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Abstract – This paper focuses on unsupervised curve classification in the context
of nuclear industry. At the Commissariat à l’Energie Atomique (CEA), Cadarache
(France), the thermal-hydraulic computer code CATHARE is used to study the re-
liability of reactor vessels. The code inputs are physical parameters and the outputs
are time evolution curves of a few other physical quantities. As the CATHARE code
is quite complex and CPU-time consuming, it has to be approximated by a regres-
sion model. This regression process involves a clustering step. In the present paper,
CATHARE output curves are clustered using a k-means scheme, with a projection
onto a lower dimensional space. We study the properties of the empirically optimal
cluster centers found by the clustering method based on projections, compared to
the “true” ones. The choice of the projection basis is discussed, and an algorithm
is implemented to select the best projection basis among a library of orthonormal
bases. The approach is illustrated on a simulated example and then applied to the
industrial problem.
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1 Introduction

1.1 The CATHARE code

A major concern in nuclear industry is the life span of reactor vessels. To go on
using the current nuclear reactors, their reliability has to be proved. For this pur-
pose, complex computer codes are developed to simulate the behavior of the vessel
under different sequences of accidents. At the Commissariat à l’Energie Atomique
(CEA), Cadarache (France), one of the main types of accident under study is the
pressurized thermal shock. This is a problem due to the combined stresses from a
rapid temperature and pressure change. More specifically, as a reactor vessel gets
older, the potential for failure by cracking when it is cooled rapidly at high pressure
increases greatly. The analysis of pressurized thermal shock is made of two main
steps. First, a thermal-hydraulic analysis is done to determine the temporal evolu-
tions of temperature, pressure and thermal exchange coefficient in the vessel annular
space, since these features have an influence on the mechanical and thermal charge
on the vessel inner surface. Some evolution curves x1(t), . . . , xn(t) corresponding to
the thermal exchange coefficient are depicted in Figure 1 (n = 66). Each curve xi(t)
is obtained as the simulation result for a certain vector of input physical parameters.
The curves of temperature, pressure and thermal exchange coefficient obtained dur-
ing this first step are then used as limit conditions in the second part of the analysis,
which is a mechanical investigation aiming at checking if some defects on the ves-
sel annular space could propagate and gain importance to such an extent that this
would cause a break of the vessel inner surface. For further details on the reliability
of reactor vessels, we refer the reader to Auder, De Crecy, Iooss, and Marquès [5].

The simulation step relies on a computer code called CATHARE (Code Avancé de
THermohydraulique pour les Accidents des Réacteurs à Eau, in English Code for
Analysis of THermalhylaudrics during an Accident of Reactor and safety Evalua-
tion). The CATHARE code is a system code for pressurized water reactors safety
analysis, accident management, definition of plant operating procedures and for
research and development. The project is a result of a joint effort of the reac-
tor vendor AREVA, the CEA, EDF (Electricité de France) and the IRSN (Institut
de Radioprotection et de Sûreté Nucléaire). The first delivered version V1.3L was
available in 1997. The CEA team CATHARE located in Grenoble (France) is in
charge of the development, the assessment and the maintenance of the code. (See
http://www-cathare.cea.fr.)

The CATHARE code allows to simulate the evolution of temperature, pressure and
thermal exchange coefficient, given the physical parameters as inputs. However, this
code is so slow (about 6 to 10 hours for one run) that it cannot be used directly
for reliability calculations. To bypass this obstacle, the strategy drawn up by the
CEA is to build a so-called metamodel which is a fast approximation of the original
code, precise enough to carry out statistical computations. The term “metamodel”
indicates that a computer code approximating a physical process has already been
developed, and now this code is modeled in turn. Here, the purpose is the con-
struction of a regression model based on a few hundreds CATHARE code outputs,
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Figure 1: 66 evolution curves of thermal exchange coefficient in a nuclear vessel.
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Figure 2: Flowchart of the CATHARE code.
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obtained during one week of computation on a supercomputer in 2007. The inputs
were sampled randomly by latin hypercube methods (see, e.g., McKay, Conover,
and Beckman [28] and Loh [26]), so that we have no control over the inputs in
the learning sample. As different kinds of behavior for temperature, pressure and
thermal exchange coefficient may be observed depending on the physical parame-
ters, a preliminary unsupervised classification of CATHARE code output curves is
essential. Once the curves have been clustered in meaningful classes, the regression
model can be adjusted for each group of outputs separately. The clustering step is
the object of the present paper.

1.2 Clustering

Clustering is the problem of partitioning data into a finite number of groups (de-
noted hereafter by k), or clusters, so that the data items inside each of them are
very similar among themselves and as different as possible from the elements of the
other clusters (Duda, Hart, and Stork [14, Chapter 10]). In our industrial context,
the data is made of evolution curves of temperature, pressure or thermal exchange
coefficient. Using a probabilistic point of view, these curves can be seen as indepen-
dent draws X1(t), . . . , Xn(t) with the same distribution as a generic random variable
X(t) taking values in a functional space (E, ‖ · ‖) — typically, the Hilbert space of
square integrable functions.

