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Abstract — This paper deals with the quantization problem of
a random variable X taking values in a separable and reflexive Ba-
nach space, and with the related question of clustering independent
random observations distributed as X. To this aim, we use a quan-
tization scheme with a class of distortion measures called Bregman
divergences, and provide conditions ensuring the existence of an
optimal quantizer and an empirically optimal quantizer. Rates of
convergence are also discussed.

Index Terms Bregman divergences, Quantization, k-means clus-
tering, Banach spaces, Rates of convergence.

1 Introduction

Bregman divergences are a broad class of dissimilarity measures indexed by
strictly convex functions. Introduced in 1967 by Bregman [9], these proximity
functions are useful in a wide range of areas, among which statistical learning
and data mining (Banerjee, Merugu, Dhillon and Ghosh [4], Cesa-Bianchi and
Lugosi [11]), computational geometry (Nielsen, Boissonnat and Nock [27]),
natural sciences, speech processing and information theory (Gray, Buzo, Gray



and Matsuyama [19]). A lot of well-known proximity measures such as squared
Euclidean, Mahalanobis, Kullback-Leibler and L? distances are particular cases
of Bregman divergences. In R, a Bregman divergence d,; has the form

dy(r,y) = ¢(x) — o(y) — (v — y, Vo(y)),

where (-,-) denotes the standard inner product, and V¢(y) the gradient of
¢ at y. For example, taking ¢(z) = ||z||3 gives back the squared Euclidean
distance. The same definition is valid in Hilbert spaces, and it even generalizes
to Banach spaces by setting

dy(w,y) = () — ¢(y) — Dyd(x — y),

with D,¢ the Fréchet derivative of ¢ at y (Alber and Butnariu [1], Frigyik, Sri-
vastava and Gupta [16]; see also Jones and Byrne [20] and Csiszar [12]). Note
that a Bregman divergence is not necessary a true metric, since it may be asym-
metric or fail to satisfy the triangle inequality. However, Bregman divergences
fulfill an interesting projection property which generalizes the Hilbert projec-
tion on a closed convex set, as shown in Bregman [9] for the finite-dimensional
setting and Alber and Butnariu [1] for the functional case. Recently, Banerjee,
Merugu, Dhillon and Ghosh [4] have established a bijection between finite-
dimensional Bregman divergences and exponential families, and shown that
the standard k-means clustering algorithm (Lloyd [25]|) generalizes to these
divergences.

Following the approach of Banerjee et al. |4]|, we propose in the present paper to
use this class of proximity measures for quantization and clustering purposes.
Quantization, also called lossy data compression in information theory, is the
problem of replacing data by an efficient and compact representation which
allows one to reconstruct the original observations with a certain accuracy.
More formally, for a fixed integer k > 1, a random variable X with distribution
i, taking values in a set X', will be represented by a so-called k-quantizer ¢(X).
Here q is a Borel measurable mapping from X to a finite subset of X with at
most k elements. The error committed when representing X by ¢(X) is given
by the distortion

W (. q) = Ed(X, ¢(X)),

where E denotes expectation with respect to the distribution p and d(-,-) is
called the distortion measure. For more information on quantization, we refer
the reader to Gersho and Gray [17], Graf and Luschgy [18] and Linder [24].
In practice, the distribution g is unknown, and W (u,q) is replaced by the
empirical criterion

W (pin, q) = % Z d(Xi, q(Xi)),



where X,...,X,, are independent random observations with distribution ,
and u, denotes the empirical measure associated with Xy,..., X, i.e.,

1 n
fn(A) = - Zl 1ix,eq

for any Borel subset A of X. In this context, the problem is called clustering
and it consists in grouping data items in meaningful classes by minimizing
W (in, q) over all possible k-quantizers. In short, the goal is to find a data-
based quantizer ¢, such that the clustering risk Wy, q,) is “close” to the
optimal risk inf, W (u, q) as the size of the data set grows.

To date, most of the results pertaining to the clustering problem have been
reported in the finite dimensional case, that is when X = R? (d > 1) endowed
with the Euclidean metric. However, in many applied problems, the data items
are in the form of random functions rather than standard vectors, and this
casts the problem into the general class of functional data clustering. Besides,
Bregman divergences represent a natural tool to measure proximity between
infinite-dimensional objects, such as curves or even probability measures. For
a comprehensive introduction to the topic of functional data analysis, see the
book of Ramsay and Silverman |29]. In this functional statistics context, Biau,
Devroye and Lugosi [7]| investigate clustering with Hilbert norms and Laloé
explores in [22| quantization and clustering with L' norms in Banach spaces.

In the present contribution, we go one step further and consider the problem
of quantization and clustering when d(-,-) is a general Bregman divergence
de(-,-) defined on a reflexive and separable Banach space E. Our approach
extends and completes the results presented in [4], which focuses on the finite-
dimensional setting and adopts a more algorithmic-oriented point of view. The
paper is organized as follows. In Section 2, we set up notation and assump-
tions, and recall the relevant definitions. In Section 3, we provide conditions
ensuring the existence of a minimizer ¢* of the distortion W (u,q) and its em-
pirical counterpart ¢;. Then, in Section 4, we focus on the convergence of
the distortion and prove almost sure and L' convergence of W (u, ') towards
W, q*). Rates of convergence which do not depend on the dimension of F
are also obtained, using Rademacher averages as complexity measures. For
the sake of clarity, proofs are postponed to Section 5.

