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Abstract: In this paper, we present results pertaining to two different extensions of vector quantization and
the related question of k−means clustering. The first part of the paper is about the theoretical performance of
quantization and clustering with Bregman divergences. The second one is dedicated to model selection issues for
principal curves. Some numerical illustrations are provided in each case.

Résumé : Dans cet article, nous présentons des résultats relatifs à deux extensions différentes de la quantification
vectorielle et de la question liée de classification par la méthode des centres mobiles. La première partie de
l’article concerne la performance théorique de la quantification et du clustering avec des divergences de Bregman ;
la seconde est dédiée à des problèmes de sélection de modèle pour les courbes principales. Chaque partie est
complétée par quelques illustrations numériques.
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1. Introduction

Let X be a random variable with distribution µ taking its values in a set X , and X1, . . . ,Xn

a sample of independent copies of X . In this paper, we are interested in procedures based on
the minimization of a criterion of the form

∆(ψ) = Ed (X ,ψ(X)). (1)

Here, E denotes expectation with respect to µ , ψ is a measurable mapping from X to a
subset U of X , and d is some dissimilarity measure. For instance, when X =Rd , equipped
with the Euclidean norm, we can set d (x,y) = ‖x− y‖r, r ≥ 1, the most common case r = 2
leading to the squared Euclidean distance. When U is discrete, the quantity (1) is the
distortion used in quantization, whereas the situation where U is a one-dimensional structure
corresponds to principal curves estimation. In practice, µ is unknown, which motivates the
introduction of the empirical counterpart of ∆(ψ)

∆n(ψ) =
1
n

n

∑
i=1

d (Xi,ψ(Xi)).

* The author was supported by the ANR project TopData ANR-13-BS01-0008.
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2 Aurélie Fischer

This is ∆(ψ) for the empirical measure µn associated with X1, . . . ,Xn, given by µn(A) =
1
n ∑

n
i=1 1{Xi∈A} for any Borel subset A of X .

Quantization is the problem of replacing data by an efficient and compact representation.
For a fixed integer k ≥ 1, the random variable X is represented by q(X), where the so-called
k-quantizer q maps X to a finite subset with at most k elements c1, . . . ,c`, ` ≤ k. Every
k-quantizer is characterized by its codebook c = {c1, . . . ,c`} and the partition S1, . . . ,S`
defined by S j = {x ∈X ,q(x) = c j}. The error committed is given by the distortion ∆(q).
For more information on quantization, we refer the reader to Gersho and Gray (1992), Graf
and Luschgy (2000) and Linder (2002). A related problem consists in grouping data items in
meaningful classes by minimizing the empirical distortion ∆n(q) over all possible k-quantizers.
The aim is to find a data-based quantizer qn such that the clustering risk ∆(qn) gets close
to the optimal risk ∆? := infq ∆(q) as the size of the data set grows. It has been shown by
Banerjee et al. (2005b) that the standard k-means clustering algorithm (see for instance Lloyd
(1982)), where d is the Euclidean distance, generalizes to general Bregman divergences,
which are dissimilarity measures defined for a strictly convex function φ by

dφ (x,y) = φ(x)−φ(y)−Dyφ(x− y),

where Dyφ denotes the Fréchet derivative of φ at y.
As for principal curves, they are parameterized curves in Rd , i.e. continuous functions

f : I→ Rd

t 7→ ( f1(t), . . . , fd(t)),

where I = [a,b] is a closed interval of the real line, passing “through the middle” of a
probability distribution or a set of observations, as illustrated in Figure 1.

FIGURE 1. An example of principal curve.

A principal curve for X is a parameterized curve f (t) which is self-consistent, that is

f (t) = E[X |t f (X) = t], t ∈ I. (2)

Here, the so-called projection index t f (x) is defined by

t f (x) = max
{

t ∈ I,‖x− f (t)‖= min
t ′∈I
‖x− f (t ′)‖

}
, (3)
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On two extensions of quantization 3

so that t f (x) is the largest real number t minimizing the Euclidean distance between x and
f (t), as shown in Figure 2.

FIGURE 2. The projection index t f . For all i, ti stands for t f (xi).

The self-consistency property may be interpreted by saying that each point of the curve f
is the mean of the observations projecting on f around this point. This original definition
of a principal curve is due to Hastie and Stuetzle (1989). The implicit formulation may be
avoided by considering the minimization of

∆(ϕ) = E‖X−ϕ(X)‖2, ∆n(ϕ) =
1
n

n

∑
i=1
‖Xi−ϕ(Xi)‖2,

as proposed by Kégl et al. (2000) (see also Sandilya and Kulkarni (2002)). Here, ϕ maps
Rd to some one-dimensional structure.

In order to build a satisfactory principal curve, some parameters have to be chosen, as
illustrated in Figure 3, to achieve a trade-off between closeness to the data and smoothness.

a) b) c)

FIGURE 3. Different results depending on the parameters of the curve. a) Too rough. b) Interpolation. c)
Appropriate.

Note that principal curves may be seen as a generalization of Principal Component
Analysis, searching for a curve instead of a direction of maximal variation.
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4 Aurélie Fischer

For more details on principal curves, other definitions and applications, the reader may
see for instance Fischer (2014) and references collected in that survey.

The aim of this document is to present results pertaining to both situations described
above. The paper is organized as follows. First, we will focus on theoretical properties of
clustering and quantization with Bregman divergences as dissimilarity measures. Then, we
will study model selection issues for principal curves. In both situations, simulations or real
data examples are proposed as illustrations. To keep this article a reasonable length, the
reader will be referred to the appropriate papers for the complete proofs, not presented here,
of the different results.