A widely used clustering method is the so-called k-means clustering, which consists
in partitioning the random observations X1, . . . , Xn ∈ E into k classes by minimizing
the empirical distortion

W∞,n(c) =
1

n

n
∑

i=1

min
`=1,...,k

‖Xi − c`‖2,

over all possible cluster centers c = (c1, . . . , ck) ∈ Ek. Here, µn denotes the empirical
measure associated with the sample X1, . . . , Xn, i.e.,

µn(A) =
1

n

n
∑

i=1

1{Xi∈A}

for every Borel subset A of E. In other words, we look for a Voronoi partition of E.
The Voronoi partition C1, . . . , Ck associated with c = (c1, . . . , ck) ∈ Ek is defined by
letting an element x ∈ E belong to C` if it is closer (with respect to the norm ‖ · ‖)
to c` than to any other cj (ties are broken arbitrarily). The `-th cluster is made of
the observations Xi assigned to c`, or equivalently, falling in the Voronoi cell C`. In
this framework, the accuracy of the clustering scheme is assessed by the distortion
or mean squared error

W∞(c) = E

[

min
`=1,...,k

‖X − c`‖2
]

,

where E stands for expectation with respect to the distribution of X. This clustering
method is in line with the more general theory of quantization. More specifically, it
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corresponds to the empirical version of nearest neighbor quantization (Linder [24],
Gersho and Gray [18], Graf and Luschgy [21]). However, the problem of finding a
minimizer of the criterion W∞,n(c) is in general NP-hard, and there is no efficient
algorithm to find the optimal solution in reasonable time. That is why several
iterative algorithms have been developed to give approximate solutions. One of the
first to be described historically is Lloyd’s algorithm (Lloyd [25]).

The challenge is to adapt the k-means clustering method to our setting. The main
difficulty here is the high dimensionality of the data, which casts the problem into
the general class of functional statistics. For a comprehensive introduction to this
topic, see Ramsay and Silverman [32] and Ferraty and Vieu [15]. A possible approach
to reduce the infinite dimension of the observations X1, . . . , Xn consists in project-
ing them onto a lower-dimensional subspace. In this context, Abraham, Cornillon,
Matzner-Løber, and Molinari [1] project the curves on a B-spline basis, and get clus-
ters with the k-means algorithm applied to the coefficients. These authors argue that
projecting onto a smooth spline basis plays the role of a denoising procedure, given
that the observed curves could contain measurement errors, and also allows to deal
with curves which were not measured at the same time. James and Sugar [23] use a
B-spline basis to model the centers of the clusters and write each curve in cluster ` as
a main effect defined by spline coefficients plus an error term. This allows for some
deviations around a model curve specific to cluster `. The authors add a Gaussian
error term to model the individual variations among one cluster. This way, the main
effect is enriched, and the model can take into account more complex behaviors. The
method in Gaffney [17] is similar, also with a B-spline basis. Another option is to
use a Self-Organizing Map algorithm on the coefficients (Rossi, Conan-Guez, and El
Golli [33]), again obtained by projecting the functions onto a B-spline basis. These
bases are often used because they are easy to implement, and require a relatively
minimal number of parametric assumptions. Besides, Biau, Devroye, and Lugosi [6]
examine the theoretical performance of clustering with random projections based
on the Johnson-Lindenstrauss Lemma, which represent a sound alternative to or-
thonormal projections thanks to their distance-preserving properties. Chiou and Li
[7] propose a method which generalizes the k-means algorithm to some extent, by
considering covariance structures via functional principal component analysis. In
the approach of these authors, each curve is decomposed on an adaptive local basis
(valid for the elements in the cluster), and the clusters are determined according to
the full approximation onto each basis. In the wavelet-based method for functional
data clustering developed in Antoniadis, Brossat, Cugliari, and Poggi [3], a smooth
curve is reduced to a finite number of representative features, by considering the
contribution of each wavelet coefficient to the global energy of the curve.

In the present contribution, we propose to investigate the problem of clustering
output curves X1, . . . , Xn of the CATHARE code, assuming that they arise from a
random variable X taking its values in some subset of the space of square integrable
functions. As a general strategy, we reduce the infinite dimension ofX by considering
only the first d coefficients of the expansion on a Hilbertian basis, and then perform
clustering in R

d. We study the theoretical properties of this clustering method with
projection. A bound expressing what is lost when replacing the empirically optimal

5



cluster centers by the centers obtained by projection is offered (Section 2). Since
the result may depend on the basis choice, several projection bases are used in
practice, and we look for the best one minimizing a given criterion. To this end, an
algorithm based on Coifman and Wickerhauser [9] is implemented, searching for an
optimal basis among a library of wavelet packet bases available in the R package
wmtsa, and this “optimal basis” is compared with the Fourier basis, the Haar basis,
and the functional principal component basis (Section 3). Finally, this algorithm is
applied to a simulated example and to our industrial problem (Section 4). Proofs
are postponed to Section 5.

2 Finite-dimensional projection for clustering

As mentioned earlier, we are concerned with square integrable functions. Since all
results can be adapted to L2([a, b]) by an appropriate rescaling, we consider for the
sake of simplicity the space L2([0, 1]). As an infinite-dimensional separable Hilbert
space, L2([0, 1]) is isomorphic via the choice of a Hilbertian basis to the space `2 of
square-summable sequences. We focus more particularly on functions in L2([0, 1])
whose coefficients in the expansion on a given Hilbertian basis belong to the subset
S of `2 given by

S =
{

x = (xj)j≥1 ∈ `2 :
+∞
∑

j=1

ϕjx
2
j ≤ R2

}

, (1)

where R > 0 and (ϕj)j≥1 is a nonnegative increasing sequence such that

lim
j→+∞

ϕj = +∞.

It is worth pointing out that S is closely linked with the basis choice, even if the
basis does not appear explicitly in the definition. To illustrate this important fact,
three examples are discussed below.

Example 2.1 (Sobolev ellipsoids). For β ∈ N
∗ and L > 0, the periodic

Sobolev class W per(β, L) is the space of all functions f ∈ [0, 1]→ R such that f (β−1)

is absolutely continuous,
∫ 1

0 (f (β)(t))2dt ≤ L2 and f (`)(0) = f (`)(1) for ` = 0, . . . , β−
1. Let (ψj)j≥1 denote the trigonometric basis. Then a function f =

∑+∞
j=1 xjψj is in

W per(β, L) if and only if the sequence x = (xj)j≥1 of its Fourier coefficients belongs
to

S =

{

x ∈ `2 :
+∞
∑

j=1

ϕjx
2
j ≤ R2

}

,

where

ϕj =

{

j2β for even j
(j − 1)2β for odd j

and R =
L

πβ
.

