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Abstract—We propose an automatic method to quantitatively
describe the spatial organization governing populations of biolog-
ical objects, such as cells, which exist in stationary histology im-
ages. This quantification is of prime importance when striving to
compare different tumoral models in order to evaluate potential
therapies. We compare two animal models of colorectal cancer.
Our approach is based on the topographic map to automatically
extract the location of the relevant biological objects. We describe
their spatial organization along a continuous range of scales using
second-order statistics. Using a functional analysis of variance
test, we show that there are significant differences in these
statistics depending on cancer model, and on the day after tumor
implant.

Index Terms—topographic map, Besag L-function, functional
ANOVA, animal cancer models

I. INTRODUCTION

Colorectal cancer is one of the most widespread types of
cancer in the world. In terms of mortality, this type of cancer
has the second highest rate following lung cancer and has
a lifetime prevalence of 5.1%. In order to evaluate diagnostic
methods and potential therapies, biologists use adapted animal
cancer models that reflect the human pathology. Two types of
models are usually studied in preclinical testing: orthotopic
models and ectopic models, depending on the way the tumor
is implanted in the animal. Orthotopic models are obtained
by implanting the tumor into its original organ. Such models
aim at better reflecting the physiological environment of the
tumor. On the other hand, ectopic models are obtained by
placing the tumor away from its original position, for instance
subcutaneously. These latter models are cheaper and frequently
employed due to their ease of implementation, and to the tu-
mor accessibility. Our long-term biomedical goal is to compare
the growth mechanisms for these two types of models, and to
find out to what extent the ectopic model is similar to the
orthotopic one.

Studies show that the growth of orthotopically implanted
tumors is significantly faster than the ectopically implemented

ones, being more than two times bigger twelve days after
implant [1]. Such a difference should appear in tumor his-
tology images yet they are visually identical (Fig. 1). Thus,
comparing and differentiating such images are challenging
tasks. Descriptive features based on first-order statistics, such
as the objects density, show differences between these two
models in very early days after implant. Quantitative measures
of spatial features are not captured, although spatial rela-
tionships between biological objects may provide additional
informations to have better mechanistic and prognostic insights
of these tumor models [2].

Fig. 1. Two examples of histology images at the 15th day after tumor implant.

Related Work The use of spatial statistics has been
investigated in biomedical imaging. The most commonly used
are second order characteristics such as the Ripley’s K func-
tion [3], the pair correlation function (PCF) [3] and Besag’s
L function [4]. All these functions consider the distribution
of distances between pair of detected points representing the
biological objects. They have been used in various biomedical
contexts such as the description of the organisation of cancer-
ous cells in breast [5], [6] or brain [7] tumors, or diabetic and
non-diabetic epidermal nerve fibers[8]. However, in all these
papers, these statistics are generally used in the simple context
of comparing the organization of diseased and healthy data,
which lead to studying images containing very different spatial



organisations.
In addition, the object extraction in these works is either

done manually [5], [8] or semi-automatically [7], [6]. A
manual intervention leads to inter- and intra-operator vari-
ability and, being costly, limits the possible size of the
study. Semi-supervised methods include fine-tuning threshold-
ing method [7] and pixel-classification using intensive user
feedback over many classification-correction iterations [6].

Contribution In this paper, we propose an automatic
method based on unsupervised object location detection, and
second-order functional description. This statistical description
captures the spatial relations between biological objects at all
observation scales. Using a functional analysis of variance test,
we show that there are significant differences between this
descriptor according to both the time scale of tumor growth
and the site of tumor implantation. Unlike previous works, we
also demonstrate that using second-order features provides a
different insights compared to a single first-order approach.