2 Context and assumptions

In this section, we formally define Bregman divergences, quantization and k-
means clustering. We first need some notation and assumptions. Throughout
the paper, (E, || -||) will denote a separable and reflexive Banach space, and C
will be a measurable convex subset of E. Whenever E is a Hilbert space, (-, )
will stand for its inner product. Recall that the relative interior of a convex



set C, denoted hereafter by 7i(C), is its interior with respect to the affine hull.
Finally, we will write OC for the complement of 7i(C) in its closure C.

We are now in a position to state the general definition of a Bregman divergence
in £ (Alber and Butnariu [1], Frigyik, Srivastava and Gupta [16]).

Definition 2.1. Let C be a convex subset of E, and let ¢ : C — R be strictly
conver and twice continuously differentiable on ri(C). The Bregman divergence
associated with ¢ is defined by

where Dy¢ denotes the Fréchet derivative of ¢ at y.

In particular, when FE' is a Hilbert space, it reduces to

dy(r,y) = ¢(x) — ¢(y) — (v — y, Vo(y)).

Although Bregman divergences are not true metrics, they satisfy some inter-
esting properties, such as non-negativity and separation, convexity in the first
argument and linearity. For a complete description and proofs of these basic
properties, the reader is referred to Bregman [9], Nielsen, Boissonnat and Nock
[27] and Frigyik, Srivastava and Gupta [15]. Table 1 collects the most common
examples of Bregman divergences.

Now, let X be a random variable with distribution u, taking values in C.
Throughout the paper, we make the following assumptions:

1. E||X]| < +o0.
2. EX € ri(C).

3. Elp(X)| < 400 and, for all ¢ € ri(C), E|D.¢(X)| < +o00. This implies
in particular that Eds(X, ¢) < 400 for all c.

Let £ > 1. As already mentioned in the introduction, a k-quantizer is a Borel
measurable mapping ¢ : C C E — ¢, where ¢ = {c¢,...,¢}, ¢ < k, is a
subset of ri(C) called its codebook. In the sequel, the elements of ¢ will also
be named the centers associated to q. Every x € C is represented by a unique
& = ¢q(z) € c and ¢ induces a partition of C in cells Sy,...,S,. Each cell
S; is made of the elements of C whose image by ¢ is ¢;. Every k-quantizer is
characterized by its codebook ¢ = {cy, ..., ¢/} and its partition cells Sy, ..., S;.

The error committed when representing X by ¢(X) is assessed by the distortion

W (4,q) = Edy(X, g(X)) = /C 0o (. q(2))dpu(z). (1)



Bregman divergence E C
Squared loss R
Exponential loss R R
Norm-like R R*
I-divergence (dim 1) R R*
Logistic loss R [0,1]
Itakura-Saito (dim 1) R (0, +00)
Squared Euclidean distance R¢ R¢
Mahalanobis distance R4 R4
Kullback-Leibler (discrete) R (d — 1)—simplex
I-divergence (discrete) R? (R+)d
Squared L? norm L3(I,m) L2(I,m)
Kullback-Leibler (continuous) L2([0,1],dt) {z € C°([0,1)) fo t)dt =1}
I-divergence (continuous) L2([0,1],dt) {z € C°([0,1]),z > 0}
Itakura-Saito (continuous) L3 (dt) {x e CY_ x>0}
Bregman divergence o(z) de(z,y)
Squared loss x? (x —y)?
Exponential loss e* e’ —e¥ — (x—y)eY
Norm-like x® 2%+ (a — 1)y — axy*!
I-divergence (dim 1) zlnx zln ¥ — (x —y)
Logistic loss zlnz+ (1 —z)In(l — ) zln? +(1-2)ln (}:—;)
Itakura-Saito (dim 1) —Inz ;—ln? -1
Squared Euclidean distance |z |3 llz — yll3
Mahalanobis distance trAx "o —y) Az —y)
Kullback-Leibler (discrete) 22:1 zolna, Z?Zl 2 In %
I-divergence (discrete) Z?Zl xglnay 2?21 zoln 7 — Z?:l(xf — yr)
Squared L? norm [; 2% (t)dm(t) [z —yll7.
Kullback-Leibler (continuous) fo t)Inz(t)dt f x(t)In tgg dt
I-divergence (continuous) f01 x(t) Inz(t)dt fol (t)In 323 +y(t) — x(t)dt
Itakura-Saito (continuous) —5 ["_In(x(6))dé = [ (In % - % +1)df

Table 1: Some examples of Bregman divergences. The matrix A is supposed to
be positive definite. The notation L?(I,m) stands for the set of square
integrable functions on an interval I C R, with respect to the positive
measure m, L3_(dt) for the set of 2m-periodic square integrable functions,
C(]0,1]) denotes the set of continuous functions on [0, 1], and C3_ the set
of 2m-periodic continuous functions.




Let
W#(p) = inf W, q),

qEQy

where Q. is the set of all k-quantizers. To get a representation that is as
accurate as possible, we look for an optimal quantizer, i.e., a quantizer g*
satisfying

Wi, q") = W (n).

In a statistical context, we only have at hand independent random observa-
tions X1, ..., X,, with distribution xu. The empirical distortion associated with
Xy, , X, is given by

W) = 5 D dal(Xera(X0), ©)

where (i, is the empirical measure. Observe that this is just the distortion (1)
calculated with pu,, instead of p. Clustering data into k groups means looking
for an optimal quantizer ¢ with respect to the empirical distortion (2).