2. Quantization with Bregman divergences

Bregman divergences are a broad class of dissimilarity measures indexed by strictly convex
functions. Introduced by Bregman (1967), they are useful in a wide range of areas, among
which statistical learning and data mining (Banerjee et al. (2005b), Cesa-Bianchi and Lugosi
(2006)), computational geometry (Nielsen et al. (2007)), natural sciences, speech processing
and information theory (Gray et al. (1980)). Squared Euclidean, Mahalanobis, Kullback-Leibler
and L2 distances are particular cases of Bregman divergences. In Rd , a Bregman divergence
dφ has the form

dφ (x,y) = φ(x)−φ(y)−〈x− y,∇φ(y)〉,

where 〈·, ·〉 denotes the standard inner product, and ∇φ(y) the gradient of φ at y. For example,
taking for φ the squared Euclidean norm gives back the squared Euclidean distance. The
same definition is valid in Hilbert spaces, and generalizes to Banach spaces by setting

dφ (x,y) = φ(x)−φ(y)−Dyφ(x− y),

with Dyφ the Fréchet derivative of φ at y (Alber and Butnariu (1997), Frigyik et al. (2008b);
see also Jones and Byrne (1990) and Csiszár (1995)). A Bregman divergence is not necessary
a true metric, since it may be asymmetric or fail to satisfy the triangle inequality. However,
Bregman divergences fulfill an interesting projection property which generalizes the Hilbert
projection on a closed convex set, as shown in Bregman (1967) for the finite-dimensional
setting and Alber and Butnariu (1997) for the functional case. Moreover, Banerjee et al.
(2005b) have established that there exists a relation between finite-dimensional Bregman
divergences and exponential families. Although they are not true metrics, Bregman divergences
satisfy some properties, such as non-negativity and separation, convexity in the first argument
and linearity (see Bregman (1967), Nielsen et al. (2007) and Frigyik et al. (2008a) for a
complete description and proofs of these properties). Table 1 collects the most common
examples of Bregman divergences. As Bregman divergences represent a natural tool to
measure proximity between observations of complex nature and infinite-dimensional objects,
such as curves or probability measures, we use them for quantization and clustering purposes.
The results stated in this section are proved in Fischer (2010).

Soumis au Journal de la Société Française de Statistique
File: ArticleSFdS_MJLDrev.tex, compiled with jsfds, version : 2009/12/09
date: February 16, 2015



On two extensions of quantization 5

Bregman divergence E C

Squared loss R R

Exponential loss R R

Norm-like R R+

Generalized K-L (dim 1) R R+

Logistic loss R [0,1]

Itakura-Saito (dim 1) R (0,+∞)

Squared Euclidean distance Rd Rd

Mahalanobis distance Rd Rd

Kullback-Leibler (discrete) Rd (d−1)−simplex

Generalized K-L (discrete) Rd (R+)d

Squared L2 norm L2(I,m) L2(I,m)

Kullback-Leibler (continuous) L2([0,1],dt) {x ∈C0([0,1]),
∫ 1

0 x(t)dt = 1 }

Generalized K-L (continuous) L2([0,1],dt) {x ∈C0([0,1]),x≥ 0}

Itakura-Saito (continuous) L2
2π
(dt) {x ∈C0

2π
,x > 0}

∣∣∣ Bregman divergence φ(x) dφ (x,y)

Squared loss x2 (x− y)2

Exponential loss ex ex− ey− (x− y)ey

Norm-like xα xα +(α−1)yα −αxyα−1

Generalized K-L (dim 1) x lnx x ln x
y − (x− y)

Logistic loss x lnx+(1− x) ln(1− x) x ln x
y +(1− x) ln

( 1−x
1−y

)
Itakura-Saito (dim 1) − lnx x

y − ln x
y −1

Squared Euclidean distance ‖x‖2
2 ‖x− y‖2

2

Mahalanobis distance txAx t(x− y)A(x− y)

Kullback-Leibler (discrete) ∑
d
`=1 x` lnx` ∑

d
`=1 x` ln x`

y`

Generalized K-L (discrete) ∑
d
`=1 x` lnx` ∑

d
`=1 x` ln x`

y`
−∑

d
`=1(x`− y`)

Squared L2 norm
∫

I x2(t)dm(t) ‖x− y‖2
L2

Kullback-Leibler (continuous)
∫ 1

0 x(t) lnx(t)dt
∫ 1

0 x(t) ln x(t)
y(t)dt

Generalized K-L (continuous)
∫ 1

0 x(t) lnx(t)dt
∫ 1

0 x(t) ln x(t)
y(t) + y(t)− x(t)dt

Itakura-Saito (continuous) − 1
2π

∫
π

−π
ln(x(θ))dθ − 1

2π

∫
π

−π

(
ln x(θ)

y(θ) −
x(θ)
y(θ) +1

)
dθ

TABLE 1. Some examples of Bregman divergences. The matrix A is supposed to be positive definite.
The notation L2(I,m) stands for the set of square integrable functions on an interval I ⊂ R, with
respect to the positive measure m, L2

2π
(dt) for the set of 2π-periodic square integrable functions,

C0([0,1]) denotes the set of continuous functions on [0,1], and C0
2π

the set of 2π-periodic continuous
functions.
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6 Aurélie Fischer

2.1. Looking for an optimal quantizer

Let E be either Rd , or an infinite-dimensional Banach space, reflexive and separable, and
C denote a measurable convex subset of E. Recall that the relative interior of C , denoted
hereafter by ri(C ), is its interior with respect to the closed affine hull. We will write ∂C for
the complement of ri(C ) in its closure C .

We are looking for the best possible quantizer for the random variable X taking its values
in C . Throughout the section, the following assumptions are made:

1. E‖X‖<+∞.

2. EX ∈ ri(C ).

3. E|φ(X)|<+∞ and, for all c ∈ ri(C ), E|Dcφ(X)|<+∞.

This last requirement implies in particular that Edφ (X ,c)<+∞ for all c ∈ ri(C ).
First, as in the Euclidean case (see, e.g., Linder (2002)), it is easy to show that among

all quantizers with same codebook, the best one (with respect to the distortion ∆(q)) is the
nearest neighbor quantizer, whose partition S1, . . . ,S` is the Voronoi partition, i.e.,

S1 = {x ∈ C ,dφ (x,c1)≤ dφ (x,cp), p = 1, . . . , `},

S j = {x ∈ C ,dφ (x,c j)≤ dφ (x,cp), p = 1, . . . , `}\
j−1⋃

m=1

Sm, j = 2, . . . `.

