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Abstract
A new method for combining several initial estimators of the regres-
sion function is introduced. Instead of building a linear or convex opti-
mized combination over a collection of basic estimators r1, . . . , rM , we
use them as a collective indicator of the distance between the training
data and a test observation. This local distance approach is model-free
and extremely fast. Most importantly, the resulting collective esti-
mator is shown to perform asymptotically at least as well in the L2

sense as the best basic estimator in the collective. Moreover, it does
so without having to declare which might be the best basic estimator
for the given data set. A companion R package called COBRA (stand-
ing for COmBined Regression Alternative) is presented (downloadable
on http://cran.r-project.org/web/packages/COBRA/index.html).
Numerical evidence is provided on both synthetic and real data sets
to assess the excellent performance of our method in a large variety of
prediction problems.
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1 Introduction
Recent years have witnessed a growing interest in aggregated statistical proce-
dures, supported by a considerable research and thorough empirical evidence.
Indeed, the increasing number of available estimation and prediction meth-
ods (hereafter also denoted as machines) in a wide range of modern statistical
problems naturally suggests using some efficient method for combining pro-
cedures and estimators. If the combined strategy is known to be optimal in
some sense and relatively free of assumptions that are hard to evaluate, then
such a model-free strategy is a valuable research tool.

In this regard, numerous contributions have enriched the aggregation litera-
ture with various approaches, such as model selection aggregation (select the
optimal single estimator from a list), convex aggregation (searching for the op-
timal convex combination of given estimators, such as exponentially weighted
aggregates) and linear aggregation (selecting the optimal linear combination).

Model selection, linear-type aggregation strategies and related problems have
been studied by Catoni (2004), Juditsky and Nemirovski (2000), Nemirovski
(2000), Yang (2000, 2001, 2004), Györfi et al. (2002) and Wegkamp (2003).
Minimax results have been derived by Nemirovski (2000) and Tsybakov (2003),
leading to the notion of optimal rates of aggregation. Similar results can be
found in Bunea et al. (2007a). Further upper bounds for the risk in model
selection and convex aggregation have been established for instance by Audib-
ert (2004), Birgé (2006) and Dalalyan and Tsybakov (2008). An interesting
feature is that such aggregation problems may be treated within the scope
of L1-penalized least squares, as performed in Bunea et al. (2006, 2007a,b).
This kind of framework is also considered by van de Geer (2008) and Koltchin-
skii (2009), with the L2 loss replaced by another convex loss. More recently,
specific models such as single-index in Alquier and Biau (2013) and addi-
tive models in Guedj and Alquier (2013) have been studied in the context of
aggregation under a sparsity assumption.

The present article investigates a distinctly different point of view, motivated
by the sense that nonlinear, data-dependent techniques are a source of an-
alytic flexibility and might improve over current aggregation procedures. In
this regard, consider the following example classification problem: If the en-
semble of machines happens to have a strong one, lurking but unnamed in the
collection of which many might be very weak machines, it might make sense
to consider a more sophisticated method than the previously cited methods
for pooling the information across the machines. Thus, if one machine has
an error rate of 5%, say, while most of the other machines have error rates
close to 35%, then the ensemble approach might reduce the error rate to 25%
or even 15%, but these are still significantly worse than the strong machine
rate. Choosing to set aside some of the machines, on some data-dependent
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criteria, seems only weakly motivated, since the performance of the collective,
retaining those suspect machines, might be quite good on a nearby data set.
Similarly, searching for some phantom strong machine in the collective could
also be ruinous when presented with new and different data.

Instead of choosing either of these options—selecting out weak performers,
searching for a hidden, universally strong performer—we propose an original
nonlinear method for combining the outcomes over some list of plausibly good
procedures. We call this combined method a regression collective over the
given basic machines. More specifically, we consider the problem of building a
new estimator by combiningM estimators of the regression function, thereby
exploiting an idea proposed in the context of classification by Mojirsheibani
(1999). In words, given a set of preliminary estimators r1, . . . , rM , the idea
behind the resulting aggregation method is a “unanimity” concept, in that
it is based on the values predicted by r1, . . . , rM for the data and for a new
observation x. More specifically, a data point is considered to be “close” to
x, and consequently, reliable for contributing to the estimation of this new
observation, if all estimators predict values which are close to each other for
x and this data item, i.e., not more distant than a prespecified threshold ε.
The predicted value corresponding to this query point x is then set to the
average of the responses of the selected observations.

To make the concept clear, consider the following toy example illustrated
by Figure 1. Assume we are given the observation plotted in circles, and
the values predicted by two known machines f1 and f2 (triangles pointing
up and down, respectively). The goal is to predict the response for the new
point x0 = 0.5. Set a threshold ε = 0.2, the black solid circles are the data
points (xi, yi) within the two dotted intervals, i.e.such that for m = 1, 2,
|fm(xi) − fm(x0)| < ε. Averaging the corresponding yi yields the prediction
for x0 (black star).

Figure 1: A toy example.
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(b) The collective operates.
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(c) Predicted value for x0.
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We stress that the central and original idea behind our approach is that the
resulting regression predictor is a nonlinear, data-dependent function of the
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basic predictors r1, . . . , rM . To the best of our knowledge there exists no
formalized procedure in the learning machine and aggregation literature that
operates as does ours. However, we note that our approach has a concep-
tual link with the framework described in van der Laan et al. (2007), where
several estimators are combined using a cross-validation scheme. Since their
strategy—called Super Learner, SL—is motivated by research concerns simi-
lar to our own it is reasonable to deploy SL as a benchmark in our study of
regression collectives.

Along with this paper, we release the software COBRA (Guedj, 2013) which
implements the method as an additional package to the statistical software R
(see R Core Team, 2012). COBRA is freely downloadable on the CRAN web-
site3. As detailed in Section 3, we undertook a lengthy series of numerical
experiments, over which COBRA proved extremely and surprisingly successful.
These stunning results lead us to believe that regression collectives can pro-
vide valuable insights on a wide range of prediction problems. Finally, these
same results demonstrate that COBRA has remarkable speed in terms of CPU
timings. In the context of high-dimensional or genomic data, such velocity is
critical, and in fact COBRA can natively take advantage of multi-core parallel
environments.

