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Abstract

Clustering is the problem of partitioning data into a finite number k of ho-
mogeneous and separate groups, called clusters. A good choice of k is essential
for building meaningful clusters. In the present paper, this task is addressed
from the point of view of model selection via penalization. We design an ap-
propriate penalty shape and derive an associated oracle-type inequality. The
method is illustrated on both simulated and real-life data sets.
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1 Introduction

Clustering is the problem of dividing data into a finite number of relevant classes, so that
items in the same group are as similar as possible, and items in different groups are as
dissimilar as possible (Duda, Hart and Stork [13]). This unsupervised learning technique
has been widely used for statistical data analysis in a variety of areas. For an integer
k ≥ 1, the so-called k-means clustering method consists in partitioning a random sample
X1, . . . ,Xn taking values in (Rd, ‖ · ‖) in k groups by minimizing the empirical distortion

W (µn, c) =
1

n

n
∑

i=1

min
j=1,...,k

‖Xi − cj‖2

over all possible codebooks c = (c1, . . . , ck) ∈ (Rd)k (see, e.g., Linder [26], Graf and
Luschgy [16]).

In this context, an essential problem is how to select the right number k of clusters. Indeed,
if in some situations the choice of k may be motivated by the applications, it is in general
unknown.
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A presentation of various procedures for choosing k can be found in Milligan and Cooper [30]
and Hardy [17], while Gordon compares in [15] the performances of the best five rules
exposed in [30]. These methods can be divided in two main types, global or local. Global
procedures consist in performing clustering for different values of k and then retaining
the value minimizing or maximizing some function of k. In local procedures, it must be
decided at each step whether a cluster should be partitioned (or two groups merged into
a single one).

Calinski and Harabasz [11] propose to choose the value of k which maximizes an index
based on the quotient

B(k)/(k − 1)

W (k)/(n − k) .

Here, the empirical distortion is denoted by W (k) to highlight the dependency in k,
whereas B(k) =

∑k
j=1 ‖cj − c̄‖2, where c̄ is the mean of the data, is the between sum

of squares. The method by Krzanowski and Lai [23] consists in maximizing W (k)k2/d, or
more precisely the related quantity

∣

∣

∣

DIFF(k)

DIFF(k + 1)

∣

∣

∣,

where
DIFF(k) =W (k − 1)(k − 1)2/d −W (k)k2/d,

whereas in Hartigan’s rule [18], a new cluster is added while the quantity

H(k) =
W (k)

W (k − 1)
(n− k − 1)

is less than a certain threshold. The Silhouette statistic of Kaufman and Rousseeuw [20]
takes the form

s(i) =
b(i) − a(i)

max(a(i), b(i))
,

where a(i) is the average distance between Xi and the observations belonging to the same
cluster as Xi, and b(i) is the average distance between Xi and the observations in the
nearest cluster (i.e., the cluster minimizing b(i)). An observation Xi is well clustered
when s(i) is large, and Kaufman and Rousseeuw [20] suggest to retain the value of k
which maximizes the average of s(i) for i = 1, . . . , n. The Gap Statistic of Tibshirani,
Walther and Hastie [39] compares the evolution of the logarithm of the distortion for
the considered clustering problem with the function obtained for uniformly distributed
observations. Kim, Park and Park [22] develop an index which allows to select k̂ by
combining two functions of opposite monotonicity presenting a jump around the optimal
value of k, whereas Sugar and James [38] propose to apply to the empirical distortion a
transformation w 7→ w−p, p > 0. Other methods rely on the stability of partitions. In
this case, the number of groups is chosen thanks to a criterion which has been determined
using the clustering results obtained when considering several subsamples of the data set
(see, e.g., Levine and Domany [24] and Ben-Hur, Elisseeff and Guyon [8]). The relation
between the number k and cluster stability has been investigated from a theoretical point
of view in Shamir and Tishby [35, 36], Ben-David, Luxburg, and Pál [7], Ben-David, Pál,
and Simon [5] and Ben-David and Luxburg [6].
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[A] [B]

Figure 1: Graph of the empirical distortion as a function of k for two examples: [A] 3 clusters
and [B] 6 clusters.