II. MATERIAL

Colon carcinoma CT26 tumors were implanted into the
caecum for the orthotopic model and subcutaneously for the
ectopic model. In this study, 48 Balb/C mice were used and
sacrificed on different days after tumor implant (see Table I).
At the indicated time, tumors were removed, frozen, cut and
stained with the same protocol. Each slice of the tumor was
immunostained for vessel localization and counterstained for
the visualization of cell nuclei. From this biological material,
355 histology images were digitized (Leica DM6000B) into
154 and 201 images from ectopic and orthotopic tumor model
respectively.

TABLE I
NUMBER OF IMAGES (AND MICE).

Day after implant 11th 15th 18th 21th

Ectopic 56 (8) 30 (3) 19 (3) 49 (5)
Orthotopic 48 (7) 66 (11) 59 (8) 28 (3)

III. METHODS

A. Biological Objects Extraction

We aim at describing the spatial organization of biological
objects in histology images of colorectal tumors. Segmenting
the accurate edges of these objects is a very challenging is-
sue [9]. However, in our context, we are interested in the object
locations organization. Estimating the centroid location of each
object is thus sufficient. We therefore use a more pragmatic
extraction method, based on the topographic map [10].

Given an image u, the topographic map is the set of all
its level-lines, defined as the connected components of the
topological boundary of the so-called level sets χλ(u) =
{x ∈ R2, u(x) ≤ λ}, for all λ ∈ {0..255}. This complete
representation provides several characteristics that we use in
the following proposed successive filtering criteria.

Contrast and Luminance Level-lines are closed curves
passing through a constant grey level, thanks to their level-
set definition. Depending on the gradient sign on its border,
the line is said to hold a negative or positive contrast [11].
Due to the contrast agent’s color, the sought structures are
much darker than the background (Fig. 1). Our first extraction
criterion is thus to only retain negative contrast level-lines
whose mean of interior gray levels is inferior than the mean
of the whole image’s gray levels.

Dimensions The typical dimensions of the biological ob-
jects can be practically mapped on our images since we know
the exact physical scale being used during acquisition. We
thus set a minimal perimeter threshold in order to avoid any
structures related to noise. In our images, this threshold is set
to 10 µm.

Topology Two level-lines are either disjoint or included
one in the other, due to their topological definition. The
topographic map can thus be embedded in a hierarchical tree
structure. In order to be confident in the fact that we extract
no more than one point of interest per structure, we only keep
the tree leaves left by the previous criteria.

Once all these successive filtering steps are applied, the
topographic map is reduced to a set of non-overlapping level-
lines, each of which located within a unique relevant object.
We then compute the centroid of each of these polylines in
order to get a representative point distribution of the image
objects.

B. Spatial Organization Description and Analysis

Our goal is to measure how the biological objects in
histology images are spatially correlated with each other since
such information could help understanding their differentiation
and dissemination during tumor growth. In this section, we
estimate a second order descriptor to characterize the spatial
structure of the biological objects. In order to compare the
results obtained by this descriptor, we use functional analysis
of variance.

1) Second-Order Features: In order to characterize the
spatial organization of biological objects’ locations, we use
Besag’s L-function [3]. This function measures the spatial
interactions within a distribution of points at different scales
and is defined as:

L(r) =
√
K(r)/π − r (1)

where K(r) = λ−1E[number of extra events within a distance
r of a randomly chosen event], E is the expected value and λ
is the density (number of object locations per unit area). K(r)
is estimated by:

K̂(r) = λ−1
∑
i

∑
i 6=j

I(dij < r)

N
(2)

where N is the number of observed points, dij is the Euclidean
distance between the ith and the jth points and I(x) is the
indicator function.

L-functions have several advantages. The second order
behavior of the object distribution can be visualized and



interpreted easily: L(r) = 0 means that the distribution of
the process is completely random at scale r; positive maximal
values account for a clustering behavior whereas negative
minimal values point out regularity at the corresponding
scale (Fig. 2). In addition, it is a cumulative measure whose
estimation does not need any arbitrary kernel smoothing unlike
the pair correlation function.
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Fig. 2. An ectopic model image at the 15th day (left) and its corresponding
L-function (right): The negative peak shows strong evidence of regularity at
this scale.