Codebook and partition characterize a quantizer. As in the Euclidean case,
it is easy to show that among all quantizers with same codebook, the best
one (with respect to the distortion) is the nearest neighbor quantizer, whose
partition Si,...,Sy is the Voronoi partition, i.e.,

Sl = {.T c C,d¢($,€1) S d¢($,cp)ap - ]., c. ,é}

and for j =2,...,¢,

j—1
Sj={z € C,dy(r,¢;) < dy(x,c,) . p=1,.... 00\ | S
m=1

(see Linder [|24]). If an optimal quantizer exists, it is necessarily a nearest
neighbor quantizer. Hence, in the sequel, we will always consider nearest
neighbor quantizers. Conversely, given a partition {S;}i_;, with x(S;) > 0
and E[X|X € ;] € ri(C) for j = 1,...,¢, the best quantizer is obtained by
setting
¢ € argcggli(ré)E[d(ﬁ(X, o)X es;] forj=1,... ¢

The next proposition, proved in Section 5, extends a result of Banerjee, Guo
and Wang [3] to the case of functional Bregman divergences.

Proposition 2.1. Let d, be a Bregman divergence. If S is a Borel subset of
C with u(S) > 0 and E[X|X € S] € ri(C), the function

c— Eldy(X,0)|X € 5]

reaches its infimum at a unique element of ri(C), namely E[X|X € S].



Thus, for every Bregman divergence, the minimizer is the conditional expec-
tation, just like for the squared Euclidean distance. Observe that it is the
median instead of the expectation when the distortion measure is an L' norm.

Observe that the combination of Proposition 2.1 and the optimality of the
Voronoi partition is of computational interest. Indeed, even for squared Eu-
clidean distance, minimizing the empirical distortion is generally a computa-
tionally hard problem, the complexity of an exact algorithm being exponential
in the dimension of the space. In practice, a k-means type algorithm converg-
ing to local minima yields approximate solutions, and this adapts to general
Bregman divergences. More precisely, given an initial codebook, which is made
for instance of data items chosen at random, the algorithm proceeds by alter-
nating between two steps. The first one consists in computing the Voronoi
partition corresponding to the current centers. Then, during the second step,
the new codebook is obtained by computing the mean of the data points falling
in each cluster, according to Proposition 2.1. For further information on k-
means algorithms with Bregman divergences, see Banerjee et al. [4].

3 Existence of an optimal quantizer

In this section, we look for conditions ensuring the existence of an optimal
quantizer ¢*, i.e., a ¢* such that W(u,¢*) = W*(u). Since a nearest neighbor
quantizer is characterized by its codebook ¢ = (c1, ..., ¢x), we may rewrite the
distortion

Wi, c) = Ejzrllinkdd,(X, ;)

and look for an optimal codebook c*.

The existence of a minimum rests upon a compactness argument. We distin-
guish the finite dimensional case (Theorem 3.1) from the general case (Theorem
3.2). In finite dimension, we prove the result by exploiting an idea of Sabin and
Gray |31]| based on Alexandroff one-point-compactification (see, e.g., Dudley
[14]).

Theorem 3.1 (Finite-dimensional case). Assume that the conver set C lies
i a finite-dimensional affine space and that the following statements hold:

1. For all x € C, the function y — dy(z,y) is lower semi-continuous on

ri(C).
2. For all (x,y) € Cxri(C), dg(x,y) < lminf, ;epc dy(z, 2) for all Z € OC.
3. For all (x,y) € C x ri(C), dg(x,y) < liminf))_ e de(2, 2).
Then, there exists an optimal codebook c*, i.e.,

W(p,c*) =W (p).



Requirement 1 is not restrictive since y — dy(z,y) is continuous for most well-
known Bregman divergences. Observe that ¢ and y — D,¢ are continuous
on 7i(C), so that condition 1 could be replaced by lower semi-continuity of
y — Dy¢(y). Roughly speaking, requirements 2 and 3 prevent a possible
minimizer from running to infinity. Note that condition 3 is void whenever C
is bounded. In this case, C is compact and the existence of an optimal codebook
can easily be shown without resorting to Alexandroff compactification.

When FE is potentially infinite-dimensional and C is any convex subset of F,
things are not so simple, since Alexandroff compactification only applies to
locally compact spaces. As we know that E is locally compact if and only if it
is finite-dimensional (see for instance Dudley [14]), this tool is not suited to the
infinite-dimensional case. However, since E is reflexive, a closed and bounded
convex subset of F is compact for the weak topology o(F, E’), that is the
coarsest topology on E making all continuous linear forms on E continuous.
Moreover, every weakly lower semi-continuous function reaches its minimum on
a weakly compact set. Thus, if we know in advance that c* is to be searched for
in a closed and bounded convex set, an argument of continuity suffices to show
the existence of c*. In the sequel, Cr C 7i(C) will denote a closed and bounded
convex set of diameter 2R. For example, Cp = B(0,R) = {z € E, ||z| < R}
the closed ball of center 0 and radius R. A key fact is that X € Cg implies
that c* € Cp if it exists, by Bregman projection (Alber and Butnariu [1]).

