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Research University, Sorbonne Universités, UPMC Univ Paris 06,

CNRS, Palaiseau France
2Laboratoire de Probabilités et Modèles Aléatoires, Université Paris
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Abstract

Downscaling a meteorological quantity at a specific location from
outputs of Numerical Weather Prediction models is a vast field of re-
search with continuous improvement. The need to provide accurate
forecasts of the surface wind speed at specific locations of wind farms
has become critical for wind energy application. While classical statisti-
cal methods like multiple linear regression have been often used in order
to reconstruct wind speed from Numerical Weather Prediction model
outputs, machine learning methods, like Random Forests, are not as
widespread in this field of research. In this paper, we compare the
performances of two downscaling statistical methods for reconstruct-
ing and forecasting wind speed at a specific location from the European
Center of Medium-range Weather Forecasts (ECMWF) model outputs.
The assessment of ECMWF shows for 10m wind speed displays a sys-
tematic bias, while at 100m, the wind speed is better represented. Our
study shows that both classical and machine learning methods lead to
comparable results. However, the time needed to pre-process and to
calibrate the models is very different in both cases. The multiple lin-
ear model associated with a wise pre-processing and variable selection
shows performances that are slightly better, compared to Random For-
est models. Finally, we highlight the added value of using past observed
local information for forecasting the wind speed on the short term.

Keywords
Local wind speed, Downscaling, Statistical modeling, Numerical Weather

Prediction model, Wind speed forecasts.
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1 Introduction1

The wind energy sector has seen a very sharp growth in recent years. Accord-2

ing to the Global Wind Energy Council (GWEC), 54GW has been installed3

in 2016, corresponding to an increase of 12.6% of the total installed capacity4

([GWE, 2016]). Worldwide, the number of wind farms increases each year5

and feeds the electrical network with a larger amount of energy. For instance,6

in 2016, France has seen its highest capacity growth rate ever recorded. This7

sharp increase of connected wind power has for instance allowed the network8

to receive 8.6 GW from wind power plants, on November 20th, correspond-9

ing to 17.9% of the energy produced this day ([RTE, 2016]). The need to10

have access to accurate wind forecasts on several timescales is thus becoming11

crucial for the wind energy producer and grid operator, in order to antici-12

pate the energy production, to plan maintenance operations and to handle13

balance between energy production and consumption. Changing regulations14

of the energy market with the end of feeding-in tariffs make this anticipa-15

tion vital for wind energy producers. Finally, a related but different topic16

consists in the estimation of the wind resource of its long-term (multi-year)17

variability and trends mainly for prospecting purposes.18

The increasing need for accurate forecasts of the surface wind speed for-19

tunately comes with the improvement of the Numerical Weather Prediction20

models (NWP) describing and forecasting atmospheric motions. Indeed,21

they constitute a key source of information for surface wind speed forecasts22

all the more so as their realism, accuracy and resolution have increased23

steadily over the years [Bauer et al., 2015].24

Nevertheless, these models are not necessarily performing uniformly well25

for all atmospheric variables. Their astonishing performances are evalu-26

ated on variables such as mid-tropospheric pressure which reflect the large-27

scale mass distribution, which is effectively well understood physically (e.g.28

[Vallis, 2006]) and efficiently modeled numerically. Variables tied to phenom-29

ena occurring on smaller scales (such as cloud-cover or near-surface winds)30

depend much more directly on processes that are parameterized (e.g, not31

resolved). In contrast to large-scale motions (governed by the Navier-Stokes32

equations), parameterizations are generally partly rooted in physical argu-33

ments, but also in large part empirical. When comparing output from a34

numerical model to a local measurement, there will therefore always be sev-35

eral sources of error: representativity error (contrast between the value over36

a grid-box and the value at a specific point), numerical error (even if we37

were describing only processes governed by well-established physical laws,38

discretization is unavoidable), and error tied to the physics described (be-39

cause processes, especially parameterized ones, are not well modeled). To40

reduce representativity error and to better represent small-scale processes, in41

particular those tied to topography and surface roughness, one strategy con-42

sists in downscaling with models that describe the atmospheric flow on finer43

scales (e.g [Wagenbrenner et al., 2016]). One disadvantage of this approach44

is the numerical cost, and one limitation is the need for finer observations to45

initialize the state of the atmosphere, if details of the flow other than those46

directly implied by the topography and surface condition are sought for.47

Strategies to estimate surface winds, or other meteorological variables,48
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from the output of Numerical Weather Prediction models (NWP) or climate49

models have been developed in several contexts, with different motivations,50

and leading to different methodologies and applications.51

Model Output Statistics (MOS) has been developed in weather forecast-52

ing for several decades to estimate the weather related variability of a physi-53

