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We focus on wind power modeling using machine learning techniques.
We show on real data provided by the wind energy company Maïa Eolis,
that parametric models, even following closely the physical equation relat-
ing wind production to wind speed are outperformed by intelligent learning
algorithms. In particular, the CART-Bagging algorithm gives very stable
and promising results. Besides, as a step towards forecast, we quantify the
impact of using deteriorated wind measures on the performances. We show
also on this application that the default methodology to select a subset of
predictors provided in the standard random forest package can be re�ned,
especially when there exists among the predictors one variable which has a
major impact.
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1 Introduction

In France, wind energy represents today 3.9% of the national electricity production. The
United Nations Conference on Climate Change COP21 has set a goal of 30% renewable
energy in the overall energy supply in the country by 2020, and more precisely, the
French wind production should double by 2020 [19].
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Since electricity can hardly be stored, forecasting tools are essential to appropriately
balance the production of the di�erent renewable energies. Today, in France, wind energy
is produced by more than 1400 wind farms scattered all over the country. The production
of each wind farm is highly dependent of the meteorological conditions and especially
of the wind. It is well known that the behavior of the wind is very di�erent from one
region to another, and this seems especially signi�cant in France, where several quite
di�erent climates are present despite the relatively small area of the country [19]. So, to
be accurate, the global wind electricity forecast should rely on local models, dedicated
to each wind farm. Consequently, an important �rst step is to quantify the modeling
performances of wind production in the di�erent French regions, using real operational
data.
Two kinds of framework are usually investigated today for wind power prediction.

On the one side, physical models rely on the modeling of each wind turbine based on
equations [5]. On another side, a trend of new mathematical tools tends to model the
power production by learning the phenomenon directly on the data, without integrating
any knowledge on the physical behavior of the wind turbines. Such techniques using
statistical models and data mining methods have been investigated in many complex
situations, for instance considering short term prediction. Among others, parametric
regression models, Support Vector Machines for regression, regression trees, random
forests, neural networks have been considered. For instance, the use of neural networks
has been investigated in [18, 12] and in [17]. A special network, called extreme learning
machine, has been used in [21] for probabilistic interval forecasting. In [15], the k-
nearest neighbor algorithm is used for probabilistic forecasts in the frame of the Global
Energy Forecasting Competition 2014. Support vector machines for regression have been
proposed in this context in [11], whereas [13] provides a comparison between several
data-mining approaches. Besides, time series-based models have also contributed to the
�eld of wind power forecast (see, e.g., [16, 22]). For an overview of di�erent modeling
and forecasting methods for wind power, the reader may further refer to the surveys
[5, 8, 9, 10].
In the present paper, adopting the second point of view, we investigate and compare

di�erent techniques for modeling the electrical power for several wind farms in France.
For each farm, we �rst model the electrical power of each wind turbine of the farm using
local inputs coming from sensors directly installed on each wind turbine. The predictive
power of the farm is then given by the sum of the predictive powers computed for each
wind turbine. In a second step, we quantify the modeling performances by using more
global inputs as may be provided by a meteorologist forecaster as for example, Météo
France. This approach helps to quantify the performance of the di�erent models running
in an operational environment, using only average input information at a farm scale.
The CART-Bagging algorithm appears to perform the best on our data and gives very

satisfactory predictions.
The paper is organized as follows. In Section 2, we thoroughly describe the data set

at hand. Section 3 introduces the di�erent methods investigated in our study. Section 4
presents and discusses the modeling performances obtained using the local information
on each turbine. The results found when replacing this information by the more global
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one, relying on averages, are given in Section 5.

2 Data set

The data set has been provided by the wind energy company Maïa Eolis. In a farm,
each wind turbine provides 10 minute measurements of electrical power, wind speed,
wind direction, temperature, as well as an indicator of the working state of the turbine.
The electrical power output of the whole farm is also provided on a 10 minute basis. All
measures are recorded simultaneously. Data is available for 3 di�erent farms made up
of 4 to 6 turbines, in the North and East of France, from 2011 to 2014.
To detect freeze, wind speed is measured on each turbine both by a classical anemome-

ter and a heated one. Since more measures are available from the heated anemometer,
the study has been conducted with this data. Wind direction is provided by a weather
vane and has been recoded into two variables corresponding to the cosine and the sine
of the angle. The state of the turbine may correspond to start, stop or full working of
the turbine, depending on the wind speed and maintenance operations. For the sake
of simplicity, this study focuses on fully operating times. Besides, the data has been
averaged over 30 minutes in order to slightly smooth the signals. However, it should be
stressed that most often the results obtained on a 10 minute basis are quite similar to
those presented in the sequel.
Taking advantage of the 30 minutes averages, two new variables have been introduced:

the variance of the wind speed, and the variance of the wind direction over 30 minutes.
The second variable (complex-valued), has been decomposed into its real part and its
imaginary part, leading to a total of 7 explanatory variables.