For further details about weak convergence and lower semi-continuous and
convex functions, the reader is referred to Brezis [10] and Rockafellar |30].

Theorem 3.2 (General case). Suppose that there exists R > 0 such that
P{X € Cr} =1, and that for all x € C, y — dy(x,y) is weakly lower semi-
continuous on Cr. Then, there exists an optimal quantizer.

Example 3.1 Convex functions which are lower semi-continuous for the norm
are examples of weakly lower semi-continuous functions (see, e.g., [10]).

Observe that since the weak topology coincides with the norm topology in
finite dimension, the term “weakly” in Theorem 3.2 can be dropped whenever
E' is finite-dimensional.

In fact, if we only have Cr N 7i(C) # 0 instead of Cr C ri(C), but ¢ is of
Legendre type (see Rockafellar [30], and for the infinite-dimensional definition,
Bauschke, Borwein and Combettes [6]), it remains possible to use Bregman
projection to obtain the same result.

In the particular case where dy(-, -) is the squared distance induced by the inner
product of a Hilbert space, it can be shown (see Section 5) that it is sufficient
to look for an optimal quantizer on a ball. Hence, Theorem 3.2 admits the
following corollary.



Corollary 3.1. Let E be a Hilbert space. If ¢(-) = || - ||, there exists an
optimal quantizer corresponding to the Bregman divergence dy(-,-).

In the last part of this section, we turn to the existence of an empirically
optimal quantizer. In other words, we will look for a minimizer c; of the
empirical distortion

W (fin, €) Z mln d¢(XZ,cj)

7 7

Since the support of the empirical measure p, contains at most n points, it is
included in a closed ball Br. Thus, Theorem 3.2 implies the following result.

Corollary 3.2. Assume that for all v € C, y — dy(x,y) is weakly lower
semi-continuous. Then, there exists an empirically optimal quantizer.

As above, the term “weakly” may be omitted when FE is finite-dimensional.

4 Convergence

4.1 Convergence of the distortion

Suppose that there exists an optimal codebook c; that achieves the minimum
of the empirical distortion W (u,,c). We turn our attention to the “true”
distortion W (u, c) for ¢ = ¢}, and would like to know if this quantity gets close
to the minimal distortion W*(u) as the number n of observations becomes
large.

Assuming that c* exists,

W, e,) = W*(p) = Win, cy) — W(p, )

W, cp) = Wkn, ;) + W, c;) — W(p, c*)
W( ) (:U’?% n) + W(,LLn, ) - W(/vbv C*)
2

sup [W(pn, ) — W(p,c)|.

ceri(C)k

IAIA

Thus, if we intend to show that W (u,c}) converges to W*(u) as n tends to

infinity, it will be enough to prove that sup.c,;c)r W (tn, €)= W (1, €)| vanishes
as n tends to infinity.

As in the previous section, we distinguish the finite-dimensional case (Theorem
4.1) from the general case (Theorem 4.2).



Theorem 4.1 (Finite-dimensional case). Assume that C lies in a finite-
dimensional affine space and that the following statements hold:

1. The Bregman divergence dy(-,-) is continuous.

2. Forallz € C, Z € OC, lim,_zepc dy(z, 2) = 00 .

3. For all x € C, lim|;|— 400 dg(, 2) = 400.

4. For all x € C, the function y — dg(x,y) is convex on ri(C).
Then, if c; is a minimizer of the empirical distortion,

lim Wi(u,c;)=W"(u) a.s.

n—-+o00

Note that the existence of ¢! (and c*) is guaranteed under these assumptions.

In view of the definition of ¢, the requirement 1 could be replaced by the
continuity of (z,y) — D,¢(xr — y). Condition 4 is not necessarily satis-
fied for each Bregman divergence. For instance, the Itakura-Saito divergence
dg(z,y) = 5 —In§ — 1 is not convex in the second argument.

As for the existence of an optimal quantizer, the infinite-dimensional setting
requires further hypotheses, as expressed in the following theorem:

Theorem 4.2 (General case). Assume that for all x € C, y — dy(x,y)
s weakly lower semi-continuous, so that there exists a minimizer c; of the
empirical distortion. If there exists R > 0 such that P{X € Cr} = 1, and
M = M (¢, R) > 0 such that, for all ¢ € Cr, ||D.¢|| < M, then

lim Wi(u,c;)=W"(u) a.s.

n—-+o0o

and

lim EW(,c)) = W (u).

n—-40o

Let us point out that the convergence results lim,,_, o W(u,c:) = W*(u) a.s.
and lim,, ., o EW (i, c’) = W*(u) always hold when ¢(-) = || - ||* (Biau, De-
vroye and Lugosi |7]).

Let us now discuss some examples.

Example 4.1 (I-divergence in dimension 1). Here £ =R, C = R" and dy(z,y) =
zIn? — (z —y). Let z € C. The map y — xzIny — (z — y) is continuous
and convex on 7i(C) = (0, +00) (its second derivative is .5 > 0) and tends to
400 as y tends to 0 or +o0o. Thus there exists a quantizer whose codebook
achieves the minimum of the distortion W (x, c) (Theorem 3.1) as well as an
empirically optimal quantizer (Corollary 3.2). Moreover, if ¢! is a minimizer
of the empirical distortion, almost sure convergence of W (u,c?) to W*(u) is
ensured (Theorem 4.1).