To make sure that the spatial dependence is not related to a
first order effect such as density, we assume that the obtained
point patterns are stationary and isotropic. These assumptions
are plausible for our image database (Fig. 1). Based on these
assumptions and since we have a rectangular region of interest,
the most appropriate edge correction method when computing
L is the toroidal one [12].

2) Analysis of Variance for Functional Data: In order
to find whether the obtained L-functions have significantly
different values according to both the day after tumor implant
and the animal cancer model (ectopic and orthotopic), we use
an analysis of variance for functional data (fANOVA).

ANOVA is a statistical method that models a quantitative
variable as a function of qualitative factors. Each factor can
take several values, called levels, and ANOVA allows to
compare the means of two or more groups defined by these
levels by testing the null hypothesis H0: ”the different levels
have equal means”. In our study, the quantitative L-functions
can be described along two factors: the day after tumor implant
which has four levels (11, 15, 18 and 21) and the cancer model
which has two levels (ectopic, orthotopic).

Two types of ANOVA will be considered in our results
according to the number of factors taken into account:
• A two-way ANOVA tests the influence of both factors

simultaneously: that is the entangled impact of both the
cancer model and the day after implant on L-functions
variability.

• A one-way ANOVA considers each factor separately.
It can be used to determine which precise levels are
responsible for the null hypothesis failing if the two-way
ANOVA test is rejected.

Since we are dealing with functional data (the L-functions),
we choose to use the method proposed in [13]. Basically, this
method uses random projections to transform functional data
into univariate data and then solves the obtained simple scalar
ANOVA problem. We obtain conclusions for the functional

data by collecting the information from sets of several pro-
jections with p-value correction based on the False Discovery
Rate (FDR). This method is flexible, easy to compute and
requires no normality assumption.

IV. RESULTS AND DISCUSSION

A. Objects’ Centroid Extraction
We compute the topographic map for each image in our

database. Following the filtering criteria explained in Sec-
tion III-A, we get the objects’ locations. Figure 3 shows one
result on a cropped area. Results over the whole database
have been qualitatively evaluated and are visible online1. The
proposed extraction method has several important advantages:
It is invariant to local contrast and it does not require fine
threshold tuning or an object pre-detection step. We can
thus apply the same procedure and parameter value (object
physical size) to all images. The combination of dimension
and topological criteria acts as a bidirectional filtering in the
tree structure: the dimension threshold cuts the lower lines
(noise) whereas the subsequent leaf threshold cuts the lines
that could enclose more than one object. This trade-off is a
typical problem in binarization methods which seek to obtain
disjoint clusters of pixels [7]. Finally, the computation of
the topographic map is fast, and the implementation of the
whole method, including the manipulation of the level-lines
as polylines is straightforward.

(a) Input image (b) Filtered map (c) Centroids
Fig. 3. Object extraction on a cropped example. Computing the topographic
map of the input image (a), we apply successive filtering criteria providing
a set of disjoint level-lines (b). The centroids of these filtered tree’s leaves
represent the object locations (c).

B. L-Functions Estimation
For each image, we estimate the L-function on the obtained

point distribution along a vector of distances 0 < r < 114µm.
This upper bound corresponds to the common practice of
choosing the one-half of the shortest image dimension [14].
The L-functions estimated over the whole database strongly
overlap due to their high visual similarity (top row of Fig-
ure 4). We thus also show the envelopes of the L-functions
for each model and each day (bottom row of Figure 4).
The negative peak around 5µm points out a strong regularity
behavior at this scale. This is due to the typical interspace
distance between cells. By only observing these functions and
envelopes, we cannot conclude whether there are significant
differences in the spatial organizations between the different
days, or between the two models.