Using the empirical distortion in order to choose k is a natural idea. Unfortunately, it is
always decreasing in k (see Figure 1). Thus, minimizing the empirical distortion would lead
to choose k as large as possible, which does not present much interest (think, for example,
of the situation where k = n, and each single observation builds a cluster). Moreover,
Hastie, Tibshirani and Friedman [19] observe that it is not enough to evaluate the criterion
on an independent test data set, since numerous centers would anyway densely fill the
whole data space so that each observation is very close to one of them. Consequently, it
is not possible to select k by cross validation like in supervised learning.

In this note, we propose a data-driven approach for evaluating k, which is based on the
empirical distortion and relies on the model selection scheme introduced by Birgé and
Massart [9] and Barron, Birgé, Massart [3]. The main advantage is that the performance
of this method of choice of k can be assessed through an oracle-type inequality.

The rest of the note is organized as follows. In Section 2, we obtain a penalty shape and
show an inequality ensuring a control of the risk of the estimator obtained by minimization
of the corresponding penalized criterion. Section 3 presents some simulations and real data
experiments illustrating the practical implementation of the proposed approach. For the
sake of clarity, the proof of the main result is postponed to Section 4.

2 The choice of k

Throughout the paper, we let X1, . . . ,Xn be independent random vectors, with the same
distribution as a generic random vector X taking its values in R

d endowed with its standard
Euclidean norm ‖ · ‖. We assume that X satisfies the peak power constraint, that is, for
some R > 0,

P {‖X‖ ≤ R} = 1. (1)

For every k, the minimization of the empirical distortion

W (µn, c) =
1

n

n
∑

i=1

min
c∈c

‖Xi − c‖2

yields some codebook with k components. Our mission is to select the best one over all
possible values of k.
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To this aim, for all k, 1 ≤ k ≤ n, let Sk denote the (countable) set of all (c1, . . . , ck) ∈ Qk,
where Q is some grid over R

d. Observe that restricting the search of the centers to Q
is a mild assumption, since, in practice, an algorithm can only provide centers belonging
to such a grid. For every k, let ĉk be a minimizer of the criterion W (µn, c) over Sk, i.e.,
ĉk ∈ arg minc∈SkW (µn, c). To determine the best codebook in {ĉ1, . . . , ĉn}, we will search
for a k̂ minimizing a criterion of the type

crit(k) =W (µn, ĉk) + pen(k),

where pen : {1, . . . , n} → R
+ is a penalty function, whose role is to avoid the choice of a

too large k.

In order to design a penalty, we follow the route of non-asymptotic model selection (Birgé
and Massart [9] and Barron, Birgé, Massart [3]). We will make use of Theorem 8.1 in
Massart [28], as well as of the following upper bound established by Linder [25]:

E

[

sup
c∈Sk

(W (µ, c)−W (µn, c))

]

≤ aR2

√

kd

n
,

where a is an absolute constant.

Theorem 2.1. Consider a family of nonnegative weights {xk}1≤k≤n such that

n
∑

k=1

e−xk = Σ.

If for every 1 ≤ k ≤ n,

pen(k) ≥ R2



a

√

kd

n
+ 4

√

xk
2n



 , (2)

then, letting c̃ = ĉk̂ denote a minimizer of the penalized criterion

crit(k) =W (µn, ĉk) + pen(k),

we have

E [W (µ, c̃)] ≤ inf
1≤k≤n

(

W ?k (µ) + pen(k)
)

+R2Σ

√

2π

n
, (3)

where W ?k (µ) = infc∈SkW (µ, c).

Theorem 2.1 suggests a penalty function pen(k) tending to 0 at the rate 1/
√
n and provides

an upper bound for the expectation of the distortion at c̃. Inequality (3) ensures that if the
penalty function is large enough, the expectation of the distortion at c̃ remains relatively
low, at least close to the smallest value of the distortion over k, up to a vanishing term.