If an optimal quantizer exists, it is necessarily a nearest neighbor quantizer. Hence, in the
sequel, we will always consider nearest neighbor quantizers and minimize the distortion over
the codebook c

∆(c) = E min
j=1,...,k

dφ (X ,c j), ∆n(c) =
1
n

n

∑
i=1

min
j=1,...,k

dφ (Xi,c j).

Conversely, given a partition {S j}`j=1, with µ(S j) > 0 and E[X |X ∈ S j] ∈ ri(C ) for j =
1, . . . , `, the best quantizer is obtained by setting

c j ∈ arg min
c∈ri(C )

E[dφ (X ,c)|X ∈ S j] for j = 1, . . . , `.

Moreover, if S is a Borel subset of C with µ(S)> 0 and E[X |X ∈ S] ∈ ri(C ), the function
c 7→ E[dφ (X ,c)|X ∈ S] reaches its infimum at a unique element of ri(C ), namely E[X |X ∈ S]
(result due to Banerjee et al. (2005a) in the finite-dimensional case). Thus, for every Bregman
divergence, the minimizer is the conditional expectation, just like for the squared Euclidean
distance. For example, when the distortion measure is an L1 norm, it is the median instead
of the expectation.

From an algorithmic point of view, the combination of the optimality of the conditional
expectation and of the Voronoi partition shows that the k-means algorithm can be used to
design an approximate minimizer in practice.

On the theoretical side, the existence of a minimum rests upon a compactness argument.
Since E is reflexive, a closed and bounded convex subset of E is compact for the weak
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On two extensions of quantization 7

topology σ(E,E ′), that is the coarsest topology on E making all continuous linear forms on
E continuous. Moreover, every weakly lower semi-continuous function reaches its minimum
on a weakly compact set. Thus, if we know in advance that c? is to be searched for in a
closed and bounded convex set, an argument of continuity suffices to show the existence of
c?. In the sequel, CR ⊂ ri(C ) will denote a closed and bounded convex set of diameter 2R.
For example, CR = B(0,R) = {x ∈ E,‖x‖ ≤ R} the closed ball of center 0 and radius R. A
key fact is that X ∈ CR implies, by Bregman projection (Alber and Butnariu (1997)), that
c? ∈ CR if it exists.

Théorème 1. Suppose that there exists R > 0 such that P(X ∈ CR) = 1, and that for all
x ∈ C , y 7→ dφ (x,y) is weakly lower semi-continuous on CR. Then, there exists an optimal
quantizer.

Note that convex functions which are lower semi-continuous for the norm are weakly
lower semi-continuous.

In the particular case where the convex set C lies in a finite-dimensional affine space, the
result may be proved under weaker assumptions (see Fischer (2010)). Moreover, since the
weak topology coincides with the norm topology in finite dimension, the term “weakly” in
Theorem 1 can be dropped.

In fact, if we only have CR∩ ri(C ) 6= /0 instead of CR ⊂ ri(C ), but φ is of Legendre type
(see Rockafellar (1970), and for the infinite-dimensional definition, Bauschke et al. (2001)),
it remains possible to use Bregman projection to obtain the same result.

In the particular case of a squared Hilbert distance, it can be shown that it is sufficient to
look for an optimal quantizer on a ball. Hence the existence result follows directly.

Since the support of the empirical measure µn contains at most n points, it is included in
a closed ball BR. Thus, Theorem 1 implies the existence of a minimizer c?n of the empirical
distortion.

2.2. Convergence of the distortion

Suppose that there exists an optimal codebook c?n. We would like that ∆(c?n) gets close to
the optimal distortion as the number n of observations grows. Assuming that c? exists, if c?n
and c? belong to C k

R ,
∆(c?n)−∆

? ≤ 2 sup
c∈C k

R

|∆n(c)−∆(c)|.

Yet, it can be proved under appropriate assumptions that supc∈C k
R
|∆n(c)−∆(c)| vanishes as n

tends to infinity, so that the next theorem holds.

Théorème 2. Assume that for all x ∈ C , y 7→ dφ (x,y) is weakly lower semi-continuous, so
that there exists a minimizer c?n of the empirical distortion. If there exists R > 0 such that
P(X ∈ CR) = 1, and M = M(φ ,R)≥ 0 such that, for all c ∈ CR, ‖Dcφ‖ ≤M, then

lim
n→+∞

∆(c?n) = ∆
? a.s., lim

n→+∞
E∆(c?n) = ∆

?.

Note that these convergence results always hold when φ(·) = ‖ · ‖2 (Biau et al. (2008)).
Besides, as above, assumptions could be relaxed in the finite-dimensional setting.
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Let us now discuss some examples.

Example 2.1. 1. Generalized K-L, dimension 1. Here E = R, C = R+ and dφ (x,y) =
x ln x

y − (x− y). Let x ∈ C . Because the map y 7→ x ln x
y − (x− y) is continuous and

convex on ri(C ) = (0,+∞) (its second derivative is x
y2 ≥ 0) and tends to +∞ as y

tends to 0 or +∞, there exist optimal and empirically optimal quantizers. If c?n is a
minimizer of ∆n, almost sure convergence of ∆(c?n) to ∆? is ensured.

2. Exponential loss. Let E = C = R and φ(x) = ex, which yields dφ (x,y) = ex− ey−
(x− y)ey. The function y 7→ ex− ey− (x− y)ey is continuous on R. If P(|X | ≤ R) = 1,
there exists an optimal quantizer, and since φ ′(x) = ex ≤ eR on [−R,R], ∆(c?n) converges
almost surely and in L1 to ∆?.

3. Squared Euclidean distance. In this particular case, existence of an optimal quantizer,
almost sure and L1 convergence of the distortion are guaranteed.

4. Kullback-Leibler, discrete probability measures. Here, E =Rd , C is the (d−1)-simplex
and dφ (p,q) = ∑

d
`=1 p` ln p`

q`
. The fact that the function q = (q1, . . . ,qd) 7→ ∑

d
`=1 p` ln p`

q`
is continuous and convex on ri(C ) = {(p1, . . . , pd) ∈ (0,+∞)d ,∑d

`=1 p` = 1}, and tends
to +∞ as one of the q`’s tends to 0, ensures that there exists an optimal quantizer and
we have almost sure convergence of the distortion.