The paper is organized as follows. In Section 2, we describe the combined
estimator—the regression collective—and derive a non-asymptotic risk bound.
Next we present the main result, that the collective is asymptotically at least
as good as any of the basic estimators. Section 3 is devoted to the companion
R package COBRA and presents benchmarks of its excellent performance on
both simulated and real data sets. We also show that COBRA compares favor-
ably with the SL, the SuperLearner R package, in that it performs similarly
in most situations, much better in some, while it is consistently much faster
in every case. Finally, for ease of exposition, proofs are collected in Section 4.

2 The combined estimator

2.1 Notation

Throughout the article, we assume to be given a training sample denoted
by Dn = ((X1, Y1), . . . , (Xn, Yn)) composed of i.i.d. random variables taking
their values in Rd × R, distributed as an independent prototype pair (X, Y )
satisfying EY 2 < ∞ (with the notation X = (X1, . . . , Xd)). The space Rd

is equipped with the standard Euclidean metric. For fixed x ∈ Rd, our goal
is to consistently estimate the regression function r?(x) = E[Y |X = x] using
the data Dn.

3http://cran.r-project.org/web/packages/COBRA/index.html
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To begin with, the original data set Dn is split into two data sequences
Dk = ((X1, Y1), . . . , (Xk, Yk)) and D` = ((Xk+1, Yk+1), . . . , (Xn, Yn)), with
` = n − k ≥ 1. For ease of notation, the elements of D` are renamed
((X1, Y1), . . . , (X`, Y`)). There is a slight abuse of notation here, as the same
letter is used for both subsets Dk and D`—however, this should not cause any
trouble since the context is clear.

Now, suppose that we are given a collection of M ≥ 1 competing candidates
rk,1, . . . , rk,M to estimate r?.
These basic estimators—basic machines—are assumed to be generated us-
ing only the first subsample Dk. These machines can be any among the
researcherâĂŹs favorite tool kit, such as linear regression, kernel smoother,
SVM, Lasso, neural, naive Bayes, or random forests. They could equally well
be any ad hoc regression rules suggested by the experimental context. The
essential idea is that these basic machines can be parametric or nonpara-
metric, or indeed semi-parametric, with possible tuning rules. All what is
asked for is that each of the rk,m(x), m = 1, . . . ,M , is able to provide an
estimation of r?(x) on the basis of Dk alone. Thus, any collection of model-
based or model-free machines are allowed, and the collection is here called
the regression collective.

Given the collection of basic machines rk = (rk,1, . . . , rk,M), we define the
collective estimator Tn be

Tn (rk(x)) =
∑̀
i=1

Wn,i(x)Yi, x ∈ Rd,

where the random weights Wn,i(x) take the form

Wn,i(x) =
1⋂M

m=1{|rk,m(x)−rk,m(Xi)|≤ε`}∑`
j=1 1⋂M

m=1{|rk,m(x)−rk,m(Xj)|≤ε`}
. (2.1)

In this definition, ε` is some positive parameter and, by convention, 0/0 = 0.

The weighting scheme used in our regression collective is distinctive but not
obvious. Starting from (Györfi et al., 2002), we see that Tn is a local averaging
estimate in the following sense: The value for r?(x), that is, the estimated
outcome at the query point x, is the unweighted average over those Yi’s such
that Xi is “close” to the query point. More precisely, “close” means that the
output at the query point, generated from each basic machine, is within an
ε` distance of the output generated by the same basic machine at each Xi

in the training data. If a basic machine evaluated at Xi is close to the basic
machine evaluated at the query point x, then the corresponding outcome
Yi is included in the average, and not otherwise. Also, as a further note of
clarification: “closeness” of the Xi is not here in the Euclidean sense of close
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to any other point in the training data, or of the query point to any point
in the training data. It refers to closeness of the basic machine outputs at
the query point compared with basic machine outputs over all points in the
training data. Training points Xii’s that are close, in the basic machine sense,
to the corresponding basic machine output at the query point contribute to
the indicator function for the corresponding outcome Yi.

In this context, ε` plays the role of a smoothing parameter: Put differently,
in order to retain Yi, all basic estimators rk,1, . . . , rk,M have to deliver predic-
tions for the query point x which are in a ε`-neighborhood of the predictions
rk,1(Xi), . . . , rk,M(Xi). Note that the greater ε`, the more tolerant the pro-
cess. It turns out that the practical performance of Tn strongly relies on an
appropriate choice of ε`. This important question will thoroughly be discussed
in Section 3, where we devise an automatic (i.e., data-dependent) selection
strategy of ε`.

Next, we note that the subscript n in Tn may be a little confusing, since Tn is
a weighted average of the Yi’s in D` only. However, Tn depends on the entire
data set Dn, as the rest of the data is used to set up the original machines
rk,1, . . . , rk,M . Finally, and most importantly, it should be noticed that the
combined estimate Tn is nonlinear with respect to the basic estimators rk,m’s.
This makes it very different from more model selection, convex and linear
aggregation. As such, it is inspired by the preliminary work of Mojirsheibani
(1999) in the supervised classification context. It is also close in spirit to
the “Super Learner” strategy developed by van der Laan et al. (2007), as
mentioned earlier.

Let us finally mention that, in the weights definition (2.1), all original estima-
tors are asked to have the same opinion on the importance of the observation
Xi (within the range of ε`) for the corresponding Yi to be integrated in the
combinaison Tn. However, this unanimity constraint may be relaxed by im-
posing, for example, that a fixed fraction α ∈ (0, 1] of the machines agree on
the importance of Xi. In that case, the weights take the more sophisticated
form

Wn,i(x) =
1{∑M

m=1 1{|rk,m(x)−rk,m(Xi)|≤ε`}≥Mα}∑`
j=1 1{∑M

m=1 1{|rk,m(x)−rk,m(Xj)|≤ε`}≥Mα}
.

It turns out that adding the parameter α does not change the asymptotic
properties of Tn, provided α→ 1. Thus, to keep a sufficient degree of clarity
in the mathematical statements and subsequent proofs, we have decided to
consider only the case α = 1 (i.e., unanimity). We leave as an exercise
the possibility to extend the results to more general values of α. On the
other hand, as highligthed by Section 3, α has a non-negligible impact on
the performance of the combined estimate. Accordingly, we will discuss in
Section 3 an automatic procedure to select this extra parameter.
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2.2 Theoretical performance

This section is devoted to the study of some asymptotic and non-asymptotic
properties of the combined estimate Tn, whose quality will be assessed by the
quadratic risk

E |Tn (rk(X))− r?(X)|2 .