For the proof of this result and further details about Sobolev classes, we refer the
reader to the book of Tsybakov [36]. Note that the set S could also be defined by
ϕj = jreαj with α > 0 and r ≥ −α (Tsybakov [35]).
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Example 2.2 (Reproducing Kernel Hilbert Spaces). Let K : [0, 1] ×
[0, 1] → R be a Mercer kernel, i.e., K is continuous, symmetric and positive def-
inite. Recall that a kernel K is said to be positive definite if for all finite sets
{x1, . . . , xm}, the matrix A defined by aij = K(xi, xj) for 1 ≤ i, j ≤ m is positive

definite. For example, the Gaussian kernel K(x, y) = exp(− (x−y)2

σ2 ) and the kernel
K(x, y) = (c2 + (x − y)2)−a with a > 0 are Mercer kernels. For x ∈ [0, 1], let
Kx : y 7→ K(x, y). Then, Moore-Aronszajn’s Theorem (Aronszajn [4]) states that
there exists a unique Hilbert space (HK , 〈·, ·〉) of functions on [0, 1] such that:

1. For all x ∈ [0, 1], Kx ∈ HK .

2. The span of the set {Kx, x ∈ [0, 1]} is dense in HK.

3. For all f ∈ HK and x ∈ [0, 1], f(x) = 〈Kx, f〉.
The Hilbert space HK is said to be the reproducing kernel Hilbert space (for short,
RKHS) associated with the kernel K. Next, the operator K defined by

Kf : y 7→
∫ 1

0
K(x, y)f(x)dx

is self-adjoint, positive and compact. Consequently, there exists a complete orthonor-
mal system (ψj)j≥1 of L2([0, 1]) such that Kψj = λjψj , where the set of eigenvalues
{λj, j ≥ 1} is either finite or a sequence tending to 0 at infinity. Moreover, the
λj are nonnegative. Suppose that K is not of finite rank — so that {λj, j ≥ 1} is
infinite — and that the eigenvalues are sorted in decreasing order, that is λj ≥ λj+1
for all j ≥ 1. Clearly, there is no loss of generality in assuming that λj > 0 for
all j ≥ 1. Indeed, if not, L2([0, 1]) is replaced by the linear subspace spanned by the
eigenvectors corresponding to non-zero eigenvalues.

According to Mercer’s theorem, K has the representation

K(x, y) =
+∞
∑

j=1

λjψj(x)ψj(y),

where the convergence is absolute and uniform (Cucker and Smale [10, Chapter III,
Theorem 1]). Moreover, HK may be characterized through the eigenvalues of the
operator K by

HK =
{

f ∈ L2([0, 1]) : f =
+∞
∑

j=1

xjψj ,
+∞
∑

j=1

x2
j

λj
<∞

}

,

with the inner product

〈 +∞
∑

j=1

xjψj ,
+∞
∑

j=1

yjψj

〉

=
+∞
∑

j=1

xjyj
λj

(Cucker and Smale [10, Chapter III, Theorem 4]). Then, letting

S =
{

x ∈ `2,
+∞
∑

j=1

x2
j

λj
≤ R2

}

,

the set S is of the desired form (1), with ϕj = 1/λj.
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Example 2.3 (Besov ellipsoids and wavelets). Let α > 0. For f ∈ L2([0, 1]),
the Besov semi-norm |f |Bα

2
(L2) is defined by

|f |Bα
2
(L2) =

( +∞
∑

j=0

[2jαωr(f, 2
−j , [0, 1])2]

2
)1/2

where ωr(f, t, [0, 1])2 denotes the modulus of smoothness of f, as defined for instance
in DeVore and Lorentz [12], and r = bαc+ 1. Let Λ(j) be an index set at resolution
level j and (xj,`)j≥0,`∈Λ(j) the coefficients of the expansion of f in a suitable wavelet
basis. Then, for f such that |f |Bα

2
(L2) ≤ ρ, the coefficients xj,` satisfy

+∞
∑

j=0

∑

`∈Λ(j)

22jαx2
j,` ≤ ρ2C2,

where C > 0 depends only on the basis. We refer to Donoho and Johnstone [13] for
more details.

Let us now come back to the general setting

S =
{

x = (xj)j≥1 ∈ `2 :
+∞
∑

j=1

ϕjx
2
j ≤ R2

}

,

and consider the problem of clustering the sample X1, . . . , Xn with values in S. Some
notation and assumptions are in order. First, we will suppose that P {‖X‖ ≤ R} =
1. Notice that the fact that X takes its values in S is in general not enough to imply
P {‖X‖ ≤ R} = 1. Secondly, let j0 be the smallest integer j such that ϕj > 0. To
avoid technical difficulties, we require in the sequel d ≥ j0. For all d ≥ 1, we will
denote by Πd the orthogonal projection on R

d and let Sd = Πd(S). Lastly, observe
that Sd identifies with the ellipsoid

{

x = (x1, . . . , xd) ∈ R
d :

d
∑

j=1

ϕjx
2
j ≤ R2

}

.

As explained in the introduction, the criterion to minimize is

W∞,n(c) =
1

n

n
∑

i=1

min
`=1,...,k

‖Xi − c`‖2,

and the performance of the clustering obtained with the centers c = (c1, . . . , ck) ∈ Sk
is measured by the distortion

W∞(c) = E

[

min
`=1,...,k

‖X − c`‖2
]

.

The quantity
W ∗∞ = inf

c∈Sk
W∞(c)
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represents the optimal risk we can achieve. With the intention of performing cluster-
ing in the projection space Sd, we also introduce the “finite-dimensional” distortion

Wd(c) = E

[

min
`=1,...,k

‖Πd(X)− Πd(c`)‖2
]

and its empirical counterpart

Wd,n(c) =
1

n

n
∑

i=1

min
`=1,...,k

‖Πd(Xi)− Πd(c`)‖2,

as well as
W ∗d = inf

c∈Sk
Wd(c).