3 Predictive methods

In this section, all the measures are assumed to be observed in real time. Based on this
data, our aim is to model the farm power. More precisely, the variables are observed
at time t and the sum of the power of each turbine of the farm at time t is predicted.
We recall that the studied model is applied at each turbine, providing an estimate of its
power. Then the estimated farm power is computed by summing the estimated turbine
powers. The error is calculated at the farm scale.
Our intention is to compare parametric statistical methods closely re�ecting the re-

lated physical equation, to more elaborated techniques inspired from machine learning.
These methods are especially designed to learn a phenomenon in a completely agnostic
way and may be suitable for high dimensional data or complex data. In particular, they
can easily accommodate non-linear modeling as well as dependence between variables,
which is the case here.
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3.1 Theoretical equation

According to theoretical studies on wind turbines (see, e.g., [14]), the delivered power
obeys the following equation :

P (W ) =
1

2
ρScpW

3, (1)

whereW is the wind speed, ρ the air density, S the rotor surface, which is the area swept
by the blades, and cp the power coe�cient, corresponding to the fraction of wind energy
that the wind turbine is able to extract. Thus, as expected, the power signi�cantly
depends on the wind speed and a good approximation of the power curve could lead to
good predictions using wind speed measurements. Figure 1 shows the raw observations
and the �t to the theoretical curves for a wind turbine. Figure 1a plots power versus
wind-speed, whereas Figure 1b plots power versus the cube of the wind speed. The
two plotted theoretical curves correspond to two di�erent values of cp: the maximal
theoretical value (16/27, red curve), and a more realistic value given in Table 8 of [4]
(blue curve). The third curve (in green) is provided by the turbine builder, based on his
experiments.
Notice that the cloud of observations is quite dispersed and we can already anticipate

di�culties for prediction.
In particular, it should be underlined that the parameters of the physical equation (1)

are in practice di�cult to guess, so that the theoretical curves may not �t very well.
Furthermore, to better re�ect the observations, the theoretical formula is often used only
for a range of wind speeds, outside which the power is assumed to be constant. However,
the knowledge of this range requires the estimation of both endpoints of the interval.
Although these curves correspond to some trend, there is obviously room for improve-

ment to produce a better prediction.

3.2 Parametric methods

Several methods have been tested to approximate the power curve and model the pro-
duction. In this section, we present the parametric statistical methods, directly inspired
from the physical equation.

Parametric modeling according to the wind speed only We �rst investigated the
simplest parametric models, namely linear regression and logistic regression, with the
wind speed as unique explanatory variable. If the predicted power at time t is denoted
by Ŷt, these models are given by

Ŷt = a0 + a1Wt,

and

Ŷt =
C

1 + exp(a0 + a1Wt)
,

where the parameters a0, a1, C are estimated using the associated methodology.
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Figure 1: Empirical observations for a wind turbine and theoretical power curves for dif-
ferent power coe�cient values, compared to the curve provided by the turbine
builder.

Introducing a third degree polynomial of the wind speed in the logistic regression has
also been considered to mimic more closely Equation (1). More precisely, the model is
then de�ned by:

Ŷt =
C

1 + exp(a0 + a1Wt + a2W 2
t + a3W 3

t )
,

where ai, i = 0, . . . , 3 and C are estimated parameters. This model is denominated in
the sequel as polynomial logistic regression.

Parametric modeling using more variables Linear regression, logistic regression and
polynomial logistic regression with more variables, using not only wind speed as a predic-
tor, but also wind direction, (coded by its cosine and sine : Dcos and Dsin), temperature
T and the variances of the wind speed W S and direction, DS,Re and DS,Im, have also
been studied.
The Lasso method, which simultaneously performs variable selection and regular-

ization through the least squares criterion penalized by the `1 norm of the regression
coe�cients has been investigated as well (see for instance [20]). The model is de�ned by

Ŷt = a0 + a1Wt + a2D
cos
t + a3D

sin
t + a4Tt + a5W

S
t + a6D

S,Re
t + a7D

S,Im
t ,

with a0, . . . , a7 minimizing

1

n

n∑
i=1

(
Yi − a0 − a1Wi − a2Dcos

i − a3Dsin
i − a4Ti − a5W S

i − a6D
S,Re
i − a7DS,Im

i

)2
+λ

7∑
j=1

|aj|.
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3.3 Non-parametric methods and machine learning algorithms

It is well-known that non-parametric and non-linear methods are very useful to model
complex phenomena. The following algorithms do not generally lead to closed formulas
as in the previous section. We will describe them brie�y and refer to the literature for
more details.