Here and later, E denotes the expectation with respect to both X and the
sample Dn. Throughout, we let

T (rk(X)) = E [Y |rk(X)]

and note that, by the very definition of the L2 conditional expectation,

E |T (rk(X))− Y |2 ≤ inf
f
E |f(rk(X))− Y |2 , (2.2)

where the infimum is taken over all square integrable functions of rk(X).

Our first result is a non-asymptotic inequality, which states that the combined
estimator behaves as well as the best one in the original list, within a term
measuring how far Tn is from T .

Theorem 2.1. Let rk = (rk,1, . . . , rk,M) be the collection of basic estimators,
and let Tn(rn(x)) be the combined estimate. Then

E |Tn (rk(X))− r?(X)|2 ≤ min
m=1,...,M

E |rk,m(X)− r?(X)|2

+ E |Tn (rk(X))− T (rk(X))|2 ,

for all distributions of (X, Y ) with EY 2 <∞.

Theorem 2.1 reassures us on the performance of Tn with respect to the basic
machines, whatever the distribution of (X, Y ) is and regardless of which in-
dividual estimate is actually the best. The term E|Tn(rk(X))−T (rk(X))|2 is
a variance-type term, which can be asympotically controlled.

Proposition 2.1. Assume that

ε` → 0 and `εM` →∞ as `→∞.

Then
E |Tn (rk(X))− T (rk(X))|2 → 0 as `→∞,

for all distribution of (X, Y ) with EY 2 <∞.

Thus, combining Theorem 2.1 and Proposition 2.1, we obtain

lim sup
`→∞

E |Tn (rk(X))− r?(X)|2 ≤ min
m=1,...,M

E |rk,m(X)− r?(X)|2 .
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This result is remarkable, for at least two reasons. Firstly, it shows that, in
terms of predictive quadratic risk, the combined estimate does asymptotically
at least as well as the best primitive machine. Secondly, the result is universal,
in the sense that it is true for all distributions of (X, Y ), without exceptions.
This is especially interesting because the performance of any estimation pro-
cedure eventually depends upon some model and smoothness assumptions on
the observations. For example, a linear regression fit performs well if the
distribution is truly linear, but may behave poorly otherwise. Similarly, the
Lasso procedure is known to do a good job for non-correlated designs (see
van de Geer, 2008), with no clear guarantee however in adversarial situa-
tions. Likewise, rates of convergence of nonparametric procedures such as
the k-nearest neighbor method, kernel estimates and random forests dramat-
ically deteriorate as the ambient dimension increases, but may be significantly
improved if the true underlying dimension is reasonable. This phenomenon
is thoroughly analyzed for the random forests algorithm in Biau (2012). The
crux is that model and smoothness assumptions are usually unverifiable, espe-
cially in modern, high-dimensional and large scale data sets. To circumvent
this difficulty, people often try many different methods and retain the one
exhibiting the best empirical results. Our aggregation strategy offers a nice
alternative, in the sense that if one of the initial estimators is consistent for
a given smoothness classM of distributions, then Tn inherits the same prop-
erty. Our procedure therefore allows the statistician to consider model-free
prediction. This is formalized in the following corollary.

Corollary 2.1. Assume that one of the original estimators, say rk,m0, satis-
fies

E |rk,m0(X)− r?(X)|2 → 0 as k →∞
for all distribution of (X, Y ) in some smoothness classM. Then, if

ε` → 0 and `εM` →∞ as `→∞,

one has
E |Tn (rk(X))− r?(X)|2 → 0 as k, `→∞,

for all distribution of (X, Y ) inM.

3 Implementation and numerical studies
This section is devoted to the implementation of the described method. Its ex-
cellent performance is then assessed in a series of benchmarks. The companion
R package COBRA (standing for COmBined Regression Alternative) is available
on the CRAN website http://cran.r-project.org/web/packages/COBRA/
index.html, for Linux, Mac and Windows platforms, see Guedj (2013).
COBRA includes a parallel option, allowing for improved performance on
multi-core computers (see Knaus, 2010).
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As raised in the previous section, a fine calibration of the smoothing param-
eter ε` is crucial. Clearly, a too small value will discard many machines and
most weights will be zero. Conversely, a large value sets all weights to 1/Σ
with

Σ =
∑̀
j=1

1⋂M
m=1{|rk,m(x)−rk,m(Xj)|≤ε`},

giving the naive predictor that does not take into account any new data point
and predict the mean over sample D`. We also consider a relaxed version of
the unanimity constraint: Instead of requiring global agreement over the im-
plemented machines, consider some α ∈ (0, 1] and keep observation Yi in the
construction of Tn if and only if at least a proportion α of the machines agree
on the importance of Xi. This parameter requires as well a fine calibration.
To understand better, consider the following toy example: On some data set,
assume most machines but one have nice predictive performance. For any new
data point, requiring global agreement will fail since the pool of machines is
heterogeneous. In this regard, α should be seen as a measure of homogeneity:
If a small value is selected, it should be seen as an indicator that some ma-
chines perform (possibly much) better than some others. Conversely, a large
value indicates that the predictive abilities of the machines are close.

A natural measure of the risk in the prediction context is the empirical
quadratic loss, namely

r(Ŷ) =
1

`

∑̀
j=1

(Ŷi − Yi)2,

where Ŷ = (Ŷ1, . . . , Ŷ`) is the vector of predicted values for the responses
Y1, . . . , Y`.
We adopted the following protocol: Using a simple data-splitting device, ε`
and α are chosen by minimizing the empirical risk r over the set {ε`,min, . . . , ε`,max}×
{1/M, . . . , 1}, where ε`,min = 10−9 and ε`,max is the largest difference between
two predictions of the pool of machines. In the package, #{ε`,min, . . . , ε`,max}
may be modified by the user, otherwise the default value 100 is chosen. Fig-
ure 2 illustrates the discussion about the choice of ε` and α.

By default, COBRA includes the following classical packages dealing with re-
gression estimation and prediction. However, note that the user has the choice
to modify this list to her/his own convenience.

• Lasso (R package lars, see Hastie and Efron, 2012),

• Ridge regression (R package ridge, see Cule, 2012),

• k-nearest neighbors (R package FNN, see Li, 2012),

• CART algorithm (R package tree, see Ripley, 2012),
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• Random Forest algorithm (R package randomForest, see Liaw and
Wiener, 2002).