Let us observe that, as the support of the empirical measure µn contains at most n
points, there exists an element ĉd,n which is a minimizer of Wd,n(c) on Sk. Moreover,
in view of its definition, Wd,n(c) only depends on the centers projection Πd(c) (one
has Wd,n(c) = Wd,n(Πd(c)) for all c) and we can thus assume that ĉd,n ∈ (Sd)k.
Notice also that for all c ∈ S,

‖Πd(X)− Πd(c)‖2 ≤ ‖X − c‖2

(the projection Πd is 1-Lipschitz), which implies that

Wd(c) ≤ W∞(c)

for all c.

The following lemma provides an upper bound for the maximal deviation

sup
c∈Sk

[W∞(c)−Wd(c)].

Lemma 2.1. We have

sup
c∈Sk

[W∞(c)−Wd(c)] ≤ 4R2

ϕd
.

We are now in a position to state the main result of this section.

Theorem 2.1. Let ĉd,n ∈ (Sd)k be a minimizer of Wd,n(c). Then,

E[W∞(ĉd,n)]−W ∗∞ ≤ E[Wd(ĉd,n)]−W ∗d +
8R2

ϕd
. (2)

Theorem 2.1 expresses the fact that the expected excess clustering risk in the infinite
dimensional space is bounded by the corresponding “finite-dimensional risk” plus an
additional term representing the price to pay when projecting onto Sd. Yet, the first
term in the right-hand side of inequality (2) above is known to tend to 0 when n
goes to infinity. More precisely, as P {‖Πd(X)‖ ≤ R} = 1, we have

E[Wd(ĉd,n)]−W ∗d ≤
Ck√
n
,
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where C = 12R2 (Biau, Devroye, and Lugosi [6]). In our setting, to keep the same
rate of convergence O(1/

√
n) in spite of the extra term 8R2/ϕd, ϕd must be of

the order
√
n. For Sobolev ellipsoids (Example 2.1), where ϕj ≥ (j − 1)2β, this

means a dimension d of the order n1/4β . When ϕj = jreαj , the rate of convergence
is O(1/

√
n) as long as d is chosen of the order lnn/(2α). In the RKHS context

(Example 2.2), consider the case of eigenvalues {λj, j ≥ 1} with polynomial or
exponential-polynomial decay, which covers a broad range of kernels (Williamson,
Smola, and Schölkopf [38]). If λj = O(j−(α+1)), α > 0, then 1/ϕd = O(d−(α+1)),
and d must be of the order n1/(2α+2), whereas λj = O(e−αj

p

), α, p > 0, leads to a
projection dimension d of the order (lnn/(2α))1/p. Obviously, the upper bound (2)
is better for large ϕd, and consequently large d. Nevertheless, from a computational
point of view, the projection dimension should not be chosen too large.

Remark 2.1. Throughout, we assumed that P {‖X‖ ≤ R} = 1. This requirement,
called the peak power constraint, is standard in the clustering and signal processing
literature. We do not consider in this paper the case where this assumption is not
satisfied, which is feasible but leads to technical complications (see Merhav and
Ziv [29], Biau, Devroye, and Lugosi [6] for results in this direction). Besides, the
number of clusters is assumed to be fixed throughout the paper. Several methods
for estimating k have been proposed in the literature (see, e.g., Milligan and Cooper
[31] and Gordon [20]).

As already mentioned, the subset of coefficients S is intimately connected to the
underlining Hilbertian basis. As a consequence, all the results presented strongly
depend on the orthonormal system considered. Therefore, the choice of a proper
basis is crucial and is discussed in the next section.

3 Basis selection

Wavelet packet best basis algorithm In this section, we describe an algorithm
searching for the best projection basis among a “library”. If {ψα, α ∈ I} ⊂ L2([0, 1])
is a collection of elements in L2([0, 1]) which span L2([0, 1]) and allow to build several
different bases by choosing various subsets {ψα, α ∈ Iβ} ⊂ L2([0, 1]), the collection
of bases built this way is called a library of bases. Here, I is some index set, and β
runs over some other index set.

More specifically, we focus on the best basis algorithm of Coifman and Wickerhauser
[9] (see also Wickerhauser [37]), which yields an optimal basis among a library of
wavelet packets. Wavelets are functions which cut up a signal into different fre-
quency components to study each component with a resolution matched to its scale.
Unlike the Fourier basis, wavelets are localized both in time and frequency. Hence,
they have advantages over traditional Fourier methods when the signal contains dis-
continuities as well as noise. For detailed expositions of the mathematical aspects
of wavelets, see the books of Daubechies [11], Mallat [27] and Meyer [30].
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Let the sequence of functions (ψν)ν≥0 be defined by

ψ0(t) = Hψ0(t),
∫

R

ψ0(t)dt = 1,

ψ2ν(t) = Hψν(t) =
√

2
∑

p∈Z

h(p)ψν(2t− p),

ψ2ν+1(t) = Gψν(t) =
√

2
∑

p∈Z

g(p)ψν(2t− p),

where H and G are orthogonal quadrature filters, i.e., convolution-decimation op-
erators satisfying some algebraic properties (see, e.g., Wickerhauser [37]). Let Λν
denote the closed linear span of the translates ψν(· − p), p ∈ Z, of ψν , and

σsΛν = {2−s/2x(2−st), x ∈ Λν}.

To every such subspace of L2(R) corresponds a dyadic interval

Isν =
[

ν

2s
,
ν + 1

2s

[

.

For all (s, ν), these subspaces give an orthogonal decomposition

σsΛν = σs+1Λ2ν � σs+1Λ2ν+1.

Observe that for ν = 0, . . . , 2s − 1, the Isν are dyadic subintervals of [0, 1[ .

The next proposition provides a library of orthonormal bases built with functions of
the form ψsνp = 2−s/2ψν(2

−st−p), called wavelet packets of scale index s, frequency
index ν and position index p.

