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Abstract – Principal curves are nonlinear generalizations of the notion
of first principal component. Roughly, a principal curve is a parame-
terized curve in Rd which passes through the “middle” of a data cloud
drawn from some unknown probability distribution. Depending on the
definition, a principal curve relies on some unknown parameters (num-
ber of segments, length, turn. . . ) which have to be properly chosen
to recover the shape of the data without interpolating. In the present
paper, we consider the principal curve problem from an empirical risk
minimization perspective and address the parameter selection issue us-
ing the point of view of model selection via penalization. We offer
oracle inequalities and implement the proposed approaches to recover
the hidden structures in both simulated and real-life data.
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1 Introduction

1.1 Principal curves

Statisticians use various methods in order to sum up information and represent the
data by simpler quantities. Among these methods, Principal Component Analysis
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(PCA) aims at determining the maximal variance axes of a data cloud, as a means
to represent the observations in a compact manner revealing as well as possible
their variability (see, e.g., Mardia, Kent and Bibby [34]). This technique, initiated
at the beginning of the last century by Pearson [37] and Spearman [41], and further
developed by Hotelling [26], is certainly one of the most famous and most widely
used procedure of multivariate analysis. Whether in the context of dimension
reduction or feature extraction, PCA often provides a first important insight in
the data structure.

However, in a number of situations, it may be of interest to summarize informa-
tion in a nonlinear manner instead of representing the data by straight lines. This
approach leads to the notion of principal curve, which can be thought of as a
nonlinear generalization of the first principal component. Roughly, the purpose
is to search for a curve passing through the middle of the observations, as illus-
trated in Figure 1. Principal curves have a broad range of applications in many
different areas, such as physics (Hastie and Stuetzle [25], Friedsam and Oren [22]),
character and speech recognition (Kégl and Krzyżak [28], Reinhard and Niran-
jan [38]), mapping and geology (Brunsdon [9], Stanford and Raftery [42], Banfield
and Raftery [4], Einbeck, Tutz and Evers [19, 20]), natural sciences (De’ath [13],
Corkeron, Anthony and Martin [12], Einbeck, Tutz and Evers [19]) and medicine
(Wong and Chung [45], Caffo, Crainiceanu, Deng and Hendrix [10]).

The definition of a principal curve typically depends of the principal component
property one wants to generalize. Most of the time, this definition is first stated
for an Rd-valued random variable X = (X1, . . . , Xd) with known distribution, and
then adapted to the practical situation where one observes independent draws
X1, . . . , Xn distributed as X.

Figure 1: An example of principal curve.
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Figure 2: The projection index tf . For all i, ti stands for tf (xi).

The original definition of a principal curve goes back to Hastie and Stuetzle [25]
and relies on the self-consistency property of principal components. In words, a
smooth (infinitely differentiable) parameterized curve f(t) = (f1(t), . . . , fd(t)) is a
principal curve for X if f does not intersect itself, if it has finite length inside any
bounded subset of Rd, and if it is self-consistent. This last requirement means that

f(t) = E[X|tf (X) = t], (1)

where the so-called projection index tf (x) is the largest real number t minimizing
the squared Euclidean distance between x and f(t), as depicted in Figure 2. More
formally,

tf (x) = sup
{

t : ‖x − f(t)‖ = inf
t′

‖x − f(t′)‖
}

.

The self-consistency property may be interpreted by saying that each point of the
curve f is the mean of the observations projecting on f around this point. Hastie
and Stuetzle discuss in [25] an iterative algorithm, alternating between a projec-
tion and a conditional expectation step, which yields an approximate principal
curve. As this approach exhibits different types of bias, Banfield and Raftery [4]
and Chang and Ghosh [11] propose a modification of the algorithm, whereas Tib-
shirani, tackling the model bias problem, adopts in [43] a semiparametric strategy
and defines principal curves in terms of a mixture model. For more references
on principal curves and related points of view, we refer the reader to Verbeek,
Vlassis and Kröse [44] (k-segments algorithm), Delicado [14] (principal curves of
oriented points), Einbeck, Tutz and Evers [20] (local principal curves) and Gen-
ovese, Perone-Pacifico, Verdinelli and Wasserman [23], who recently discussed a
closely related approach, called nonparametric filament estimation.
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In the present paper, we will adopt the principal curve definition of Kégl, Krzyżak,
Linder and Zeger [29], which is slightly different from the original one. The main
advantage of this definition, which is recalled in the next paragraph, is that it
avoids the implicit conditional expectation requirement (1) and, consequently,
turns out to be more easily amenable to mathematical analysis.

1.2 Constrained principal curves

In the definition of Kégl, Krzyżak, Linder and Zeger [29] (kklz hereafter), a
principal curve of length (at most) L for X is a parameterized curve minimizing
the least-square criterion

∆(f) = E

[

inf
t

‖X − f(t)‖2
]

over a collection FL of curves of length not larger than some prespecified positive L.
We note that, in this context, a principal curve always exists provided E‖X‖2 < ∞,
but that it may not necessarily be unique. In practice, as the distribution of X is
unknown, ∆(f) is replaced by its empirical counterpart

∆n(f) =
1

n

n
∑

i=1

inf
t

‖Xi − f(t)‖2

based on a sample X1, . . . , Xn of independent random variables distributed as
X. Considering the minimum f̂k,n of ∆n(f) over the subclass Fk,L ⊂ FL of all
polygonal lines fk,n with k segments and length not larger than L, Kégl, Krzyżak,
Linder and Zeger [29] prove that, whenever X is almost surely bounded, and for
the choice k ∝ n1/3,

∆(f̂k,n) − min
f∈FL

∆(f) = O(n−1/3).

As the task of finding a polygonal line with k segments and length at most L
minimizing ∆n(f) is computationally difficult, kklz propose an approximate it-
erative algorithm that they call the Polygonal Line Algorithm. This algorithm
is initialized using the smallest segment included in the first principal component
containing all projected data points. Then, at each step, a vertex—and thus, a
segment—is added to the current polygonal line, and the vertices are updated in a
cyclic manner during an inner loop alternating between a projection and an opti-
mization step. Performing the projection step is similar to constructing a Voronoi
partition, with respect to both the vertices and segments. To optimize a vertex,
a local version of ∆n(f) is used, involving only the data projecting to this vertex
and to the adjacent segments. The criterion is penalized to avoid sharp angles,
which in turn amounts to penalizing the length of the curve.
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Working out the angle penalty in the Polygonal Line Algorithm, Sandilya and
Kulkarni (sk hereafter) propose in [39] a closely related definition, by imposing
a constraint on the turn (Alexandrov and Reshetnyak [2]) of the curve f . This
approach consists in replacing the class FL by FK , where K stands for the maximal
turn. Thus, denoting by Fk,K ⊂ FK the subclass of all polygonal lines fk,n with k
segments and turn not larger than K, sk prove that, whenever X is almost surely
bounded, and for the choice k ∝ n1/3,

∆(f̂k,n) − min
f∈FK

∆(f) = O(n−1/3).