5. Squared L2 distance. Let E = C = L2([0,1],dt), and dφ (x,y) =
∫ 1

0 (x(t)−y(t))2dt. This
is a Hilbert norm, thus existence of a minimizer of the distortion and convergence are
ensured.

6. Generalized K-L. Let E = L2([0,1],dt) and let C be the set of all continuous non-
negative elements of E. Here dφ (p,q) =

∫ 1
0 [p(t) ln p(t)

q(t) +q(t)− p(t)]dt. The map q 7→
dφ (p,q) is continuous and convex and therefore weakly semi-continuous. Assume that
P(r ≤ ‖X‖ ≤ R) = 1 (r > 0). Then, there exists an optimal quantizer. Moreover, we
have almost sure and L1 convergence of the distortion.

As for rates of convergence, the following result is obtained.

Théorème 3. Suppose that E is a type 2 Banach space with constant T2, and that, for all
x∈C , y 7→ dφ (x,y) is weakly lower semi-continuous, which ensures the existence of an optimal
codebook c?n. Assume that there exists R > 0 such that P(X ∈ CR) = 1. If |−φ(c)+Dcφ(c)|
and ‖Dcφ‖ are uniformly bounded on CR by M1 = M1(φ ,R) ≥ 0 and M2 = M2(φ ,R) ≥ 0
respectively, then

E∆(c?n)−∆
? ≤ 4k√

n

(
M1 +T2M2(E‖X‖2)1/2

)
,

and thus

E∆(c?n)−∆
? ≤ 4k√

n
(M1 +T2M2R) .

Note that Theorem 3 yields dimension-free upper bounds.

Example 2.2. In this example, we give bounds obtained for some usual Bregman divergences.
We assume throughout that there exists R > 0 such that P(‖X‖ ≤ R) = 1.

1. Squared loss. For φ(x) = x2, E∆(c?n)−∆? ≤ 4k√
n

(
R2 +2R(E|X |2)1/2

)
≤ 12kR2

√
n .
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On two extensions of quantization 9

2. Exponential loss. For φ(x) = ex, E∆(c?n)−∆? ≤ 4k(2R−1)eR
√

n .

3. Squared Euclidean. For φ(x) = ‖x‖2, E∆(c?n)−∆? ≤ 12kR2
√

n .

4. Mahalanobis. For φ(x) = txAx, A positive definite, E∆(c?n)−∆? ≤ 12k‖A‖R2
√

n .

5. Squared L2. When φ is a squared L2 norm, E∆(c?n)−∆? ≤ 12kR2
√

n .

Note that some Bregman divergences, typically Kullback-Leibler, involve a logarithm,
which prevents ||Dcφ || from being uniformly bounded on a ball BR. In order to circumvent
this difficulty, a possible solution is to consider a class of elements of E satisfying the
following assumption:

– In dimension 1, 0 < r ≤ X ≤ R <+∞ a.s.
– In dimension d (2 ≤ d ≤ +∞), when the logarithm appears in a sum or an integral,

∑
d
`=1 ln2(x`)≤M(R) or

∫
ln2(x(t))dt ≤M(R).

Several such conditions can be found in the literature on Kullback-Leibler divergence. For
instance, Jordan et al. (2010), who develop an estimation method for the Kullback-Leibler
divergence, require an envelope condition or boundedness from above and below.

As an illustration, let dφ (x,y) =
∫ 1

0 x(t) ln x(t)
y(t)dt. Suppose that P(‖X‖ ≤ R) = 1 for some

R > 0 and that
∫ 1

0 ln2(X(t))dt ≤ R2. Assuming that the codebooks belong to the same function
class as X , we obtain

E∆(c?n)−∆
? ≤ 2kR√

n
(1+R).

2.3. Simulations

Now, we present some clustering results obtained with different Bregman divergences. These
simulations have been carried out with the software R.

To assess the quality of the clustering, we use a correlation coefficient between partitions
proposed by Strehl and Ghosh (2002), called normalized mutual information. Let S and S′ be
two partitions of the observations. Denoting by n j (respectively n′`) the number of data points
in S j (respectively S′`) and by n j,` the number of points in S j and S′`, normalized mutual
information is given by

∑
k
j=1 ∑

k
`=1 n j,` ln

(
n j,`n
n jn′`

)
√(

∑
k
j=1 n j ln n j

n

)(
∑

k
`=1 n′` ln n′`

n

) .
This indicator allows to compare partitions obtained by Bregman divergence clustering with an
“expected partition”: the closer to 1 the coefficient the better the result. Note that comparing
the distortions obtained for several divergences does not provide a reliable indicator of
the quality of the partitions, since the value of the distortion intrinsically depends on the
divergence chosen: a larger error might be associated to a better partition.

We present first examples in dimension 1, then in the plane R2, and finally, in the
infinite-dimensional setting.
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10 Aurélie Fischer

Gaussian, binomial and Poisson distributions As mentioned at the beginning of the
section, there is a relationship between exponential families and Bregman divergences. As a
first illustration, let us compare the partitions obtained for Gaussian, binomial and Poisson
distributions, using the corresponding Bregman divergences, which are Euclidean distance,
logistic loss, and generalized Kullback-Leibler divergence. For each distribution, 3 groups of
30 observations, centered in 10, 20 and 40 respectively, were generated. Setting the variance
to 25 for the Gaussian distribution, and the number of trials to 100 for the binomial provides
three models with similar variance. Negative realizations are discarded so that logistic loss
and Kullback-Leibler divergence are well defined.

Table 2 presents average normalized mutual information over 100 trials, as well as the
number of times where each divergence leads to the best partition (in the large sense: the sum
of the values in a line is larger than 100). This example illustrates the fact that Euclidean
distance is best suited to Gaussian, logistic loss to binomial, and Kullback-Leibler to Poisson
data.

