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Abstract The relation between the outputs of a Numerical Weather Prediction (NWP) model and9

the observed surface winds is explored using statistical and machine learning models. Eight years of10

wind measurements at a height of 10 m (from 2010 to 2017) from 171 stations spread over mainland11

France and Corsica are used as reference. Operational analyses from the European Center for Medium12

Range Weather Forecasts (ECMWF) provide the model information not only on the surface wind, but13

on other aspects of the atmospheric state at the location (or aloft of) each station. In a first step, a14

large number of explanatory variables are used as input to several models (linear regressions, k-nearest15

neighbours, random forests, and gradient boosting). The ECMWF modelled wind, by itself, has Root16

Mean Square Errors (RMSE) over all stations distributed widely around a median of 1.42 m s−1.17

Using statistical post-processing and making use of a a historical set of data for training, the median18

of the RMSE at all stations can be reduced down to 1.07 m s−1 with linear regressions, and down to19

0.94 m s−1 with random forests or gradient boosting. Enhanced improvements are found for coastal20

stations, where the errors were largest. Random forests are further explored to trim down the list of21

explanatory variables: a list of 25 explanatory variables, mainly consisting of wind variables (wind,22

horizontal gradients of geopotential on different isobaric surfaces, shear between 10 and 100 m) and23

marginally including some temperature variables appears as a good compromise between performance24

and simplicity. Finally, as a preliminary test for further work, the relation thus captured between the25

model outputs and the observed wind at a given time is used on forecasts of the NWP model, for lead26

times up to 24 hours. The statistical/machine learning model is found to be essentially as relevant on27

the forecasts as it was on the analyses, encouraging further use and development of these approaches28

for local wind forecasts.29
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1 Introduction31

Surface winds are a meteorological variable of considerable importance because they impact human32

activities in a number of ways, including damage to buildings, fallen tower cranes, and injuries due to33
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Université Paris Diderot, Paris 7, Paris, France.



2 Naveen Goutham et al.

objects carried in strong winds. Over the past decade, rapid development of wind energy has created34

a new motivation and demand for estimations of winds near the surface. Notably, the evolution of35

regulations for the pricing of wind energy (from feed in tariffs to market prices) imply an increased36

demand for accurate forecasts of surface winds at wind farm locations.37

Numerical Weather Prediction (NWP) models constitute a major source of information on surface38

winds. However, as surface winds are turbulent and strongly influenced by small-scale features absent39

in the limited representation of NWP models, the modelled surface winds, when compared to local40

observations at a given site, generally exhibit large errors, including biases. Now, for a given site where41

observations are available for a long enough interval, it is logical to try and use these observations42

to learn from and correct the model’s biases and errors for that location. In fact, estimating a local43

quantity from output of a NWP model and past observations at a given location has been an active44

field of research for half a century, generally called Model Output Statistics (MOS, [GL72]). [GL72]45

have applied multilinear regressions to several variables, including surface wind, using a forward46

stepwise screening procedure to select the variables used as predictors. Nowadays, it is common for47

operational centers to carry out MOS to provide forecasts of quantities where observations are available48

[WV02, BM05, SKV05, KSHK11, ZMAP14]. As weather forecasts evolve in nature, from deterministic49

to probabilistic, some of the approaches used for MOS have also evolved [STG12].50

Fundamentally, the endeavour to estimate a small-scale, unresolved, fluctuating quantity from51

modelled knowledge of the large-scale field connects to several research fields with different aims,52

different sources of information, and different criteria for validation. One is MOS, stated above, which53

generally focuses on a given location for which observations are available. Another name is downscaling,54

i.e. building a procedure to estimate a variable sensitive to small scales based on information on the55

large-scale flow. When used in the context of climate projections, the aim is to generate plausible time-56

series of local variables in climate change scenarios, as proposed for example with the Statistical Down-57

Scaling Model (SDSM, [WD13]). Downscaling applied to surface winds has been applied to estimate58

surface winds with an emphasis on identifying variables which carry information [SDVN09, DvLD13].59

For locations in Southern France, where topographic effects crucially affect the winds, [SDVN09] used60

generalized additive models to estimate wind components from outputs of the ERA-Interim reanalysis61

from the European Centre for Medium-Range Weather Forecasts (ECMWF).62

Finally, the need to estimate sub-grid scale components of the flow from modelled knowledge of63

the large-scale flow motivate the development of parametrizations in weather and climate models64

(e.g. [Kal03]). These differ in profound ways, seeking a generic relation between the large-scale flow65

and the effects of unresolved small-scale components of the flow. There is, to our knowledge, little66

exchange between research on parametrizations and research on downscaling. Nonetheless, there may67

be opportunities to learn: for instance, donscaling studies inform us on the portion of the local,68

subgrid-scale signal that can be reconstructed from knowledge of the large-scale flow, and on the69

relative importance of explanatory variables that contribute to this reconstruction.70

The present study is in the scope of MOS or downscaling, i.e. improving the estimation of surface71

winds, at locations where observations are available, using information from a NWP model and sta-72

tistical/machine learning models trained on past observations. For a given location where historical73

wind measurements are available, the comparison of the measurements to NWP outputs is bound to74

show some significant errors, some of which one may hope to reduce while others should be expected75

to remain [dRK04]. The sources of errors can be identified as:76

– model error: the model describes the atmospheric flow only approximately, partly because of dis-77

cretization and limited resolution, partly because processes that occur on small scales are repre-78

sented through parametrizations.79

– representativity error: the model value represents some average over space. For a variable like80

surface wind having many small-scale variations (those due to turbulence may average out in time,81

but those due to local effects, such as roughness inhomogeneity and obstacles, do not necessarily),82

a local value is bound to differ from the value for a grid box (e.g., [HOP12]).83

– predictability limits (when considering forecasts): even if the model is perfect, errors, however84

small in the initial states, will grow in forecasts because of the chaotic nature of the atmospheric85

flow. For short lead times of a day or less, this should be a minor source of error [Kal03].86
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The skill of NWP models is continuously increasing [BTB15], as are their spatial resolutions. Both87

elements imply that the models’ description of surface winds is improving. Surface winds as they88

are directly output from NWP models still suffer from significant errors [HJ+18]. Other variables, in89

particular large-scale variables like pressure, will be more accurate.90

The question of precisely estimating winds at specific locations has received recently renewed91

interest from the wind energy sector. Very different approaches have been considered for forecasting92

wind at locations of wind farms for different lead times: for short lead times of minutes to a few hours,93

statistical/machine learning models trained with the locally observed wind have been developed using94

a variety of techniques (eg. [Cha14], [TU14], [FLMM12], [WGH11]). For longer lead times, from half95

a day to several days, output from NWP models have been used, including MOS approaches for wind96

speed [RGC13, LPZI14] and for solar irradiance [MGW18]. The most common practice in these cases97

remains the use of linear or multilinear regression, with a central issue being the choice of explanatory98

variables. [RGC13] present a stepwise screening procedure to identify the most relevant variables to99

forecast surface winds at two locations, showing that variables describing the wind lead to the best100

performances.101

The purpose of the present study is to explore and improve the estimation of local, 10 m wind speed102

from recent outputs of the ECMWF model over stations in France sampling different geographical103

settings. Specific issues considered are the performance of the NWP model and the improvement104

gained by using parametric and non-parametric models. More precisely, emphasis is put on evaluating105

the improvement, for the estimation of the surface winds, coming from machine learning models.106