Whether in the kklz definition or in the sk one, selecting the various smooth-
ness parameters (the number k of segments, the curve length `, the turn κ) is an
essential issue, as illustrated in Figure 3. A good choice of these parameters is crit-
ical, since a principal curve obtained with a poor class will be too rough, whereas
a class containing too many curves may lead to severe interpolation problems.
In practice, the Polygonal Line Algorithm stops when k is larger than a certain
threshold, chosen heuristically and tuned after carrying out several experiments.
The stopping condition involves the number n of observations and the actual value
of the criterion ∆n. However, to our knowledge, this empirical procedure is not
supported by any theoretical argument and leads to variable results, depending
on the data set. Besides, note that assessing the complexity of Hastie and Stuet-
zle [25] principal curve estimates by cross-validation has often been observed to
fail. As put forward by Duchamp and Stuetzle [16], these principal curves are
saddle points of the distance between a random vector and a curve, and therefore
cross-validation is not a well-suited technique in the principal curve framework.

[A] [B] [C]

Figure 3: Principal curves fitted with [A] a too small number k of segments, [B] a too
large k and [C] an appropriate one.

As far as we know, the issue of an automatic (i.e., data-dependent) choice of the
parameters k, ` and κ has not been addressed in the literature. Thus, to fill the
gap, we propose in the present contribution to focus on this question both from
a theoretical and practical point of view. Our approach will strongly rely on the
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model selection theory by penalization introduced by Birgé and Massart [7] and
Barron, Birgé and Massart [5], as well as on a recent penalty calibration approach
proposed by Birgé and Massart [8] and Arlot and Massart [3].

The paper is organized as follows. First, we consider in Section 2 principal curves
with bounded length and show that the polygonal line obtained by minimizing
some appropriate penalized criterion satisfies an oracle-type inequality. Section 3
provides a similar result in the context of principal curves with bounded turn. Our
theoretical findings are illustrated on both simulated and real data sets in Section
4. For the sake of clarity, proofs are collected in Section 5.

2 Principal curves with bounded length

Let ‖ · ‖ be the standard Euclidean norm over Rd. A parameterized curve in Rd is
a continuous function

f : I → Rd

t 7→ (f1, . . . , fd),

where I = [a, b] is a closed interval of the real line. The length of f is defined by

L (f) = sup
m
∑

j=1

‖f(tj) − f(tj−1)‖,

where the supremum is taken over all subdivisions a = t0 < t1 < · · · < tm = b,
m ≥ 1 (see, e.g., Kolmogorov and Fomin [30]). Throughout the document, it is
assumed that E‖X‖2 < ∞ and that

P {X ∈ C} = 1, (2)

where C is a convex compact subset of Rd, with diameter δ. By Lemma 1 in
Kégl [27], the requirement (2) implies that, for any given positive length L, there
exists a principal curve for X with length at most L in C, that is a (non necessarily
unique) parameterized curve f ? with length not larger than L and support in C
achieving the minimum of E [inf t∈I ‖X − f(t)‖2]. Consequently, in the sequel, we
will restrict ourselves to curves whose support is included in C and denote by F
the set of all parameterized curves f = (f1, . . . , fd) belonging to C.

Let X1, . . . , Xn be a sample of independent random variables distributed as X,
and consider the contrast

∆(f , x) = inf
t∈I

‖x − f(t)‖2, f ∈ F , x ∈ Rd.
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The associated empirical risk based on the sample X1, . . . Xn is defined as

∆n(f) =
1

n

n
∑

i=1

∆(f , Xi) =
1

n

n
∑

i=1

inf
t∈I

‖Xi − f(t)‖2.

For some prespecified length L > 0, we set

f ? ∈ arg min
f∈F ,L (f)≤L

E[∆(f , X)].

Next, let L be a countable subset of ]0, L] and Q a grid over C, that is Q = C ∩ Γ,
where Γ is a lattice of Rd. For every k ≥ 1 and ` ∈ L, the model Fk,` is defined as
the collection of all polygonal lines with k segments, with length at most `, and
with vertices belonging to Q. We note that each model Fk,` as well as the family
of models {Fk,`}k≥1,`∈L are countable. For k ≥ 1 and ` ∈ L, let

f̂k,` ∈ arg min
f∈Fk,`

∆n(f)

be a curve achieving the minimum of the empirical criterion ∆n(f) over the polyg-
onal line class Fk,`.

At this stage of the procedure, we have at hand a family of estimates {f̂k,`}k≥1,`∈L
and our goal is to select the best principal curve f̃ among this collection. To this
aim, we make use of the model selection approach of Barron, Birgé and Massart
[5], which allows to assess the adjustment quality by controlling the loss

D(f ?, f̃) = E[∆(f̃ , X) − ∆(f ?, X)]

between the target f ? and the selected curve f̃ . (For a comprehensive introduction
to the area of model selection, the reader is referred to the monograph of Massart
[35].) More formally, let pen : N∗ × L → R+ be some penalty function and denote

by (k̂, ˆ̀) a pair of minimizers of the criterion

crit(k, `) = ∆n(f̂k,`) + pen(k, `).

In order to obtain the desired principal curve f̃ = f̂k̂, ˆ̀, we have to design an ade-
quate penalty pen(k, `). This is done in the following theorem, which is an adap-
tation of a general model selection result of Massart [35, Theorem 8.1]. However,
for the sake of completeness, it is proved in its full length in Section 5.

Theorem 2.1. Consider a family of nonnegative weights {xk,`}k≥1,`∈L such that

∑

k≥1,`∈L
e−xk,` = Σ < ∞,
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and a penalty function pen : N∗ × L → R+. Let f̃ = f̂k̂, ˆ̀. If for all (k, `) ∈ N∗ × L,

pen(k, `) ≥ E

[

sup
f∈Fk,`

(

E[∆(f , X)] − ∆n(f)
)

]

+ δ2

√

xk,`

2n
,

then

E[D(f ?, f̃)] ≤ inf
k≥1,`∈L

[

D(f ?, Fk,`) + pen(k, `)
]

+
δ2Σ

23/2

√

π

n
,

where D(f ?, Fk,`) = inff∈Fk,`
D(f ?, f).

Theorem 2.1 offers a nonasymptotic bound, expressing the fact that the expected
loss of the final estimate f̃ is close to the minimal loss over all k ≥ 1 and ` ∈ L,
up to a term tending to 0. Thus, in order to apply this theorem to the principal
curve problem, we now have to find an upper bound on the quantity

E

[

sup
f∈Fk,`

(

E[∆(f , X)] − ∆n(f)
)

]

. (3)

This is achieved by Proposition 2.1 below, which is proved by showing that the
expected maximal deviation (3) may be bounded by a Rademacher average (see
Bartlett, Boucheron, and Lugosi [6] and Koltchinskii [31]) and by resorting to a
Dudley integral (Dudley [17]).

