer, A. (2011). On the number of groups in clustering, Statistics and Probability Letters, Vol. 81, p. 1771–1781. Biau, G. & Fischer, A. (2012). Parameter selection for principal curves, IEEE Transactions on Information Theory, Vol. 58, p. 1924-1939. Auder, B. & Fischer, A. (2012). Projection-based curve clustering, Journal of Statistical Computation and Simulation, Vol. 82, p. 1145-1168. Fischer, A. (2013). Selecting the length of a principal curve within a Gaussian Model, Electronic Journal of Statistics, Vol. 7, p. 342-363. Alsheh Ali, M., Seguin., J, Fischer, A., Mignet, N., Wendling, L. and Hurtut, T. (2013). Comparison of the spatial organization in colorectal tumors using second-order statistics and functional ANOVA, ISPA 2013. Fischer, A. (2014). Deux méthodes d’apprentissage non supervisé : synthèse sur la méthode des centres mobiles et présentation des courbes principales, Journal de la Société Française de Statistique, Vol. 155(2), p. 2-35. Dedecker, J., Fischer, A. and Michel, B. (2015). Improved rates for Wasserstein deconvolution with ordinary smooth error in dimension one, Electronic Journal of Statistics, Vol. 9, p. 234-265. Fischer, A. (2015). On two extensions of the vector quantization scheme, Journal de la Société Française de Statistique, Vol. 156(1), p. 51-75. Biau, G., Fischer, A., Guedj, B. and Malley, J. (2015). COBRA: A combined regression strategy, Journal of Multivariate Analysis, Vol. 146, p. 18-28. Fischer, A., Montuelle, L., Mougeot, M. and Picard, D. (2017). Statistical learning for wind power : a modeling and stability study towards forecasting, Wind Energy, Vol. 20, p. 2037–2047. Alonzo B., Plougonven R., Mougeot M., Fischer, A. Dupre, A. and Drobinski, P. (2018). From Numerical Weather Prediction outputs to accurate local surface Wind speed : statistical modelling and forecasts, In Renewable Energy : Forecasting and Risk Management, Springer Proceedings in Mathematics & Statistics. Fischer, A. & Mougeot, M. (2019). Aggregation using input-output trade-off, Journal of Statistical Planning and Inference, Vol. 200, p. 1-19. Delattre, S. & Fischer, A. (2020). On principal curves with a length constraint, Annales de l'Institut Henri Poincaré, Vol. 56, p. 2108-2140. Fischer, A. & Picard, D. (2020). On change-point estimation under Sobolev sparsity, Electronic Journal of Statistics, Vol. 14, p. 1648-1689. Brécheteau, C., Fischer, A. & Levrard, C. (2020). Robust Bregman Clustering, The Annals of Statistics. Goutham, N., Alonzo, B., Dupré, A., Plougonven, R., Doctors, R., Liao, L., Mougeot, M., Fischer, A. and Drobinski, P. (2021). Using machine learning methods to improve surface wind from the outputs of a Numerical Weather Prediction model, Boundary-Layer Meteorology, Vol. 179, p. 133-161. Fischer, A., Has, S. and Mougeot, M. (2021). A clusterwise supervised learning procedure based on aggregation of distances, Journal of Statistical Computation and Simulation, Vol. 91, p. 2307-2327. Kluth, G., Ripoll, J.-F., Has, S., Fischer,A., Mougeot, M. and Camporeale, E. (2022). Machine Learning Methods Applied to the Global Modeling of Event-Driven Pitch Angle Diffusion Coefficients During High-Speed Streams, Frontiers in Physics, Space Physics. Delattre, S. & Fischer, A. (2022). Estimation via length-constrained generalized empirical principal curves under small noise. Teaching 2021/2022 First Semester Introduction to machine learning (M2). Second Semester Statistical learning (M2).