10



Example 4.2 (Exponential loss). Let £ = C = R and ¢(x) = €”, which yields
dy(z,y) = e*—e¥—(x—y)eY. The function y — e*—e¥ —(x—y)e¥ is continuous
on R. If P{|X| < R} = 1, there exists an optimal quantizer (Theorem 3.2),
and since ¢/'(z) = € < e® on [—R, R|, W(u,c}) converges almost surely and
in L' to W*(u) (Theorem 4.2).

Example 4.3 (Squared Euclidean distance). When dy(-,-) is the squared Eu-
clidean distance, existence of an optimal quantizer, almost sure and L' con-
vergence of the distortion are guaranteed.

Example 4.4 (Kullback-Leibler divergence between discrete probability measures).
Here, F = RY C is the (d — 1)-simplex and dg(p,q) = Z?leg In %. The
function ¢ = (q1,...,q4) — Ze L peln pz is continuous and convex on 7i(C) =
{(p1,--.,pa) € (0,400)? ,Zezlpg = 1} and tends to +oo as one of the ¢’s

tends to 0. Thus, there exists an optimal quantizer and we have almost sure
convergence of the distortion.

Example 4.5 (Squared L?* distance). Let £ =C = L*([0,1],dt), and dy(x,y) =
fo (t))%dt. This is a Hilbert norm, thus the existence of a minimizer
of the dlstortlon as well as convergence are guaranteed.

Example 4.6 (I-divergence). Let E = L*([0, 1], dt) and let C be the set of all
continuous non-negative elements of E. Here dy(p, ¢ fo t)In p(t +q(t) —

p(t)]dt. The map ¢ — dy(p, q) is continuous and convex and therefore weakly
semi-continuous. Assume that P{r <|X| < R} = 1 (r > 0). Then, there
exists an optimal quantizer. Moreover, we have almost sure and L' convergence
of the distortion.

4.2 Rates of convergence

The previous section indicates that W(u,c}) gets close to the minimal dis-
tortion when the sample size grows. However, it gives no information about
the rates of convergence. To address this question, let us first observe that
minimizing

Wip,c)=E min dy(X,c;) =E min (¢(X) = d(cj) = De; (X — ;)

j=1,..k

is equivalent to minimizing the quantity

W(p,c)=E mink (—o(cj) = De,d(X —¢5)) -

j:17"'7

Similarly, to W (u,, c), we associate

n

W (pin, c) = 1 Z min_ (—¢(¢;) — De,o(X; — ¢5)) .

n 4~ j=1,..k

11



Since
Wi, ct) — inf W(u,c)=W(u,c:)— inf W(p,
(ks <) it (1:c) (k. c3,) ok, (1, )
and

EW(U? C:;) — inf W(,ua C)

ceri(C)k

<E sup (W(pn,c)=W(n,c)) +E sup (W(g,c)—W(u,c)) (3)

ceri(C)k ceri(C)k

(see Lemma 8.2 in Devroye, Gyorfi and Lugosi [13]), we are done if we can find
upper bounds for the uniform deviation

E sup (W(pn,c) —W(u,c)).

ceri(C)k

(The second term of the right-hand side of (3) can indeed be bounded by an
upper bound of the first term.) The next theorem may be proved by resorting
to the Rademacher averages as a complexity measure for a function class (see,
e.g., Bartlett, Boucheron, and Lugosi [5]).

Theorem 4.3. For Cr C ri(C), the following inequality holds:

E sup (W(un, c) — Wi(u, c))

ceck
2k
< ——( sup | — ¢(c) + D.o(c)| + sup || Dol (B| X]|?)/?).
22 (sup 1= 60)+ Deote)] + sup |D.01IX]1)?)

Corollary 4.1. Suppose that for all x € C, y — dg(x,y) is weakly lower semi-
continuous, which ensures the existence of an optimal codebook c;. Assume
that there exists R > 0 such that P{X € Cr} = 1. If | — ¢(c) + D.o(c)|
and ||D.¢| are uniformly bounded on Cr by My, = My(¢,R) > 0 and My =
Ms(¢, R) > 0 respectively, then

EW (1, %) — W*(p) < j—’% (M, + My(E|X|?)),

and thus n

EW =W ) < —

(1. ) (n) < NG

Note that Corollary 4.1 yields dimension-free upper bounds. This is worth
pointing out since E is allowed to be high (or even infinite)-dimensional.

(M, + MzR).

Example 4.1 In this example, we give the bounds obtained for some usual

Bregman divergences. We assume throughout that there exists 2 > 0 such
that P{||X|| < R} = 1.

12



1. Squared loss. For ¢(x) = 22,

4k

EW (p,c,) =W (p) < NG

(R* + 2R(E|X|)Y?)

and then
12k R?

N

EW(u, c,) = W*(p) <

T

2. Exponential loss. For ¢(z) = e*,
4k(2R — 1)e
EW =W p) L ——————.
(1 ) NG
3. Squared Euclidean distance. For the squared Euclidean norm ¢(z) = ||z]|?,
12k R?
vn o
4. Mahalanobis distance. For ¢(x) = ‘x Az with A positive definite,
12k||A|| R?
Vi

5. Squared L? distance. When ¢ is a squared L? norm,

12k R?
Vi

Remark 4.1 Some Bregman divergences, typically Kullback-Leibler, involve a
logarithm, which prevents ||D.¢|| from being uniformly bounded on a ball Bpg.
In order to circumvent this difficulty, a possible solution is to consider a class
of elements of E satisfying the following assumption:

EW (, €;) = WH(p) <

EW (1, ¢}) — W*(n) <

EW(u, c,) = W*(p) <

e In dimension 1,0 <r < X < R < 400 a.s.

e In dimension d (2 < d < +00), when the logarithm appears in a sum or
an integral, 320, In*(z,) < M(R) or [In*(z(t))dt < M(R).