Proposition 2.1. Let Fk,` be the set of all polygonal lines with k segments, length
at most `, and vertices in a grid Q ⊂ C. Then there exist nonnegative constants
a0, . . . , a2, depending on the maximal length L, the dimension d and the diameter
δ of the convex set C, such that

E

[

sup
f∈Fk,`

(

E[∆(f , X)] − ∆n(f)
)

]

≤ 1√
n

[

a1

√
k + a2` + a0

]

.

Finally, by combining Theorem 2.1 and Proposition 2.1, we are in a position to
state the main result of this section.

Theorem 2.2. Consider a family of nonnegative weights {xk,`}k≥1,`∈L such that
∑

k≥1,`∈L
e−xk,` = Σ < ∞,

and a penalty function pen : N∗ × L → R+. Let f̃ = f̂k̂, ˆ̀. There exist nonnegative
constants c0, . . . , c2, depending on the maximal length L, the dimension d and the
diameter δ of the convex set C, such that, if for all (k, `) ∈ N∗ × L,

pen(k, `) =
1√
n

[

c1

√
k + c2` + c0

]

+ δ2

√

xk,`

2n
,
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then

E[D(f ?, f̃)] ≤ inf
k≥1,`∈L

[

D(f ?, Fk,`) + pen(k, `)
]

+
δ2Σ

23/2

√

π

n
,

where D(f ?, Fk,`) = inff∈Fk,`
D(f ?, f).

Some comments are in order.

Firstly, we see that the penalty shape involves a term proportional to
√

k/n and a

term proportional to `/
√

n. This penalty form, which vanishes at the rate 1/
√

n,
seems relevant insofar as the number k of segments and the length ` of the curves
measure the complexity of the models.

Observe next that the proof of Proposition 2.1 provides possible values for the
constants c0, . . . , c2. However, these values are not very helpful since they are
upper bounds which are probably far from being tight. Nevertheless, the proof
also reveals that c1 = c′

1δ2, c2 = c′
2δ and c0 = c′

0δ
2, where c′

0, c′
1 and c′

2 are constants
without dimension, so that the penalty is in fact homogeneous to a squared length,
just like the criterion ∆n(f) is.

Finally, an important practical issue is how to choose the weights {xk,`}k≥1,`∈L.
These weights should be large enough to ensure the finiteness of Σ, but not too
large at the risk of overpenalizing. If the cardinality of the collection of models is
not larger than n2 (this will be the case in all our practical examples), we may set
xk,` = 2 ln n for every (k, `). This choice does not affect the penalty shape, though
modifying the rate, and leads to Σ = 1 in the risk bound.

Remark 2.1. Clearly, when the length ` of polygonal lines is fixed, and the aim is
to select the number k of segments, the dominant term reflecting the complexity

of the models in the penalty is
√

k/n. In this particular context, the weights may
be taken equal to ln n, or, by analogy with the Gaussian linear model selection
framework, proportional to k. Indeed, in this framework, each model Sm, m ∈ M,
has dimension Dm and an interesting choice for xm is then xm = x(Dm), where
x(D) = cD + ln |{m ∈ M : Dm = D}| and c > 0. When there is no redundancy in
the models dimension, this strategy amounts to choosing xm proportional to Dm.
In our problem, this means setting xk = ck for every k, where the constant c > 0
ensures that

∑

k≥1 e−ck = Σ < ∞. Thus, in this somewhat restrictive situation,

the penalty is of the order
√

k/n.
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3 Principal curves with bounded turn

As it was already mentioned in the Introduction, Sandilya and Kulkarni [39] (sk)
suggest an alternative approach for principal curves, based on the control of the
turn. Recall that the turn K (f) of a curve f : I → Rd, I = [a, b], is given by

K (f) = sup
m−1
∑

j=1

f̂(tj),

where f̂(tj) denotes the angle between the vectors
−−−−−−−−→
f(tj−1)f(tj) and

−−−−−−−−→
f(tj)f(tj+1),

and the supremum is taken over all subdivisions a = t0 < t1 < · · · < tm = b,
m ≥ 1 (Alexandrov and Reshetnyak [2]). Thus, the turn of a polygonal line with
vertices v1, . . . , vk+1 is just the sum of the angles at v2, . . . , vk (see Figure 4 for an
illustration).

φ2 φ3

b

v1

−→s1

b
v2

−→s2 b
v3

−→s3

b

v4

Figure 4: Denoting by −→sj the vector −−−→vjvj+1 for all j = 1, . . . , k, the angles involved in
the definition of the turn are defined by φj+1 = (−→sj , −−→sj+1).

As a logical continuation to Section 2, we propose in the present section to analyse
the sk definition from a model selection point of view. To this aim, we use the
fact that a curve with bounded turn also has bounded length, as shown in Lemma
3.1 below.

We still assume that P {X ∈ C} = 1, where C is a convex compact subset of Rd

with diameter δ. By Proposition 1 in sk, this requirement ensures the existence of
a curve f ? with bounded turn minimizing the criterion E[∆(f , X)]. More formally,
for some prespecified turn K ≥ 0, we set

f ? ∈ arg min
f∈F ,K (f)≤K

E[∆(f , X)],

where K (f) denotes the turn of f . Proceeding as in Section 2, we let K be a
countable subset of [0, K] and define a countable collection of models {Fk,κ}k≥1,κ∈K
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as follows. Each Fk,κ consists of polygonal lines with k segments, with turn at most
κ, and with vertices belonging to some grid Q over C. For k ≥ 1 and κ ∈ K, define

f̂k,κ ∈ arg min
f∈Fk,κ

∆n(f)

to be a polygonal line minimizing the empirical criterion ∆n(f) over Fk,κ. We wish
to design an appropriate penalty function pen : N∗ × K → R+ and minimize the
criterion

crit(k, κ) = ∆n(f̂k,κ) + pen(k, κ)

in order to obtain a suitable principal curve. As before, we let f̃ = f̂k̂,κ̂, where

(k̂, κ̂) is a minimizer of the penalized criterion crit(k, κ), and intend to control the
loss D(f ?, f̃) = E[∆(f̃ , X) − ∆(f ?, X)].

To get a result of the form of Theorem 2.2, we already know that it suffices to find
an upper bound on the quantity

E

[

sup
f∈Fk,κ

(

E[∆(f , X)] − ∆n(f)
)

]

.

As a first step towards this direction, we will need the following lemma, which
establishes an interesting link between the length of a curve and its turn. For a
proof of this result, we refer the reader to Alexandrov and Reshetnyak [2, Chapter
5].