cal quantity, based on NWP model output [Glahn and Lowry, 1972]. NWP54

models perform now very well in predicting large-scale systems. Relations55

thus can be derived to link the latters to local variables at an observation56

site. Linear models are generally used, with the outcome now expanded57

over a wider area than only the location of stations where observations are58

available [Zamo et al., 2016].59

In the context of climate change, downscaling a meteorological quan-60

tity at a given location in order to produce time series which have plau-61

sible statistical characteristics under climate change has for long been in-62

vestigated [Wilby et al., 1998]. The challenge is here to capture appropri-63

ately the relation between large-scale flow (as it can be described by a64

model with a moderate or low resolution) and a variable at a specific lo-65

cation (e.g. wind, temperature, precipitation) and then use climate mod-66

els to provide a description of the large-scale atmospheric state under cli-67

mate change. Local time series with appropriate variability and consis-68

tent with this large-scale state of the atmosphere are then generated, e.g.69

[Salameh et al., 2009, Maraun et al., 2010, Wilby and Dawson, 2013].70

Wind energy domain is nowadays a very active branch in downscal-71

ing techniques because of the need for accurate forecasts at specific loca-72

tion of a wind farm. For describing winds close to the surface, 10m wind73

speed is often a convenient variable as it has been for decades a reference74

observed variable and also now a reference NWP model output. In the75

case of wind energy, the wind speed then needs to be extrapolated at the76

hub height to have access to wind power, leading to an increase of the er-77

ror on the predicted power ([Kubik et al., 2011], [Howard and Clark, 2007],78

[Mohandes et al., 2011]). Wind speed at the hub height (typically 100m)79

is a variable of interest as it allows to avoid vertical extrapolation errors80

([Cassola and Burlando, 2012]), but it is rarely available in observations.81

Different outputs of NWP models can be used as explanatory variables of82

the near surface wind speed. It seems that there is no strong consensus83

on the predictors to use, mainly because relations between predictors and84

predictand should differ from one location to the other. However, different85

studies have shown the importance of a certain set of variables to predict86

surface wind speed. Amongst them, markers of large-scale systems (geopo-87

tential height, pressure fields) and boundary layer stability drivers (surface88

temperature, boundary layer height, wind and temperature gradient) can89

be cited ([Salameh et al., 2009], [Devis et al., 2013], [Davy et al., 2010]). In90

terms of methodology, several models have already been studied, including91

Linear regression, Support Vector Models (SVM) or Artificial Neural Net-92

work (ANN) ([Jung and Broadwater, 2014], [Soman et al., 2010]).93

The model of the European Center for Medium-range Weather Forecasts94

(ECMWF) has reached a resolution of about 9km in the horizontal. In ad-95

dition, ECMWF analyses and forecasts now give access to 100m wind speed96

output, developed mainly for wind energy applications. If we can be very97
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confident in the ability of NWP models to represent several variables, some98

others may not be so reliable. This is especially the case for surface variables99

such as 10m and 100m wind speed. Consequently, using the robust informa-100

tion given by some variables to correct surface wind speed is straightforward.101

We have access to surface wind speed observed at 10m, 100m over a long102

period of 5 years at SIRTA observation platform [Haeffelin et al., 2005]. The103

aim of this project is, in particular, to explore how different statistical mod-104

els perform in forecasting the 10m and 100m wind speed using informations105

of ECMWF analyses and forecasts outputs at different horizons. We choose106

multiple linear regression because it is a widely used technique, and Ran-107

dom Forests which have not been, to our knowledge, deeply studied in the108

framework of downscaling surface wind speed. For multiple linear regres-109

sion, variable selection is a very important step for calibrating the statistical110

models, whereas Random Forests handle variables automatically. Moreover,111

Random Forests can handle nonlinear relations very well. Therefore, the112

comparison of those very different statistical models, as well as the informa-113

tion used by each of them, should be very instructive.114

The paper is organized in 5 parts. The next section describes together115

the data and the statistical models to be used. In section 3, the training116

dataset is explored, and used to calibrate the statistical models. In section117

4, forecasts of 10m and 100m wind speed are run to downscale wind speed118

at the observation site. In the last section, we discuss the results, conclude119

and give perspectives to this work.120

2 Data and Methodology121

2.1 Data122

Observed Wind speed123

In this paper, we use observations of the wind speed at the SIRTA obser-124

vation platform ([Haeffelin et al., 2005]). Surface wind speed at 10m height125

from anemometer recording is available at the 5-minutes frequency. The126

wind speed at 100m height from Lidar recording is available at 10-minutes127

frequency. Both data span for 5 years from 2011 to 2015. We filter obser-128

vations by a sinusoidal function over a 6-hour window centered at 00h, 06h,129

12h and 18h to obtain a 6-hourly observed wind speed to be compared to130

the NWP model outputs available at this time frequency. We found that131

the resulting time series are not sensitive to the filter function. We also try132

different filtering windows, concluding that 6-hours is the best to compare133

to the NWP model outputs. Due to some missing data, two final time se-134

ries of 5049 filtered observations are computed (over 7304 if all data were135

available).136

SIRTA observatory is based 20km in the South of Paris on the Saclay137

plateau (48.7◦N and 2.2◦E). Figure 1 shows the SIRTA observation platform138

location, marked by the red point on the map, and its close environment.139

Regarding the relief near SIRTA, observe that a forest is located at about140

50m north to the measurement devices. South, buildings can be found at141

about 300m from the SIRTA observatory. In the East-West axis, no close142

obstacle are encountered. Further south, the edge of the Saclay plateau143
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Figure 1: Map of the SIRTA observation platform and its surroundings.