Euclidean Logistic Generalized K-L
Gaussian 0.689 (52) 0.685 (42) 0.672 (35)
Binomial 0.791 (38) 0.813 (62) 0.806 (57)
Poisson 0.702 (37) 0.728 (56) 0.732 (63)

TABLE 2. Normalized mutual information and number of cases where each divergence gives the best result (100
trials).

Strip and circle We are interested in clustering 50 observations uniformly distributed on
a circle with center (3,10) and radius 1, and 50 observations on a rectangle of height 20,
between the lines x = 0 et x = 1. The clustering results for different Bregman divergences
and normalized mutual information over 50 trials are shown in Figure 4.
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Euclidean: 0.302 Generalized K-L: 0.327 Logistic: 0.320 Itakura-Saito: 0.986

FIGURE 4. Clustering of uniform data on strip and circle (k = 2, n = 100). a) Euclidean. b) Generalized K-L. c)
Itakura-Saito. Normalized mutual information table (50 trials).

Note for instance that the Itakura-Saito divergence, which is neither symmetric nor convex
in the second variable, allows to separate the strip and the circle, whereas the other Bregman
divergences cut the data in a completely different manner.
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On two extensions of quantization 11

Data on the simplex We simulated 45 observations on the 2-simplex from a Dirichlet
distribution. Let us recall that a Dirichlet distribution with parameters (a1,a2,a3), where
ai > 0 for every i = 1, . . . ,3, is given by

P(P1 = p1,P2 = p2,P3 = p3) =
Γ
(
∑

3
`=1 a`

)
∏

3
`=1 Γ(a`)

3

∏
`=1

pa`−1
` ,

where pi > 0 for i = 1, . . . ,3, p1 + p2 + p3 = 1 (proportions), and Γ denotes the function
defined, for x > 0, by Γ(x) =

∫ +∞

0 tx−1e−tdt. Here, 3 groups of 15 observations following
respectively the Dirichlet distribution with parameters (10,10,2), (5,5,5) and (2,2,10) were
generated. Table 3 indicates that the Kullback-Leibler divergence is the most appropriate one.
This result is consistent with the common use of this divergence in documents classification
(Banerjee et al. (2005b)). Indeed, our simulated observations may be interpreted as a very
simple text classification problem based on 3 words or expressions, the distribution parameters
corresponding to their average frequency.

Euclidean: 0.674 Kullback-Leibler: 0.714 Logistic: 0.689 Itakura-Saito: 0.673

TABLE 3. Normalized mutual information (100 trials).

Euclidean and Mahalanobis distance Clustering the observations represented in Figure 5

with the square Euclidean distance or with the Mahalanobis distance with A =

(
2 1
1 8

)−1

leads to very different groups. Indeed, these two ellipses are generated from Gaussian vectors
with covariance matrix A−1. We recover the fact that the best Mahalanobis distance is the one
built on the inverse of the data covariance matrix. In practice, there exist methods allowing
to estimate the covariance matrix in order to choose the right Mahalanobis distance (Art
et al. (1982), Tarsitano (2003)).

a) b)

Euclidean: 0.445 Mahalanobis: 0.793

FIGURE 5. Clustering Gaussian data (k = 2, n = 60). a) Euclidean. b) Mahalanobis. Normalized mutual
information (100 trials).
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12 Aurélie Fischer

Gaussian curves In the two next examples, we consider 40 Gaussian density curves. In
the first case, there are two groups of 20 curves corresponding to Gaussian densities centered
in 22.5 and 24.5 respectively, with a standard deviation chosen uniformly at random between
2 and 5. Results are presented in Figure 6. The two groups are most accurately recovered
by the Kullback-Leibler divergence. In the second example, we have 20 Gaussian curves
with standard deviation 4 and 20 curves with standard deviation 5, the mean being chosen
uniformly between 21 and 26. This time, finding the two groups means clustering the curves
with respect to the variance of the underlying normal distribution, whereas in the first example,
the property characterizing a group was the mean. As shown in Figure 7, the squared bias
provides the best result.

Noisy sinusoids In this last example, we consider observations building 3 groups of noisy
sine waves, corresponding to 3 different phases. The variance of the Gaussian noise is set to
0.1. Results are visible in Figure 8. The squared L2 distance and Itakura-Saito seem both to
be accurate in order to cluster the sine waves with respect to their phase.
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FIGURE 6. Clustering Gaussian curves (k = 2, n = 40). a) Squared bias. b) L2. c) Kullback-Leibler.
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FIGURE 7. Clustering Gaussian curves (k = 2, n = 40). a) Squared bias. b) L2. c) Kullback-Leibler.
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On two extensions of quantization 13
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FIGURE 8. Clustering noisy sinusoids with phases 0, π/8, π/4 (k = 3, n= 45). a) Squared bias. b) L2. Normalized
mutual information (phases 0, π/24, π/12; 30 trials).

3. Parameter selection for principal curves

In this section, let X = Rd . We assume that E‖X‖2 < ∞. Like a quantizer, defined by
a codebook and a partition, a principal curve is in fact characterized by two objects, a
parameterized curve f : I → Rd and a map τ : Rd → I. Playing the role of the Voronoi
partition in quantization, there is a best choice for τ , which is the projection index t f given
by (3), so that principal curve estimation consists in minimizing the distortion over f

∆( f ) = Emin
t∈I
‖X− f (t)‖2, ∆n( f ) =

1
n

n

∑
i=1

min
t∈I
‖Xi− f (t)‖2.

In the definition of Kégl et al. (2000), a principal curve of length L for X is a parameterized
curve minimizing ∆( f ) over curves of length at most L, whereas Sandilya and Kulkarni
(2002) use a constraint on the turn of the curve. We define the length of a curve f : I→ Rd

by

L ( f ) = sup
m

∑
j=1
‖ f (t j)− f (t j−1)‖,

where the supremum is taken over all subdivisions a = t0 < t1 < · · ·< tm = b, m≥ 1 (see, e.g.,
Kolmogorov and Fomin (1975)), whereas the turn of f is given by

K ( f ) = sup
m−1

∑
j=1

f̂ (t j),

where f̂ (t j) denotes the angle between the vectors
−−−−−−−−→
f (t j−1) f (t j) and

−−−−−−−−→
f (t j) f (t j+1), and, as

above, the supremum is taken over all subdivisions a = t0 < t1 < · · · < tm = b, m ≥ 1 (see
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14 Aurélie Fischer

Alexandrov and Reshetnyak (1989)). In particular, the turn of a polygonal line with vertices
v1, . . . ,vk+1 is just the sum of the angles at v2, . . . ,vk, as illustrated in Figure 9.