Lemma 3.1. Let f be a curve with turn κ and let δ be the diameter of C. Then
L (f) ≤ δζ(κ), where the function ζ is defined by

ζ(x) =































1

cos(x/2)
if 0 ≤ x ≤ π

2

2 sin(x/2) if
π

2
≤ x ≤ 2π

3
x

2
− π

3
+

√
3 if x ≥ 2π

3
.

The graph of the function ζ is shown in Figure 5.

11



Figure 5: Graph of the function ζ .

Thanks to this result, the approach developed in Section 2 adapts to the new
context. Proposition 3.1 below is the counterpart of Proposition 2.1.

Proposition 3.1. Let Fk,κ be the set of all polygonal lines with k segments, turn
at most κ, and vertices in a grid Q ⊂ C, and let δ be the diameter of the convex
set C. Then there exist nonnegative constants a0, . . . , a4, depending only on the
dimension d, such that

E

[

sup
f∈Fk,κ

(

E[∆(f , X)] − ∆n(f)
)

]

≤ δ2

[

a1

√
k + a2

√

ζ(κ) + a3
ζ(κ)√

k
1{ ζ(κ)

3k
<1} + a4

√

k ln
ζ(κ)

k
1{ ζ(κ)

3k
≥1} + a0

]

.

Putting finally Theorem 2.1 and Proposition 3.1 together, we obtain:

Theorem 3.1. Consider a family of nonnegative weights {xk,κ}k≥1,κ∈K such that

∑

k≥1,κ∈K
e−xk,κ = Σ < ∞,

and a penalty function pen : N∗ × K → R+. Let f̃ = f̂k̂,κ̂. There exist nonnegative
constants c0, . . . , c2, depending only on the dimension d, such that, if for all (k, κ) ∈
N∗ × K,

pen(k, κ) ≥ δ2

√
n

[

c1

√
k + c2 max

(

ζ(κ)√
k

,

√

k ln
ζ(κ)

k

)

+ c0 +

√

xk,κ

2

]

,
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then

E[D(f ?, f̃)] ≤ inf
k≥1,κ∈K

[

D(f ?, Fk,κ) + pen(k, κ)
]

+
δ2Σ

23/2

√

π

n
,

where D(f ?, Fk,κ) = inff∈Fk,κ
D(f ?, f).

The expression of the penalty shape involves a term of the order
√

k/n—just like
in the case of curves with bounded length—, whereas the length ` is replaced by
ζ(κ), which is an increasing function of the turn κ. This is relevant, since the
number of segments k and the turn κ characterize the complexity of the models.

Moreover, the additive term max
[

ζ(κ)/
√

kn,
√

k ln ζ(κ)/kn
]

shows that k and κ
should be cleverly chosen relatively to each other in order to get a nice principal
curve. Roughly, a greater curvature implies more segments.

4 Experimental results

This section presents some simulations and real data experiments, carried out with
the software MATLAB, to illustrate the model selection procedure suggested by
Theorem 2.2. The penalty shapes in the theorem involve constants which have
to be practically determined. To this end, a possible route is to use the so-called
slope heuristics, introduced by Birgé and Massart [8] and further developed by
Arlot and Massart [3] (see also Lerasle [33] and Saumard [40]). In short, this
calibration method allows to tune a penalty known up to some multiplicative
constant. The slope heuristics assumes that the empirical contrast decreases when
the complexity of the models increases, which is clearly the case in our principal
curve context. The procedure is based on the fact that the graph of the empirical
contrast as a function of the penalty shape decreases strongly at the beginning
and more slowly later, with a linear trend. At the end, the heuristics specifies that
the desired constant is equal to −2s, where s is the slope of this line.

Hence, in the sequel, the number k of segments and the length ` of the principal
curve are chosen according to the following strategy, denoted hereafter by MS:
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Algorithm MS

1. For each number k of segments, k = 1, . . . , 80, and for a range of

values of the length `, compute f̂k,` by minimizing the empirical

criterion ∆n(f) and record

∆n(f̂k,`) =
1

n

n
∑

i=1

∆(f̂k,`, Xi).

2. Set xk,` = 2 ln n and consider a penalty of the form

pen(k, `) = c1

√
k + c2`.

3. Select the constants ĉ1 and ĉ2 using a bivariate version of the

slope heuristics.

4. Retain the curve f̂k̂, ˆ̀ obtained by minimizing the penalized

criterion

crit(k, `) = ∆n(f̂k,`) − 2(ĉ1

√
k + ĉ2`).

Throughout this experimental section, the maximal values of the parameters have
been chosen to be reasonably large without increasing the computation time use-
lessly. The maximal length and the step defining the range of values of ` depend
on the scale of the considered data set.

The minimization of the criterion ∆n(f) (step 1 of the algorithm) is achieved
through a MATLAB optimization routine.

The weights xk,` were all set to 2 ln n. We realize that this choice is somewhat
arbitrary. However, as mentioned in the discussion after Theorem 2.2, as soon
as the number of models is not larger than n2—which is clearly the case in our
examples—, this is a convenient choice, which, moreover, does not modify the
penalty shape. Besides, the calibration of c0 is a challenging question which has
been given little consideration in the literature so far, even in the standard slope
heuristics context. Note that a possible route to take the constant term into
account was proposed by Lebarbier [32]. Here, in our bivariate framework, we
deal, to a first approximation, with a penalty of the form c1

√
k + c2`.
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Assessing the values of the constants via the slope heuristics rests upon the as-
sumption that, for large values of k and `, ∆n(f̂k,`) behaves like c1

√
k + c2`. The

constants ĉ1 and ĉ2 are then chosen via an ordinary least square regression and we
compute the corresponding R2 coefficient to measure the quality of the regression.
We also tried a robust regression, whose results were observed to be very similar,
and thus, are not reported here.

Finally, the results of the algorithm MS were systematically compared to the
outputs of the Polygonal Line Algorithm of Kégl, Krzyżak, Linder, and Zeger [29].
In short, this procedure optimizes the vertices of the curve one after the other, using
a local version of the criterion ∆n(f), which relies on a local angle penalty. To
our knowledge, this heuristic technique is not supported by any theoretical result.
However, it is known to perform well and should in our context be understood as
a benchmark.

4.1 Simulated data

In this first series of experiments, we considered two-dimensional data distributed
with some noise around a reference curve. More formally, observations were gen-
erated from the model

X = Y + ε,

where Y is uniformly distributed over some planar curve f and ε is a bivariate
Gaussian noise, independent of Y. Even if the generative curve f is not a principal
curve stricto sensu—because of the model bias—, this Gaussian model is considered
as a benchmark for simulations in the literature on principal curves.

The union of the generative curve and the estimated curve can be seen as a self-
intersecting polygon, the area of which may be used to quantitatively asses how
far the estimated curve is from the true one. In the sequel, we compute for each
simulated example an error criterion corresponding to the average area over 20
trials, normalized with respect to the scale of the data.