Another objective is to try and identify those variables in the NWP model output that carry the most107

information to reconstruct the surface winds.108

The present study builds on the exploration of parametric and non-parametric models for surface109

winds introduced in [APM+18]. In that study, one specific location was considered, allowing a detailed110

exploration of regression models at that particular site. It was found that the best performance was111

obtained with linear regression, considering appropriate variables. Random forests performed nearly as112

well, without the need for a detailed expertise. The present study extends this first work to more than113

150 stations over France, making it possible to test the performance of different parametric and non-114

parametric models in several geographical contexts. It leads us to understand how the performance115

varies from one geographical area to another.116

The paper is organized as follows: the data and methods used are described in sect. 2. The perfor-117

mance of the NWP model and of the combinations of the NWP with different post-processing models118

are assessed and compared in sect. 3. Focusing on the best model, we then proceed to reduce the119

number of explanatory variables and identify what seems, over all stations, to constitute the most120

informative list of variables. Other aspects and issues, such as the diurnal cycle, are discussed in sect.121

4. Before concluding, it is shown for one station that the improvements gained from training on past122

observations and analyses also carry over to forecasts (sect. 5).123

2 Data and Methodology124

2.1 Data125

The Integrated Surface Database (ISD) is a global database of observed weather data available at126

1-hour frequency [SLV11]. About 400 weather stations in France update their weather data on ISD.127

ISD-Lite is a subset database of hourly time series of original data with fewer variables and in an easy-128

to-use format specifically made available for research activities. In order to better train the models,129

we decided to work on stations with over 90% of available data for a span of 8 years, 2010-2017. As130

a result, we retrieved observed data from 171 stations well distributed across mainland France and131

Corsica.132

The ECMWF is an intergovernmental operational center that provides medium-range weather133

forecasts on a global scale. It has the largest repository of archived global weather data. ECMWF134

operational analyses1 are retrieved with a spatial resolution of 0.125◦ in latitude and longitude over135

1 best estimate of the atmospheric state at any given time obtained by assimilating observed data from within a time
window around the corresponding time to previous forecasts made by the NWP model
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mainland France and Corsica. While this is a fine resolution for global NWP output, this remains136

coarse-grained when comparing surface wind to measurements at one specific location, given for in-137

stance the sensitivity to the local topography.138

The local surface wind is related to the synoptic-scale flow in the atmosphere. The large-scale139

(synoptic) systems like depressions, fronts, and storms are described in terms of physical variables at140

different pressure levels such as wind speed, geopotential height, divergence, vorticity, and temperature141

(Table 1). However, the intra-day wind speed variations that occur in the boundary layer may not142

be wholly explained by the synoptic flows. The variables that convey information about the stability143

of the boundary layer include but are not limited to temperature, heat flux, surface pressure, and144

boundary layer dissipation (Table 2). These variables at the grid points are referred to as raw data145

hereafter. Other important variables that convey information about the vertical exchange processes146

in the boundary layer are vertical wind shear and the temperature gradient. Information about those147

was computed from the raw data as shown in Table 3.148

Table 1 Explanatory variables from the interior of the NWP model domain, retrieved on pressure levels.

Pressure level (hPa) Variable Unit Symbol

1000/925/850/500 zonal wind component m.s−1 u

1000/925/850/500 meridional wind component m.s−1 v

1000/925/850/500 geopotential height m2.s−2 z

1000/925/850/500 divergence s−1 d
1000/925/850/500 vorticity s−1 vo
1000/925/850/500 temperature K T

Table 2 Explanatory variables retrieved among the NWP model’s surface variables. The last three variables are
accumulated over the last six hours.

Altitude Variable Unit Symbol

10m/100m wind speed m.s−1 F
10m/100m zonal wind component m.s−1 u
10m/100m meridional wind component m.s−1 v

2m temperature K t2m
surface skin temperature K skt
msl mean sea level pressure Pa msl

surface surface pressure Pa sp
- boundary layer height m blh
- boundary layer dissipation J.m−2 bld

surface surface latent heat flux J.m−2 slhf
surface surface sensible heat flux J.m−2 sshf

Table 3 Explanatory variables computed as differences in the vertical between two heihgt or pressure levels.

Vertical level Variable Unit Symbol

10m to 100m bulk wind shear m.s−1 DF
1000hPa to 925hPa bulk wind shear m.s−1 DFP
1000hPa to 925hPa temperature difference K DTP

The main set of quantities to be used in the parametric and non-parametric models for a specific149

station is obtained from the bi-linear interpolation of data at the 4 closest ECMWF grid points150

surrounding that station. We also computed additional set of quantities by taking north-south (NS),151

east-west (EW), and diagonal gradients around each station, estimated using finite differences. We152

observed that the north-south and east-west gradients were found to be more significant than the153
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diagonal gradients. Hence, for each quantity we retained its value interpolated at the station location154

and the two components of its gradient (NS and EW) as explanatory variables to feed into the machine155

learning models. This leads to 117 explanatory variables for each station.156

The time period covered by the dataset is April 2010 – December 2017. In order for the observed157

data to match the 6-hour frequency of the ECMWF model outputs, we defined a 2-hour averaging158

window by only considering the observed data at the hour, an hour before and after the top of the159

hour, at 00H, 06H, 12H and 18H.160

The ability of the ECMWF model to represent the observed wind speed is quantified by the Root161

Mean Square Error (RMSE) denoted by Ew,obs, and Pearson’s correlation ρw,obs, given in Eqs. (1)162

and (2) respectively. Here, w stands for the ECMWF time series and obs for the observed wind speed.163

Ew,obs =

√

∑

t∈S

(

ywt − yobst

)2

|S|
, (1)

ρw,obs =

∑

t∈S (ywt − ȳw)
(

yobst − ȳobs
)

√

∑

t∈S (ywt − ȳw)
2

√

∑

t∈S

(

yobst − ȳobs
)2

, (2)

where S denotes the set of indices of the data, with |A| standing for the number of elements of a set164