SVM for regression The SVM method for regression maps the inputs into a non-
linear feature space, using a kernel representation, for example a Gaussian kernel (see
for instance [6]). A non-linear regression function is computed by minimizing the sum of
the losses on the points giving rise to an error exceeding some threshold. The threshold
parameter is here calibrated using a grid.

KNN The k-nearest-neighbour procedure consists in computing the average power cor-
responding to the k nearest neighbours in the feature space (see for instance [7]). As for
the previous method, the number k of neighbours is optimized on a grid.

CART, Bagging and RF Tree-based methods like CART [3] and Random Forests [2]
are also applied. CART grows a binary tree by choosing the cut minimizing the intra-
node variance, over all variables and corresponding thresholds. To avoid over-�tting, the
tree is usually pruned. The prediction is provided by the value associated to the leaf in
which the observation falls.
Another way to reduce variance and avoid over-�tting is to use Bagging [1]. Bagging

consists in generating bootstrap samples, �tting a method on every sample (here growing
a full tree by CART) and averaging the predictions.
To produce more diversity in the trees to be averaged, an additional random step may

be introduced in the previous procedure, leading to Random Forests. In the Random
Forests procedure, each tree is grown following the same principle as in CART (with no
pruning), but, here, the best cut is chosen among a much smaller subset of randomly
chosen variables. The predicted value is the mean of the predictions of the trees.

In the next section, all the experiments have been conducted using the R software. The
previous procedures are implemented respectively in the packages lars, kernlab, FNN,
rpart and randomForest. For the Random Forests, the default parameters, advocated
by Breiman, were used: 500 trees were grown in each forest and the size of the subset
of randomly chosen variables, commonly denoted by mtry, is the �oor of the third of
the number of variables. Note that the CART-Bagging algorithm is a particular case of
Random Forests where mtry equals the total number of variables.

3.4 The naive method

Finally, the so-called �persistence method� uses the last observation as prediction: if Yt
denotes the electric production at time t, the predicted production at time t is given
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by Ŷt = Yt−1. It is interesting to introduce this very naive method as a benchmark in
comparison to more sophisticated methods to precisely quantify their gain.

3.5 From turbine to farm modeling

As mentioned, the evaluation of the performances is made at the farm scale. Therefore,
each turbine is modeled using the evaluated method, then the estimation of each wind
turbine power is provided on test points. Finally, the estimated power of the farm
is computed by summing theses estimations. More precisely, if the farm comprises six
turbines and the linear regression is considered, six linear regression models are adjusted,
then predictions for the test set are computed on each turbine: Ŷt,1, Ŷt,2, Ŷt,3, Ŷt,4, Ŷt,5, Ŷt,6,
and �nally the estimation of the farm power is given by Ŷt =

∑6
i=1 Ŷt,i.

4 Modeling performance results

As we are interested in evaluating the predictive power of each method, the data set
is split as usual into a training and a test set. In order to quantify the variability of
the predictive ability, several test sets are used. An average performance, as well as a
standard deviation, are then computed.
More precisely, the procedures are trained on around 8000 instant-points and 10 data

sets of 724 points are used to evaluate the performances. The error criterion is the Root
Mean Squared Error (RMSE), de�ned between a vector of predictions Ŷ and a vector
of observed wind power productions Y by

RMSE(Ŷ ) =

√√√√ 1

T

T∑
t=1

(Ŷt − Yt)2.

A quantity which is also of interest for industries is the error in term of percentage of
the installed power (% of IP in the results tables), de�ned by the average RMSE divided
by the theoretical power of the farm. For example, if the farm is composed of 6 turbines
of theoretical power 2.05 GW (speci�ed by the turbines builder), the error in term of
percentage of the installed power is

% of IP = 100× mean(RMSE)

6× 2050
%.

This quantity sometimes appears under the denomination Normalized RMSE.
Let us comment the main conclusions drawn thanks to Table 1 and Figure 2.