In a first example, we let f be a half-circle with radius 1. The noise variance is set
to 0.004 and the number n of observations to 100 (see Figure 6).
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Figure 6: 100 observations distributed around a half-circle with radius 1.

Recall that the algorithm MS computes the criterion ∆n(f̂k,`) for a table of values
of

√
k and ` and selects the best constants according to a bivariate slope heuristics.

Figure 7 shows the contour plot of ∆n(f̂k,`) as a function of
√

k and `, which sup-
ports the idea that this function is linear in

√
k and ` when k and ` become large.

The irregularities reflect the fact that the criterion ∆n(f̂k,`) is not decreasing con-
tinuously when increasing the parameters, though decreasing on the whole. This
phenomenon, which also appears in the Polygonal Line Algorithm (PL hereafter),
is due to a convergence problem related to the optimization function.

[A] [B]

Figure 7: [A] Contour plot of ∆n(f̂k,`) as a function of
√

k and ` for the half-circle
data (n=100). [B] Zoom in the zone of large values of k and `.

Both algorithms were applied to the data set. The resulting principal curves are
visible in Figure 8. For comparison purposes, Figure 9 also show some curves
obtained by minimizing ∆n(f) for other values of k and `. The average R2 over 20
trials corresponding to the regression used in MS is 0.98 and the error criterion
equals 0.030.
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[A] [B]

Figure 8: Selected principal curves for the half-circle data (n=100). [A] Method MS:

k̂ = 20, ˆ̀= 3. [B] PL algorithm.

It can be noted that the outputs of both algorithms have approximately the same
quality, despite a few irregularities on the MS principal curve, not visible on the
PL result.

[A] [B]

[C] [D]

Figure 9: Method MS: Examples of principal curves for some prespecified values of k
and ` (n=100). [A] k = 20, ` = 2.5. [B] k = 20, ` = 3.1. [C] k = 20,
` = 3.4. [D] k = 35, ` = 4.

The methods MS and PL were also tested on a larger sample n = 250. We observed
that both principal curves obtained with this sample size are very accurate.
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In a second set of numerical examples, we took handwritten-type digits as gener-
ative curves, with noise variance 0.04. As depicted in Figure 10, 150 observations
were sampled around the digit 2 and the digit 3 and 250 observations around the
digit 5.

[A]

[B]

[C]

Figure 10: [A] Observations sampled around the digit 2 (n=150), 3 (n=150) and 5

(n=250). [B] Principal curves selected by the method MS: k̂ = 27, ˆ̀= 24;

k̂ = 23, ˆ̀= 23; k̂ = 17, ˆ̀= 21. [C] PL principal curves.
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With respect to the digit 2 data, the MS principal curve follows the observations
more closely than what is expected. On the other hand, the PL output looks
smoother, but a comparison with the generative curve shows that the loop at the
top and the angle at the bottom of the digit 2 are not recovered precisely. For the
digit 3, we note again that the algorithm MS slightly overfits the data, whereas
the smoother curve PL misses the angle. The same comment holds for the digit
5, but to a lesser degree. On this last example, both algorithms performed quite
similarly and the resulting principal curves are visually satisfactory. For these
simulated digits, the average R2 coefficients equal respectively 0.87, 0.91 and 0.93
and the error areas 0.032, 0.026 and 0.021.

This small simulation study reveals, as expected, that a good automatic choice
of the parameters k̂ and ˆ̀ is crucial to obtain a suitable principal curve. On the
whole, the visual quality of MS is fully acceptable, even if the principal curves
fitted by this algorithm often follow the data quite closely, in particular when the
sample size is not very large. In return, the global shape of the digit is better
recovered than using PL.

4.2 Real data sets

4.2.1 NIST database digits

The first real-life data set used in this second series of experiments originated from
NIST Special Database 19 (http://www.nist.gov/srd/nistsd19.cfm), contain-
ing handwritten characters from 3600 writers. The data consists in binary images
scanned at 11.8 dots per millimeter (300 dpi), which uniformly fill the area cor-
responding to the thickness of the pen stroke. Skeletonization, which consists in
reducing foreground regions in such an image without affecting the general shape
of the handwritten character, often constitutes a preliminary step to perform char-
acter recognition (see, e.g., Deutsch [15] and Alcorn and Hoggar [1]).

Algorithms MS and PL were applied to the three NIST database digits visible in
Figure 11.
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[A]

[B]

[C]

Figure 11: [A] Three NIST database handwritten digits. [B] Principal curves selected

by the method MS: k̂ = 23, ˆ̀ = 80; k̂ = 38, ˆ̀ = 82; k̂ = 15, ˆ̀ = 66. [C]
PL principal curves.

We observe that both results for the digit 2 are similar and completely satisfactory.
Regarding the digit 5, MS seems to better recover the overall shape. Finally, the
principal curve fitted by MS for the digit 7 is suitable, whereas the output of
PL looks definitely not satisfactory. R2 coefficients equal to 0.99, 0.99 and 0.95
respectively were obtained in the MS regression step.

As a general conclusion on these NIST digit data sets, we found that MS performs
well. Here, the algorithm does not seem to overfit, probably because the sample
size is large enough.
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4.2.2 Seismic data

Together with satellite images, the localization of earthquakes is an essential
source of information in geology for the study of seismic faults, whether in ac-
cretion or subduction regions. As an illustration, Figure 12 depicts seismic im-
pacts in the world—the map is drawn using Miller’s projection—, as well as a
world map from the USGS (United States Geological Survey) showing the various
lithospheric plates. The data set, which can be downloaded on the USGS website
(http://earthquake.usgs.gov/research/data/centennial.php), is part of the
“Centennial Catalog”, listing the major earthquakes registered since 1900 (Eng-
dahl et Villaseñor [21]). In this subsection, we employ algorithm MS as a means
to recover the borders of lithospheric plates using the earthquake localization data
of Figure 12. Again, the PL output is given as a benchmark.

We decided to focus on two particularly representative seismic active zones. The
first one (Z1 hereafter) is located in the Atlantic Ocean, to the west of the African
continent (about 60◦S 50◦W to 40◦N 0◦), and the second one (Z2 hereafter) extends
from the south of Africa to the south of Australia (about 65◦S 0◦ to 25◦S 160◦E).
The localization of these two regions on the world map is visible in Figure 13. The
results for Z1 are shown in Figure 14 and for Z2 in Figure 15.
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[A]

[B]

Figure 12: [A] Earthquake impacts and [B] lithospheric plate borders.

22



Figure 13: Localization of the two considered seismic zones Z1 (about 60◦S 50◦W to
40◦N 0◦) and Z2 (about 65◦S 0◦ to 25◦S 160◦E).

[A] [B]

Figure 14: Selected principal curves for the seismic zone Z1 (n=252). [A] Method

MS: k̂ = 55, ˆ̀= 31. [B] PL principal curve.
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[A] [B]

Figure 15: Selected principal curves for the seismic zone Z2 (n=322). [A] Method

MS: k̂ = 22, ˆ̀= 38. [B] PL principal curve.