Several conditions of this type can be found in the literature on Kullback-
Leibler divergence. For instance, Jordan, Nguyen and Wainwright [21], who
develop an estimation method for the Kullback-Leibler divergence, require an
envelope condition or boundedness from above and below.

As an illustration, let dy(z,y) = fol x(t) In %dt. Suppose that P{|| X|| < R} =

1 for some R > 0 and that fol In?(X(t))dt < R?. Assuming that the codebooks
belong to the same function class as X, we obtain

EW@mm—Wwos%§u+m.
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5 Proofs

5.1 Proof of Proposition 2.1

The proof of Banerjee, Guo and Wang [3] may be adapted to the infinite-
dimensional case. We will check that E[X|X € S] minimizes E[d,(X, ¢)|X € 5]
and that it is the only element of ri(C) with this property. For ¢ € ri(C),

Eldy(X,c)| X € S] — E[dy(X,E[X|X € S])|X € 5]
=E[¢(X) = é(c) = Dep(X — ¢) = (X)) + ¢(E[X|X € 5])
+ Drix|xes)9(X — E[X|X € S])|X € 5]
= ¢(E[X|X € 5]) — ¢(c) — Dp(E[X|X € 5] —¢)
= dys(E[X|X € S5],¢).

Indeed, expectation and derivation intertwine, since the derivative is a con-
tinuous linear form (see, e.g., Proposition 1.1.6 in Arendt, Batty, Hieber and
Neubrander |2|). However,

d4(E[X|X € S],¢) > 0
and dy(E[X|X € 5],¢) =0 if and only if ¢ = E[X|X € S]. Hence,
Elds(X,c)|X € S] > E[dy(X,E[X|X € S])|X € 5],

and equality holds if and only if ¢ = E[X|X € S]. Thus, E[X|X € S] is the
unique minimizer of the function ¢ — E[d, (X, ¢)|X € S] on ri(C).

5.2 Proof of Theorem 3.1

Setting dy(z, 2) = iminf, .;coc dy(z, 2) for all z € C and 2 € OC, y — dy(z,y)
extends to a lower semi-continuous function C — [0, 4+00]. We compactify
C by adding a point at infinity w. Let C = C U {w} denote the Alexan-
droff compactification of C (for details about the Alexandroff one-point com-
pactification, see for instance Dudley [14]). By Tychonoff’s theorem, (see,
e.g., Dudley [14]) the product C* is also compact. We set for all z € C,
dg(r,w) = liminf). 4o dg(z, 2). According to the assumptions, the function
y — dy(r,y) from C to [0, +00] is lower semi-continuous, that is the level set
{c cC d¢(a: c) < )\} is closed for all A € R. Since {c € C* IIllIlj 1k d¢(x cj) <

.....

77777
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also closed, i.e., this function is lower semi-continuous. Hence, for ¢ € C¥,

lim inf W (g, ¢’) = lim inf mm d¢( c)dp(x)

c/—c c/—c cJ=

c/'—c ]—17 )

_/hmmf min dy(z, ¢;)dp(z)
c

(by Fatou’s Lemma)

> [ i dote. (s
= W(pu,c).

Thus, ¢ — W(u, c) is lower semi-continuous on the compact CF, and it reaches
its minimum at some codebook c*. By conditions 2 and 3, we can assume that
c* € ri(C)*: if not, we replace the coordinates which belong to dC or equal w
by elements of ri(C). Therefore, there exists an optimal codebook c¢*, and the
result is proved.

5.3 Proof of Theorem 3.2

Since P{X € Cr} = 1, it suffices to look for a minimizer c¢* of the distortion
over C. Indeed,
Ve e TZ(C), dd,(X, C) > d¢(X, E)

with ¢ the Bregman projection [1| of ¢ on Cgr. Thus, for any codebook ¢ =
(Cl, . ,Ck), ifc = (El, R ,Ek), Eminjzlw,k d¢(X, Cj) Z Eminjzlr_.,k d¢(X, Ej),
i.e., W(u,c) > W(u,c). This shows that projecting any center on the closed
and bounded convex set Cr can only reduce the distortion. Since E is reflexive,
Cr is weakly compact by Kakutani’s Theorem (see [10] for instance), and so is
Ck. Let us show that W (y,-) is weakly lower semi-continuous. The function
y — dy(z,y) is weakly lower semi-continuous for all € C. This means that
for all A € R, the level sets {¢ € Cgr,dy(z,c) < A} are weakly closed. As
{c € Ch,minj—y _pdy(x,c;) <t} = Ujf:l{c € Ch,dy(x,c;) < t}, the level
sets of ¢ — min;—y _,dy(x,c;) are weakly closed as well, and this function is
weakly lower semi-continuous. If ¢’ converges weakly to c,

liminf W (g, ¢’) = liminf [ min d¢( c)du(x)

c/—c c/—c J=1,..