A, and ȳ = 1

|S|

∑

t∈S yt is the mean of the time series y.165

Figure 2 shows the RMSE and correlation between observed and 10 m wind speed from the166

ECMWF analysis for the meteorological stations under consideration in France. Figure 2a shows that167

the RMSE of ECMWF exceeds 1.0m.s−1 for most of the inland stations: the minimum at an individual168

station is 0.95 m.s−1, the maximum is 4.58 m.s−1. The average over all stations is 1.74 m.s−1, with169

a standard deviation of 0.79 m.s−1. The coastal stations in the west, south and Corsica have a higher170

RMSE of at least 2m.s−1. In Figure 2b, we see that the correlation for inland stations in the north is171

about 0.8, whereas for stations in the South and along the coasts it hardly reaches 0.7 and can be as172

low as 0.4. Note that, due to higher RMSE and lower correlation observed along the coasts, special173

attention was paid to these stations during interpolation to check if the location of ECMWF grid174

points has an effect. Upon careful examination, it was noticed that the location of grid points have175

no significant influence. This degradation may be due to factors that likely contribute to the difficulty176

of modeling surface wind at the coast. These include the discontinuity in surface conditions and the177

ensuing complexity of the boundary layer, and also possibly local phenomena such as sea breeze.178

We computed year by year the average RMSE and correlation of the ECMWF analyses over all179

stations (see Figure 1). An increase of the performance of the model in the year 2014 is observed180

(RMSE decrease) resulting from changes in the ECMWF model which affected surface winds, notably181

a modification of the parametrization of surface drag and the upgrade of the vertical resolution, going182

from 91 to 137 levels in June 2013 [Rid13]. Nevertheless, the upgrade did not have an impact on the183

correlation. The average RMSE and correlation for the time period 2010–2017 are 1.74 m.s−1 and184

0.68 respectively. It is also instructive to include the median of the RMSE for all stations: 1.42 m.s−1.185

This value is smaller than the average, which is expected for a positive variable such as RMSE, which186

can be very large in locations where the model performs very poorly. These errors are significant given187

that the time-averaged wind averaged over all stations is 3.4 m.s−1. More precisely we calculated the188

ratio of RMSE to the time-averaged wind for each station. The overall mean of these ratios is 0.52,189

implying that any significant decrease of the error is worthwhile.190
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Fig. 1 RMSE of the raw output of the ECMWF analyses for the 10 m wind speed over all the stations in France for
the years 2010-2017. Extreme values are 1.82 (in 2010) and 1.68 m.s−1 (in 2016), and the average is 1.74 m.s−1. The
correlation is stable during this period and equal to 0.68 except in two years (it is 0.67 in 2010 and 2013).
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Fig. 2 RMSE of 10 m wind speed in the ECMWF analysis (top panel); correlation of 10 m wind speed in the ECMWF

analysis (bottom panel). Here and in following boxplot figures, standard definitions are used: the red bar indicates the
median, the box is delimited by the first and third quartiles. The whiskers indicate the minimum and maximum values,
aside from outliers, which are identified as less than the first quartile, or greater than the third quartile, by more than
1.5 times the interquartile range.
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2.2 Methodology191

The aim of this work is to model observed wind speed at the above mentioned meteorological stations192

in France from the outputs of the ECMWF model, starting from the study in [APM+18]. Here, the193

target variable is the observed wind speed. The aim is to model this wind speed using as explanatory194

variables only output from the ECMWF model (p = 117 explanatory variables).195

In statistics and machine learning, two main classes of methods may be used: parametric or non-196

parametric methods. In a parametric model, the relationship between output and inputs may be197

described analytically, based on some probability distribution (for instance, Gaussian model). On the198

contrary, a non-parametric method does not rely on a particular distribution assumption on the data,199

but involves several tuning parameters.200

201

2.2.1 Linear Regression202

Linear regression is a widely used model, which tries to identify a linear relationship between the203

response Yt and the explanatory variables X1
t , X

2
t , ...X

p
t at time t:204

Yt = β0 +

p
∑

j=1

βjX
j
t + εt, (3)

where the βjs are the regression coefficients that need to be estimated using least-square approach,205

and εt is the error.206

For a large number of variables, in order to obtain a precise estimation, it is necessary to select207

the most relevant variables. Many methods are available, either forward or backward, to retain only a208

subset of the explanatory variables. Forward selection starts with an empty list of predictors adding209

one highly significant predictor at each step until a stopping criterion is reached, whereas backward210

selection starts with a full list of predictors eliminating one highly insignificant predictor at each step211

until a stopping criterion is reached. Without Gaussian assumption, Lasso regression (also called ℓ1212

regularization) may be employed to select the most important predictors by adding a penalty term to213

the least-square error. This penalty acts as a constraint favoring a weaker sum of the absolute values214

of the regression coefficients; this leads some of the coefficients to shrink to zero, implying that the215

corresponding explanatory variable is dropped [GWHT13, Tib96].216

217

2.2.2 Random Forests218

In non-parametric frameworks, decision trees are today commonly used for modeling. Decision219

trees split iteratively the input space by minimizing the target variance on each side of the split220

[MM16]. Decision trees have the advantage of being easy to set up and understand, and can capture221

non-linear relations between the explanatory variables and the target. Training a single decision tree222

on a dataset would however lead to overfitting. Moreover, decision trees may suffer from a large223

variance: if the training dataset is split into two parts, and if a decision tree is fit for each of the224

two halves, the results could be quite different. To remedy this, bagging (bootstrap aggregation) is225

used: it consists in drawing multiple subsets for training the model (bootstrap), and then aggregating226

together the resulting trees. The variance is correspondingly lower, the risk of overfitting is much227

reduced. This method has been demonstrated to significantly enhance accuracy. It can be further228

improved by an additional modification in the procedure, and this leads to random forests. A random229

forest is an ensemble of many regression trees built with a random selection of the features used for230

each split, to decorrelate the different trees and further reduce the risk of over-fitting to the training231

dataset. The prediction is given by the average of all the leaf response values in the training data set.232

The random forest parameters are the number of trees in the forest (100 for this application) and233

the proportion of explanatory variables allowed at each split (here, the square root of the number234

of variables). Finally, boosting grows trees sequentially by specially updating the weights of the235

worst predicted observations. In other words, it consists in using the information from the errors of236

previously obtained trees, and slowly learning to reduce those errors. This learning method when237
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used with gradient descent optimization is named Gradient Boosting. The boosting parameters are238

the number of trees (here, 100), and depth of the individual trees (here, 10).239