The term of the order
√

k/n in the penalty reflects the complexity of the models since a
model is more complex when k is larger. Let us point out that the proof of Theorem 3 in
Linder [25] reveals that we can set a = 96. However, this value of the constant a, which
is an upper bound, is of limited interest in practice, all the more so since the expression
(2) involves the radius R. In fact, Theorem 2.1 gives the shape of the penalty rather than
an exact penalty function, but this penalty may be calibrated using the so-called slope
heuristics, as discussed below in Section 3.
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Then, consider the weights {xk}1≤k≤n. The larger they are, the smaller Σ is. Nevertheless,
they should not be too large since they also appear in the penalty. In the Gaussian
linear model selection framework, where each model Sm, m ∈ M, has dimension Dm, a
possible choice when there is no redundancy in the models dimension consists in taking
xm proportional to Dm (see Massart [28], Section 4.2.1). By analogy, the weights may
here be taken proportional to k. To summarize, the penalty is a constant times

√

k/n to
a first approximation.

For a penalty of the form

pen(k) = a′R2

√

kd

n
,

observe that Theorem 2.1 allows to derive a rate of convergence for E [W (µ, c̃)]. Indeed,
an extension of the Pierce Lemma [34] due to Luschgy and Pagès [27] ensures that, for a
suitable grid Q, W ?k (µ) is not larger than

A(d)R2

k2/d
,

where A(d) is a positive constant depending only on the dimension d. Thus, inequality
(3) can be rewritten as

E [W (µ, c̃)] ≤ R2



 inf
1≤k≤n





A(d)

k2/d
+ a′

√

kd

n



+ Σ

√

2π

n



 .

Optimizing the two terms in the brackets leads to k of the order n
d

d+4 and shows that the

expected distortion at the selected codebook c̃ vanishes at the rate O(n−
2

d+4 ), as expressed
in the next corollary.

Corollary 2.1. If

pen(k) = a′R2

√

kd

n

and c̃ = ĉk̂ is obtained by minimization of the penalized criterion

crit(k) =W (µn, ĉk) + pen(k),

then
E [W (µ, c̃)] ≤ C(d,R)n−

2

d+4 ,

where C(d,R) is a constant which depends only on d and R.

Remark 2.1. Let ρ ≥ 0 (typically, ρ = n−2). If for all k, ĉk is an approximate minimizer
of the empirical risk W (µn, c), in the sense that for all c ∈ Sk,

W (µn, ĉk) ≤W (µn, c) + ρ,

then Theorem 2.1 remains true provided one adds ρ in the right-hand term of the inequal-
ity.
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3 Experimental results

In the present section, we propose to illustrate on some simulated and real data examples
the choice of the number k of clusters using the penalized criterion suggested by Theorem
2.1. As mentioned earlier, we can assume to a first approximation that the penalty shape
is c

√

k/n, where c is a constant which has to be determined in practice. To this end, we
will use the slope heuristics, introduced by Birgé and Massart [10] and further developed
by Arlot and Massart [2]. This method precisely allows calibrating a penalty known up
to a multiplicative constant. An essential condition for applying the method is that the
empirical contrast must be a decreasing function of the complexity of the models and the
penalty shape an increasing function. This condition is clearly satisfied in our clustering
framework. Two techniques based on the slope heuristics may be employed in order to
calibrate a penalty. The dimension jump method consists in identifying an abrupt jump
in the models complexity, whereas the other possibility is to observe that the empirical
contrast is proportional to the penalty shape for complex models and compute the slope
of this line. Both methods have been implemented in MATLAB by Baudry, Maugis and
Michel [4] as an interface called CAPUSHE (CAlibrating Penalty Using Slope HEuristics).

From a computational point of view, the k-means algorithm used in all examples is ini-
tialized by taking as the unique center for k = 1 the mean of all observations. Then, at
the kth step, a new center chosen uniformly at random among the observations is added
to the k − 1 centers resulting from the previous step—the algorithm is therefore random.
This procedure is repeated 50 times and the set of centers yielding the lower distortion is
kept. Let us point out that there is an abundant literature about the interesting problem
of the initialization of the k-means algorithm and that the strategy could be replaced by
a more robust one (see, e.g., Pena, Lozano and Larranaga [32], Su and Dy [37], Khan and
Ahmad [21], Perim, Wandekokem and Varejão [33], Al-Shboul and Myaeng [1]).