FIGURE 9. Denoting by −→s j the vector −−−−→v jv j+1 for all j = 1, . . . ,k, the angles involved in the definition of the turn
are defined by φ j+1 = (−→s j ,

−−→s j+1).

In this section, we study parameter selection methods, in order to construct a proper
principal curve recovering accurately the shape of the data without interpolating. To this aim,
we propose to use the approach of non-asymptotic model selection by penalization introduced
by Birgé and Massart (1997) and Barron et al. (1999). First, we will consider a Gaussian
framework, then the context of almost surely bounded random variables.

3.1. Length selection in a Gaussian framework

We investigate a Gaussian model selection method in order to choose the length of a principal
curve. Proofs of the results presented in this subsection can be found in Fischer (2013).
The context is similar to that of Caillerie and Michel (2011), who tackle model selection
questions for graphs called simplicial complexes. In the subsection, the Euclidean space Rd

is equipped with the inner product defined by

〈u,v〉= 1
d

d

∑
j=1

u jv j. (4)

The associated Euclidean norm is denoted by ‖ · ‖ and the associated distance by d (·; ·).
We assume that we observe random vectors X1, . . . ,Xn with values in Rd following the

model
Xi = x?i +σξi, i = 1, . . . ,n, (5)

where the x?i are unknown, the ξi are independent standard Gaussian vectors of Rd and σ > 0
is the noise level, supposed known. Denoting by X = t(tX1, . . . ,

tXn) the (column) vector made
of all coordinates of the random vectors Xi, i = 1, . . . ,n and defining x? and ξ in the same
way, the model (5) can be rewritten under the form

X = x?+σξ .

Let F and G be two fixed points of Rd and L a countable subset of ]0,+∞[. We
introduce a countable collection {F`}`∈L , where each set F` is a class of parameterized
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On two extensions of quantization 15

curves f : I → Rd with length ` and endpoints F and G. Set λ :=
√

`2− d (F ;G)2. We
consider the criterion ∆′n given by

∆
′
n( f ) =

1
n

n

∑
i=1

min
t∈I
‖Xi− f (t)‖2 =

1
n

n

∑
i=1

min
xi∈Γ f
‖Xi− xi‖2,

where Γ f denotes the range of the curve f . Due to the definition (4) of the norm ‖ · ‖, this
is the empirical criterion ∆n( f ) normalized by the dimension d. Suppose that, for all ` ∈L ,
x̂` := (x̂1`, . . . , x̂n`) minimizes

1
n

n

∑
i=1
‖Xi− xi‖2

among all x ∈ C` :=
⋃

f∈F`
(Γ f )

n. In order to determine the length `, we will minimize a
criterion of the type

crit(`) =
1
n

n

∑
i=1
‖Xi− x̂i`‖2 +pen(`),

where pen : L →R+ is a penalty function, whose role is to prevent the choice of a too large
`. Observe that the classical asymptotic model selection criteria AIC (Akaike (1973)), BIC
(Schwarz (1978)) or Mallows’Cp (Mallows (1973)), which involve the “number of parameters”
to be estimated, are not suitable to design an appropriate penalty in this framework. However
the non-asymptotic model selection theory developed by Birgé and Massart (2001) and Barron
et al. (1999) allows us to derive the next theorem, based on results by Massart (2007) on
Gaussian model selection for non linear models.

Théorème 4. Assume that there are nonnegative weights {w`}`∈L such that ∑`∈L e−w` =
Σ < ∞, and that, for every ` ∈L ,

σ ≤ λ

4κ

[√
ln2+

1
d

ln
(
`

λ

)
+
√

π

]−1

. (6)

Then, there exist constants c1 and c2 such that, for all η > 1, if

pen(`)≥ ησ
2

[
c1

(
ln
(`1/dλ 1−1/d

σ

)
+ c2

)
+

4w`

nd

]
, (7)

then, almost surely, there exists a minimizer ˆ̀ of the penalized criterion

crit(`) =
1
n

n

∑
i=1
‖Xi− x̂i`‖2 +pen(`).

Moreover, if x̃ = x̂ ˆ̀, we have

1
n

n

∑
i=1

E‖x̃i− x?i ‖2 ≤ c(η)
[

inf
`∈L
{D2(x?,C`)+pen(`)}+ σ2

nd
(Σ+1)

]
,

where D2(x?,C`) = infy∈C`

1
n ∑

n
i=1 ‖yi− x?i ‖2.

Soumis au Journal de la Société Française de Statistique
File: ArticleSFdS_MJLDrev.tex, compiled with jsfds, version : 2009/12/09
date: February 16, 2015



16 Aurélie Fischer

Let us comment on the theorem.
The first remark is about the fact that Theorem 4 involves unknown constants. The proof

indicates that c1 = 16κ2 and c2 = π − ln(2κ
√

π) could be chosen. However, these values
are (likely too large) upper bounds. Furthermore, the variance noise σ has been supposed
known and is involved in the penalty. Nevertheless, the noise level is generally unknown
in practice. Note that it is possible to estimate σ separately and then proceed by plug-in.
However, there is another solution to assess c1, c2 and σ , relying on the slope heuristics.
This penalty calibration method introduced by Birgé and Massart (2007) precisely allows to
tune a penalty known up to a multiplicative constant.