Random forests were chosen as our main tool for exploring the potential of non-parametric models240

because they have been demonstrated to be efficient [GWHT13], they are based on decision trees which241

are fairly easy to understand, and they are interpretable: by counting how frequently one explanatory242

variable is used to define a split of the data into two subsets, it is possible to evaluate the relative243

importance of the different explanatory variables. In other words, random forests inform us about244

the information content of the different explanatory variables relative to our target. Whether the245

non-parametric method is retained for further use or not, this information in itself is of great value.246

Such information is not available from artificial neural networks.247

248

2.2.3 Nearest Neighbours249

An alternative to tree-based methods may be the k-Nearest Neighbor algorithm. It takes the k250

closest training observations based on Euclidean distance and predicts the output as the average of251

the k nearest neighbors outputs. Note that k is in this case a crucial parameter to tune. This model252

is retained as an alternative and cheap non-parametric model, and for its great simplicity.253

254

2.2.4 Training and Validation255

In order to train and test the different machine-learning models, 10-fold cross-validation is used:256

this is a procedure to define split the data into a training dataset, and a dataset to test and evaluate257

the perfomance of the model. The data set is partitioned into 10 subsets. Training is performed in a258

cyclic way on 9 subsets keeping the last one to evaluate the model. Global performances are computed259

by averaging the 10 repetitions. The Python packages used in the work are NumPy, SciPy, matplotlib,260

pandas, and Scikit-Learn.261

3 Comparison of Different Parametric and Non-Parametric Models262

The performance of the machine learning (ML) models relative to ECMWF raw model output is263

computed using a relative error for both RMSE and correlation as follow:264

∆EML =
(EECMWF − EML)

EECMWF

100 % , (4)

∆ρML =
(ρML − ρECMWF )

ρECMWF

100 % , (5)

where EECMWF and ρECMWF are the RMSE and correlation computed between the ECMWF model265

and the observation; EML and ρML are respectively the RMSE and correlation computed between266

the predictions of a given machine learning or statistical model and the observations.267

The parametric models implemented in this work are Linear Regression with all explanatory vari-268

ables (hereafter LRA), Linear Regression with stepwise selection of variables (hereafter LRSW ), and269

the Ordinary Least Square (OLS) with lasso regularization (hereafter LRℓ1). The non-parametric mod-270

els implemented in this work are Random Forest with all variables (hereafter RFA), Gradient Boosting271

(hereafter GB), and k-Nearest Neighbors (hereafter KNN) using the 10 most important explanatory272

variables provided by the Random Forest model.273

All models are summarized in the following Table 4. Two more KNN models were also trained274

but are not mentioned in this paper because of their poor performances: one with all explanatory275

variables and another with only 5 wind related explanatory variables.276
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Table 4 parametric and non-parametric models implemented in this work

machine learning model Name

Linear Regression with all variables LRA

Linear Regression with stepwise selection LRSW

OLS with lasso regularization LRL1

Random Forest with all variables RFA

Gradient boosting with all variables GB

K-nearest neighbor with the best 10 chosen variable from RFA KNN

3.1 Performance of the machine learning models for one station277

Figure 3 illustrates the time series and scatter plot of 10 m observed and modeled winds over a278

certain time period for the station Le Havre-Octeville located (49.53◦ N and 0.08◦ E): it lies on279

the coastline, in northern France, and is the northernmost station on the Greenwhich meridian, on280

the northern bank of the Seine estuary. This station was chosen as qualitatively representative of281

the overall results, but featuring a rather pronounced, but not exceptionnal, improvement. Other282

individual stations typically display the same ordering of the performances of the different models,283

but with rather weaker contrasts for inland stations, and with comparable or greater improvements284

foor many coastal stations. The 10 m wind speed from the ECMWF analysis has high RMSE (about285

2.3ms−1) and low correlation (about 0.7), as illustrated in the time series (purple line of figure 3). The286

machine learning models (green and yellow lines in the time series) closely follow the observed wind287

(black line in the time series), suggesting improvements in RMSE and correlation over ECMWF ,288

as discussed quantitatively below. The scatter plot shows the modeled and observed winds plotted289

against each other for the same time period as that of the time series with the black line indicating290

perfect representation. The ECMWF model usually overestimates winds over 4 m.s−1 as can be seen291

from the scatter plot (represented by purple dots). The implemented models generally underestimate292

winds over 5 m.s−1 (illustrated by green and yellow dots). Is the representativity of high RMSE and293

low correlation by ECMWF , and improved performance by the machine learning models typical over294

8 years for this station?295

Figure 4 shows the boxplot of RMSE and correlation of all the models (over 8 years) for the296

reconstruction of 10 m wind speed at the same station. It can be seen that the RMSE of ECMWF is297

high at 2.3m.s−1 whereas the correlation is low at about 0.7. It is conspicuous that all the implemented298

models bring in improvement, with RMSE reduced to values between 1.05 m.s−1 and 1.35 m.s−1,299

and correlation increased to values between 0.73 and 0.86. Among the implemented models, one300

can distinguish three groups based on improvement over ECMWF . The first group is the machine301

learning models which improve RMSE by about 44% and correlation by about 6%, bringing down the302

Inter Quartile Range (IQR) of RMSE and correlation by about 81% and 46% respectively compared303

to ECMWF . The second noticeable group is that of the tree based machine learning models which304

give the best performance: they reduce RMSE by 55% and increase correlation by 22% with a sharp305

reduction in the IQR of RMSE and correlation by 91% and 75% respectively over ECMWF . The306

performance of the KNN model is intermediate between the first and the second groups with an307

improvement in RMSE and correlation by 50% and 15% respectively over ECMWF .308
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Fig. 3 Time series (top) and scatter plot (bottom) of the 10 m observed and modeled winds for the Le Havre-Octeville
station
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Fig. 4 Boxplot of RMSE and correlation of all models for the station Le Havre-Octeville in France

After having seen the results for one station, how do the general results look like if the same309

exercise is done on all the stations in France? This question will be answered in the following section.310

3.2 Performance of the parametric and non-parametric models over France311

In order to have a general picture for the whole of France, the above discussed exercise was reproduced312

for all the stations in France. Figure 5 shows the boxplot of RMSE and correlation of all the models313

for stations in France. Note that the outliers (defined using the standard defintion, i.e. further of the314

first or third quartile by more than 1.5 times the inter-quartile range) of the ECMWF model have315

been excluded from the RMSE boxplot as they were significantly higher and distorting the scale of316

the plot.317

Fig. 5 Boxplot of RMSE and correlation of all models for all the stations in France

Overall, it can be observed that all the models generally perform better than ECMWF in rep-318

resenting 10 m wind (refer also to Table 5 and Table 6). Generally, the parametric models (LRA,319