shows a vertical drop of about 70m, from 160m on top to 90m at the bottom.144

NWP model outputs - ECMWF Analyses145

Variables are retrieved from ECMWF analyses at 4 points around the146

SIRTA platform. The spatial resolution of ECMWF analyses is of about147

16km (0.125◦ in latitude and longitude). Topography is thus smoothed com-148

pared to the real one. As the surface wind speed is very influenced by the149

terrain, the modeled surface wind speed is not necessarily close to the ob-150

served wind speed. The data spans from the 01/01/2011 to 31/12/2015 at151

the 6-hourly frequency. It is sampled at each date where a filtered sampled152

observation is available.153

The near surface wind speed at a given location can be linked to different154

phenomena. The large-scale circulation brings the flow to the given location155

explaining the slowly varying wind speed. The wind speed in altitude, the156

geopotential height, the vorticity, the flow divergence, sometimes the tem-157

perature can be markers of large systems like depressions, fronts, storms, or158

high pressure systems explaining a large part of the low frequency variations159

of the surface wind speed (Table 2). At a finer scale, what is happening in160

the boundary layer is very important to explain the intra-day variations of161

the wind speed. The state and stability of the boundary layer can be derived162

from surface variables describing the exchanges inside the layer. Exchanges163

are driven mostly by temperature gradient and wind shear that develop tur-164
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bulent flow (Table 3). Thermodynamical variables like surface, skin, and dew165

point temperatures and surface heat fluxes can also inform on the stability166

of the boundary layer, as well as its height and dissipation on its state (Table167

1). In the end, 20 output variables are retrieved from ECMWF analyses at168

the 4 points around the SIRTA observatory and at different pressure levels.169

Note that we restrict the study to local variables (at the location of measure-170

ments or in the column above). It might also be possible to take advantage171

from larger scale information ([Zamo et al., 2016], [Davy et al., 2010]).172

Altitude (m) Variable Unit Name

10m/100m Norm of the Wind speed m.s−1 F

10m/100m Zonal Wind speed m.s−1 U

10m/100m Meridional Wind speed m.s−1 V

2m Temperature K T

2m Dew point Temperature K Dp

Surface Skin temperature K skt

Surface mean sea level pressure Pa msl

Surface Surface pressure Pa sp

- Boundary layer height m blh

- Boundary layer dissipation J.m−2 bld

Surface Surface latent heat flux J.m−2 slhf

Surface Surface sensible heat flux J.m−2 sshf

Table 1: Surface Variables

Pressure level (hPa) Variable Unit Name

1000hPa/925hPa/850hPa/700hPa/500hPa Zonal Wind speed m.s−1 U

1000hPa/925hPa/850hPa/700hPa/500hPa Meridional Wind speed m.s−1 V

1000hPa/925hPa/850hPa/700hPa/500hPa Geopotential height m2.s−2 Z

1000hPa/925hPa/850hPa/700hPa/500hPa Divergence s−1 Di

1000hPa/925hPa/850hPa/700hPa/500hPa Vorticity s−1 Vo

1000hPa/925hPa/850hPa/700hPa/500hPa Temperature K T

Table 2: Altitude Variables

Pressure level (hPa) Variable Unit Name

10m to 925hPa Wind shear m.s−1 ∆F

10m to 925hPa Temperature gradient K ∆T

Table 3: Computed Variables

ECMWF deterministic forecasts173

The year 2015 of deterministic forecasts is retrieved from ECMWFmodel.174

A forecast is launched every day at 00:00:00 UTC. The time resolution re-175

tained is of 3 hours and the maximum lead-time is 5 days. The same vari-176

ables as for the analyses are retrieved at the same points around the SIRTA177

platform.178
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2.2 Methodology179