General observations As can be observed in Table 1, the learning algorithms have
been investigated either using the wind speed variable only, in which case the emphasis
is on the non-linear added value of the method, or using all variables, insisting then on
both the non-linear and regularization aspects.
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Figure 2: Boxplots of the RMSE for the di�erent procedures using local measures for
one farm.
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Table 1: Modeling performances using local measures for one farm (IP= Installed
Power).

Method Mean of RMSE Sd of RMSE % of IP

Persistence 855.52 141.14 6.96
u
si
n
g
w
in
d

sp
ee
d
o
n
ly

Linear Regression 373.61 86.91 3.04

Logistic Regression 404.86 76.74 3.29

Polynomial Log. Reg. 290.36 73.87 2.36

CART 314.46 57.74 2.56

CART-Bagging (=RF) 250.52 46.52 2.04

SVM for regression 269.94 64.21 2.19

u
si
n
g
a
ll
va
ri
a
b
le
s

Linear Regression 364.21 102.39 2.96

Logistic Regression 362.76 107.58 2.95

Polynomial Log. Reg. 292.57 100.53 2.38

LASSO 364.21 102.39 2.96

CART 314.46 57.74 2.56

CART-Bagging 203.50 39.72 1.65

RF 425.78 161.53 3.46

SVM for regression 382.16 134.34 3.11

kNN (k=2) 355.29 109.96 2.89

We �rst observe that all the methods investigated show a much better performance than
the naive persistence method, substantially reducing the mean error, with a standard
deviation almost always better.

Wind speed only Concerning the methods using only the wind speed as predictor,
their performances are pretty good, more than twice better than persistence.
The polynomial logistic regression shows a very good performance, which was expected

since this model is directly inspired from the physical equations as illustrated in Figure 1.
However, the variability of the prediction is a bit high.
The SVM and RF methods for regression show the best results with the best stability.

Note that in that particular case, RF and the CART-Bagging procedure coincide.

All variables Regarding the parametric methods, the results show that adding more
variables, namely the wind direction, the variances of the wind speed and direction, and
the temperature, do not lead to any substantial improvement. Among these procedures,
polynomial logistic regression shows the best performances.
The LASSO procedure is not very promising. This is probably due to multiple factors

: the method uses the predictors in a linear way � compared to SVM or CART, which are
bringing di�erent kinds of non-linearity � and the predictors are highly correlated. We
observe also that the results are the same for LASSO and the classical linear regression
due to the fact that no selection has been in fact performed by the method.
The CART algorithm does not take advantage of the additional variables and seem

to choose its cuts only according to the wind speed. This may be explained by the
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prevailing importance of the wind speed over other measures.
Among the agnostic machine learning algorithms, the SVM shows one of the poorest

performances. It should be noted that several tested kernels were not able to compete
with the polynomial logistic regression for example.
The KNN method has a performance similar to the SVM procedure.
The CART-Bagging algorithm outperforms all the investigated statistical models. The

case of Random Forests is quite interesting and has to be discussed separately. Looking
at the Table 1 and Figure 2, we can observe that RF surprisingly seem less e�cient than
other methods and especially CART when dealing with all variables. However this poor
result has to be re�ned.
As explained above, the RF algorithm, instead of considering all the variables to grow

a tree (as CART does), operates a random selection among these variables. The default
choice for this random selection is the uniform distribution to choose a subset of the
original variables, of size mtry, the �oor of the third of the number of predictors. In
the CART-Bagging procedure, all the variables are selected. In our data set, obviously,
the importance of the wind speed prevails over all other variables: for instance, CART
performs nearly all its cuts according to the wind speed. Therefore, if the wind speed
variable is often not selected in a random sample, the resulting cut is often not appro-
priate. Choosing more variables increases the probability to select a speci�c variable,
namely, here, the wind speed. Very di�erent performances are then observed between
RF with the default parameter for mtry and the CART-Bagging method, corresponding
to RF with mtry equal to the number of predictors.
Comparing CART and CART-Bagging highlights the advantages of bootstrapping and

averaging. This step allows to reduce the error by a third, when dealing with all the
predictors.
Note that, according to the renewable energy union [19], French industries obtain a

root mean squared error of 2.4 % of the installed power of farm productions, which
illustrates the bene�ts of using CART-Bagging (1.65 %).