LRSW , and LRL1) improve the RMSE over ECMWF by 25% and correlation by 8%; all of them320

reducing the IQR of RMSE by approximately 50% and correlation by 20%. The RMSE of about 25%321

of the stations in the parametric models are below the minimum RMSE represented by the ECMWF322

model (note that in the boxplots, the whiskers indicate the extreme values, but excluding outliers, see323
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Fig. 2). About 25% of the stations in the ECMWF model have RMSE higher than the highest value324

represented by the parametric models. The correlation of about 50% of the stations in the parametric325

models are above the third quartile (Q3) of the ECMWF model.326

Overall, the tree based non-parametric models such as RFA and GB significantly improve the327

RMSE over ECMWF by 33% and correlation by 15%; both of them reducing the IQR of RMSE by328

roughly 60% and correlation by 50%. About 50% of the stations in the tree based non-parametric329

models have RMSE lower than the lowest value and correlation higher than the highest value of330

the ECMWF model. The RMSE and correlation of about 75% of the stations in the RFA and GB331

models are well within the first quartile (Q1) and above the third quartile (Q3) of the ECMWF332

model respectively. Although the performance of the KNN model is in between that of parametric333

and tree based non-parametric models, there are instances of it degrading the results over ECMWF .334

This may be due to the fact that the KNN model is sensitive to the number and kind of variables335

that are fed and the number of k-neighbors chosen. To conclude, RFA and GB models seem to provide336

robust results with minimal efforts.337

Table 5 Quartiles of the RMSE of all models from the boxplot (Figure 5)

Model Min Q1 Median Q3 Max IQR

ECMWF 0.94 1.18 1.42 2.02 3.20 0.84
LRA 0.60 0.89 1.07 1.33 1.97 0.44
LRL1 0.62 0.9 1.08 1.36 1.97 0.46
LRSW 0.63 0.93 1.09 1.35 1.96 0.42
KNN 0.69 0.99 1.09 1.30 1.70 0.31
RFA 0.60 0.84 0.95 1.15 1.60 0.31
GB 0.60 0.83 0.94 1.15 1.62 0.32

Table 6 Quartiles of the correlation of all models from the boxplot (Figure 5)

Model Min Q1 Median Q3 Max IQR

ECMWF 0.32 0.61 0.74 0.79 0.87 0.18
LRA 0.52 0.72 0.81 0.85 0.91 0.13
LRL1 0.49 0.70 0.80 0.84 0.91 0.14
LRSW 0.50 0.70 0.81 0.84 0.91 0.14
KNN 0.60 0.72 0.80 0.82 0.89 0.10
RFA 0.68 0.79 0.85 0.88 0.93 0.09
GB 0.65 0.78 0.85 0.87 0.92 0.09

3.3 Geographical Pattern338

The improvements obtained by the machine learning models are not homogeneous geographically. To339

illustrate this, Figure 6 shows the percentage change in RMSE and correlation of LRA model with340

respect to ECMWF for stations in France (the geographical patterns for different implementations341

of Random Forests are similar between themselves, and illustrated in Sect. 4.) It is clear that the342

LRA model improves the RMSE and correlation over the ECMWF model everywhere. Greatest343

improvements in RMSE of at least 30% could be noticed on the Western coast, the Southern coast,344

and Corsica where ECMWF had performed poorly (ref Figure 2). In general, the RMSE of inland345

stations improves by 15% on average with few local stations showing higher improvements of up to346

60%. Correlation follows a similar pattern with highest improvements seen on the coastal stations347

including Corsica. On an average, inland stations show an improvement of 6% in correlation. The348

other two parametric models show a pattern similar to LRA model with LRSW performing as good349

as LRA, and LRL1 performing close to LRA (figures of LRL1 and LRSW not shown here).350
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Fig. 6 Percentage change in RMSE of LRA model with respect to ECMWF analyses (top), and percentage change
in correlation of LRA model with respect to ECMWF analyses (bottom).
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The KNN model has mixed performance (figures not enclosed here). The highest improvements in351

RMSE could be observed at the coastal stations including Corsica, whereas few inland stations suffer352

degradation in RMSE over ECMWF . The mean improvement in RMSE of KNN model at the coastal353

stations is higher than that of the parametric models. As a result of general degradation of RMSE354

in the inland stations, parametric models outperform KNN . More degradation than improvement355

could be noticed when it comes to the correlation of KNN model. Although there is an improvement356

in correlation at the coastal stations compared to the parametric models, the inland stations suffer357

significant degradation.358

The tree-based models show a a pattern similar to parametric models but with even higher im-359

provements. The geographical pattern for the performance of the RFA model is very similar to the360

pattern discussed for the RFC25 discussed further below (Figure 9). These models also improve the361

RMSE and correlation over the ECMWF model everywhere. Greatest performance could be seen on362

the Western coast, the Southern coast, and Corsica with an average improvement in RMSE of 50%363

and correlation of 70%. In general, the RMSE of inland stations improves by 25% on average with364

few local stations showing higher improvements of up to 60%. Correlation shows an improvement of365

12% on average in the inland stations.366

As RFA model is simple and robust providing the best performance; it will be further explored in367

the section that follows.368

4 Relevance of the Different Explanatory Variables369

The aim of the previous section was to identify the most efficient model and to explore the best370

possible improvements relative to the raw output from ECMWF . Consequently, we did not restrict371

the list of explanatory variables (letting the machine learning models or selection procedures handle372

the redundancy or irrelevant information). We fed the machine learning models with a long list of373

explanatory variables which could potentially carry information.374

For practical purposes, it is desirable to simplify the implemented models by restricting the list375

of explanatory variables only to those that carry substantial information. It will also be instructive376

to document the list of explanatory variables from which the machine learning models draw their377

information.378

As RFA yielded the best performance, the further work will be restricted only to the Random379

forest model. Moreover it provides tools to quantify and rank the relevance of explanatory variables.380

Our aim will be to reduce the list of explanatory variables as much as possible without degrading the381

performance.382

4.1 Reducing the List of Explanatory Variables383

With an objective to develop a simplified and a more explainable model, the relevance of explanatory384

variables for each station in France was analyzed. It was observed that the wind variables dominated385

the rank table in most of the stations. It was also noted that the ranking of explanatory variables was386

unique to each station with the importance value in every station dropping typically between the 40th387

and the 50th variable. This led to try another Random forest model RFB with only 50 important388

explanatory variables specific to each station (compared to the p=117 number of initial variables).389

The performance of the model was not degraded, rather very slightly enhanced; more importantly, it390

was found that over 50% of the original explanatory variables were not providing useful, additional391

information. A redundancy in the explanatory variables as a result of very high correlation between392

them was observed. The RFB model reduced the list of explanatory variables for each station, but393

in a way specific to each station, and therefore requiring a station specific analysis. A more generic394

approach should use the same list of explanatory variables for all the stations. Figure 7 shows the395

frequency of occurrence of the 50 most important explanatory variables for stations in France. This396

list was developed by grouping the list of 50 most important variables for 171 stations. It should be397

noted that 107 of the original 117 explanatory variables appear in the 50 most important variables398

list.399
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Fig. 7 Frequency of occurrence of top 50 variables for all the stations in France. Each vertical bar corresponds to one
explanatory variable. For readability, we have not included abbreviated names of the variables, but indicate with colors
the categories of variables. Note that the explanatory variables based on pressure (to be more precise on the geopotential
taken on isobaric surfaces) include the horizontal gradients. These are very close to geostrophic wind, hence to wind.