First, COBRA is benchmarked on synthetic data. For each of the following
eight models, two designs are considered: Uniform over (−1, 1) (referred to
as “Uncorrelated” in Table 1, Table 2 and Table 3), and Gaussian with mean 0
and covariance matrix Σ with Σij = 2−|i−j| (“Correlated”). Models considered
cover a wide spectrum of contemporary regression problems. Indeed, Model 2
comes from van der Laan et al. (2007), Model 3 and Model 4 appear in Meier
et al. (2009). Model 1 and Model 5 are classic settings. Model 6 is about
predicting labels, Model 7 is inspired by high-dimensional sparse regression
problems. Finally, Model 8 deals with probability estimation, linking with
nonparametric model-free approaches such as in Malley et al. (2012). In the
sequel, we let N (µ, σ2) denote a Gaussian random variable with mean µ and
variance σ2. In the simulations, the training data set was usually set to 80%
of the whole sample, then split into two equal parts corresponding to Dk and
D`.

Model 1. n = 800, d = 50, Y = X2
1 + exp(−X2

2 ).

Model 2. n = 600, d = 100, Y = X1X2+X
2
3−X4X7+X8X10−X2

6+N (0, 0.5).

Model 3. n = 600, d = 100, Y = − sin(2X1) + X2
2 + X3 − exp(−X4) +

N (0, 0.5).

Model 4. n = 600, d = 100, Y = X1 + (2X2 − 1)2 + sin(2πX3)/(2 −
sin(2πX3))+sin(2πX4)+2 cos(2πX4)+3 sin2(2πX4)+4 cos2(2πX4)+N (0, 0.5).

Model 5. n = 700, d = 20, Y = 1{X1>0} + X3
2 + 1{X4+X6−X8−X9>1+X14} +

exp(−X2
2 ) +N (0, 0.5).

Model 6. n = 500, d = 30, Y =
∑10

k=1 1{X3
k<0} − 1{N (0,1)>1.25}.

Model 7. n = 600, d = 300, Y = X2
1 + X2

2X3 exp(−|X4|) + X6 − X8 +
N (0, 0.5).

Model 8. n = 600, d = 50, Y = 1{X1+X3
4+X9+sin(X12X18)+N (0,0.1)>0.38}.

Table 1 presents the mean quadratic error and standard deviation over 100
independent replications, for each model and design. Bold number identifies
the lowest error, i.e., the best competitor. Boxplots of errors are presented
in Figure 3 and Figure 4. Further, Figure 5 and Figure 6 shows the predic-
tive capacities of COBRA, and Figure 7 depicts its ability to reconstruct the
functional dependence over the covariates when this dependence is additive,
assessing the striking performance of our approach in a wide spectrum of sta-
tistical settings. A remarkable fact is that COBRA performs at least as well as
the best machine, and improves even significantly in Model 3, Model 5 and
Model 6.
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Next, we compare COBRA to the SuperLearner algorithm (Polley and van der
Laan, 2012). This widespread algorithm was first described in van der Laan
et al. (2007). SuperLearner is used in this section as the key competitor
to our method: In a spirit close to ours, the main idea lies on a nonlinear
way to combine basic estimators based on cross-validation. We feel close to
the approach used in the SuperLearner package, allowing the user to add as
many machines as desired, then blending them to deliver predictive outcomes.

Table 2 summarizes the performance of COBRA and SuperLearner (used with
SL.randomForest, SL.ridge and SL.glmnet, so that both methods compete
on equal terms) through the described protocol. Both methods compete on
similar terms in most models, although COBRA proves much more efficient on
correlated design in Model 2 and Model 4. This already remarkable result
is to be stressed by the flexibility and velocity showed by COBRA. Indeed,
as emphasized in Table 3, without even using the parallel option, COBRA
obtains similar or better results than SuperLearner roughly five times faster.

Next, COBRA is used to process the following real-life data sets.

• Concrete Slump Test4 (see Yeh, 2007),

• Concrete Compressive Strength5 (see Yeh, 1998),

• Wine Quality6 (see Cortez et al., 2009). Note that this data set involves
supervised classification and opens a line for future research since COBRA
is mainly devoted to regression.

The good predictive performance of COBRA is summarized in Figure 8 and
errors are presented in Figure 9. For every data set, the sample is divided
into a training set (90%) and a testing set (10%) on which the predictive
performance is evaluated.
As a conclusion to this thorough experimental protocol, COBRA sets a new
gold standard for prediction-oriented problems in the context of regression.

4http://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test.
5http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength.
6http://archive.ics.uci.edu/ml/datasets/Wine+Quality.
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Table 1: Quadratic errors of the implemented machines and COBRA. Means
and standard deviations over 100 independent replications.

Uncorrelated lars ridge fnn tree rf COBRA

Model 1 m. 0.1561 0.1324 0.1585 0.0281 0.0330 0.0259
sd. 0.0123 0.0094 0.0123 0.0043 0.0033 0.0036

Model 2 m. 0.4880 0.2462 0.3070 0.1746 0.1366 0.1645
sd. 0.0676 0.0233 0.0303 0.0270 0.0161 0.0207

Model 3 m. 0.2536 0.5347 1.1603 0.4954 0.4027 0.2332
sd. 0.0271 0.4469 0.1227 0.0772 0.0558 0.0272

Model 4 m. 7.6056 6.3271 10.5890 3.7358 3.5262 3.3640
sd. 0.9419 1.0800 0.9404 0.8067 0.3223 0.5178

Model 5 m. 0.2943 0.3311 0.5169 0.2918 0.2234 0.2060
sd. 0.0214 0.1012 0.0439 0.0279 0.0216 0.0210

Model 6 m. 0.8438 1.0303 2.0702 2.3476 1.3354 0.8345
sd. 0.0916 0.4840 0.2240 0.2814 0.1590 0.1004

Model 7 m. 1.0920 0.5452 0.9459 0.3638 0.3110 0.3052
sd. 0.2265 0.0920 0.0833 0.0456 0.0325 0.0298

Model 8 m. 0.1308 0.1279 0.2243 0.1715 0.1236 0.1021
sd. 0.0120 0.0161 0.0189 0.0270 0.0100 0.0155

Correlated lars ridge fnn tree rf COBRA

Model 1 m. 2.3736 1.9785 2.0958 0.3312 0.5766 0.3301
sd. 0.4108 0.3538 0.3414 0.1285 0.1914 0.1239

Model 2 m. 8.1710 4.0071 4.3892 1.3609 1.4768 1.3612
sd. 1.5532 0.6840 0.7190 0.4647 0.4415 0.4654

Model 3 m. 6.1448 6.0185 8.2154 4.3175 4.0177 3.7917
sd. 11.9450 12.0861 13.3121 11.7386 12.4160 11.1806