In Figure 14, we see, for the seismic zone Z1, that the method MS again yields
a principal curve following the data points quite closely. On the contrary, the PL

algorithm provides a smoother curve, which at first sight seems a better result.
However, the border of the lithospheric plate is probably more likely to look like
the more irregular MS principal curve, as suggested by Figure 12 [B]. The same
observation holds for Z2 (Figure 15). Moreover, in this case, the PL output does
not recover the shape of the plate border, which certainly passes through the most
northern points and not several degrees south. Apparently, the local penalty on
the angles leads here to overpenalization. Thus, on this seismic data set, MS

results seem to be more relevant.

It is noteworthy that using this type of earthquake data to draw faults could be
especially useful to locate some faults which cannot be easily spotted and ne-
cessitate monitoring for seismic risk prevention. With this respect, Harding and
Berghoff [24], employing a method based on airborne laser mapping, study for
instance seismic hazards in a zone densely covered by vegetation, located in the
Puget Lowland of Washington State, USA. Using a principal curve approach to
solve this kind of problems is undoubtedly an interesting project for future re-
search.
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5 Proofs

5.1 Proof of Theorem 2.1

Theorem 2.1 is an adaptation of Theorem 8.1 in Massart [35]. We first recall
the following lemma, which is a consequence of McDiarmid’s inequality [36] (see
Massart [35, Theorem 5.3]).

Lemma 5.1. If X1, . . . , Xn are independent random variables and G is a finite
or countable class of real-valued functions such that a ≤ g ≤ b for every function
g ∈ G, then, setting Z = supg∈G

∑n
i=1 (g(Xi) − E[g(Xi)]), we have, for every ε ≥ 0,

P {Z − E[Z] ≥ ε} ≤ exp

(

− 2ε2

n(b − a)2

)

.

Proof of the theorem. Let ∆̄n(f) = ∆n(f) − E[∆(f , X)] denote the centered
empirical process. For all k ≥ 1 and ` ∈ L, for any fk,` ∈ Fk,`, we have, by
definition of f̃ ,

∆n(f̃) + pen(k̂, ˆ̀) ≤ ∆n(fk,`) + pen(k, `).

Equivalently,
∆n(f̃) − ∆n(fk,`) ≤ pen(k, `) − pen(k̂, ˆ̀).

Since ∆n(f̃) = E[∆(f̃ , X)] + ∆̄n(f̃) and ∆n(fk,`) = E[∆(fk,`, X)] + ∆̄n(fk,`), this
inequality becomes

E[∆(f̃ , X)] − E[∆(fk,`, X)] ≤ ∆̄n(fk,`) − ∆̄n(f̃) + pen(k, `) − pen(k̂, ˆ̀). (4)

Moreover, for every f ∈ F ,

D(f ?, f) = E[∆(f , X) − ∆(f ?, X)],

so that
E[∆(f̃ , X)] − E[∆(fk,`, X)] = D(f ?, f̃) − D(f ?, fk,`). (5)

Therefore, combining (4) and (5),

D(f ?, f̃) ≤ D(f ?, fk,`) + ∆̄n(fk,`) − ∆̄n(f̃) + pen(k, `) − pen(k̂, ˆ̀). (6)

Consider now a family of nonnegative weights {xk,`}k≥1,`∈L such that

∑

k≥1,`∈L
e−xk,` = Σ < ∞,
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and let z > 0. Applying Lemma 5.1, we get, for all k′ ≥ 1, `′ ∈ L and ε ≥ 0,

P







sup
f∈Fk′,`′

(−∆̄n(f)) ≥ E

[

sup
f∈Fk′,`′

(−∆̄n(f))

]

+ ε







≤ exp

(

−2nε2

δ4

)

.

This may be rewritten, for ε = δ2
√

xk′,`′+z

2n
,

P







sup
f∈Fk′,`′

(−∆̄n(f)) ≥ E

[

sup
f∈Fk′,`′

(−∆̄n(f))

]

+ δ2

√

xk′,`′ + z

2n







≤ e−xk′,`′−z.

Setting Ek′,`′ = E

[

sup
f∈Fk′,`′

(−∆̄n(f))
]

, we thus have, for all k′ ≥ 1 and `′ ∈ L,

sup
f∈Fk′,`′

(−∆̄n(f)) ≤ Ek′,`′ + δ2

√

xk′,`′ + z

2n
,

except on a set of probability not larger than Σe−z . Then, inequality (6) implies

D(f ?, f̃) ≤ D(f ?, fk,`) + ∆̄n(fk,`) + Ek̂, ˆ̀ + δ2

√

xk̂, ˆ̀ + z

2n
− pen(k̂, ˆ̀) + pen(k, `)

≤ D(f ?, fk,`) + ∆̄n(fk,`) + Ek̂, ˆ̀ + δ2

√

xk̂, ˆ̀

2n
− pen(k̂, ˆ̀) + pen(k, `) + δ2

√

z

2n
,

except on a set of probability not larger than Σe−z. Consequently, if for all k′ ≥ 1
and `′ ∈ L,

pen(k′, `′) ≥ Ek′,`′ + δ2

√

xk′,`′

2n
,

then

D(f ?, f̃) ≤ D(f ?, fk,`) + ∆̄n(fk,`) + pen(k, `) + δ2

√

z

2n
,

except on a set of probability not larger than Σe−z . Put differently,

P
{

δ−2
√

2n[D(f ?, f̃) − D(f ?, fk,`) + ∆̄n(fk,`) + pen(k, `)] ≥ √
z
}

≤ Σe−z,

or, letting z = u2,

P
{

[δ−2
√

2n[D(f ?, f̃) − D(f ?, fk,`) + ∆̄n(fk,`) + pen(k, `)] ≥ u
}

≤ Σe−u2

.

Recalling that
∫∞

0 e−u2
du =

√
π

2
and letting g+ = max(g, 0), we obtain

E
[

(D(f ?, f̃) − D(f ?, fk,`) + ∆̄n(fk,`) + pen(k, `))+

]

≤ δ2Σ

23/2

√

π

n
.
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Hence, as E[∆̄n(fk,`)] = 0,

E[D(f ?, f̃)] ≤ D(f ?, fk,`) + pen(k, `) +
δ2Σ

23/2

√

π

n
.

Since this is true for all k and `, we finally get

E[D(f ?, f̃)] ≤ inf
k≥1,`∈L

[

D(f ?, Fk,`) + pen(k, `)
]

+
δ2Σ

23/2

√

π

n
,

where D(f ?, Fk,`) = inff∈Fk,`
D(f ?, f). This concludes the proof of Theorem 2.1.