A model based on a more generic approach named RFC with 50 explanatory variables common400

to all stations was carried out and it was found to perform as well as RFB (Figure 8). To investigate401

how much the list of variables can be shortened, another Random forest model RFC25 with 25 most402

important explanatory variables was set up. At this point, we began to degrade the performance403

marginally: RFC25 is as good as RFA with just 1% degradation in RMSE overall. However, going404

down to RFC10 with 10 most important variables not only degrades the RMSE by 8% and correlation405

by 2%, but also increases the IQR of RMSE and correlation by 13% and 11% respectively (refer to406

Tables 7 and 8). Nonetheless, RFC10 performs better than all the parametric models described in407

Sect. 3.2.408

Further analyzing the list of explanatory variables, we found that the wind speed at 100 m (F100),409

wind speed at 10 m (F10) and bulk wind shear between 10 m and 100 m (DF) are the 3 most significant410

variables that bring in key information from the synoptic flow at any given location. Accordingly,411

another model RFC3I with only three variables (F10, F100 and DF) was set up. The results turned out412

to be more nuanced compared to the parametric models as can be seen from Figure 8. The performance413

of a Linear regression model with the same 3 important explanatory variables is poorer than RFC3I414

(results not shown here). The conclusion of these tests is that a reduction of the explanatory variables415

to 25 or even to 10 variables is justified and does not significantly affect the performances, but that a416

reduction to only 3 explanatory variables is excessive and comes at the cost of degraded performances.417
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Fig. 8 Boxplot of RMSE and correlation of various RF models for all the stations in France

Table 7 Quartiles of the RMSE of various RF models from the boxplot (Figure 8), in ms−1. The extreme values are
extreme values for the whole dataset, ie including outliers.

Model Min Q1 Median Q3 Max IQR

RFA 0.60 0.84 0.95 1.15 1.60 0.31
RFB 0.60 0.83 0.94 1.15 1.63 0.32
RFC 0.60 0.83 0.94 1.14 1.62 0.31
RFC25 0.61 0.84 0.96 1.16 1.65 0.32
RFC10 0.64 0.91 1.02 1.26 1.70 0.35
RFC3 0.72 1.00 1.12 1.38 1.92 0.38

Table 8 Quartiles of the correlation of various RF models from the boxplot (Figure 8), in ms−1. The extreme values
are extreme values for the whole dataset, ie including outliers.

Model Min Q1 Median Q3 Max IQR

RFA 0.66 0.79 0.85 0.88 0.93 0.09
RFB 0.68 0.80 0.86 0.88 0.93 0.08
RFC 0.67 0.80 0.86 0.88 0.92 0.08
RFC25 0.66 0.79 0.85 0.87 0.92 0.08
RFC10 0.62 0.76 0.83 0.86 0.91 0.10
RFC3 0.51 0.69 0.79 0.82 0.88 0.13

Regarding the spatial distribution, the percentage change in RMSE and correlation of RFC25418

model with respect to ECMWF is shown in Figure 9. From Figure 9a it can be noticed that the419

RMSE of inland stations in the north of France improves by 30% on average. The stations in the420

inland South have a mean improvement in RMSE of 40%. The highest improvements of up to 80%421

could be recognized on coastal stations in the West, the South and Corsica. From Figure 9b, the422

correlation follows a similar pattern to RMSE with stations in the inland north and inland south423

showing an average improvement of 15% and 22% respectively. The coastal stations display an average424

improvement in correlation of 60%.425

In conclusion, RFA model used an unnecessarily long list of explanatory variables. This was not426

detrimental to its performance, but needlessly cumbersome. The performance could be slightly im-427

proved with the RFB model with 50 station specific explanatory variables. The model RFC with 50428

common explanatory variables performs as good as RFB but is generic in nature. RFC25 is simple429

and robust with just 25 important explanatory variables and is comparable to RFA in performance.430
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However, with fewer explanatory variables, RFC25 is not quite as good as RFC . Hence, RFC25 ap-431

pears as a compromise between performance and simplicity. It is instructive to analyze the list of 25432

explanatory variables retained.433
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Fig. 9 Percentage change in RMSE of RFC25 model with respect to ECMWF analyses (top), and percentage change
in correlation of RFC25 model with respect to ECMWF analyses (bottom).
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4.2 List of significant variables434

The following are the most significant explanatory variables that bring in unique information to the435

machine learning models.436

Top 9 list:437

– All information (components and speed) on the 10 m and 100 m wind (6 variables),438

– the wind shear between 10 m and 100 m (1 variable),439

– and the components of 500 hPa wind (2 variables).440

Top 25 list:441

– Added to the previous list are the wind components at 850 hPa and 925 hPa (4 variables),442

– the gradients of geopotential at 925 hPa, 850 hPa and 500 hPa (6 variables),443

– gradients of mean sea level pressure (2 variables),444

– skin temperature,445

– temperature at 2 m,446

– the boundary layer height,447

– and one of the gradients of surface pressure.448

The subsequent 10 variables include the temperature and boundary layer parameters. In the fol-449

lowing appear a few divergence and vorticity variables. Even though the gradients of geopotential450

that are dominating the second ten list indirectly represent the geostrophic wind components at the451

respective pressure levels which are in the top ten list, RFC10 model did not perform as good as452

RFC25. This suggests that the other variables carry significant information.453

To conclude, it is striking that the most relevant variables are almost all wind variables (wind or454

geostrophic wind). It was expected that, given the importance of thermal and convective processes455

in the boundary layer, the inclusion of information on the temperature and stratification would be456

helpful. It is not the case, which can be explained as follows: the model already describes rather well457

the wind, and the shear already encompasses the relevant information on the stratification and mixing458

in the boundary layer, and/or we have not provided information on these aspects of the boundary459

layer with the right choice of explanatory variables.460

5 Discussion461

This section describes additional work carried out to explore some directions to widen the scope of462

our results. Indeed, a severe limitation of our approach is that it is only local and it requires prior463

observations for training the machine learning models. Hence, it is of great interest to explore and464

identify patterns in the performance of the models, as this may provide insight regarding the origin465

of model errors: to what extent does the improvement mainly come from a removal of the bias in the466

model ouput? Are there errors systematically associated to certain geographical features (mountains,467

coastlines)? Do the machine learning models preferentially rely on certain variables in certain geo-468

graphical contexts? Are there systematic errors associated with other features of the boundary layer469