According to the formula binding ` and λ , the quantity ln(`1/dλ 1−1/d) in the penalty
characterizes each model of curves with length `. The other elements varying over the
collection of models are the weights {w`}`∈L . They should be large enough to ensure the
finiteness of Σ, but not too large at the risk of overpenalizing. For linear models C` with
dimension D`, a possible choice for w` is w` =w(D`) where w(D)= cD+ ln |{k∈L ,Dk =D}|
and c > 0 (see Massart (2007)). If there is no redundancy in the models dimension, this
strategy amounts to choosing w` proportional to D`. By analogy, w` may here be chosen
proportional to ln(`1/dλ 1−1/d). More formally, we set w` = c ln`1/dλ 1−1/d , where the constant
c > 0 is such that ∑`∈L

1
`c/dλ c(1−1/d) = Σ <+∞. Considering only the main term in the lower

bound (7), this choice finally yields a penalty proportional to ln(`1/dλ 1−1/d), which may be
calibrated in practice thanks to the slope heuristics.

Besides, condition (6) says that the noise level σ should not be too large with respect to
λ . If λ =

√
`2− d (F ;G)2 is of the same order as σ , it is not possible to obtain a suitable

principal curve with length `.
Regarding the fact that the endpoints F and G of the principal curve are fixed, observe

that several methods can be employed in practice to choose them from the data. A possible
solution is to define F and G using the points that are farthest from each other in the
minimum spanning tree of the data (or of some subset of the data), which can be constructed
thanks to the algorithm of Kruskal (1956) or Prim (1957).

Finally, let us point out that the penalty shape obtained does not tend to 0 as n tends
to infinity. This point is intrinsically related to the geometry of the problem, which is not
made easier by increasing the size of the sample, since nothing has been specified about the
repartition of the x?i ’s.

3.2. Selecting parameters in a bounded framework

Let ‖ · ‖ denote the standard Euclidean norm again. Assume that

P(X ∈ C ) = 1, (8)

where C is a convex compact subset of Rd , with diameter δ . By Lemma 1 in Kégl (1999),
requirement (8) implies that, for any given positive length L, there exists a parameterized
curve f ? with length at most L and support in C minimizing ∆( f ). It follows from Proposition
1 in Sandilya and Kulkarni (2002) that this remains true when replacing the length by the
turn. We still denote the minimizer by f ? in this case, since there will be no ambiguity. In
the sequel, we restrict ourselves to parameterized curves whose support is included in C .
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On two extensions of quantization 17

Contrary to the Gaussian framework discussed in the previous subsection, here results will
be about the curve f itself and not about the range of the curve. Moreover, this time, penalty
shapes tending to 0 as the sample size grows to infinity will be obtained. From the technical
standpoint, note that these two different contexts lead to the use of quite different tools. The
results stated in the present subsection are proved in Biau and Fischer (2012).

Principal curves with bounded length Let L be a countable subset of ]0,L] and Q a
grid over C , that is Q= C ∩Γ, where Γ is a lattice of Rd . For every k ≥ 1 and ` ∈L , the
model Fk,` is defined as the collection of all polygonal lines with k segments, with length
at most `, and with vertices belonging to Q. We note that each model Fk,` as well as the
family of models {Fk,`}k≥1,`∈L are countable. For k ≥ 1 and ` ∈L , let

f̂k,` ∈ argmin
f∈Fk,`

∆n( f )

be a curve achieving the minimum of the empirical criterion ∆n( f ) over the class Fk,`. Our
goal is to select the best principal curve f̃ among the collection { f̂k,`}k≥1,`∈L . The model
selection approach will allow us to control the loss

D( f ?, f̃ ) = ∆( f̃ )−∆( f ?)

between the target f ? and the selected curve f̃ . Let pen : N?×L → R+ be some penalty
function and denote by (k̂, ˆ̀) a pair of minimizers of the criterion

crit(k, `) = ∆n( f̂k,`)+pen(k, `).

In order to obtain the desired principal curve f̃ = f̂k̂, ˆ̀, an adequate penalty pen(k, `) has to
be designed, which can be achieved by establishing an upper bound on the quantity

E sup
f∈Fk,`

(∆( f )−∆n( f )) .

Then, the following result can be proved.

Théorème 5. Consider nonnegative weights {xk,`}k≥1,`∈L such that ∑k≥1,`∈L e−xk,` = Σ < ∞,

and a penalty function pen : N?×L → R+. Let f̃ = f̂k̂, ˆ̀. There exist nonnegative constants
c0, . . . ,c2, depending on the dimension d and the diameter δ of the convex set C , such that,
if for all (k, `) ∈ N?×L ,

pen(k, `)≥ 1√
n

[
c1
√

k+ c2 max

(
`√
k
,

√
k ln

`

k

)
`+ c0

]
+δ

2
√

xk,`

2n
, (9)

then

E[D( f ?, f̃ )]≤ inf
k≥1,`∈L

[
D( f ?,Fk,`)+pen(k, `)

]
+

δ 2Σ

23/2

√
π

n
,

where D( f ?,Fk,`) = inf f∈Fk,` D( f ?, f ).
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18 Aurélie Fischer

Let us give some comments.
Firstly, we see that the penalty shape involves a term proportional to

√
k/n, whereas the

quantity `/
√

kn or
√

k/n ln`/k suggests that k and ` should be cleverly chosen relatively to
each other. This penalty form, which vanishes at the rate 1/

√
n, seems relevant insofar as the

number k of segments and the length ` of the curves measure the complexity of the models.
As in the Gaussian framework, the proof provides possible values for the constants

c0, . . . ,c2, but these values are not very helpful since they are upper bounds which are
probably far from being tight. Besides, the proof also reveals that c1 = c′1δ 2, c2 = c′2δ and
c0 = c′0δ 2, where c′0,c

′
1 and c′2 are constants without dimension, so that the penalty is in fact

homogeneous to a squared length, just like the criterion ∆n( f ).
As for the weights, if the cardinality of the collection of models is not larger than n2 (this

will be the case in all our practical examples), we may set xk,` = 2lnn for every (k, `). This
choice does not affect the penalty shape, though modifying the rate, and leads to Σ = 1 in
the risk bound.