_/hmmf min d¢( c)dp(x)

c’—c j=1,..k

(Fatou’s Lemma)
> [ min, du(a,;)dua) = Wip,c)
j=1oees

since € — min;—; d¢(x, ¢;) is weakly lower semi-continuous. Thus Wi, ) is
weakly lower semi-continuous on a weakly compact set, which implies that it
reaches its minimum, i.e., there exists c* € CF, such that W (u,c*) = W*(u).

15



5.4 Proof of Corollary 3.1

The result follows from Theorem 3.2 and from the following lemma whose
proof is close to the first part of the proof of Theorem 1 in Linder [24] (see
also Pollard [28]).

Lemma 5.1 Let d, be a Bregman divergence. Assume that the second deriva-
tive of ¢ : E — R is uniformly strongly positive, i.e., there exists m = m(¢) > 0
such that for all ¢, D?¢(z,x) > m||z||?, and that there exists M = M (¢) such
that for all ¢, || D?¢|| < M. Then,

inf W(u,c)= inf W(y,c)

ceEF ceBk
for some R > 0.

Proof of Lemma 5.1. By Taylor’s formula, there exists z belonging to the open
segment xy, such that

6(x) = 6(y) + Dyl — ) + L D26(x —y, 2 — ).

Thus,
1
do(w,y) = 5DZd(x —y,x —y),
which implies, by assumption,

m M
Sl = yll* < dg(z,y) < — |z —yl”.
2 2

For an integer £ > 1 and ¢’ = (c1,...,¢), let

we(c’) =E min dy(z,c;).
j=1,...,0
Let W/ (u) denote the optimal distortion with respect to ¢-quantizers. Since
Corollary 3.1 corresponds to Proposition 2.1 when k£ = 1, we suppose k > 2.
Moreover, we can assume that the support of p contains at least k£ points
(otherwise, we would not look for a k-quantizer), so that W (u) < Wy, (u).
Let € > 0 such that

1 * *
e < 5 (W) = Wi () (4)
and let 0 < r; < ry such that

5 (2= 11)?(Br) > Wi () + 2 (5)

and

16



We choose a codebook c* = (¢y, ..., c) such that

w(e®) < Win) +e
This implies
wi(e") < Wiy (n) — ¢,
which ensures that cq,..., ¢, are distinct. Assume that these elements are
sorted in increasing order, that is ||c1|| < -+ < ||¢g||. Then, ||¢1]] < 72. To see

this, suppose that |ci|| > ro. This means that ||¢;|| > 7, for all j. Thus, for
T € B,

min d¢(a: cj) > % min Hx —¢?

Jj=1,..., Jj=1,..,
m
> _
> 5 min, (el = 1l]l)?
m
> —
= 2(7”2 7"1)

Hence, Wi (1) + ¢ > 2(ry — r1)*u(B,,), contradicting inequality (5). We will
now show that for all j, [|¢;|| < Cry where C' =2+ 3,/% > 0. Suppose that
llck|l > Cre. On the event {z € Bsy,,},

9

M
do(w,e1) < - (llell + lleal)* < 5 M3

and

ol i) > 5

m 9
(el = llz[h?* > E(CTQ —2ry)? = §M7’§,

thus
de(z,c1) < dy(z, ).

On {z € B35, },

M
do(w, 1) < (|2l + lleall)” < 2M ]|,
Then
dol,c1) < dol,cx) + 2M 2*Lues, . 7)
Let ¢" ! = (c1,...,c—1) and let {S;}5_; denote the Voronoi partition associ-

ated with the components of c¥. We obtain

77777

<Z/%mwu>/%@ww>

szjij dy(x, c;)dp(x) +2M [ ||z|Pdp().
j:l Sj 2r

B¢
2
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The last statement follows from inequality (7). Then, by inequalities (6) and

(4),

wy_1(cF ) < wp(cF) + ¢
< Wi(p) +2¢
< Wi (w).

This contradicts the definition of W} (). Thus, wg(c®) < W (u) + ¢ implies
(c1,...,cx) € (Ber,)F, and finally, setting R = Cry,

Wi(n) = inf we(ch).

ckeBk

5.5 Proof of Theorem 4.1

As mentioned earlier, to prove Theorem 4.1, it is enough to show that W (ju,, -)
converges uniformly to W (u,-) almost surely. The method is inspired from
Sabin and Gray [31] again. As in the proof of Theorem 3.1, we define the
Bregman divergence dg(-,-) on C x C with C the Alexandroff compactlﬁcatlon
of C. The assumptions imply that the extended function dy(-, ") is continuous.
Continuous convergence on a compact set is equivalent to uniform convergence
(see, e.g., Theorem 3.1.9 in Lojasiewicz [26]). Hence, as C* is compact, it
suffices to show that if (c,)nen iS a sequence of points in Ck converging to c,
then
lim W(uy,,c,) =W(u,c) a.s.

n—-—+o00o

By a theorem of Varadarajan (Theorem 11.4.1 in Dudley [14] for example),
almost surely, the empirical measure p, converges weakly to p. Since E' is
a separable Banach space, by Skorohod’s Representation Theorem (see, e.g.,
Theorem 11.7.2 in |14]), there exist random variables Y and Y,,, defined on the
same probability space, such that Y has distribution u, Y;, has distribution
fn, and Y, converges to Y almost surely. Since the extended function dy(-, -)
is continuous, min;—y__x dy(y,, ¢,;) converges to minj—y _j dg(x, ¢;) as (z,, cy)
converges to (z,c). Therefore, as ¢, converges to ¢, min;—y__j dy(Yy,, cy;) con-
verges almost surely (and thus in distribution) to min;—; d¢(Y, cj). More-
over, for all ¢, dy(Y,,, ¢) converges to dy(Y, c) almost surely, thus also in distri-
bution.

