Laboratoire de Probabilités, Statistique et Modélisation (LPSM, UMR 8001)




Le LPSM est une unité mixte de recherche (UMR 8001) dépendant du CNRS, de Sorbonne Université et de l’Université Paris Cité. Le laboratoire compte environ 200 personnes (dont env. 90 permanents), répartis sur deux sites (Campus P. et M. Curie de Sorbonne Université et Campus Paris Rive Gauche de l’Université Paris Cité)

Les activités de recherche du LPSM couvrent un large spectre en Probabilités et Statistique, depuis les aspects les plus fondamentaux (qui incluent notamment l'Analyse Stochastique, la Géométrie Aléatoire, les Probabilités Numériques et les Systèmes Dynamiques) jusqu’aux applications à la Modélisation dans diverses disciplines (Physique, Biologie, Sciences des Données, Finance, Actuariat, etc), applications qui incluent des partenariats en dehors du monde académique.

Le LPSM est un laboratoire relativement récent. Cependant, ses composantes sont anciennes et proviennent du développement des « mathématiques du hasard » dans le centre de Paris, depuis le premier quart du 20ième siècle (voir ici pour plus de détails).

NB: Site largement inspiré de celui de l'IRIF (merci à eux pour la mise à disposition de leur maquette).

ANR BASICS

21.9.2022
The closing workshop of the ANR BASICS project takes place at LPSM on September 29-30, see here for more information.

IHP

21.9.2022
Ismaël Castillo et Romain Mismer ont obtenu le prix des annales de l'IHP (B) pour leur article sur les arbres de Polya. Félicitations!

The splendors and miseries of martingales

14.11.2022
Publication of the book The splendors and miseries of martingales, co-edited by Laurent Mazliak.

Romain Dujardin

20.10.2022
Romain Dujardin est lauréat 2022 du Prix Elie Cartan de l'Académie des Sciences. Félicitations Romain!

9.6.2022
Nous apprenons avec tristesse le décès de Francis Comets, professeur émérite à l'Université Paris Cité et membre du LPSM, survenu le 6 Juin 2022. Francis était particulièrement apprécié au laboratoire et au delà, comme en témoigne le texte publié sur le site de la SMF.

Charlotte Dion-Blanc

14.11.2022
Charlotte Dion-Blanc a obtenu un financement Emergences 2022 de la Ville de Paris pour son projet “Classification et segmentation de processus en interaction, applications en écologie et en neurosciences”. Bravo Charlotte!

Francis Comets

20.9.2022
Conference “Mathematics of disordered systems: a tribute to Francis Comets” (5-7 June 2023, Paris), see here for more information.

ANR

6.7.2022
Résultats des appels d'offre 2022 de l'ANR; Aurélie Fischer a obtenu un financement (Projet de recherche collaborative) pour son projet GeoDSIC. Félicitations à Aurélie! Dans ce même appel d'offre, le projet LOCAL, dans lequel le LPSM est partenaire (resp. de pôle: Quentin Berger), a été également financé. Bravo Quentin!


(Ces actualités sont présentées selon un classement mêlant priorité et aléatoire.)

Groupe de travail des thésards du LPSM
Lundi 5 décembre 2022, 17 heures 30, Jussieu salle Paul Lévy (209) couloir 16-26 (2ème étage)
Lorenzo Croissant + Grégoire Szymanski (CEREMADE + Polytechnique) Diffusion limit control of high-frequency pure-jump processes (L. Croissant) + Rough volatility and optimal estimation of the Hurst parameter (G. Szymanski)

Lorenzo CROISSANT - Diffusion limit control of high-frequency pure-jump processes

Pure jump processes with a large number of jumps per unit of time are frequently encountered in modern industrial systems (e.g. financial markets, online advertising auctions, server scheduling…). These applications require sequential decision making, which is mathematically formalized as a control problem. Unfortunately, the non-local nature of jumps leads the control problem to analytical difficulties and computations infeasible in practice. Leveraging the diffusion limit regime, which avoids these difficulties, we present in this talk a characterization of the convergence to this limit, and some interesting perspectives that it opens.