Model 4 m. 60.5795 42.2117 51.7293 9.6810 14.7731 9.6906
sd. 11.1303 9.8207 10.9351 3.9807 5.9508 3.9872

Model 5 m. 6.2325 7.1762 10.1254 3.1525 4.2289 2.1743
sd. 2.4320 3.5448 3.1190 2.1468 2.4826 1.6640

Model 6 m. 1.2765 1.5307 2.5230 2.6185 1.2027 0.9925
sd. 0.1381 0.9593 0.2762 0.3445 0.1600 0.1210

Model 7 m. 20.8575 4.4367 5.8893 3.6865 2.7318 2.9127
sd. 7.1821 1.0770 1.2226 1.0139 0.8945 0.9072

Model 8 m. 0.1366 0.1308 0.2267 0.1701 0.1226 0.0984
sd. 0.0127 0.0143 0.0179 0.0302 0.0102 0.0144
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Table 2: Quadratic errors of
SuperLearner and COBRA. Means
and standard deviations over 100
independent replications.

Uncorr. SL COBRA

Model 1 m. 0.0541 0.0320
sd. 0.0053 0.0104

Model 2 m. 0.1765 0.3569
sd. 0.0167 0.8797

Model 3 m. 0.2081 0.2573
sd. 0.0282 0.0699

Model 4 m. 4.3114 3.7464
sd. 0.4138 0.8746

Model 5 m. 0.2119 0.2187
sd. 0.0317 0.0427

Model 6 m. 0.7627 1.0220
sd. 0.1023 0.3347

Model 7 m. 0.1705 0.3103
sd. 0.0260 0.0490

Model 8 m. 0.1081 0.1075
sd. 0.0121 0.0235

Corr. SL COBRA

Model 1 m. 0.8733 0.3262
sd. 0.2740 0.1242

Model 2 m. 2.3391 1.3984
sd. 0.4958 0.3804

Model 3 m. 3.1885 3.3201
sd. 1.5101 1.8056

Model 4 m. 25.1073 9.3964
sd. 7.3179 2.8953

Model 5 m. 5.6478 4.9990
sd. 7.7271 9.3103

Model 6 m. 0.8967 1.1988
sd. 0.1197 0.4573

Model 7 m. 3.0367 3.1401
sd. 1.6225 1.6097

Model 8 m. 0.1116 0.1045
sd. 0.0111 0.0216

Table 3: Average CPU-times
in seconds. No parallelization.
Means and standard deviations
over 10 independent replications.

Uncorr. SL COBRA

Model 1 m. 53.92 10.92
sd. 1.42 0.29

Model 2 m. 57.96 11.90
sd. 0.95 0.31

Model 3 m. 53.70 10.66
sd. 0.55 0.11

Model 4 m. 55.00 11.15
sd. 0.74 0.18

Model 5 m. 28.46 5.01
sd. 0.73 0.06

Model 6 m. 22.97 3.99
sd. 0.27 0.05

Model 7 m. 127.80 35.67
sd. 5.69 1.91

Model 8 m. 32.98 6.46
sd. 1.33 0.33

Corr. SL COBRA

Model 1 m. 61.92 11.96
sd. 1.85 0.27

Model 2 m. 70.90 14.16
sd. 2.47 0.57

Model 3 m. 59.91 11.92
sd. 2.06 0.41

Model 4 m. 63.58 13.11
sd. 1.21 0.34

Model 5 m. 31.24 5.02
sd. 0.86 0.07

Model 6 m. 24.29 4.12
sd. 0.82 0.15

Model 7 m. 145.18 41.28
sd. 8.97 2.84

Model 8 m. 31.31 6.24
sd. 0.73 0.11
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Figure 2: Examples of calibration of parameters ε` and α. The bold point is
the minimum.
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(b) Model 4, uncorrelated design.
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(c) Model 5, uncorrelated design.
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(d) Model 5, correlated design.
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Figure 3: Boxplots of quadratic errors, uncorrelated design. From left to
right: lars, ridge, fnn, tree, randomForest, COBRA.
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Figure 4: Boxplots of quadratic errors, correlated design. From left to right:
lars, ridge, fnn, tree, randomForest, COBRA.
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(d) Model 4.
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Figure 5: Prediction over the testing set, uncorrelated design. The more
points on the first bissectrix, the better the prediction.
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(h) Model 8.
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Figure 6: Prediction over the testing set, correlated design. The more points
on the first bissectrix, the better the prediction.
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Figure 7: Examples of reconstruction of the functional dependencies, for co-
variates 1 to 4.

(a) Model 1, uncorrelated design.
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(b) Model 1, correlated design.
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(c) Model 3, uncorrelated design.
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Figure 8: Prediction over the testing set, real-life data sets.
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Figure 9: Boxplot of quadratic errors, real-life data sets.
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4 Proofs

4.1 Proof of Theorem 2.1

For each m = 1, . . . ,M , we have

0 ≤ E|rk,m(X)− Y |2 − E|T (rk(X))− Y |2

= E|rk,m(X)− Y |2 − E|r?(X)− Y |2 + E|r?(X)− Y |2

− E|Tn(rk(X))− Y |2 + E|Tn(rk(X))− Y |2 − E|T (rk(X))− Y |2, (4.1)

where we used that E |T (rk(X))− Y |2 ≤ inff E |f(rk(X))− Y |2. Observe
now that

E|rk,m(X)− Y |2 = E|rk,m(X)− r?(X)|2 + E|r?(X)− Y |2, (4.2)

since

E[(rk,m(X)− r?(X))(r?(X)− Y )]

= E[E[(rk,m(X)− r?(X))(r?(X)− Y )|Dk,X]]

= E[(rk,m(X)− r?(X))E[r?(X)− Y |X]]

= E[(rk,m(X)− r?(X))(r?(X)− r?(X))]

= 0.

Likewise,

E|Tn(rk(X))− Y |2 = E|Tn(rk(X))− r?(X)|2 + E|r?(X)− Y |2

and

E|Tn(rk(X))− Y |2 = E|Tn(rk(X))− T (rk(X))|2 + E|T (rk(X))− Y |2.

Combining these equalities reveals that the expression in (4.2) equals

E|rk,m(X)− r?(X)|2 − E|Tn(rk(X))− r?(X)|2 + E|Tn(rk(X))− T (rk(X))|2.

It follows that

E|Tn(rk(X))− r?(X)|2 ≤ E|rk,m(X)− r?(X)|2 + E|Tn(rk(X))− T (rk(X))|2.