5.2 Proof of Proposition 2.1

The first step consists in proving that the quantity

E

[

sup
f∈Fk,`

(E[∆(f , X)] − ∆n(f))

]

may be upper bounded by means of the Rademacher average

E

[

sup
f∈Fk,`

1

n

n
∑

i=1

εi∆(f , Xi)

]

,

where ε1, . . . , εn are independent Rademacher random variables, defined by P {εi = 1} =
P {εi = −1} = 1/2, independent of X1, . . . , Xn. Let X′

1, . . . , X′
n be independent

copies of X1, . . . , Xn, also independent of ε1, . . . , εn. A symmetrization argument
yields

E

[

sup
f∈Fk,`

(E[∆(f , X)] − ∆n(f))

]

= E

[

sup
f∈Fk,`

(

E

[

1

n

n
∑

i=1

∆(f , X′
i)
∣

∣

∣X1, . . . , Xn

]

− 1

n

n
∑

i=1

∆(f , Xi)
)

]

≤ E

[

sup
f∈Fk,`

1

n

n
∑

i=1

(

∆(f , X′
i) − ∆(f , Xi)

)

]

= E

[

sup
f∈Fk,`

1

n

n
∑

i=1

εi

(

∆(f , X′
i) − ∆(f , Xi)

)

]

≤ E

[

sup
f∈Fk,`

1

n

n
∑

i=1

εi∆(f , X′
i)

]

+ E

[

sup
f∈Fk,`

1

n

n
∑

i=1

(−εi)∆(f , Xi)

]

= 2E

[

sup
f∈Fk,`

1

n

n
∑

i=1

εi∆(f , Xi)

]

.
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Next, the Rademacher average

E

[

sup
f∈Fk,`

1

n

n
∑

i=1

εi∆(f , Xi)

]

may be bounded by resorting to a Dudley integral. More precisely, let

Sk,` = {∆(f , ·), f ∈ Fk,`}

be a subset of the continuous functions from C to R+, endowed with the sup-norm
‖·‖∞, and denote by N (Sk,`, ‖·‖∞, ε) the covering number of Sk,`, i.e., the minimal
number of closed balls of radius ε needed to cover Sk,`. According to Dudley [18],
there exists an absolute constant c > 0 such that, for all X1, . . . , Xn,

E

[

sup
f∈Fk,`

1

n

n
∑

i=1

εi∆(f , Xi)

]

≤ c√
n

∫ ∞

0

√

ln N (Sk,`, ‖ · ‖∞, ε)dε.

To evaluate the covering number of Sk,`, we may use Lemma 2 in Kégl [27], which
ensures that

N (Sk,`, ‖ · ‖∞, ε) ≤ 2`δ/ε+3k+1V k+1
d

[

δ2
√

d

ε
+

√
d

]d[
`δ

√
d

kε
+ 3

√
d

]kd

,

where Vd denotes the volume of the d-dimensional unit ball. Observe that

ln N (Sk,`, ‖ · ‖∞, ε)

≤
(

`δ

ε
+ 3k + 1

)

ln 2 + (k + 1) ln Vd + d ln
(

δ2
√

d

ε
+

√
d
)

+ kd ln
(

`δ
√

d

kε
+ 3

√
d
)

=
`δ

ε
ln 2 + (3k + 1) ln 2 + (k + 1) ln Vd + d(k + 1) ln

√
d + d ln

(

δ2

ε
+ 1

)

+ kd ln 3

+ kd ln
(

`δ

3kε
+ 1

)

=
`δ

ε
ln 2 + d ln

(

δ2

ε
+ 1

)

+ kd ln
(

`δ

3kε
+ 1

)

+ kd ln 3 + (3k + 1) ln 2

+ (k + 1)(ln Vd +
d

2
ln d).

Hence, recalling that the support of f is included in a set C with diameter δ, we
obtain

∫ ∞

0

√

ln N (Sk,`, ‖ · ‖∞, ε)dε =
∫ δ2

0

√

ln N (Sk,`, ‖ · ‖∞, ε)dε

≤
√

`δ ln 2I1 +
√

dI2 +
√

kdI3 + δ2A(k, d),
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where I1 =
∫ δ2

0

1√
ε
dε, I2 =

∫ δ2

0

√

ln
(

δ2

ε
+ 1

)

dε, I3 =
∫ δ2

0

√

ln
(

`δ

3kε
+ 1

)

dε, and

A(k, d) =
[

kd ln 3 + (3k + 1) ln 2 + (k + 1)(ln Vd +
d

2
ln d)

]1/2

.

Control of I1. Clearly,

I1 =
∫ δ2

0

1√
ε
dε = 2δ.

Control of I2. We have

I2 ≤
∫ δ2

0

√

ln
(

2δ2

ε

)

dε

= 2δ2
∫ 1/2

0

√

ln
1

u
du

≤ δ2(
√

ln 2 +
√

π).

Control of I3. Let M = max(3k, L/δ). Clearly, for all ` ∈ L, δ ≥ `
M

, and then
δ2 ≥ `δ

M
. Let us cut up the integral I3 and write

I3 =
∫ δ2

0

√

ln
(

`δ

3kε
+ 1

)

dε

=
∫ `δ/M

0

√

ln
(

`δ

3kε
+ 1

)

dε +
∫ δ2

`δ/M

√

ln
(

`δ

3kε
+ 1

)

dε. (7)

Observe, since ε ≤ `δ
M

, that `δ
3kε

≥ 1. Consequently,

∫ `δ/M

0

√

ln
(

`δ

3kε
+ 1

)

dε ≤
∫ `δ/M

0

√

ln
(

2`δ

3kε

)

dε

=
2`δ

3k

∫ 3k/2M

0

√

ln
1

u
du

≤ `δ

M

(

√

ln
(

2M

3k

)

+
√

π

)

.

The second integral in equality (7) may be bounded using the fact that the inte-
grand is a decreasing function of ε:

∫ δ2

`δ/M

√

ln
(

`δ

3kε
+ 1

)

dε ≤
(

δ2 − `δ

M

)

√

ln
(

M

3k
+ 1

)

≤
(

δ2 − `δ

M

)

√

ln
(

2M

3k

)

.
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As a result,

I3 ≤ δ2

√

ln
(

2M

3k

)

+
`δ

M

√
π.

Thus,

∫ ∞

0

√

ln N (Sk,`, ‖ · ‖∞, ε)dε

≤ 2δ
√

δ` ln 2 +
√

dδ2(
√

ln 2 +
√

π) +
`δ

M

√
kdπ + δ2

√

kd ln
(

2M

3k

)

+ δ2A(k, d)

= 2δ
√

δ` ln 2 +
`δ

M

√
kdπ +

√
kδ2

[

d ln
(

2M

3k

)

+ d ln 3 +
d

2
ln d + ln Vd + 3 ln 2

]1/2

+ a0
′,

where a0
′ is a nonnegative constant. Recalling that M ≥ 3k, we have 1/M ≤

1/(3
√

k). Hence, `δ
√

kdπ/M ≤ `δ
√

dπ/3. Since
√

` ≤ max(1, `), we finally obtain

∫ ∞

0

√

ln N (Sk,`, ‖ · ‖∞, ε)dε ≤ a1

√
k + a2` + a0,

where the nonnegative constants a0, . . . , a2 only depend on the maximal length L,
the dimension d and the diameter δ of the convex set C.