Our aim is to model the real observed wind speed from outputs of NWP180

model described above. More specifically, we use ECMWF analyses i.e the181

best estimate of the atmospheric state at a given time using a model and182

observations ([Kalnay, 2003]). In what follows, the observed wind speed is183

the target and the analysed variables are potential explanatory features. Be-184

cause of the complexity of meteorological phenomena, statistical modeling185

provides an appropriate framework for corrections of representativity errors186

and the modeling of site dependent variability. In this context, two main187

directions may be as usual investigated, parametric and nonparametric mod-188

els.189

Parametric models assume that the underlying relation between the tar-190

get variable and the explanatory variables has, relatively to a certain noise,191

a particular analytical shape depending on some parameters, which need to192

be estimated through the data. Among this family of models, the linear193

model with a Gaussian noise is widely used, mostly thanks to its simplicity194

[Friedman et al., 2001]. Associated to an adequate variable selection, it may195

be very effective.196

Nonparametric models do not suppose in advance a specific relation be-197

tween the variables: instead, they try to learn this complex link directly from198

the data itself. As such, they are very flexible, but their performance usually199

strongly depends on regularization parameters. The family of nonparamet-200

ric models is quite large: among others, one may cite the nearest neighbors201

rule, the kernel rule, neural networks, support vector machines, regression202

trees, random forests... Regression trees, which have the advantage of be-203

ing easily interpretable, show to be particularly effective when associated204

to a procedure allowing to reduce their variance as for the Random Forest205

Algorithm.206

Let us describe the linear model and random forests in our context with
more details. The linear model supposes a relation between the target Yt,
observed wind speed at time t, and explanatory variables X1

t , . . . , X
d
t , avail-

able from the ECMWF, at this time t. For lightening the notation, we omit
the index t in the next equation. The linear model is given by

Y = β0 +

d∑

j=1

βjXj + ε,

where the βj ’s are coefficients to be estimated using least-square criterion207

minimization method, and ε ∼ N (0, σ2) represents the noise. Among the208

meteorological variables X1, . . . , Xd, some of them provide more important209

information linked to the target than others, and some of them may be210

correlated. In this case, the stepwise variable selection method is useful to211

keep only the most important uncorrelated variables [Friedman et al., 2001].212

Denoting by β̂0, . . . , β̂d the final coefficients obtained this way (some of them213

are zero), the estimated wind Ŷ is then given by214

Ŷ = β̂0 +
d∑

j=1

β̂jXj . (1)
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An alternative approach to perform variable selection and regularization215

is to use the Lasso method (see for instance [Tibshirani, 1994]), relying on216

minimization of the least square criterion penalized by the ℓ1 norm of the217

coefficients β1, . . . , βd. More specifically, for this model, the predicted wind218

speed at time t is a linear combination of all the previous variables as in219

equation (1), the coefficients β1, . . . , β̂d being estimated using the least square220

procedure, under the constraint
∑d

j=1 |βj | ≤ κ for some constant κ > 0.221

Regression trees are binary trees built by choosing at each step the cut
minimizing the intra-node variance, over all explanatory variablesX1, . . . , Xd

and all possible thresholds (denoted by Sj hereafter). More specifically, the
intra-node variance, usually called deviance, is defined by

D(Xj , Sj) =
∑

Xj<Sj

(Ys − Y
−
)2 +

∑

Xj≥Sj

(Ys − Y
+
)2,

where Y
−
(respectively Y

+
) denotes the average of the observed wind speed222

in the area {Xj < Sj} (respectively {Xj ≥ Sj}). Then, the selected j0 vari-223

able and associated threshold is given by (Xj0 , Sj0) = argminj,Sj
D(Xj , Sj).224

The prediction is provided by the value associated to the leaf in which the225

observation falls.226

To reduce variance and avoid over-fitting, it may be interesting to gener-227

ate several bootstrap samples, fitting then a tree on every sample and averag-228

ing the predictions, which leads to the so-called Bagging procedure [Breiman, 1996].229

More precisely, for B bootstrap samples, the predicted power is given by230

Ŷ =

B∑

b=1

Ŷ b, (2)

where Ŷ b denotes the wind speed predicted by the regression tree associated231

with the b-th bootstrap sample. To produce more diversity in the trees to232

be averaged, an additional random step may be introduced in the previous233

procedure, leading to Random Forests, where the best cut is chosen among234

a smaller subset of randomly chosen variables. The predicted value is the235

mean of the predictions of the trees, as in equation (2).236

3 The relationship between analysed and observed237

winds238

3.1 10m/100m wind speed variability comparison239

In this section we compare the observed wind speed at 10m and 100m with240

the 10m and 100m wind speed output of the ECMWF analyses, respectively.241

Figure 2 shows the Probability Density Function (PDF) of the wind speed242

coming from ECMWF analyses and observations, and also for illustration243

an example of a time series of corresponding wind speeds. It appears that244

the 10m wind speed from ECMWF analyses displays a systematic bias by245

overestimating the 10m observed wind speed (Figure 2, a and b). The wind246

at 100m is comparatively well modeled in terms of variations in the time247

series, but also in terms of distribution (Figure 2, c and d). It seems that the248
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errors mainly come from the overestimation of peaked wind speeds and the249

underestimation of low wind speeds (Figure 2, c and d). As 10m wind speed250

is very influenced by even low topography and surrounding obstacles, which251

are smoothed or not represented in ECMWF analyses, some of its variations252

are not well described, and even a quite systematic bias is displayed. The253

effect of the topography and terrain specificity have less impact on the 100m254

wind speed, so that it is much better represented in ECMWF analyses.255
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Figure 2: 10m (top) and 100m (bottom) wind speed time series in summer
2011 (panels a and c, respectively) and the respective probability density
function estimated over the 5 years sample wind speed (panels b and d).