3.1 Simulated data

3.1.1 Some different numbers of groups and dimensions

In a first series of simulations, we tried to recover the number of clusters for 5 types of
samples, which are different by dimension d and underlying number k of groups. In these
examples, the right number of clusters is found in general. We observe that the direct
slope estimation and the dimension jump method perform approximately similarly.

G1 A single group. We begin with a situation where it is not relevant to cluster the data
and consider 200 points distributed uniformly in the unit hypercube in dimension
10.

G2 3 groups in dimension 2. The observations were sampled following a normal bi-
variate distribution with variance the identity matrix and build 3 groups, centered
at (0, 0), (0, 6) and (5,−3) respectively, each containing 30 observations (see Figure
2). An example of CAPUSHE output for this data set is visible in Figure 3.

6



Figure 2: Groups of 30 observations following a normal distribution centered at (0, 0), (0, 6)
and (5,−3).

G3 4 groups in dimension 3. Next, we used 4 groups of observations following a
normal distribution in dimension 3 with variance the identity matrix. These groups,
depicted in Figure 4, are centered at (0, 0, 0), (3, 5,−1), (−5, 0, 0), and (6, 6, 6).

Figure 4: Groups of 25 observations following a normal distribution centered at
(0, 0, 0), (3, 5,−1), (−5, 0, 0) and (6, 6, 6).

G4 5 groups in dimension 4. This data set is made of 5 normal groups in dimension
4. The 5 groups are centered at (0, 0, 0, 0), (3, 5,−1, 0), (−5, 0, 0, 0), (1, 1, 6,−2) and
(1,−3,−2, 5) respectively.

G5 4 groups in dimension 10. Finally, we have simulated, still using the normal
distribution, 4 groups of data in dimension 10. For each of them, the 10 components
of the mean vector were chosen uniformly at random between 0 and 10.

Table 1 shows for the 5 simulated data sets the number k̂ of clusters obtained with the
slope estimation method by averaging over 20 repeated trials.
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[A]

[B]

Figure 3: Output of CAPUSHE (n=90, d=2, k=3). [A] Dimension jump: Selected k̂ ver-
sus penalty constant values. [B] Slope estimation: Left: Graph of the criterion
−W (µn, ĉk) as a function of

√

k/n. Upper right: Successive estimated slope
values versus the number of points used for the slope estimation. Bottom right:
Selected values of k̂ versus the number of points used for the slope estimation.
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Data set G1 G2 G3 G4 G5

Number of groups k̂ 1.05 3.2 4.1 5 4.05

Table 1: Number of clusters given by the algorithm based on the slope heuristics (average
over 20 repeated trials).

3.1.2 More or less separate groups

In this subsection, two different configurations corresponding to 4 groups in dimension 3
are studied (see Figure 5). In the first example (Figure 5 [A]), the clusters are not as well
separated as in the second (Figure 5 [B]). We compared the results of the algorithm based
on the slope method and the Gap Statistic of Tibshirani et al. [39] in both situations.

[A] [B]

Figure 5: More or less separate groups: 4 groups of 30 observations following a normal dis-
tribution. [A] Groups centered at (0, 0, 0), (0, 2, 3), (3, 0,−1) and (−3,−1, 0). [B]
Groups centered at (0, 0, 0), (0, 6, 10), (3, 0,−5) and (−6,−3, 0).

For the least separate groups, which are centered at (0, 0, 0), (0, 2, 3), (3, 0,−1) and
(−3,−1, 0), the method selecting k̂ by means of the slope heuristics yields k̂ = 4 a little
more than half of the time. The other values given by the algorithm are 3, 5, 6 and 7.
The value 3 is obtained rarely, whereas the Gap Statistic founds k̂ = 3 almost every time.
For 10 realizations of such groups, Table 2 shows, for both methods, the average value of
k̂ over 20 trials. The fact that the Gap Statistic does not perform very well here suggests
that these clusters are two close from each other to estimate k̂ accurately.

Slope method 4.25 5.2 5.2 4.6 4.6 4.5 4.55 4.55 4.6 4.15

Gap Statistic 3 4 3 3 3 3.1 3 3 3 3.2

Table 2: Number of clusters given by the algorithm based on the slope method and the
Gap Statistic, for 10 realizations of Gaussian groups centered at (0, 0, 0), (0, 2, 3),
(3, 0,−1) and (−3,−1, 0) (average over 20 repeated trials).