Proposition 3.1 (Wickerhauser [37]). If s ≤ L for some finite maximum L, H and
G are orthogonal quadrature filters and I is a collection of disjoint dyadic intervals
whose union is R

+, then BI = {ψsνp, p ∈ Z, Isν ∈ I} is an orthonormal basis for
L2(R). Moreover, if I is a disjoint dyadic cover of [0, 1[, then BI is an orthonormal
basis of Λ0.

This construction yields orthonormal bases of L2(R). Some changes must be made
to obtain bases of L2([0, 1]). Roughly, they consist in considering not all scales
and shifts, and adapting the wavelets which overlap the boundary of [0, 1] (see for
instance Cohen, Daubechies, and Vial [8]).

The library can be seen as a binary tree whose nodes are the spaces σsΛν (Figure 3
and 4). An orthonormal basis is given by the leaves of some subtree. Figure 5 and
6 show two examples of bases which can be obtained in this way.

To define an optimal basis, a notion of information cost is needed. Coifman and
Wickerhauser [9] propose to use Shannon entropy. In our context, the basis choice
will be done with respect to some reference curve x0 which has to be representative
of the data. We compute, for each basis in the library, the Shannon entropy of the
coefficients of x0 in this basis, and select the basis minimizing this entropy. The
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Λ0

σ1Λ0 σ1Λ1

σ2Λ0 σ2Λ1 σ2Λ2 σ2Λ3

σ3Λ0 σ3Λ1 σ3Λ2 σ3Λ3 σ3Λ4 σ3Λ5 σ3Λ6 σ3Λ7

Figure 3: Tree structure of wavelet packet bases.
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Figure 4: Correspondence with dyadic covers of [0,1[ .
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Λ0

σ1Λ0 σ1Λ1

σ2Λ0 σ2Λ1 σ2Λ2 σ2Λ3

σ3Λ0 σ3Λ1 σ3Λ2 σ3Λ3 σ3Λ4 σ3Λ5 σ3Λ6 σ3Λ7

Figure 5: The wavelet basis.

Λ0

σ1Λ0 σ1Λ1

σ2Λ0 σ2Λ1 σ2Λ2 σ2Λ3

σ3Λ0 σ3Λ1 σ3Λ2 σ3Λ3 σ3Λ4 σ3Λ5 σ3Λ6 σ3Λ7

Figure 6: An example of fixed level wavelet packet basis.
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construction of this best basis, relying on the binary tree structure of the library, is
achieved by comparing, at each node, starting from the bottom of the tree, parents
with their two children. We decided to take for x0 the median curve in the sample
in the L2 norm sense. Indeed, it is more likely to present characteristic behaviors
of the other curves than the mean, because the mean curve is a smooth average
representative, which is probably too easy to approximate with a few basis functions.
However, we observed that these two functions surprisingly give rise to almost the
same basis. Both choices are thus possible. The mean curve is useful if we know
that some noise has to be removed, whereas the median curve seems a better choice
to reflect the small-scale irregularities.

We have implemented the algorithm in R, and it has been run through all filters
available in the R package wmtsa. These filters belong to four families, extremal
phase family (Daubechies wavelets), including Haar basis, least asymmetric family
(Symmlets), “best localized” wavelets and Coiflets. For example, the least asym-
metric family contains ten different filters “s2”, “s4”, “s6”, “s8”, “s10”, “s12”, “s14”,
“s16”, “s18”, “s20”. Finally, we keep the clustering result obtained with the basis
minimizing the distortion among the various filters. In the sequel, this basis will be
called Best-Entropy basis.

In the applications, the performance of the Best-Entropy basis will be compared with
the Haar wavelet basis, the Fourier basis and the functional principal component
analysis basis. For the sake of completeness, we recall here the definition of these
bases.

The Haar wavelet basis Let φ(t) = 1[0,1](t) and ψ(t) = 1[0,1/2[(t) − 1[1/2,1](t).
Then, the family {φ, ψj,`}, where

ψj,`(t) = 2j/2ψ(2jt− `), j ≥ 0, 0 ≤ ` ≤ 2j − 1,

constitutes a Hilbertian basis of L2([0, 1]), called Haar basis.

Figure 7: Haar scaling function φ and mother wavelet function ψ.
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The Fourier basis The Fourier basis on [0, 1] is the complete orthonormal system
of L2([0, 1]) built with the trigonometric functions

ψ1(t) = 1, ψ2j(t) =
√

2 cos(2πjt), ψ2j+1(t) =
√

2 sin(2πjt), j ≥ 1.

Functional principal component analysis Principal component analysis for func-
tional data (for short, functional PCA) is the generalization of the usual principal
component analysis for vector data. The Euclidean inner product is replaced by the
inner product in L2([0, 1]). More precisely, functional PCA consists in writing Xi(t)
under the form

Xi(t) = EX(t) +
+∞
∑

j=1

xijψj(t),

where the (xij)j≥1 and the functions (ψj)j≥1 are defined as follows. At the first step,
the function ψ1 is chosen to maximize

1

n

n
∑

i=1

x2
i1 =

1

n

n
∑

i=1

[

∫

ψ1(t)Xi(t)dt

]2

subject to
∫

ψ1(t)2dt = 1.

Then, each ψj is computed by maximizing

1

n

n
∑

i=1

x2
ij

subject to
∫

ψj(t)
2dt = 1

and to the orthogonality constraints
∫

ψ`(t)ψj(t)dt = 0, 1 ≤ ` ≤ j − 1.

Functional PCA can be characterized in terms of the eigenanalysis of covariance
operators. If (λj)j≥1 denotes the eigenvalues and (ψj)j≥1 the eigenfunctions of the
operator C defined by C(f)(s) =

∫ 1
0 C(s, t)f(t)dt, where C(s, t) = cov(X(s), X(t)),

then

Xi(t) = EX(t) +
+∞
∑

j=1

xijψj(t),

where the xj are uncorrelated centered random variables with variance E[x2
ij ] = λj .