Periods Deviation RMSE Correlation

F10 F100 F10 F100 F10 F100

2011-2015 -1.00 0.14 1.41 1.01 0.82 0.93

2011 -1.19 0.04 1.59 1.06 0.80 0.91
2012 -0.94 0.23 1.31 1.03 0.85 0.92
2013 -1.13 0.06 1.52 0.93 0.82 0.94
2014 -0.88 0.26 1.30 1.00 0.80 0.93
2015 -0.87 0.14 1.30 0.97 0.82 0.94

Winter -0.97 0.04 1.41 0.97 0.83 0.94
Spring -1.11 0.27 1.56 1.02 0.71 0.90
Summer -0.92 0.33 1.31 1.04 0.80 0.91
Fall -1.04 -0.10 1.36 1.00 0.87 0.93

Table 4: Deviation, RMSE, and Correlation performed by ECMWF analyses
for modeling the 10m and 100m wind speed.

The ability of the model to represent the observed wind speed is quanti-256

fied in Table 4 by the deviation, the Root Mean Square Error (RMSE), and257
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the Pearson correlation which formula are given by equations (3),(4), and258

(5) respectively.259

Deviation for the ith observation = (yi − xi) (3)

RMSE =

√∑n
i=1 (xi − yi)2

n
(4)

Correlation =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (5)

where xi is the wind speed from the NWP model and yi the observed wind260

speed ; n is the number of samples (xi, yi) and x̄ =
1

n

n∑

i=1

xi (the sample261

mean) and analogously for ȳ.262

263

No clear improvement of the ECMWF analyses over the years from 2011264

to 2015 can be detected in Table 4. The correlation stays quite constant over265

the years for both 10m and 100m wind speeds. The Deviation and RMSE266

seem to decrease for the 10m wind speed but it cannot be confirmed because267

of the good score performed in 2012. The variations of performance may268

only come from changes in the predictability of the weather over Europe269

[Folland et al., 2012]. Seasonal variations of the performance of ECMWF270

analyses can be seen, especially on the correlation between the observed and271

modeled wind speed. At both 10m and 100m, the analysed wind speed is272

better correlated with the observations in winter and fall than in spring and273

summer. In all cases, the scores shown are better for the 100m wind speed274

than for the 10m wind speed.275
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Figure 3: 10m wind speed from ECMWF analyses function of the 10m ob-
served wind speed given cardinal directions. Panels correspond to a direction
modeled by ECMWF analyses ; the wind blows from a. West, b. Southwest,
c. South, d. Southeast, e. East, f. Northeast, g. North, h. Northwest.

Variations of the performance of the ECMWF analyses in representing276

the observed wind speed are evidenced by Figure 3. The figure shows the277
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10m wind speed from ECMWF analyses as a function of the 10m observed278

wind speed for different directions of the analysed wind speed. It is obvious279

that the errors made by the numerical model differ regarding the direction280

of the wind. For instance, when the wind comes from the West (figure 3,281

a), the correlation is very close to one, but for a wind coming from the282

North/Northeast (Figure 3, f and e), it is very low, and the model highly283

overestimates the 10m wind speed. It can be easily linked to the specificity of284

the terrain. Indeed, when a northerly wind is recorded, it has been blocked285

by the forest north of the anemometer. The same happened for southerlies286

with the building situated further and which influence is thus not as substan-287

tial as the forest. Figure 4 displays the same as Figure 3 but for the 100m288

wind speed. It seems that there is no more dependence of the performance289

of the ECMWF analyses regarding the direction of the 100m wind speed ;290

it appears to be not significantly impacted by the surrounding forests and291

buildings.292
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Figure 4: Same as Figure 3 but for 100m wind speed.

3.2 Reconstruction of the 10m/100m observed wind speed293

using NWP outputs294

In the sequel, a k-fold cross validation is performed over 10 different periods295

taken within the 5-years of analyses and observation. Each time, statisti-296

cal downscaling models are trained on a given period and applied over the297

remaining period to reconstruct the 10m and 100m wind speed, so that it298

results in 10 reconstructions that span the 5 years of data. Table 5 enu-299

merates the statistical downscaling models assessed in this study. Models300

differ by their types (Linear Regression and Random Forests), the explana-301

tory variable selection, and whether a model is conditionally fitted regarding302

the direction of the wind speed or not. We evaluate the different statistical303

models in terms of RMSE and Correlation with the observed wind speed on304

the reconstruction period.305

10m wind speed reconstruction306
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Model type Explanatory variables Direction dependance Name

Linear F10 No LRF

Linear All No LRA

Linear Stepwise No LRSW

Linear Lasso No LRLa

Linear F10 Yes LRdir
F

Linear All Yes LRdir
A

Linear Stepwise Yes LRdir
SW

Random Forest All No RFA

Random Forest All Yes RF dir
A

Table 5: Statistical models used to downscale 10m and 100m wind speed.