However, when the groups are well separated, the algorithm relying on the slope method
seems to perform well, and the results are very similar to those obtained with the Gap
Statistic: both methods almost always recover the expected result. For the well separate
normal clusters, centered at (0, 0, 0), (0, 6, 10), (3, 0,−5) and (−6,−3, 0), visible in Figure
5 [B], we obtain for example the CAPUSHE outputs shown in Figure 6.
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[A]

[B]

Figure 6: Output of CAPUSHE. [A] Dimension jump. [B] Slope estimation.
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3.2 Real-life data

3.2.1 Zoo

The data, available from the UCI Machine Learning Repository [14], contains information
about different animal species (such as wolf, herring, chicken, crab...). For each animal,
16 features have been registered: hair, feathers, eggs, milk, airborne, aquatic, predator,
toothed, backbone, breathes, venomous, fins, tail, domestic, catsize (Booleans), number
of legs (integer in {0, 2, 4, 5, 6, 8}). We consider a sample made of 92 data items building 5
underlining groups: mammal, fish, invertebrate, bird, insect. Most of the time, the output
of the algorithm is k̂ = 5, the other values obtained being 4 and 6. The average number
k̂ over 20 trials was 5.05.

3.2.2 Dyslexia

Here, the data arises from a study about dyslexia, carried out at the Laboratoire de Sci-
ences Cognitives et Psycholinguistique located in Paris in the Département d’Etudes Cog-
nitives (DEC) of Ecole Normale Supérieure. In order to better understand this disability
affecting a person’s fluency or accuracy in reading, speaking, and spelling, several hypothe-
ses have to be tested by comparing the performance of dyslexic and non-dyslexic adults
(http://www.ehess.fr/lscp/persons/ramus/fr/phonodysfr.html). People aged from
18 to 31 took part to experiments based on RAN tests (Rapid Automatized Naming, see,
e.g., Denkla and Rudel [12]), which consist in naming rapidly digits, colors and objects,
and on listening to a list of words and “non-words”. Here, “non-word” means syllables put
together that do not build an existing word. For instance, “distu”, “malani” and “sonper”
are non-words. For each of the 57 considered people, we have results such as response
time, number of errors and response accuracy rate.

On this problem, the most often selected value of k̂ was 4, and the average over 20 runs
3.9. The algorithm did not often choose k̂ = 2, which would correspond to the two
classes, dyslexic people and control group. Nevertheless, the result can be explained by
some “false positive” and “false negative” results in the study. Indeed, a few dyslexic
individuals answered quite accurately and rapidly compared to the other dyslexic people,
whereas some people not affected by dyslexia were slower and made more errors than
expected.

3.2.3 Tasmanian Abalone

Abalone, also called ear-shell or sea ear, is a kind of sea snail. This marine gastropod mol-
lusk in the family Haliotidae and the genus Haliotis presents several shell layers (“rings”),
which can be used to learn its age, an important task to study the biology and ecology of
a species. In fact, the number of “rings” plus 1.5 gives the age in years. More precisely,
to determine the age of abalone, the shell is cut through the cone, stained, and the bi-
ologist counts the number of rings through a microscope. To avoid this time-consuming
task, it can be of interest to predict the age of abalone from other physical measurements,
which are easier to obtain. Here, we used a data set originating from the Marine Re-
sources Division of the Marine Research Laboratories, Taroona, Department of Primary
Industry and Fisheries, Tasmania (Nash, Sellers, Talbot, Cawthorn, and Ford [31]) and
available from the UCI Machine Learning Repository [14]. The data contains information
relative to 4177 abalones, labeled “female”, “male” or “infant”. For each of them, seven
representative features have been measured: length (longest shell measurement), diame-
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ter (perpendicular to length), height, whole weight, shucked weight, viscera weight (after
bleeding), shell weight (after being dried).

Considering a subsample of 1303 female abalones, with number of rings ranging from 5 to
23, we intend to recover the number of age groups from the physical measurements. The
algorithm yields a number k̂ of groups between 16 and 22 and the average value of k̂ over
20 trials is 18.