Taking the infimum over m = 1, . . . ,M leads to

E|Tn(rk(X))− r?(X)|2 ≤ min
m=1,...,M

E|rk,m(X)− r?(X)|2

+ E|Tn(rk(X))− T (rk(X))|2.

This is the desired result.
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4.2 Proof of Proposition 2.1

We start with a technical lemma, whose proof can be found in the monograph
by Györfi et al. (2002).

Lemma 4.1. Let B(n, p) be a binomial random variable with parameters
n ≥ 1 and p > 0. Then

E
[

1

1 +B(n, p)

]
≤ 1

p(n+ 1)

and
E
[
1{B(n,p)>0}

B(n, p)

]
≤ 2

p(n+ 1)
.

For all distribution of (X, Y ), using the elementary inequality (a+ b+ c)2 ≤
3(a2 + b2 + c2), note that

E|Tn(rk(X))− T (rk(X))|2

= E

∣∣∣∣∣∑̀
i=1

Wn,i(X) (Yi − T (rk(Xi)) + T (rk(Xi))− T (rk(X)) + T (rk(X)))

− T (rk(X))

∣∣∣∣∣
2

≤ 3E

∣∣∣∣∣∑̀
i=1

Wn,i(X)(T (rk(Xi))− T (rk(X)))

∣∣∣∣∣
2

(4.3)

+ 3E

∣∣∣∣∣∑̀
i=1

Wn,i(X)(Yi − T (rk(Xi)))

∣∣∣∣∣
2

(4.4)

+ 3E

∣∣∣∣∣∑̀
i=1

(Wn,i(X)− 1)T (rk(X))

∣∣∣∣∣
2

. (4.5)

Consequently, to prove the proposition, it suffices to establish that (4.3),
(4.4) and (4.5) tend to 0 as ` tends to infinity. This is done, respectively, in
Proposition 4.1, Proposition 4.2 and Proposition 4.3 below.

Proposition 4.1. Under the assumptions of Proposition 2.1,

lim
`→∞

E

∣∣∣∣∣∑̀
i=1

Wn,i(X)(T (rk(Xi))− T (rk(X)))

∣∣∣∣∣
2

= 0.
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Proof of Proposition 4.1. By the Cauchy-Schwarz inequality,

E

∣∣∣∣∣∑̀
i=1

Wn,i(X)(T (rk(Xi))− T (rk(X)))

∣∣∣∣∣
2

= E

∣∣∣∣∣∑̀
i=1

√
Wn,i(X)

√
Wn,i(X) (T (rk(Xi))− T (rk(X)))

∣∣∣∣∣
2

≤ E

[∑̀
j=1

Wn,j(X)
∑̀
i=1

Wn,i(X) |T (rk(Xi))− T (rk(X))|2
]

= E

[∑̀
i=1

Wn,i(X) |T (rk(Xi))− T (rk(X))|2
]

:= An.

The function T is such that E[T 2(rk(X))] <∞. Therefore, it can be approx-
imated in an L2 sense by a continuous function with compact support, say
T̃ . This result may be found in many references, amongst them Györfi et al.
(2002, Theorem A.1). More precisely, for any η > 0, there exists a function
T̃ such that

E
∣∣∣T (rk(X))− T̃ (rk(X))

∣∣∣2 < η.

Consequently, we obtain

An = E

[∑̀
i=1

Wn,i(X)|T (rk(Xi))− T (rk(X))|2
]

≤ 3E

[∑̀
i=1

Wn,i(X)|T (rk(Xi))− T̃ (rk(Xi))|2
]

+ 3E

[∑̀
i=1

Wn,i(X)|(T̃rk(Xi))− T̃ (rk(X))|2
]

+ 3E

[∑̀
i=1

Wn,i(X)|T̃ (rk(X))− T (rk(X))|2
]

:= 3An1 + 3An2 + 3An3.

Computation of An3. Thanks to the approximation of T by T̃ ,

An3 = E

[∑̀
i=1

Wn,i(X)|T (rk(X))− T̃ (rk(X))|2
]

≤ E
∣∣∣T (rk(X))− T̃ (rk(X))

∣∣∣2 < η.
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Computation of An1. Denote by µ the distribution of X. Then,

An1 = E

[∑̀
i=1

Wn,i(X)|T̃ (rk(Xi))− T (rk(Xi))|2
]

= `E

[
1⋂M

m=1{|rk,m(X)−rk,m(X1)|≤ε`}∑`
j=1 1

⋂M
m=1{|rk,m(X)−rk,m(Xj)|≤ε`}

|T̃ (rk(X1))− T (rk(X1))|2
]
.

= `

∫
|T̃ (rk(u))− T (rk(u))|2

×E

[∫ 1⋂M
m=1{|rk,m(x)−rk,m(u)|≤ε`}

1⋂M
m=1{|rk,m(x)−rk,m(u)|≤ε`} +

∑`
j=2 1⋂M

m=1{|rk,m(x)−rk,m(Xj)|≤ε`}
dµ(x)

]
dµ(u).

Let us prove that

A′n1 = E

[∫ 1⋂M
m=1{|rk,m(x)−rk,m(u)|≤ε`}

1⋂M
m=1{|rk,m(x)−rk,m(u)|≤ε`} +

∑`
j=2 1⋂M

m=1{|rk,m(x)−rk,m(Xj)|≤ε`}
dµ(x)

]

≤ 2M

`
.

To this aim, observe that

A′n1 = E

∫ 1{x∈⋂M
m=1 r

−1
k,m([rk,m(u)−ε`,rk,m(u)+ε`])}

1 +
∑`

j=2 1{Xj∈
⋂M

m=1 r
−1
k,m([rk,m(x)−ε`,rk,m(x)+ε`])}

dµ(x)


= E

∫ 1{x∈⋃
(a1,...,aM )∈{1,2}M r−1

k,1(I
a1
n,1(u))∩...∩r

−1
k,M (I

aM
n,M (u))}

1 +
∑`

j=2 1{Xj∈
⋂M

m=1 r
−1
k,m([rk,m(x)−ε`,rk,m(x)+ε`])}

dµ(x)


≤

2M∑
p=1

E

∫ 1{x∈Rp
n(u)}

1 +
∑`

j=2 1{Xj∈
⋂M

m=1 r
−1
k,m([rk,m(x)−ε`,rk,m(x)+ε`])}

dµ(x)

 .
Here, I1n,m(u) = [rk,m(u)− ε`, rk,m(u)], I2n,m(u) = [rk,m(u), rk,m(u) + ε`], and
Rp
n(u) is the p-th set of the form r−1k,1(I

a1
n,1(u)) ∩ . . . ∩ r−1k,M(IaMn,M(u)) assuming

that they have been ordered using the lexicographic order of (a1, . . . , aM).