(diurnal cycle)?470

Regarding the geographical pattern solely based on percentage change in RMSE and correlation471

over ECMWF, Figure 9 gave the impression of formulation of three clusters: inland north, inland472

south, and coastal. We attempt to provide a statistical confirmation in the following section. Another473

issue that emerged during the study is the influence of time of the day on the errors made by machine474

learning models. This issue is addressed in Sect. 5.4.475

5.1 Bias476

It was chosen above to quantify the performance of the machine learning models using the RMSE and477

correlation as complementary tools. Nonetheless, it is important to probe how much of the RMSE478

results from a reduction of a bias present in the ECMWF output. For this purpose, the bias of479
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the ECMWF surface wind was calculated and is shown in figure 10. It is apparent that the largest480

values of RMSE (Fig. 2) correspond to the largest values of bias. There is mostly a positive bias over481

coastal stations, amounting typically to nearly half of the RMSE. There are also a few inland stations482

displaying a significant negative bias, corresponding to unusually large RMSE for inland stations.483

Over the whole set of stations, the bias is on average 0.47 ms−1, amounting to slightly more than a484

quarter of the RMSE (1.74 ms−1). For individual stations, the biases range from -1.61 to 2.50 ms−1.485

As expected, the machine learning models prove very efficient at removing the bias. For illustration,486

the bottom panel of figure 10 displays the bias for RFC25, which is uniformly negligible. The average487

bias is 0.004 ms−1, with values for individual stations ranging from -0.02 to 0.04 ms−1.488
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Fig. 10 Bias in the surface wind for the ECMWF (top panel) and for the estimated surface wind using the RFC25

(bottom panel).

5.2 Altitude489

As a preliminary attempt, we tried to look for a link between the percentage improvement in RMSE490

and correlation with the altitude of the station. No statistical evidence for such a link was found.491

As the local topography has a significant effect on the small scale variations of surface winds, we492

searched for a relation between the small scale gradients of 2 km topography around each station493

and model performance. We found no clear link between the gradients of altitude and the percentage494
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improvement in RMSE and correlation. We further elaborated our previous approach by taking into495

account the variance of topography around each station. We achieved this by considering the altitude496

at 0.2km, 0.5km, 1km, 1.5km, 2km, 3km, and 5km along north, south, east, and west directions around497

each station and computing the overall variance of altitude. No clear link between the improvement498

in RMSE and correlation with the altitude parameters was discovered.499

5.3 Cluster500

Independently, unsupervised classification using k−means clustering was also performed by feeding501

RMSE and correlation of ECMWF , and percentage change in RMSE and correlation of RFC25502

over ECMWF as explanatory variables. Nothing conspicuous came out of this approach towards503

clustering. More work is needed in this direction as finding clusters would help in approximating the504

error made by ECMWF at other locations with similar topographic variations.505

5.4 Diurnal506

Inspection of the error at specific stations suggested that a diurnal cycle of error could be present.507

This is in part natural, as there is a marked diurnal cycle in the properties of the boundary layer508

(thermal mostly, but also, to a lesser degree, wind). To illustrate this diurnal cycle, the Probability509

Density Functions of errors for the four different analysis times (00, 06, 12, and 18 UTC) are shown510

in Figure 11 at le Havre Octeville station and for the ECMWF output. There clearly are biases that511

vary with the time of day. The signs of these biases was not robust across stations, and should not be512

judged as representative. Attempts were made to remedy this diurnal cycle by training four different513

machine learning models, one for each time of day. This procedure provided only mild and inconclusive514

improvement, and hence is not documented here. The purpose of this paragraph is rather to point this515

out as a direction for further exploration, and for which a better knowledge of the modeling system516

and its limitations may be particularly beneficial.517

Fig. 11 Probability distribution of error of the RFC25 modeled 10 m wind at various hour indices for the station Le
Havre-Octeville
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5.5 Application to Other Variables518

The methodology described in the present paper was applied to surface wind speed because of a519

strong demand from the wind energy sector for better estimates of surface winds. It is not specific to520

wind however and could apply to other quantities. For wind itself, it has been applied in preliminary521

tests to the wind components as an intermediate step before calculating the wind speed. This did522

not provide a gain for the end caclculation of the wind speed and was not pursued. It could also be523

used for wind direction, for which statistical estimators can also be used despite its cyclic character524

(e.g. [Yam82]). Variables other than wind, notably temperature, could be estimated with the above525

methoology. However, the errors of NWP models on temperature are less of a concern than for winds.526

The RMSE and correlation of the temperature directly output from the ECMWF was calculated for527

all the 171 stations (not shown). The average of RMSE is 1.45 K with a standard deviation of 0.84528

K, indicating strong variations among stations. Indeed, for individual stations the RMSE ranges from529

0.77 to 7.96 K. Excluding four stations which appear as outliers brings the average RMSE down to530

1.34 K, with a standard deviation of 0.39 K. The average correlation is 0.98, the weakest correlation531

being 0.89. Given the good performances of the direct model output, the possible relative gain from532

statistical post-processing is weaker.533

6 Exploratory Test Using Forecasts534

We have explored the relationship between outputs of a NWP model and the observed 10 m wind speed535

at 171 stations in France. We have shown that post-processing using machine learning models could536

provide significant improvements over the performance of the NWP model alone. Before reporting537

our conclusions in Sect. 7, we need to consider an essential question hitherto left aside: in all that538

precedes, the NWP outputs were extracted from analyses. In practice, it is forecasts that will be of use539

for wind energy operators. Does the relationship identified between model outputs and observed winds540

hold when the explanatory variables are taken from forecasts? Are the improvements from machine541

learning models applied to forecasts comparable to those obtained from analyses? Below, we probe542

this issue for the case of one station, encouragingly suggesting that our results carry over fully to543

forecasts.544

This section intends to improve the forecasts of the surface winds from the outputs of the ECMWF545

model, using the same post-processing as described in previous sections. Note that this will provide546

only a lower-bound on the potential accuracy of forecasts, because the machine learning models are547

not trained on the forecasts and do not use all the available information (see discussion below).548

The ECMWF high resolution global forecast model is run twice a day at a base time of 00:00 and549

12:00 UTC and each run forecasts the weather up to 10 days. We limit this study to the station Le550

Havre-Octeville (already used in previous Sect. 3.1). Appropriately, the ECMWF forecast data were551

retrieved at lead times of 0H, 3H, 6H, 12H, and 24H where 0H corresponds to that of the analyses. The552

machine learning models used to reconstruct the wind from these forecasts are the same as described553

and used previously: they have been trained using model outputs from the analyses. In other words,554

there has not been a new machine learning model trained with outputs from the forecasts.555

To describe the baseline, figure 12 shows the RMSE and correlation of the 10 m winds from556

ECMWF forecasts at various lead times for the station Le Havre-Octeville in France. As seen pre-557

viously, the RMSE is rather large (nearly 2.5 ms−1), and it remains fairly constant over the first 24558

hours of the forecast.559
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Fig. 12 RMSE and correlation of the 10m ECMWF forecast winds at various time horizon for the station Le Havre-
Octeville.