There are similarities with the context of Example 2.2, but here the kernel depends
on X. In practice, the decomposition can easily be computed with discrete matrix
operations, replacing C(s, t) by the covariance matrix of the Xi. This basis has some
nice properties. In particular, considering a fixed number of coefficients, it minimizes
among all orthogonal bases the average squared L2 distance between the original
curve and its linear representation (see, e.g., the book of Ghanem and Spanos [19]).
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For more details on functional PCA, we refer the reader to Ramsay and Silverman
[32].

Observe that since the functional PCA basis is a stochastic basis and the Best-
Entropy basis algorithm also uses the data, rigorously the sample should be divided
into two subsamples, one to build the basis, and the other for clustering.

4 Experimental results and analysis

We evaluated the performance of the clustering method with projection, using the
various bases described in the previous section, for two different kinds of curves.
First, a simulated example where the right clusters are known is discussed, to illus-
trate the efficiency of the method. Then, we focus on our industrial problem and
cluster output curves of a “black box” computer code.

Observe that, although the curves considered in Section 2 and Section 3 were true
functions, in practice, we have to deal with curves sampled on a finite number of
discretization points. Therefore, a preprocessing step based on spline interpolation
is necessary.

4.1 Synthetic control chart time series

Control chart time series are used for monitoring process environments, to achieve
appropriate control and to produce high quality products. Different types of series
can be encountered, but only one, a kind of white noise, indicates a normal working.
All the other types of series must be detected, because they correspond to abnormal
behavior of the process.

The data set contains a few hundreds to a few thousands curves generated by the
process described in Alcock and Manolopoulos [2], discretized on 128 time points.
There are six types of curves: normal, cyclic, increasing trend, decreasing trend,
upward shift and downward shift, which are represented in Figure 8. The equations
which generated the data are indicated below.

(A) Normal pattern: y(t) = m+ rs where m = 30, s = 2 and r ∼ U(−3, 3).

(B) Cyclic pattern: y(t) = m+ rs+ a sin 2πt
T

where a, T ∼ U(10, 15).

(C) Increasing shift: y(t) = m+ rs+ gt with g ∼ U(0.2, 0.5).

(D) Decreasing shift: y(t) = m+ rs− gt.

(E) Upward shift: y(t) = m + rs + hx where x ∼ U(7.5, 20), h = 1[t0,D], t0 ∼
U
(

D
3
, 2D

3

)

, and D is the number of discretization points.

(F) Downward shift: y(t) = m+ rs− hx.
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Figure 8: 10 example curves for each of the 6 types of control chart.

The two main advantages using this synthetic data set is that we can simulate as
many curves as we wish and we know the right clusters.

The k-means algorithm on the projected coefficients has been run for all four bases
(Best-Entropy, Haar, functional PCA and Fourier basis), with varying sample size n
and projection dimension d. Since the result of a k-means algorithm may depend on
the choice of the initial centers, the algorithm is restarted 100 times. The maximum
number of iterations per run is set to 500. This program tries to globally minimize
the projected empirical distortion Wd,n(c). To evaluate its performance, we compute
an approximation W (d, n) of the distortion W∞(ĉd,n) using a set of 18000 sample
curves. This is possible in this simulated example, since we can generate as many
curves as we want. The distortion W (d, n) is computed for d varying from 2 to 50
and n ranging from 100 to 3100. We restricted ourselves to the case d ≤ 50, since
there are only 128 discretization points. Moreover, as pointed out earlier, d must not
be too large for computational complexity reasons. Indeed, a projection dimension
d = 50 is already high for a practical use.

Figures 9 and 10 show the contours plots corresponding to the evolution of W (d, n)
as a function of d and n, for the functional PCA and the Haar basis. We remark that
the norm of the gradient of W (d, n) vanishes when d and n are close to their maximal
values. Hence, as expected according to Theorem 2.1, W (d, n) is decreasing in d and
n. When d or n is too small (for instance d = 2 or n = 100), the clustering results
are inaccurate. Besides, they are not stable with respect to the n observations
chosen. However, for larger values of these parameters, the partitions obtained
quickly become satisfactory. The choice n ≥ 300 together with d ≥ 6 generally
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Figure 9: Contour plot of W (d, n) for the functional PCA basis.

Figure 10: Contour plot of W (d, n) for the Haar basis.
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provides good results and is reasonably low for many applications.

Figure 11 shows the curve corresponding to the evolution of W (d, n) as a function
of d for n = 500, for all four bases, whereas Figure 12 represents the evolution of
W (d, n) versus n for d = 10. According to Section 2, ϕd must be of the order

√
n.

For n = 500,
√
n is about 22. Considering that ϕd and d are approximately of the

same order, a projection dimension close to 22 should thus be suitable. Indeed, we
see via Figure 11 that W (d, n) does not decrease much more after this value.

Figure 11: Evolution of W (d, n) for n = 500 and d ranging from 2 to 50, for (a)
functional PCA basis, (b) Haar basis, (c) Fourier basis and (d) Best-Entropy
basis.

Figure 12: Evolution of W (d, n) for d = 10 and n ranging from 100 to 3100, for (a)
functional PCA basis, (b) Haar basis, (c) Fourier basis and (d) Best-Entropy
basis.

The evolution of the distortion for the Fourier basis looks quite odd: it shows a first
decreasing step before increasing again. However, this increasing can be explained
in the following way. The centers chosen first are wrong, but seem to give a better
distortion than the “real” clustering. When the dimension grows large enough, these
first wrong centers no longer represent a local minimum, and the k-means algorithm
moves slowly toward the “right” clustering, although losing a bit in distortion. This
interpretation is confirmed if we look at the clusters corresponding to each distortion.
Furthermore, when the dimension is high relatively to the number of discretization
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points, some basis functions which oscillate a lot may not be sampled correctly.
As a result, the coefficients estimated by approximating the inner products can
become very inaccurate as d increases. For very high d, these computed coefficients
confound with some noise. Consequently, data becoming more noisy without adding
any information, the distortion will increase. The other bases tend to oscillate too,
so that they would probably show the same behavior if d were increased above 50.
Besides, the small fluctuations observed for the Best-Entropy basis indicate that
this basis is not suitable for clustering of control chart time series. The functional
PCA basis always gives the lowest distortion. However, the distortions obtained for
the three other bases are quite similar, with a preference for the Haar basis over
the Best-Entropy wavelet basis, the Fourier basis being the worst choice. As an
example, Table 1 gives the values of W (d, n) for n = 1100 and d = 30.