Principal curves with bounded turn The same kind of result can be obtained in the
context of curves with bounded turn, using the fact that a curve with bounded turn also has
bounded length. Indeed, the following lemma holds (see, e.g., Alexandrov and Reshetnyak
(1989, Chapter 5)):

Lemma 3.1. Let f be a curve with turn κ and let δ be the diameter of C . Then L ( f )≤
δζ (κ), where the function ζ is defined by

ζ (x) =


1

cos(x/2)
if 0≤ x≤ π

2

2sin(x/2) if
π

2
≤ x≤ 2π

3
x
2
− π

3
+
√

3 if x≥ 2π

3
.

Let K be a countable subset of [0,K] and {Fk,κ}k≥1,κ∈K a countable collection of
models, where each Fk,κ consists of polygonal lines with k segments, turn at most κ , and
vertices belonging to some grid Q over C . For k ≥ 1 and κ ∈K , we define

f̂k,κ ∈ argmin
f∈Fk,κ

∆n( f )

and
crit(k,κ) = ∆n( f̂k,κ)+pen(k,κ).

As before, let f̃ = f̂k̂,κ̂ , where (k̂, κ̂) is a minimizer of crit(k,κ). The version of Theorem 5
for principal curves with bounded turn states as follows.

Théorème 6. Consider nonnegative weights {xk,κ}k≥1,κ∈K such that ∑k≥1,κ∈K e−xk,κ =Σ<∞,

and a penalty function pen : N?×K → R+. Let f̃ = f̂k̂,κ̂ . There exist nonnegative constants
c0, . . . ,c2, depending only on the dimension d, such that, if for all (k,κ) ∈ N?×K ,

pen(k,κ)≥ δ 2
√

n

[
c1
√

k+ c2 max
(

ζ (κ)√
k
,

√
k ln

ζ (κ)

k

)
+ c0 +

√
xk,κ

2

]
,
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On two extensions of quantization 19

then

E[D( f ?, f̃ )]≤ inf
k≥1,κ∈K

[
D( f ?,Fk,κ)+pen(k,κ)

]
+

δ 2Σ

23/2

√
π

n
,

where D( f ?,Fk,κ) = inf f∈Fk,κ D( f ?, f ).

The resulting penalty shape is similar to (9). The length ` is replaced by ζ (κ), increasing
function of the turn κ .

3.3. Some illustrations

This section presents some real data illustrations, carried out with the software MATLAB.
Our purpose here is either length selection (Theorem 4), or simultaneous choice of length and
number of segments (Theorem 5). In order to assess the constants appearing in the theorems,
we use the slope heuristics proposed by Birgé and Massart (2007) (see also Lebarbier (2005),
Arlot and Massart (2009), Lerasle (2012), Saumard (2013), and the overview by Baudry et al.
(2012), who have implemented the method in the package CAPUSHE).

In short, the slope heuristics consists in observing that the empirical contrast is proportional
to the penalty shape for complex models and in using the slope of this line to assess the
constant. Here, when dealing with two parameters, we use a bivariate version of this heuristics,
where constants are chosen via a bivariate ordinary least square regression. We let w` be
proportional to ln`1/dλ 1−1/d and xk,` = 2lnn.

Three examples will be presented: we show first an application of Theorem 4 to GPS
tracks data and then applications of Theorem 5 to character recognition and seismic data.

GPS track We present an application of principal curve to mapping. Indeed, Brunsdon
(2007) has shown that principal curves may be useful in that area, in order to estimate paths
from GPS tracks. More specifically, principal curves are a means to compute an average path
from GPS data registered by several people moving on a given street.

The place chosen in this example is the “Labyrinth” of the Jardin des Plantes in Paris.
Here, the slope heuristics step was applied via the package CAPUSHE. The result is visible
in Figure 10. The figure gives first an air photography of the place and the corresponding
GPS track data points. Then, the resulting principal curve is shown both on the data cloud
and as an overlay on the photography, which allows to assess the performance of the method.
We see that the Labyrinth is quite well recovered, with a very smooth curve.

NIST database digits The data set used here is part of NIST Special Database 19
(http://www.nist.gov/srd/nistsd19.cfm), which contains handwritten characters from
3600 writers. The data consists in binary images scanned at 11.8 dots per millimeter (300 dpi),
which uniformly fill the area corresponding to the thickness of the pen stroke. Skeletonization,
which consists in reducing foreground regions in such an image without affecting the general
shape of the handwritten character, often constitutes a preliminary step to perform character
recognition (see, e.g., Deutsch (1968) and Alcorn and Hoggar (1969)). The principal curve
estimation method was applied to two NIST database digits, 2 and 5. We observe in Figure
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20 Aurélie Fischer

FIGURE 10. Principal curve fitted for the Labyrinth data.
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On two extensions of quantization 21

11 that both results are satisfactory. Note that R2 coefficients equal to 0.99 were obtained in
the least square regression used to apply the slope heuristics.

a)

b)

FIGURE 11. a) Two NIST database handwritten digits. b) Principal curves selected: k̂ = 23, ˆ̀= 80; k̂ = 38,
ˆ̀= 82.

Seismic data In this last experiment, principal curves are used in order to recover litho-
spheric plates borders using seismic data. As shown in Figure 12, seismic impacts correspond
to the borders of lithosperic plates. Available on the USGS (United States Geological Survey)
website (http://earthquake.usgs.gov/research/data/centennial.php), the data set
is part of the “Centennial Catalog”, listing the major earthquakes registered since 1900
(Engdahl and Villaseñor (2002)).

We focus on two regions indicated on the world map in Figure 13. The principal curve
results, shown in Figure 14, confirm the good performance of the method.
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a) b)

FIGURE 12. a) Earthquake impacts and b) lithospheric plate borders (UGS map).

FIGURE 13. Localization of the two considered seismic zones Z1 (about 60◦S 50◦W to 40◦N 0◦) and Z2 (about
65◦S 0◦ to 25◦S 160◦E).
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a) b)

FIGURE 14. Selected principal curves for the seismic zones. a) Z1 (n = 252) k̂ = 55, ˆ̀= 31. b) Z2 (n = 322)
k̂ = 22, ˆ̀= 38.
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