Next, note that

x ∈ Rp
n(u)⇒ Rp

n(u) ⊂
M⋂
m=1

r−1k,m([rk,m(x)− ε`, rk,m(x) + ε`]).

To see this, just observe that, for all m = 1, . . . ,M , if rk,m(z) ∈ [rk,m(u) −
ε`, rk,m(u)], i.e., rk,m(u) − ε` ≤ rk,m(z) ≤ rk,m(u), then, as rk,m(u) − ε` ≤
rk,m(x) ≤ rk,m(u), one has rk,m(x) − ε` ≤ rk,m(z) ≤ rk,m(x) + ε`. Similarly,
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if rk,m(u) ≤ rk,m(z) ≤ rk,m(u) + ε`, then rk,m(u) ≤ rk,m(x) ≤ rk,m(u) + ε`
implies rk,m(x)− ε` ≤ rk,m(z) ≤ rk,m(x) + ε`. Consequently,

A′n1 ≤
2M∑
p=1

E

[∫
1{x∈Rp

n(u)}

1 +
∑`

j=2 1{Xj∈Rp
n(u)}

dµ(x)

]

=
2M∑
p=1

E

[
E

[
µ{Rp

n(u)}
1 +

∑`
j=2 1{Xj∈Rp

n(u)}

∣∣∣Dk]]

≤
2M∑
p=1

E
[
µ{Rp

n(u)}
`µ{Rp

n(u)}

]
≤ 2M

`

(by the first statement of Lemma 4.1). Thus, returning to An1, we obtain

An1 ≤ 2ME
∣∣∣T̃ (rk(X)− T (rk(X)))

∣∣∣2 < 2Mη.

Computation of An2. For any δ > 0, write

An2 = E

[∑̀
i=1

Wn,i(X)|T̃ (rk(Xi))− T̃ (rk(X))|2
]

= E

[∑̀
i=1

Wn,i(X)|T̃ (rk(Xi))− T̃ (rk(X))|21⋃M
m=1{|rk,m(X)−rk,m(Xi)|>δ}

]

+ E

[∑̀
i=1

Wn,i(X)|T̃ (rk(Xi))− T̃ (rk(X))|21⋂M
m=1{|rk,m(X)−rk,m(Xi)|≤δ}

]

≤ 4 sup
u∈Rd

|T̃ (rk(u))|2E

[∑̀
i=1

Wn,i(X)1⋃M
m=1{|rk,m(X)−rk,m(Xi)|>δ}

]
(4.6)

+

(
sup

u,v∈Rd,
⋂M

m=1{|rk,m(u)−rk,m(v)|≤δ}
|T̃ (rk(v))− T̃ (rk(u))|

)2

. (4.7)

With respect to the term (4.6), if δ > ε`, then

∑̀
i=1

Wn,i(X)1⋃M
m=1{|rk,m(X)−rk,m(Xi)|>δ}

=
∑̀
i=1

1⋂M
m=1{|rk,m(X)−rk,m(Xi)|≤ε`}1

⋃M
m=1{|rk,m(X)−rk,m(Xi)|>δ}∑`

j=1 1⋂M
m=1{|rk,m(X)−rk,m(Xj)|≤ε`}

= 0.
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It follows that, for all δ > 0, this term converges to 0 as ` tends to infinity. On
the other hand, letting δ → 0, we see that the term (4.7) tends to 0 as well, by
uniform continuity of T̃ . Hence, An2 tends to 0 as ` tends to infinity. Letting
finally η go to 0, we conclude that An vanishes as ` tends to infinity.

Proposition 4.2. Under the assumptions of Proposition 2.1,

lim
`→∞

E

∣∣∣∣∣∑̀
i=1

Wn,i(X)(Yi − T (rk(Xi)))

∣∣∣∣∣
2

= 0.

Proof of Proposition 4.2.

E

∣∣∣∣∣∑̀
i=1

Wn,i(X)(Yi − T (rk(Xi)))

∣∣∣∣∣
2

=
∑̀
i=1

∑̀
j=1

E[Wn,i(X)Wn,j(X)(Yi − T (rk(Xi)))(Yj − T (rk(Xj)))]

= E

[∑̀
i=1

W 2
n,i(X)|Yi − T (rk(Xi))|2

]

= E

[∑̀
i=1

W 2
n,i(X)σ2(rk(Xi))

]
,

where
σ2(rk(x)) = E[|Y − T (rk(X))|2|rk(x)].

For any η > 0, using again Györfi et al. (2002, Theorem A.1), σ2 can be
approximated in an L1 sense by a continuous function with compact support
σ̃2, i.e.,

E|σ̃2(rk(X))− σ2(rk(X))| < η.

Thus

E

[∑̀
i=1

W 2
n,i(X)σ2(rk(Xi))

]

≤ E

[∑̀
i=1

W 2
n,i(X)σ̃2(rk(Xi))

]
+ E

[∑̀
i=1

W 2
n,i(X)|σ2(rk(Xi))− σ̃2(rk(Xi))|

]

≤ sup
u∈Rd

|σ̃2(rk(u))|E

[∑̀
i=1

W 2
n,i(X)

]

+ E

[∑̀
i=1

Wn,i(X)|σ2(rk(Xi))− σ̃2(rk(Xi))|

]
.
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With the same argument as for An1, we obtain

E

[∑̀
i=1

Wn,i(X)|σ2(rk(Xi))− σ̃2(rk(Xi))|

]
≤ 2Mη.

Therefore, it remains to prove that E
[∑`

i=1W
2
n,i(X)

]
→ 0 as `→∞. To this

aim, fix δ > 0, and note that∑̀
i=1

W 2
n,i(X) =

∑`
i=1 1⋂M

m=1{|rk,m(X)−rk,m(Xi)|≤ε`}(∑`
j=1 1⋂M

m=1{|rk,m(X)−rk,m(Xj)|≤ε`}

)2
≤ min

{
δ,

1∑`
i=1 1⋂M

m=1{|rk,m(X)−rk,m(Xi)|≤ε`}

}

≤ δ +

1{∑`
i=1 1⋂M

m=1{|rk,m(X)−rk,m(Xi)|≤ε`}
>0

}
∑`

i=1 1⋂M
m=1{|rk,m(X)−rk,m(Xi)|≤ε`}

.