4 Proof of Theorem 2.1

Theorem 2.1 is an adaptation of Theorem 8.1 in Massart [28]. For the proof, we will
need the following lemma, which is a consequence of McDiarmid’s inequality [29] (see
Massart [28, Theorem 5.3]).

Lemma 4.1. If X1, . . . ,Xn are independent random variables and G is a finite or count-
able class of real-valued functions such that a ≤ g ≤ b for all g ∈ G, then if Z =
supg∈G

∑n
i=1 (g(Xi)− E[g(Xi)]), we have, for every ε ≥ 0,

P {Z − E[Z] ≥ ε} ≤ exp

(

− 2ε2

n(b− a)2

)

.

Proof of the theorem. Observe that, by the definition of c̃,

W (µn, c̃) + pen(k̂) ≤W (µn, ck) + pen(k)

for all k, 1 ≤ k ≤ n and ck ∈ Sk. Thus,

W (µn, c̃)−W (µn, ck) ≤ pen(k)− pen(k̂),

which leads to

W (µ, c̃) ≤W (µn, ck) +W (µ, c̃)−W (µn, c̃) + pen(k) − pen(k̂). (4)

Consider nonnegative weights {xk}1≤k≤n such that

n
∑

k=1

e−xk = Σ,

and let z > 0. Applying Lemma 4.1, we obtain, for all k′, 1 ≤ k′ ≤ n and all ε ≥ 0,

P

{

sup
c∈S

k′

(W (µ, c)−W (µn, c)) ≥ E

[

sup
c∈S′

k

(W (µ, c)−W (µn, c))

]

+ ε

}

≤ exp

(

− nε
2

8R4

)

.

It follows that for every k′, 1 ≤ k′ ≤ n,

P

{

sup
c∈S

k′

(W (µ, c)−W (µn, c)) ≥ E

[

sup
c∈S

k′

(W (µ, c)−W (µn, c))

]

+ 4R2

√

xk′ + z

2n

}

≤ e−xk′−z.

Setting Ek′ = E

[

sup
c∈S

k′
(W (µ, c)−W (µn, c))

]

, we have, for all k′, 1 ≤ k′ ≤ n,

sup
c∈S

k′

(W (µ, c) −W (µn, c)) ≤ Ek′ + 4R2

√

xk′ + z

2n
,
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except on a set with probability not larger than Σe−z. By inequality (4), we thus get

W (µ, c̃) ≤W (µn, ck) + Ek̂ + 4R2

√

xk̂ + z

2n
− pen(k̂) + pen(k)

≤W (µn, ck) + Ek̂ + 4R2

√

xk̂
2n
− pen(k̂) + pen(k) + 4R2

√

z

2n
,

except on a set of probability not larger than Σe−z. Next, according to Linder [25, Theorem
3], there exists a constant a > 0 such that

Ek′ ≤ aR2

√

k′d

n
.

Thus, if for all k′, 1 ≤ k′ ≤ n,

pen(k′) ≥ R2



a

√

k′d

n
+ 4

√

xk′

2n



 ,

then

W (µ, c̃) ≤W (µn, ck) + pen(k) + 4R2

√

z

2n
,

except on a set of probability not larger than Σe−z. This may be rewritten

P

{

(4R2)−1
√

2n[W (µ, c̃)−W (µn, ck) + pen(k)] ≥
√
z
}

≤ Σe−z,

or, setting z = u2,

P

{

(4R2)−1
√

2n[W (µ, c̃)−W (µn, ck) + pen(k)] ≥ u
}

≤ Σe−u
2

.

Recalling that
∫+∞

0
e−u

2

du =
√
π

2
and letting g+ = max(g, 0), we get

E
[

(W (µ, c̃)−W (µn, ck) + pen(k))+

]

≤ R2Σ

√

2π

n
.

Since E[W (µn, ck)] =W (µ, ck),

E [W (µ, c̃)] ≤W (µ, ck) + pen(k) +R2Σ

√

2π

n
.

As this is true for every k,

E [W (µ, c̃)] ≤ inf
1≤k≤n

(W ?k (µ) + pen(k)) +R2Σ

√

2π

n
,

where W ?k (µ) = infc∈SkW (µ, c). This completes the proof of the theorem.
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