ECMWF LRF LRA LRSW LRLa LRdir
F LRdir

A LRdir
SW RFA RFdirA
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Figure 5: RMSE and Correlation results when reconstructing 10m wind
speed with models described in Table 5. The first boxes stand for the
ECMWF analyses 10m wind speed.

Figure 5 shows results for the reconstruction of the 10m wind speed.307

Each box contains the 10th reconstructed k-fold periods. First, by using308

only wind speed with a linear model LRF , RMSE is reduced by about 40%,309
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but the correlation stays constant. Adding other variables to linear model310

(i.e. LRA, LRSW and LRLa) allows to reduce the RMSE by 60%, and to sig-311

nificantly improve correlation from 0.80 to 0.91 between reconstructed wind312

speed and observed one. Using stepwise selection of variables, the Lasso pe-313

nalization or all variables does not change results in this case, showing that314

only a part of the information is useful. Using variable selection as stepwise315

or ℓ1 penalization (Lasso) avoids over-fitting. Random Forests models per-316

form slightly better than linear models without defining one given model per317

cardinal wind directions. Variables selected stepwise are very diverse (wind318

speed, large scale variables, boundary layer state drivers), while Lasso tech-319

nique mainly selects wind speed and wind component, thus using redundant320

information. Analyzing the main variables used by Random Forests shows321

that this methods seems to put much weight on wind component first, high-322

lighting the dependence of the error on the 10m wind speed regarding its323

direction.324
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Figure 6: Timeseries (left) and PDF (right) of the observed 10m wind speed
(straight black line), and 10m wind speed from ECMWF (dotted black line)
(a and b), Linear models (LRSW (blue) and LRdir

SW (red)) (c and d), Random
Forest models (RFA (cyan) and RF dir

A (magenta)) (e and f).

By fitting a linear model in each direction (noted with ’dir’) we manually325

introduce a relevant information, especially for 10m wind speed (Figure 3).326

The model is however more exposed to under-fitting as the sample size of the327

training data in one direction can be low. Nevertheless, LRdir
SW performs bet-328

ter than all other models. Indeed, stepwise choice is made for each direction329

so that the model is deeply adapted to each direction. This method results330

in a significant improvement of the RMSE and correlation scores. Fitting a331

Random Forest in each direction does not improve results, maybe because332

the direction is already well handled by this model by using the zonal and333

meridional component of the wind. So one big advantage of Random Forests334

over linear regression is that it does not require to explore previously deeply335

the data for extracting appropriate and relevant features as inputs to the336
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model. Figure 6 shows time series of 10m observed wind speed, NWP model337

wind speed output over summer period of 2011 (panel a) and the probability338

density function corresponding to the entire period, 2011 to 2015 (panel b).339

Panels c and e show respectively time series of the reconstructed 10m wind340

speed by LRdir
SW (red line) and LRSW (blue line), and by RF dir

A (magenta341

line) and RFA (cyan line). Panels d and f show the corresponding probabil-342

ity density functions. All statistical models allows for a good bias correction.343

All models underestimate the small quantiles of the distribution and give a344

distribution very peaked around the mean observed wind speed. High per-345

centiles are however well reconstructed. This is encouraging because this346

part of the distribution is important in terms of energy production. We can347

nevertheless expect an overestimation of the wind energy production with348

those models because of the underestimation of small percentiles.349

100m wind speed reconstruction350

ECMWF LRF LRA LRSW LRLa LRdir
F LRdir

A LRdir
SW RFA RFdirA

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

RM
SE

 (m
.s

−1
)

a

ECMWF LRF LRA LRSW LRLa LRdir
F LRdir

A LRdir
SW RFA RFdirA

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

Co
rr
el
at
io
n

b

Figure 7: Same as Figure 7, for 100m wind speed.

Figure 7 show results of the reconstruction of 100m wind speed with sta-351

tistical models described in Table 5. LRF allows a reduction of the RMSE of352

about 15% corresponding to 0.14 m.s−1 and the best model LRdir
SW reduces353
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the RMSE by 23% corresponding to 0.23 m.s−1. The correlation is im-354

proved from 0.92 to 0.94. Adding the direction dependence to linear model355

with only 100m wind speed (i.e. LRdir
F ) does not improve results regarding356

LRF . Indeed, the error on the 100m wind speed does not depend on the357

direction. Using all explanatory variables (i.e. LRdir
A ) leads to a strong over-358

fitting. Surprisingly, the linear model using stepwise selection of explanatory359

variables in each direction (i.e. LRdir
SW ) recovers an important information360

as it performs significantly better than the other. Again, its adaptability361

may be the cause of its good performance. The information on the direction362

in Random Forests does not improve the results like for 10m wind speed363

reconstruction. The more important variables for Random forests and step-364

wise choice are mainly the 100m wind speed, but also the wind shear in the365

boundary layer. Lasso technique selects mainly 100m wind speed.366
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Figure 8: Same as Figure 6, for 100m wind speed.