Now, we apply the RFC25 model, trained on the analyses as described in Sect. 4, to the outputs560

of the ECMWF forecasts at lead times from 3 to 24 hours. The RMSE and correlation of the561

reconstructed wind are shown in Figure 13. Strikingly, the RMSE is dramatically reduced (down to562

less than 1.2 ms−1, with a very narrow spread): the average improvement in RMSE and correlation563

over all the lead times is about 55% and 21% respectively. These improvements are simply consistent564

with those obtained with Random Forests from the outputs from the analyses (Sect. 4). There is a565

suggestion of a slight time evolution of the accuracy, with a maximum accuracy for lead times of 6566

hours; this could be explored if the investigation at other stations confirmed it to be a robust feature,567

but is beyond the scope of the present study. The message to retain here is that the improvements568

carry over to forecasts, and that for lead times up to 24 hours these improvements are fairly stable569

in time. Hence, this approach holds promise for forecasting. The results could be further improved by570

applying a model that is trained separately for each lead time directly on the forecasts. This, and the571

investigation over all stations in France, are topics for future research.572

Fig. 13 RMSE and correlation of 10m winds of the RFC25 model at various time horizon for the station Le Havre-
Octeville
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7 Conclusion573

In this study, we used several parametric and no-parametric machine-learning methods to estimate574

the surface wind speed from the analyses of the ECMWF model over 171 stations in France. Two575

issues were particularly emphasized: first, the use and comparison of both parametric methods (multi-576

linear regression, as in a majority of Model Output Statistics (MOS) practices) and machine learning577

methods (notably random forests), and second, the identification of model variables that carried most578

information for the estimation of the surface winds.579

The ECMWF model estimates well the 10 m wind speed in the inland north of France. However,580

there are significant errors in the wind speed estimation on the coasts, the inland South and Corsica.581

The mean RMSE and correlation of all the stations in France from 2010 to 2017 are 1.74 m.s−1
582

and 0.68 respectively. For machine learning models, as explanatory variables, we retained model583

variables describing wind, geopotential, and temperature at several levels, along with their vertical584

and horizontal gradients. We also included certain variables describing the boundary layer.585

All the machine learning models, parametric and non-parametric generally bring an improvement,586

in the estimation of the 10 m wind, relative to the ECMWF direct model output, as intended. All the587

parametric models (Linear regression) show a similar performance with an average decrease of 25%588

for RMSE and increase of 8% for correlation. Tree based non-parametric models (Random forest and589

Gradient boosting) show the best performance with a mean decrease of 33% for RMSE and increase590

of 15% for correlation. The KNN model, being not only non-parametric, but also data sensitive, gave591

intermediate results. The highest improvements in RMSE and correlation by all the models are found592

on the coastal stations on the North Sea and the Atlantic coast, on the Mediterranean coast and in593

Corsica.594

The contribution of various explanatory variables in capturing the relationship between synoptic595

circulations and local flows has been investigated. The Random forest machine learning technique596

is simple and robust requiring almost no data preparation, and it also provides tools to quantify and597

rank the relevance of explanatory variables. The random forest model with 50 explanatory variables598

common to all stations has the best performance in terms of objective scores. Curtailing the list599

of explanatory variables to 25 simplifies the model and only marginally degrades the performance.600

Further reducing the list of explanatory variables noticeably degrades the results (see tables 7 and 8;601

for instance, the median of RMSE for models RFC , RFC25, RFC10 and RFC3 are respectively 0.94,602

0.96, 1.02 and 1.12 ms−1). Hence, the random forest model with 25 variables common to all stations603

(RFC25) appeared to be the best compromise between performance and simplicity. A generic list of 25604

most significant variables that could be used to predict wind at any location was proposed. It is striking605

to note that the most relevant variables are almost exclusively wind variables (wind or geostrophic606

wind). Revisiting this with particular care to provide better information on the stratification near the607

surface (e.g. through an estimation of a bulk Richardson number) would be worthwhile to make this608

more conclusive.609

Further issues such as the geographical pattern of model performance or its dependence upon local610

topography have been explored. Upon looking at the figures showing the percentage improvement in611

RMSE and correlation, there seems to appear a geographical pattern (with highest improvements612

on the coast and the inland south, and moderate improvements in the inland north). Preliminary613

attempts to objectively define geographical clusters of stations showing similar model performance614

were hampered by outliers, and more research would be needed in this direction. Attempts to test615

the sensitivity of the machine learning models to local topography (altitude, its gradients or small-616

scale variance) did not reveal any conspicuous relationship. Finally, the presence of a diurnal cycle617

in the bias made by the ECMWF model was detected in certain stations. A preliminary attempt618

was carried out to remedy this, but it was too limited in time and concerned only one station so it619

remained inconclusive. This aspect would call for further, more systematic investigation.620

The present study confirms, for the estimation of surface winds, the relevance of machine learning621

models such as random forests, in agreement with the findings and choices of [ZBMS16]. These authors,622

in the context of providing improved, gridded data for surface winds, used random forests and explored623

strategies for obtaining gridded surface winds over a whole territory, not just at a given location where624

observations have been available. Our results on the comparison of parametric and non-parametric625

models, on the geographical distribution of improvements, and on the relevance and selection of626
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explanatory variables are complementary. The very encouraging test with forecasts in Sect. 6 opens627

the way for further studies to apply these models for forecasts, notably for wind energy, using 100628

m winds. Another important source of information to tap into are outputs from NWP at higher629

resolution. The French meteorological agency, Météo-France, produces forecasts for mainland France630

at a higher spatial resolution (dx = 1.3 km presently). Investigating the performance of machine631

learning models using input from such higher resolution model constitutes a topic for further research.632

633
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