Grégoire SZYMANSKI - Rough volatility and optimal estimation of the Hurst parameter

The goal of this talk is to present the estimation of the Hurst parameter in rough stochastic volatility model. First, we will recall what rough volatility is and why it is used in finance. In these models, we observe a stochastic diffusion driven by a Brownian motion. The volatility is a hidden Fractional Brownian motion. Moreover, the diffusion is only observed at discrete time. We will explain how this problem relates to the somewhat easier observations of the underlying fractional Brownian motion at discrete time polluted by an additive noise, in the same spirit as [3]. Considering the observations $\eta W^H_{i/n} + \eps^n_i$, we build an estimator i/n i based on quadratic variations with convergence rate $n^{1/(4H+2)} as in [3]. We also prove that this rate is minimax, using an adequate wavelet-based construction of the fractional Brownian motion in the second case, see [4]. Finally, we will discuss how this estimator can be generalised to the multiplicative noise model and to a non-parametric setting as in [1].

References: [1] Chong, C.; Hoffmann, M.; Liu, Y.; Rosenbaum, M.; Szymanski, G. (2022) - Statistical inference for rough volatility: central limit theorems - arXiv:2210.01216 [2] Chong, C.; Hoffmann, M.; Liu, Y.; Rosenbaum, M.; Szymanski, G. (2022) - Statistical inference for rough volatility: Minimax theory - arXiv:2210.01214 [3] Fukasawa, M.; Takabatake, T.; Westphal, R. (2019) - Is Volatility Rough ? - arXiv:1905.04852 [4] Szymanski, G. (2022) - Optimal estimation of the rough Hurst parameter in additive noise - arXiv:2205.13035

Séminaire de Probabilités
Mardi 6 décembre 2022, 14 heures, Jussieu, Salle Paul Lévy, 16-26 209
Amandine Véber (MAP5, Université Paris Cité; CMAP, Ecole Polytechnique; CNRS) Propriétés de croissance du processus Lambda-Fleming-Viot à “infinité de parents”

Le processus Lambda-Fleming-Viot à “infinité de parents” est un modèle d'expansion de population en espace continu, en 2 dimensions, dans lequel les régions non colonisées sont considérées comme étant remplies d'individus de type “inexistant” (ou fantôme…). Ce modèle peut être vu comme une version en espace continu du modèle de croissance d'Eden et il est doté d'un processus dual qui permet de retracer l'origine “généalogique” d'un échantillon d'individus pris dans la population actuelle. Dans cet exposé, on s'intéressera aux propriétés de croissance de la région occupée par des individus “réels”. A l'aide d'un modèle auxiliaire très simple, on discutera également de la manière dont les fluctuations au front rendent la vitesse d'expansion plus rapide que celle prédite par des estimées de premier moment. Ce travail a été réalisé en collaboration avec Apolline Louvet (Université de Bath).

Séminaire de statistique
Mardi 6 décembre 2022, 9 heures 30, Jussieu en salle 15-16.201
Vianney Perchet (ENSAE) An algorithmic solution to the Blotto game using multi-marginal couplings

We describe an efficient algorithm to compute solutions for the general two-player Blotto game on n battlefields with heterogeneous values. While explicit constructions for such solutions have been limited to specific, largely symmetric or homogeneous, setups, this algorithmic resolution covers the most general situation to date: value-asymmetric game with asymmetric budget. The proposed algorithm rests on recent theoretical advances regarding Sinkhorn iterations for matrix and tensor scaling. An important case which had been out of reach of previous attempts is that of heterogeneous but symmetric battlefield values with asymmetric budget. In this case, the Blotto game is constant-sum so optimal solutions exist, and our algorithm samples from an ε-optimal solution in time O~(n2+ε−4), independently of budgets and battlefield values. In the case of asymmetric values where optimal solutions need not exist but Nash equilibria do, our algorithm samples from an ε-Nash equilibrium with similar complexity but where implicit constants depend on various parameters of the game such as battlefield values.

Groupe de Travail Modélisation Stochastique
Mercredi 7 décembre 2022, 14 heures 15, Sophie Germain 1016
Laura Kanzler (CEREMADE) Kinetic modelling of non-instantaneous binary collisions

In this talk we introduce a new class of kinetic models, which overcome the standard assumption in kinetic transport theory that collision processes happen instantaneously. On the level of the underlining stochastic processes this results in replacing the jump-process, which are defining the collisions, with continuous stochastic processes.

We investigate a kinetic model with non-instantaneous binary alignment collisions between particles. The collisions are described by a transport process in the joint state space of a pair of particles, where the states of the particles approach their midpoint. For two spatially homogeneous models with deterministic or stochastic collision times existence and uniqueness of solutions, the long time behavior, and the instantaneous limit are considered, where the latter leads to standard kinetic models of Boltzmann type.