To complete the proof, we have to establish that the expectation of the right-
hand term tends to 0. Denoting by I an arbitrary interval on the real line,
we have

E


1{∑`

i=1 1{Xi∈
⋂M
m=1 r−1

k,m
([rk,m(X)−ε`,rk,m(X)+ε`])}>0

}
∑`

i=1 1{Xi∈
⋂M

m=1 r
−1
k,m([rk,m(X)−ε`,rk,m(X)+ε`])}



≤ E


1{∑`

i=1 1{Xi∈
⋂M
m=1 r−1

k,m
([rk,m(X)−ε`,rk,m(X)+ε`])}>0

}1{X∈⋂M
m=1 r

−1
k,m(I)}∑`

i=1 1{Xi∈
⋂M

m=1 r
−1
k,m([rk,m(X)−ε`,rk,m(X)+ε`])}


+ µ
( M⋃
m=1

r−1k,m(Ic)
)

= E

E

1{∑`

i=1 1{Xi∈
⋂M
m=1 r−1

k,m
([rk,m(X)−ε`,rk,m(X)+ε`])}>0

}1{X∈⋂M
m=1 r

−1
k,m(I)}∑`

i=1 1{Xi∈
⋂M

m=1 r
−1
k,m([rk,m(X)−ε`,rk,m(X)+ε`])}

∣∣∣Dk,X



+ µ
( M⋃
m=1

r−1k,m(Ic)
)

≤ 2

(`+ 1)
E

[
1{X∈⋂M

m=1 r
−1
k,m(I)}

µ(
⋂M
m=1 r

−1
k,m([rk,m(X)− ε`, rk,m(X) + ε`]))

]

+ µ
( M⋃
m=1

r−1k,m(Ic)
)
.
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The last inequality arises from the second statement of Lemma 4.1. By an
appropriate choice of I, the second term on the right-hand side can be made
as small as desired. Regarding the first term, there exists a finite number N`

of points z1, . . . , zN`
such that

M⋂
m=1

r−1k,m(I) ⊂
⋃

(j1,...,jM )∈{1,...,N`}M
r−1k,1(In,1(zj1)) ∩ · · · ∩ r

−1
k,M(In,M(zjM )),

where In,m(zj) = [zj − ε`/2, zj + ε`/2]. Suppose, without loss of generality,
that the sets

r−1k,1(In,1(zj1)) ∩ · · · ∩ r
−1
k,M(In,M(zjM ))

are ordered, and denote by Rp
n the p-th among the NM

` = (d|I|/ε`e)M sets.
Here |I| denotes the length of the interval I and dxe denotes the smallest
integer greater than x. For all p,

x ∈ Rp
n ⇒ Rp

n ⊂
M⋂
m=1

r−1k,m([rk,m(x)− ε`, rk,m(x) + ε`]).

Indeed, if v ∈ Rp
n, then, for all m = 1, . . . ,M , there exists j ∈ {1, . . . , Nn}

such that rk,m(v) ∈ [zj − ε`/2, zj + ε`/2], that is zj − ε`/2 ≤ rk,m(v) ≤
zj + ε`/2. Since we also have zj − ε`/2 ≤ rk,m(X) ≤ zj + ε`/2, we obtain
rk,m(X)− ε` ≤ rk,m(v) ≤ rk,m(X) + ε`. In conclusion,

E

[
1{X∈⋂M

m=1 r
−1
k,m(I)}

µ(
⋂M
m=1 r

−1
k,m([rk,m(X)− ε`, rk,m(X) + ε`]))

]

≤
NM∑̀
p=1

E

[
1{X∈Rp

n}
µ(
⋂M
m=1 r

−1
k,m([rk,m(X)− ε`, rk,m(X) + ε`]))

]

≤
NM∑̀
p=1

E

[
1{X∈Rp

n}
µ(Rp

n)

]
= NM

`

=

⌈
|I|
ε`

⌉M
.

The result follows from the assumption lim`→∞ `ε
M
` =∞.

Proposition 4.3. Under the assumptions of Proposition 2.1,

lim
`→∞

E

∣∣∣∣∣∑̀
i=1

(Wn,i(X)− 1)T (rk(X))

∣∣∣∣∣
2

= 0.
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Proof of Proposition 4.3. Since |
∑`

i=1Wn,i(X)− 1| ≤ 1, one has∣∣∣∣∣∑̀
i=1

(Wn,i(X)− 1)T (rk(X))

∣∣∣∣∣
2

≤ T 2(rk(X)).

Consequently, by Lebesgue’s dominated convergence theorem, to prove the
proposition, it suffices to show that Wn,i(X) tends to 1 almost surely. Now,

P

(∑̀
i=1

Wn,i(X) 6= 1

)

= P

(∑̀
i=1

1⋂M
m=1{|rk,m(X)−rk,m(Xi))|≤ε`} = 0

)

= P

(∑̀
i=1

1{Xi∈
⋂M

m=1 r
−1
k,m([rk,m(X)−ε`,rk,m(X)+ε`])} = 0

)
=

∫
P
(
∀i = 1, . . . , `,1{Xi∈

⋂M
m=1 r

−1
k,m([rk,m(x)−ε`,rk,m(x)+ε`])} = 0

)
dµ(x)

=

∫ [
1− µ(∩Mm=1r

−1
k,m ([rk,m(x)− ε`, rk,m(x) + ε`]))

]`
dµ(x).

Denote by I an arbitrary interval. Then,

P

(∑̀
i=1

Wn,i(X) 6= 1

)
≤
∫

exp
(
−`µ(∩Mm=1r

−1
k,m ([rk,m(x)− ε`, rk,m(x) + ε`]))

)
1{x∈⋂M

m=1 r
−1
k,m(I)}dµ(x)

+ µ
( M⋃
m=1

r−1k,m(Ic)
)

≤ max
u

ue−u
∫ 1{x∈⋂M

m=1 r
−1
k,m(I)}

`µ(∩Mm=1r
−1
k,m ([rk,m(x)− ε`, rk,m(x) + ε`]))

dµ(x)

+ µ
( M⋃
m=1

r−1k,m(Ic)
)
.

Using the same arguments as in the proof of Proposition 4.2, the probability

P
(∑`

i=1Wn,i(X) 6= 1
)
is bounded by e−1

`

⌈
|I|
ε`

⌉M
. This bound vanishes as n

tends to infinity since, by assumption, lim`→∞ `ε
M
` =∞.
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