1http://www.math-info.univ-paris5.fr/~malsheha/conferences/ispa2013/

http://www.math-info.univ-paris5.fr/~malsheha/conferences/ispa2013/


Fig. 4. (top) The 355 L-functions estimated over the whole database strongly
overlap due to their high similar content. (bottom) The L-functions’ envelopes
show their amplitude range for each day and model.

C. fANOVA Application

Intra Group fANOVA As a sanity check, we first test
the null hypothesis within each single group (day/model).
We randomly separate each of the groups into two parts,
and we use one-way fANOVA between these two parts. We
repeated this test 1000 times per group. The obtained p-
values (p > 0.05) state that H0 is accepted for all groups
considered separately. This ensures that the potential inner
group variabilities, such as the mice variability, do not affect
subsequent results.

Two-Way fANOVA We use the functional ANOVA frame-
work presented in Section III-B to test the existence of factors’
interaction. The obtained p-values indicate that H0 is rejected
and the interaction exist (p < 0.05). This means that there
is a significant difference in the spatial organization of the
biological objects in the images according to both factors
simultaneously.

One-Way fANOVA We use the fANOVA with each factor
separately to find where exactly the significant differences
occur. We first test H0 for each day between the two models
(see diagonal of Table II). The results show that there are
significant differences between the two models at days 15,
18, and 21 whereas there are no differences at day 11. This
suggests that after that day, the two models are no more similar
in terms of the spatial behavior of the objects.

We also test the null hypothesis for each model between
every pair of days (upper and lower triangles of Table II).
For the ectopic model there are differences in the spatial
organization at all days, whereas for orthotopic model there
are no differences between the days 11 and 15 (see Table II).
In other words, this suggests that the orthotopic model does
not significantly evolve between these two days in terms of
the spatial behavior, whereas the ectopic one does.

TABLE II
TEST OF H0 FOR THE L-FUNCTION BETWEEN ALL PAIRS OF DAY AFTER

IMPLANT FOR ECTOPIC MODEL IN LIGHT GRAY, FOR ORTHOTOPIC MODEL
IN GRAY, AND BETWEEN BOTH MODELS IN WHITE. “A” AND “R” STAND
FOR accepted AND rejected RESPECTIVELY. THE STAR EXPONENT MEANS
THAT THE SAME ANOVA TEST ON FIRST-ORDER density of objects GIVES

AN OPPOSITE ANSWER.

Day 11th 15th 18th 21th

11th A A? R? R
15th R? R? R R
18th R? R R? R
21th R R R R?

D. Comparison With a First-Order Descriptor

We compare the proposed second-order descriptor with a
first-order descriptor: the density of objects. The star exponents
in Table II show where the scalar ANOVA test for the density
value gives a different result. Along the diagonal for instance,
the results indicate that this first-order descriptor detects no
differences between the ectopic and the orthotopic model at
all days. The null hypothesis is indeed always accepted. This
observation stresses the added insights given by the second
order analysis.

V. CONCLUSION AND FUTURE WORK

We proposed a framework that automatically extracts the
locations of the objects of interest in histology images. Based
on a second-order function, that measures the spatial interac-
tions on a continuous scale range, and a functional analysis
of variance, we are able to assess the differences along both
the cancer model and the day after implant. Note that the
two considered cancer models visually produce highly similar
images. However, the proposed second-order framework ac-
counts for significant differences where the classic first-order
density feature does not detect any. This advocates for the
complementary use of first and second order features to better
compare the models used by biologists.

We plan to address the following limitations in the near
future. First, measuring the intra- and inter-correlation between
the different types of the biological objects, such as cells’
nuclei and vessels populations, would give more specific
insights to the entangling of the underlying behavior. In fact,
vascularization plays a key role in tumor evolution. Secondly,
our next goal is to propose statistical features that not only
assess the differences between two groups of images with
respect to the presented factors, but also measure these dif-
ferences with a metric. This would eventually enable ordering
the groups based on their relative distances.
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