Reference: L. Kanzler, C. Schmeiser, V. Tora, Two kinetic models for non-instantaneous binary alignment collisions, arXiv:2203.15711

Soutenances de thèse
Jeudi 8 décembre 2022, 10 heures, Visioconférence Zoom
Mohan Yang Méthodes numériques probabilistes pour la finance: valorisations des droits à polluer et approximation de couverture faible

Ce manuscrit étudie l’approximation des solutions des équations différentielles stochastiques progressifs et rétrogrades (EDSPRs) et des applications numériques au marché des émissions de carbone, et l’approximation de couverture faible.

Mots clé: EDSPRs, Algorithme SGD, Deep learning, Grande dimension, Schémas de Splitting, particules stochastiques, Transport optimal.

Les probas du vendredi
Vendredi 9 décembre 2022, 11 heures, Jussieu, Salle Paul Lévy, 16-26 209
Fanny Augeri (LPSM) Grandes déviations de la plus grande valeur propre de matrices de Wigner sparse.

Lorsque le degré moyen est au moins logarithmique en le nombre de sommets, les valeurs propres extrêmes de matrices de Wigner sparse collent au support de la loi du semi-cercle. Nous montrons que dans ce régime de sparsité, les grandes déviations de la plus grande valeur propre sont dominées par l'émergence d'une clique de taille sous-entropique munie de hauts poids ou bien d'un sommet de haut degré. De façon intéressante, la fonction de taux est discontinue en la valeur typique, ce qui reflète le fait que les déviations sont générées par des perturbations de rang fini. Ceci est un travail en collaboration avec Anirban Basak.

Séminaire de Probabilités
Mardi 13 décembre 2022, 14 heures, Jussieu, Salle Paul Lévy, 16-26 209
Laurent Massoulié (Inria Paris et DI ENS) Alignment of random graphs: informational and computational limits

Graph alignment is a generic unsupervised machine learning objective with many applications, including de-anonymization of social network data. In this talk we shall consider alignment of correlated Erdös-Rényi random graphs. We shall describe recent results on information-theoretic limits to feasibility of alignment. We shall also describe polynomial-time algorithms for such alignment and sufficient conditions under which they succeed. These latter results are obtained by analysing a hypothesis testing problem of determining whether two Galton-Watson random trees are correlated or independent. The discrepancy between the informational and computational feasibility conditions for graph alignment suggests that the alignment problem displays a so-called “hard phase”, an intriguing phenomenon that has been observed in several other high-dimensional statistical learning tasks.

Groupe de Travail Modélisation Stochastique
Mercredi 14 décembre 2022, 14 heures 15, Sophie Germain 1016
Willem Van Zuijlen (Weierstrass Institute, Berlin) Weakly self avoiding walk in a random potential

We investigate a model of simple-random walk paths in a random environment that has two competing features: an attractive one towards the highest values of a random potential, and a self-repellent one in the spirit of the well-known weakly self-avoiding random walk. We tune the strength of the second effect such that they both contribute on the same scale as the time variable tends to infinity. In this talk I will discuss our results on the identification of (1) the logarithmic asymptotics of the partition function, and (2) of the path behaviour that gives the overwhelming contribution to the partition function. This is joint work with Wolfgang König, Nicolas Pétrélis and Renato Soares dos Santos.

Mathématiques financières et actuarielles, probabilités numériques
Jeudi 15 décembre 2022, 16 heures, Jussieu, Salle Paul Lévy, 16-26 209
Nizar Touzi (CMAP, Ecole Polytechnique) Arrêt optimal en champ moyen

Mathématiques financières et actuarielles, probabilités numériques
Jeudi 15 décembre 2022, 17 heures, Jussieu, Salle Paul Lévy, 16-26 209
Olivier Bokanowski (Univ. Paris Cité, LJLL) Neural Networks for First Order HJB Equations

We consider a deterministic optimal control problem, in a finite horizon context, and propose deep neural network approximations for Bellman's dynamic programming principle, corresponding also to some first-order Hamilton-Jacobi-Bellman (HJB) equations. This work follows the work of Huré, Pham, Bachouch, and Langrené (SIAM J. Numer. Anal., vol. 59 (1), 2021, pp. 525-557) where algorithms are proposed in a stochastic context. However, we need to develop an entirely new approach in order to deal with the propagation of errors in the deterministic setting, where no diffusion is present in the dynamics. Our analysis gives precise error estimates in an average norm. The algorithms are then illustrated on several academic numerical examples related to front propagations models in the presence of obstacle constraints (modelized by an optimal maximum running cost problem) showing the relevance of the approach for average dimensions (e.g. from $2$ to $8$), in particular in situations where the value functions is non-smooth. This is a joint work with Xavier Warin and Averil Prost.