Basis Fourier Functional PCA Haar Best-Entropy

Distortion 35.3 32.3 32.8 33.4

Table 1: Distortion W (d, n) for n = 1100 and d = 30.

Figure 13 represents the 6 clusters for the Fourier basis, for n = 300 and d =
10, whereas Figure 14 shows them for d = 30. The classes obtained with the
algorithm are shown in colors, and the real clusters are indicated in the caption.
For relatively small values of d, the normal and cyclic patterns are merged into one
big cluster, and one cluster corresponding to increasing (or decreasing) shift pattern
is split in two. For large enough d, the normal and cyclic designs are well detected,
and the overall clustering is correct despite some mixing increasing-upward shift or
decreasing-downward shift. We also tested the algorithm for smaller values of the
number k of classes. As expected, for the particular choice k = 3, clusters A and B
are merged into one single group, and the same occurs for the cluster pairs {C,E}
and {D,F}.

a) b)

Figure 13: (a) Clusters A and B in green, cluster E in red and black. (b) Clusters C,
D and F in brown, light blue and blue respectively. (Fourier basis, n = 300,
d = 10.)
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a) b)

Figure 14: (a) Clusters A, C and E in green, blue, black. (b) Clusters B, D and F in
brown, light blue and red. (Fourier basis, n = 300, d = 30.)

4.2 Industrial code examples

Let us now turn to the industrial issue which motivated our study. As explained in
the introduction, the computer codes used in nuclear engineering have become very
complex and costly in CPU-time consumption. That is why we try to approximate
them with a cheap function substituted to the code. In order to build a regression
model, a preliminary analysis of the different types of outputs is essential. This leads
to data clustering, applied here to a computer code with functional outputs. Two
different kinds of outputs are presented, the temperature evolution with a data set
containing 100 curves, and the thermal exchange coefficient evolution with a data
set of 200 curves.

Temperature curves The data is made of 100 CATHARE code outputs represent-
ing the evolution of the temperature in the vessel annular space (Figure 15). Here,
the sample size is fixed to n0 = 100. However, the discretization can be controlled
to some extent with spline interpolation. In this case, 256 discretization points are
used.

Figure 15: The 100 temperature curves.
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Observe that all curves converge in the long-time limit to the same value, corre-
sponding to the temperature of the cold water injected. These curves have been
clustered, for physical reasons pertaining to nuclear engineering, in two groups.
More precisely, there is a critical set of physical parameters beyond which the ther-
mal shock is more violent and the temperature changes more rapidly (see Auder,
De Crecy, Iooss, and Marquès [5] for more details). The algorithm on the projected
coefficients has been run for the Best-Entropy, Haar, functional PCA and Fourier
bases, with varying dimension, with the same settings as before. Since we consider
real-life data, it is not possible to compute an approximation of W∞(ĉd,n) as in the
simulated example. Hence, the distortion W (d, n0) is simply the output Wd,n0

(ĉd,n0
)

of the clustering algorithm, with fixed n0 = 100. This distortion is computed for d
varying from 2 to 50. Figure 16 shows the curve corresponding to the evolution of
W (d, n) as a function of d. As expected, it is decreasing in d.

Figure 16: Evolution of W (d, n0) for the 100 temperature curves, d ranging from 2 to
50, for (a) functional PCA basis, (b) Haar basis, (c) Fourier basis and (d)
Best-Entropy basis.

Basis Fourier Functional PCA Haar Best-Entropy

Distortion 480.8 125.3 254.9 151.5

Table 2: Distortion values for d = 30.

We note that until d = 16, the Haar basis provides lower distortion, but for larger
values of d, the Best-Entropy basis is better. As before, the Fourier basis is the worst
and the functional PCA basis is the best. This can also be checked from Table 2,
which presents the distortion obtained for each basis. Although the functional PCA
basis gives the best result in terms of distortion, we see that using any of the other
three bases is not that bad. Indeed, the same partitioning is found every time
(Figure 17).
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Figure 17: The temperature curves divided in two groups.

Finally, Figure 18 shows the two centers representing the classes obtained for d = 30
with the Fourier basis, functional PCA basis, Haar basis and Best-Entropy basis.
The two curves obtained with the functional PCA basis characterize with an espe-
cially good accuracy the shape of the data items in the corresponding clusters.

a) b)

c) d)

Figure 18: The two centers for d = 30 for (a) Fourier, (b) functional PCA, (c) Haar
and (d) Best-Entropy basis.

Thermal exchange coefficient curves Figure 19 shows all 200 CATHARE code
outputs. Here, the number of discretization points is set to 1024. The data has been
partitioned in three groups. As for the temperature curves, W (d, n0) is computed
for d varying from 2 to 50 (n0 = 200).
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Figure 19: The 200 thermal exchange coefficient curves.

We can see via Figure 20 that W (d, n0) is decreasing in d again. The functional PCA
basis is still the best choice, with a fast convergence (stabilization from d = 10).
Interestingly, the Fourier basis shows smaller distortion values than the two wavelets
basis in this case, as Table 3 indicates.

Figure 20: Evolution of W (d, n0) for the 200 thermal exchange coefficient curves, d
ranging from 2 to 50 for (a) functional PCA basis, (b) Haar basis, (c) Fourier
basis and (d) Best-Entropy basis.