Comparison of di�erent farms The results given in the previous paragraphs concern
a farm in the East of France. Data from two di�erent sites in the North of France were
also available. For every farm, the hierarchy between procedures is quite similar, the
procedure ranking �rst most often is CART-Bagging.
To make a fair comparison between the farms, a new experiment has been conducted.

A common test set, with observed variables available at the same time for each farm,
with at least one turbine fully operational, has been drawn. The test set has been divided
into ten subsets of 1440 instant-points, each covering a period of around thirty days, to
quantify the average performance and its variability. The training set consists in around
7200 instant-points, satisfying a ratio of 83% of the data dedicated to learning and 17%
used for test.
Only the best procedure, CART-Bagging, has been applied. We also compare the

results with the turbine builder's power curve, used on each turbine to model the farm.
Figure 3 highlights the good results of CART-Bagging on the �rst and the third farms.
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Figure 3: Comparison of the RMSE for the turbine builder's power curve and the CART-
Bagging procedure on several farms using local measures.

It performs reasonably well on the second farm, but is not as good as the power curve's
builder. It may be explained by the di�erence between the wind speed in the training
sample and in the test set. Few high wind speed levels are observed in the training sample
on the second farm compared to the test sample, so the CART-Bagging prediction may
not be accurate.

5 Towards forecast : a stability investigation

On a daily use, many observations are recorded in real time on each wind turbine.
For example, as already mentioned, each turbine has its own anemometer and vane,
which provide very localized information about wind speed and wind direction. In the
previous section, we have shown that using this kind of observations, accurate models can
be proposed. In a forecast framework, however, this local information is not available.
More speci�cally, the French Weather Agency Météo France can provide forecast of wind
and temperature based on numerical simulations. The �nest grid resolution is brought
by the AROME model, which proposes a resolution of about 1.5 km. It should be
noted that, in general, two wind turbines are at a distance of about 300 m from each
other. Consequently, an interesting question is to quantify the predictive power not
using localized information, but information on a much broader scale.
To mimic Météo France data, which are in the frame of this project not available,

virtual sensors have been introduced. For each variable, a global information is computed
by averaging all the localized variables coming from the set of turbines installed on
the wind farm. This kind of data is a �rst step to forecast and helps to quantify the
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Table 2: Modeling performances using deteriorated wind measures (average).
Method Mean of RMSE Sd of RMSE % of IP

Persistence 855.52 141.14 6.96
u
si
n
g
w
in
d

sp
ee
d
o
n
ly

Linear Regression 393.09 77.25 3.20

Logistic Regression 541.37 103.15 4.40

Polynomial Log. Reg. 288.28 75.23 2.34

CART 349.17 53.20 2.84

CART+Bagging (=RF) 293.26 48.96 2.38

u
si
n
g
a
ll
va
ri
a
b
le
s

Linear Regression 387.71 89.73 3.15

Logistic Regression 524.30 92.58 4.26

Polynomial Log. Reg. 297.16 92.79 2.42

LASSO 387.44 89.86 3.15

CART 349.17 53.20 2.84

CART + Bagging 228.75 43.35 1.86

RF 447.77 161.84 3.64

SVM 424.15 143.02 3.45

kNN 428.05 125.84 3.48

loss of accuracy due to the replacement of all the localized data with a unique global
information.
The same methods have been used and the results are available in Table 2. The dete-

rioration of the prediction can easily be seen in Figure 4. Polynomial logistic regression
is remarkably robust, performing similarly to the context with local measures, contrary
to SVM and kNN. When only wind speed is considered, polynomial logistic regression
competes with CART-Bagging, whereas the latter outperforms all the considered pro-
cedures when dealing with all the variables.

Comparison of di�erent farms Just as in the previous framework, CART-Bagging
and the turbine builder's power curve prediction have been tested on several farms.
Figure 5 stresses the good results of CART-Bagging, which seems robust to the di�erence
between the mean wind speed and the local wind speed on each turbine, contrary to the
use of the power curve, su�ering from the aggregation of sensor data.

6 Conclusion

As can be seen in this study, the behavior of a polynomial logistic regression with only
the wind speed as covariate is at the same time simple and e�ective for power prediction.
It is interesting to notice that agnostic methods are in this case very appropriate for

prediction and show promising results with the best stability, particularly for CART-
Bagging.
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Figure 4: Boxplots of the RMSE for the di�erent procedures using the mean of wind
speed measures.
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Figure 5: Comparison of the RMSE for the turbine builder's power curve and the CART-
Bagging procedure on several farms using local measures.
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