Figure 8 shows time series of 100m observed wind speed, NWP model367

wind speed output over summer period of 2011 (panel a) and the probabil-368

ity density function corresponding to the entire period from 2011 to 2015369

(panel b). panel c and e show respectively time series of the reconstructed370

100m wind speed by LRdir
SW (red line) and LRSW (blue line), and by RF dir

A371

(magenta line) and RFA (cyan line). Panels d and f show the corresponding372

probability density functions. Some peaked wind speeds are less overesti-373

mated after statistical downscaling. As for the 10m wind speed, statistical374

models underestimate the small quantiles of the distribution and give a dis-375

tribution peaked around the mean observed wind speed.376

377

To conclude, we built different statistical models to improve the repre-378

sentation of the 10m and 100m wind speed of the ECMWF analyses. It has379

been shown that the 100m wind speed in ECMWF analyses is already well380

represented as it displays no systematic bias and a good correlation. Never-381
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theless the RMSE computed for the period 2011 to 2015 is still of 1.0 m.s−1.382

Statistical models reduces the RMSE on the 10m wind speed between 40%383

and 65%, and between 15% and 23% for the 100m wind speed. They im-384

prove at the same time the correlation between the observed wind speed385

and the reconstructed one. For linear models, the variables selection is of386

great importance to avoid over-fitting, and an exploration step allows to im-387

proves results significantly. Random Forests give quite comparable results as388

the best linear models, without needing variable selection and a preliminary389

exploration of the data.390

4 Forecasts of surface winds391

In this section we use the previous statistical models based on the knowledge392

of the observed wind speed and the outputs of ECMWF analyses to forecast393

wind speed at five days horizon with a frequency of 3 hours. We have access394

to 1 year of forecasts in 2015. We train these statistical models on ECMWF395

analyses from 2011 to 2014, and apply the resulting model to the forecasts.396

Figures 9 and 10 show respectively the RMSE averaged over the 365 forecasts397

for the 10m and 100m wind speed. A strong diurnal cycle of the performances398

of both ECMWF forecasts and downscaled statistical predictions of the 10m399

wind speed is evidenced. This diurnal cycle seems to be observed also for400

100m wind speed forecasts, but with a less important amplitude. As the401

dataset is trained on the ECMWF analyses, we can affirm that diurnal cycle402

is better represented in the ECMWF analyses than in ECMWF forecasts.403

This could be indeed explained by the data assimilation system that may404

help to correct errors coming from NWP model parameterizations.405

An interesting result shown in Figure 9 is that performance of the LRF406

statistical model which is comparable to linear model LRSW , showing that407

the added value of other explanatory variables is valuable mainly for small408

lead-times in this case. Adding the dependence with the direction (i.e.409

LRdir
SW ) allows for a significant reduction of the RMSE. Random Forests410

RFA shows the best performance. In addition to the simplicity to fit this411

model, its robustness seems to overcome linear regression models. For 100m412

wind speed forecasts (Figure 10), Linear models LRF , LRSW , and LRdir
SW413

and Random Forest RFA are comparable.414

For both 10m and 100m wind speed forecasts, statistical downscaling415

models allow for significant improvements regarding ECMWF predicted wind416

speed, at any lead-time from 3 hours to 5 days. Training dataset on the anal-417

yses of ECMWF may not be optimal. Indeed, training a statistical model418

for each lead-time separately should deeply improve results. First, this could419

help to remove the displayed diurnal cycle, but may also let the increase in420

RMSE with the lead-time be less sharp.421

5 Summary and concluding remarks422

We have used statistical models to evaluate 10m and 100m wind speed at a423

given location from output of a NWP model. Comparison of the observed424

wind speed and ECMWF wind speed output at 10m and 100m within the 5425

years of data show that ECMWF analyses well represent 100m wind speed.426
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Figure 9: RMSE, computed between the 10m observed wind speed, and the
10m forecast wind speed, averaged over the entire set of forecasts.
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Figure 10: RMSE, computed between the 100m observed wind speed, and
the 100m forecast wind speed, averaged over the entire set of forecasts.