5.3 Proof of Proposition 3.1

Let
Sk,κ = {∆(f , ·), f ∈ Fk,κ}

be a subset of the continuous functions from C to R+, endowed with the sup-norm
‖·‖∞. Starting as in the proof of Proposition 2.1, we know that, for all X1, . . . , Xn,

E

[

sup
f∈Fk,κ

(

E[∆(f , X)] − ∆n(f)
)

]

≤ c√
n

∫ ∞

0

√

ln N (Sk,κ, ‖ · ‖∞, ε)dε,

for some absolute constant c > 0. Now, according to Lemma 5 in Sandilya and
Kulkarni [39], we may write, for each ε > 0,
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ln N (Sk,κ, ‖ · ‖∞, ε)

≤
(

ζ(κ)δ2

ε
+ 2k + 1

)

ln 2 + (k + 1) ln Vd + d ln
(

δ2
√

d

ε
+

√
d
)

+ kd ln
(

ζ(κ)δ2
√

d

kε
+ 3

√
d
)

=
ζ(k)δ2

ε
ln 2 + (2k + 1) ln 2 + (k + 1) ln Vd + d(k + 1) ln

√
d + d ln

(

δ2

ε
+ 1

)

+ kd ln 3 + kd ln
(

ζ(κ)δ2

3kε
+ 1

)

=
ζ(k)δ2

ε
ln 2 + d ln

(

δ2

ε
+ 1

)

+ kd ln
(

ζ(κ)δ2

3kε
+ 1

)

+ kd ln 3 + (2k + 1) ln 2

+ (k + 1)(ln Vd +
d

2
ln d).

Consequently,

∫ ∞

0

√

ln N (Sk,`, ‖ · ‖∞, ε)dε =
∫ δ2

0

√

ln N (Sk,`, ‖ · ‖∞, ε)dε

≤ δ
√

ζ(κ) ln 2I1 +
√

dI2 +
√

kdI3 + δ2A(k, d),

where I1 =
∫ δ2

0

1√
ε

dε, I2 =
∫ δ2

0

√

ln
(

δ2

ε
+ 1

)

dε, I3 =
∫ δ2

0

√

ln
(

ζ(κ)δ2

3kε
+ 1

)

dε,

and

A(k, d) = δ2
[

kd ln 3 + (2k + 1) ln 2 + (k + 1)(ln Vd +
d

2
ln d)

]1/2

.

Control of I1. We clearly have

I1 =
∫ δ2

0

1√
ε
dε = 2δ.

Control of I2. We have

I2 ≤
∫ δ2

0

√

ln
(

2δ2

ε

)

dε

= 2δ2
∫ 1/2

0

√

ln
1

u
du

≤ δ2(
√

ln 2 +
√

π).
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Control of I3. Assume first that
ζ(κ)

3k
≥ 1. Then

I3 =
∫ δ2

0

√

ln
(

ζ(κ)δ2

3kε
+ 1

)

dε

≤
∫ δ2

0

√

ln
(

2ζ(κ)δ2

3kε

)

dε

=
2ζ(κ)δ2

3k

∫ 3k/2ζ(κ)

0

√

ln
1

u
du

≤ δ2

(

√

ln
2ζ(κ)

3k
+

√
π

)

.

On the other hand, if
ζ(κ)

3k
< 1, we cut up I3 into two pieces and write

I3 =
∫ δ2

0

√

ln
(

ζ(κ)δ2

3kε
+ 1

)

dε

=
∫ ζ(κ)δ2/3k

0

√

ln
(

ζ(κ)δ2

3kε
+ 1

)

dε +
∫ δ2

ζ(κ)δ2/3k

√

ln
(

ζ(κ)δ2

3kε
+ 1

)

dε. (8)

The first integral is bounded by using the inequality ζ(κ)δ2

3kε
≥ 1 for all ε ∈ ]0, ζ(κ)δ2

3k
].

We obtain

∫ ζ(κ)δ2/3k

0

√

ln
(

ζ(κ)δ2

3kε
+ 1

)

dε ≤
∫ ζ(κ)δ2/3k

0

√

ln
(

2ζ(κ)δ2

3kε

)

dε

=
2ζ(κ)δ2

3k

∫ 1/2

0

√

ln
1

u
du

≤ ζ(κ)δ2

3k
(
√

ln 2 +
√

π).

With respect to the second integral in (8), we note that the function under the
integral is decreasing in ε, so that

∫ δ2

ζ(κ)δ2/3k

√

ln
(

ζ(κ)δ2

3kε
+ 1

)

dε ≤
(

δ2 − ζ(κ)δ2

3k

)√
ln 2.

Thus, we have

I3 ≤























δ2

(

√

ln
ζ(κ)

3k
+

√
π +

√
ln 2

)

if
ζ(κ)

3k
≥ 1

δ2

(

ζ(κ)

3k

√
π +

√
ln 2

)

if
ζ(κ)

3k
< 1.
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Hence, collecting the different results,

∫ ∞

0

√

ln N (Sk,`, ‖ · ‖∞, ε)dε

≤ 2δ2
√

ζ(κ) ln 2 +
√

dδ2(
√

ln 2 +
√

π) + δ2
√

kd

(

√

ln
ζ(κ)

3k
+

√
π +

√
ln 2

)

1{ ζ(κ)
3k

≥1}

+ δ2
√

kd

(

ζ(κ)

3k

√
π +

√
ln 2

)

1{ ζ(κ)
3k

<1} + δ2A(k, d)

≤ δ2
(

2
√

ζ(κ) ln 2 +
ζ(κ)

3
√

k

√
πd1{ ζ(κ)

3k
<1} +

√

kd ln
ζ(κ)

3k
1{ ζ(κ)

3k
≥1}

+
√

k
[√

d(
√

π +
√

ln 2) +
(

d ln 3 +
d

2
ln d + ln Vd + 2 ln 2)1/2 + a0

])

,

where a0 is a nonnegative constant. Finally,

∫ ∞

0

√

ln N (Sk,`, ‖ · ‖∞, ε)dε

≤ δ2
(

a1

√
k + a2

√

ζ(κ) + a3
ζ(κ)√

k
1{ ζ(κ)

3k
<1} + a4

√

k ln
ζ(κ)

k
1{ ζ(κ)

3k
≥1} + a0

)

,

where the nonnegative constants a0, . . . , a4 only depend on the dimension d.
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