Basis d = 6 d = 10 d = 18 d = 26 d = 34 d = 42 d = 50

Fourier 11810 8843.8 7570.0 7097.0 7013.2 6893.3 6881.2
Functional PCA 6815.8 6802.0 6801.4 6801.2 6801.1 6801.1 6801.0

Haar 16491 12185 9385.2 8279.3 7688.0 7390.6 7313.9
Best-Entropy 15338 8596.2 7244.5 7082.1 7082.1 7082.1 6801.0

Table 3: Distortion values for the thermal exchange coefficient curves.

All the partitions obtained are very similar. A typical example is given by Figure
21. However, as for the temperature curves, it is interesting to look at the curves
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selected as centers. Figure 22 shows the three centers obtained with the Fourier
basis, functional PCA basis, Haar basis and Best-Entropy basis, for d = 30.

Figure 21: Three clusters obtained with d = 14, functional PCA basis.

a) b)

c) d)

Figure 22: The three centers with (a) Fourier, (b) functional PCA, (c) Haar and (d)
Best-Entropy basis, for d = 30.

5 Conclusion

These clusters allow to build accurate models for the industrial application. The
partitioning method presented in this article has been integrated in our metamodel
written in R. More specifically, given an array of n input vectors corresponding to n
output curves, the purpose is to learn a function φ : z 7→ x mapping an input vector
to a continuous curve. In order to improve the accuracy of this task, we begin with
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a clustering step and then look for a regression model in each cluster separately.
The metamodel lets the user choose between several clustering techniques, either
assuming some clusters shapes (like this projected k-means) or trying to discover
them in data (like the ascendant hierarchical clustering). The latter are attractive
as they do not make assumptions about the results, but they generally need a
relatively good sampling of the data. Consequently, the k-means-like techniques are
useful in many of our industrial applications, where only a few samples are available.
Moreover, these methods provide easily interpretable clusters. In each cluster, after
a dimension reduction step, which can either be achieved through the decomposition
on an orthonormal basis (linear), or any manifold learning algorithm (nonlinear, with
the assumption that the outputs lie on a functional manifold), a statistical learning
method is applied to predict representation within this cluster. The mainly used
method at this stage is the Projection Pursuit Regression algorithm (see Friedman,
Jacobson, and Stuetzle [16]). Finally, a simple k-nearest neighbors classifier gives
the most probable cluster for a new input, the corresponding regression function is
applied, and the curve can be reconstruct from its predicted representation.

For the moment, our metamodel with the clustering method presented have success-
fully been used on two different scenarios involving the CATHARE code (minor or
major break, for each we get temperature, pressure and thermal exchange coefficient
curves).

Another research track could consist in considering other types of distances be-
tween curves. Distances involving derivatives might be hard to estimate on the
thermal exchange coefficient dataset, because several curves are varying rapidly
over short period of time, contrasting for instance with the Tecator dataset (http:

//lib.stat.cmu.edu/datasets/tecator), on which such distances proved success-
ful (Ferraty and Vieu [15, Chapter 8], Rossi and Villa [34]). However, further inves-
tigations are needed to know if a smoothing step before clustering based on m-order
derivatives would lead to improved results. As the “true” classes are unknown, such
a procedure can only be validated within a cross validation framework involving
the full metamodel. Experiments with the L1 distance or some mixed distances re-
lated to functions shapes (Heckman and Zamar [22]) could also be studied in future
research.
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6 Proofs

6.1 Proof of Lemma 2.1

If we define the remainder Rd by Rd(x) = x − Πd(x) for all x ∈ S, then for
(x,y) ∈ S2,

‖Rd(x− y)‖2 ≤ 2‖Rd(x)‖2 + 2‖Rd(y)‖2

= 2
+∞
∑

j=d

x2
j + 2

+∞
∑

j=d

y2
j

= 2
+∞
∑

j=d

ϕjx
2
j

ϕj
+ 2

+∞
∑

j=d

ϕjy
2
j

ϕj

(ϕj > 0 for all j ≥ d, since d > j0)

≤ 2
+∞
∑

j=d

ϕjx
2
j

ϕd
+ 2

+∞
∑

j=d

ϕjy
2
j

ϕd

≤ 4R2

ϕd
.

Thus, for c ∈ Sk,

W∞(c)−Wd(c) = E

[

min
`=1,...,k

‖X − c`‖2 − min
`=1,...,k

‖Πd(X)− Πd(c`)‖2
]

= E

[

min
`=1,...,k

‖Πd(X) +Rd(X)− Πd(c`)− Rd(c`)‖2

− min
`=1,...,k

‖Πd(X)−Πd(c`)‖2
]

= E

[

min
`=1,...,k

(

‖Πd(X)− Πd(c`)‖2 + ‖Rd(X)− Rd(c`)‖2
)

− min
`=1,...,k

‖Πd(X)−Πd(c`)‖2
]

(since Πd is the orthogonal projection on R
d)

≤ E

[

max
`=1,...,k

‖Rd(X)− Rd(c`)‖2
]

≤ 4R2

ϕd
.

Hence,

sup
c∈Sk

[W∞(c)−Wd(c)] ≤ 4R2

ϕd
,

as desired.

6.2 Proof of Theorem 2.1

We have

W∞(ĉd,n)−W ∗∞ = W∞(ĉd,n)−Wd(ĉd,n) +Wd(ĉd,n)−W ∗d +W ∗d −W ∗∞.
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According to Lemma 2.1, on the one hand,

W∞(ĉd,n)−Wd(ĉd,n) ≤ sup
c∈Sk

[W∞(c)−Wd(c)]

≤ 4R2

ϕd
,

and on the other hand,

W ∗d −W ∗∞ = inf
c∈Sk

Wd(c)− inf
c∈Sk

W∞(c)

≤ sup
c∈Sk

[W∞(c)−Wd(c)]

≤ 4R2

ϕd
,

and the theorem is proved.
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