The computed RMSE is of 1.0 m.s−1 (the mean wind speed being of 5.8427

m.s−1) and no systematic bias is displayed. On the contrary, 10m wind428

speed output from ECMWF analyses displays a systematic overestimation429

the observed wind speed. The computed RMSE is of 1.4 m.s−1 (the mean430

wind speed being of 2.4 m.s−1).431

By applying linear regression between a certain amount of selected vari-432

ables and observed wind speed, we reduce the RMSE for the 10m and 100m433

reconstructed wind speed up to 65% and 23%, respectively. Those good434

results have been achieved by fitting a linear model in 8 directions and by435

automatic selection of valuable variables in those directions. Building such a436

model thus requires a special treatment and a good knowledge of the specific437

site so that it cannot be systematically applied to another site. Very inter-438

estingly, using Random Forests to reconstruct 10m and 100m wind speed439

gives comparable results as the best linear models (about 57% and 20%,440

respectively), while their performance is not sensitive to any preparation of441

the data. Computing time is a bit longer than simple linear models, but it442

is quite similar when a linear model is fitted in each direction.443

In a second step, we applied the statistical models to forecast up to 5444

days. Note that statistical models are trained on past analyses. Apply-445

ing it on forecasts will work ’as well’ only if the relationship between NWP446
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outputs and observed wind speed does not change with lead-time. This is447

not a-priori guaranteed as the analyses incorporate information from obser-448

vation via data assimilation. Results are encouraging, because the RMSE449

between forecast wind speed and observed wind speed is significantly reduced450

compared to ECMWF forecasts whatever the lead-time, and for both 10m451

and 100m wind speeds. Interestingly, Random Forests perform the same or452

better than linear models when applied to forecast 10m or 100m wind speed.453

454

The results obtained for the forecasts are very encouraging: even though455

the training only involved analyses, the reduction in RMSE persisted for456

lead-times up to 5 days. Promisingly, there are evident changes to be tried457

which should lead to improvements of the performances. As a first, training458

statistical downscaling models directly on ECMWF forecasts makes sense459

as a transfer function adapted to each lead-time should take into account460

the reduced performance of ECMWF forecasts around 15pm and thus cor-461

rect systematic errors in the representation of the diurnal cycle. Moreover,462

training dataset for each lead-time separately should also help to reduce the463

increase of RMSE with lead-time by adapting the explanatory variables to464

forecasts performance. For instance, for short lead-time, statistical models465

may find out that surface wind speed in ECMWF forecasts gather valuable466

information so that this information would be used. It may nevertheless not467

be the case at longer timescales, so that statistical models would prefer using468

information from large-scale circulation (e.g pressure) which is well modeled469

by ECMWF forecasts, even at lead-time up to 5 days. Secondly, the good470

performance of Random Forests together with linear regression models de-471

notes that it is possible to reconstruct the wind speed with very different472

relations. Model aggregation may thus be a path to retrieve more informa-473

tion than when using a single statistical model.474

475

In this study, we choose to use only local informations coming from476

NWP outputs. Additive valuable informations may be retrieved from larger-477

scale NWP outputs such as large-scale horizontal gradients of the pressure.478

However, the discussion on the added value of any other NWP outputs is479

site dependent, and is already part of research matters. For instance, it has480

been proved that large scale circulation patterns give valuable information481

at timescales up to months in some regions of France [Alonzo et al., 2017].482

A wind farm is often equipped with many anemometers situated at 10m483

and at the hub height, so that local intime observations are easily available as484

well as wind power output. Forecasting wind speed using only NWP outputs485

is a good way to improve forecasts, but local past observations may also be486

used as explanatory variable. Indeed, at very short lead-time (3-hours), we487

can assume that the error the NWP model make at t0h (corresponding to488

the analyses) may be correlated to the future error at time t3h. We could489

also imagine to create a direct link between NWP outputs and wind energy490

production as in [Giorgi et al., 2011], using in addition the information on491

the close past wind energy production at the condsidered wind farm.492

As a preliminary illustration of the benefit of such an approach, we train493

Random Forests and Linear Regression with stepwise selection of variables494

to forecast 10m and 100m wind speed at time t3h only, and add the error495
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Figure 11: RMSE computed over 10 k-fold forecasts of 10m (a) and 100m (b)
wind speed at 3 hour lead-time, using the error on the 10m and 100m wind
speed at time t0h (denoted by ∆10 and ∆100, respectively) as an explanatory
variable. The dashed line represent the averaged RMSE of Random Forest
without using observations at t0h, and boxes represents the RMSE over 10
k-fold forecasts.

on the wind speed at time t0h as an explanatory variable of the future wind496

speed at time t3h. We perform a k-fold of 10 forecasts over the year 2015.497

Results are represented in Figure 11. When forecasting 10m wind speed at498

t3h, using the error at time t0h allows for a reduction of the RMSE of 5%499

with Random Forests and of 10% with linear model compared to Random500

Forest without the observation at time t0h. When forecasting 100m wind501

speed at t3h, using the information on the 10m wind speed observed at t0h502

allows for an improvement of 2% to 6%. Adding the information on the503

100m wind speed at time t0h spectacularly improves results by 18% with504

linear regression model.505

506

In addition of the good results obtained when reconstructing 10m and507

100m wind speed, we also showed encouraging results when forecasting wind508

speed up to 5 days. By using very different statistical models, we highlight509

advantages of Random Forests over multiple linear regression, e.g simplicity510

and robustness. Finally, very promising perspective for improving downscal-511

ing at short-term horizon is exposed ; it involves a pseudo-assimilation of a512

local past observed information into the statistical downscaling model.513
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