If forall j =1,...,k, ¢;j = w or ¢; € AC, then W(u,c) = +oo. Besides, by
Fatou’s Lemma,

lim inf W (i, c,) = liminf E min d¢(Yn,cnj) > E min d¢(Y cj) =Wi(n,c).

n—-+o00 n—-+00 Jj=1,...,k Jj=1,...,k

Thus, lim,,—, 10 W (s, c,) = +00 = W(p, c).

18



Otherwise, let ¢, be an element of ¢ belonging to 7i(C). There exists in ri(C)
a regular convex polyhedron centered at c¢,,, containing the c,,,’s for large
enough n (for example, an s-dimensional hypercube centered at c,,, where s
denotes the dimension of the affine subspace spanned by ri(C)). Let V denote
the finite set of its vertices. As the function y +— dy(z,y) is assumed to be
convex, for large enough n,

'minkd(b(x,cnj) < dy(x, Cpm) < Zd¢(x,v). (8)

By the strong law of large numbers, almost surely, for all v € V,

Bay(Yor0) = [ dola,o)dinla Z% X,,v)

tends, as n — 400, to

Edy(X,v) = Edy(Y,v).
According to Theorem 3.6 in [8], for any v € V, dy4(Y,,,v) is uniformly inte-
grable. This implies by (8) that the variables min;—y _j dy(Y;,, cnj) are uni-
formly integrable as well. Therefore, by Theorem 3.5 in [8], W(p,,c,) =
i dp(Yn, ¢nj) tends almost surely to Emin;—y  , dy(Y, ¢;) = W(u, c),

,,,,,

as deqlred

5.6 Proof of Theorem 4.2

Since P{X € Cr} = 1, the centers stay in the closed and bounded convex set
Cr as the proof of Theorem 3.2 shows. Let Y and Y,, be the random variables
with distribution p and p,, respectively, given by Skorohod’s Theorem. Then,
for all c,

W (pin,c) — Wi(p,c) =E Hlun dg(Yn,c;) — E Hlnn ds(Y, c;j)

=E min (¢(Y,) = 6(¢;) — De,¢(Va — )
i o) ole) Dt )

.....

-----

Yet, one has

V) = [ olalnaldr) = Z¢

Thus, by the strong law of large numbers, E¢(Y;,) converges to E¢(X) = Ep(Y)
almost surely. By the triangle inequality, |Y]| + ||Ya| — ||Yn — Y| > 0. By
Fatou’s Lemma,

lim inf (Y] +[|Yo | = Yo =Y]) 2 B lm ([Y[+[Yall = [[Ya = Y]]) = 2E[[Y].
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Moreover, the law of large numbers implies that E||Y,|| converges to E||Y||

almost surely. Thus,
E|IlY, =Y|] — 0 a.s.

n—-+00
Hence, almost surely,

sup |W(,un,c) - W(,U,,C)| — 0

ceck, oo
This completes the proof of the first statement.

We now turn to the second assertion. The following inequality (see [13]) shows
that it suffices to prove that Esupeccr (W (pa,c) — W(p,c)) vanishes as n
tends to infinity:

EW(Na C:;) — inf W(:“’u C)
CEC%
< E sup (W (pn, ¢) = Wi, ¢)) + E sup (W(p,c) = W(pn,c)).
ceck ceck,
As stated above,
W (s ©) = W(n, ) < Eg(Y,) — E6(Y) + ME||Y, — Y|

for all ¢ € C§. Moreover,

n

Eo(Y,) — E6(Y) = = 3~ 6(X;) — E9(X),

i=1

and taking expectation with respect to the X;’s, we have
1 n
E(— X;) — E¢(X ) = 0.
- ; 6(X;) — E¢(X)

It remains to show that Esupgccr E[|Y, — Y| tends to 0 as n tends to infinity.
This can be done by a slight adaptation of the proof of Lemma 4.2. in Biau,
Devroye and Lugosi [7].

5.7 Proof of Theorem 4.3

We first recall the definition and some useful properties of the Rademacher av-
erages. Let £1,...,¢, be independent Rademacher random variables, that is in-
dependent random variables taking values in {—1, 1} such that P{¢; = —1} =
P{e; = 1} = 3, independent of Xi,...,X,. For a class G of functions from E
to R, the Rademacher averages of G are defined by

n

Rn(g) = Esup l Z 51’9(Xz‘)-

n
9€6 T im
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We will use the following properties:
1. For a € R, R,(aG) = |a|R,(G), where aG = {ag,g € G}.

2. R,(|9]) < R,.(G), where |G| = {l|g|,g € G}. (This property follows from
the contraction principle of Ledoux and Talagrand [23].)

3. Ro(Gi + G2) < R,(G1) + Ru(Gs), where Gy + Go = {g1 + 92, (91,92) €
G x 92)}-

Theorem 4.3 is a consequence of the following lemma.

Lemma 5.2 For ¢ € Cg, let £. denote the real-valued function defined by

gc(x) = _¢<C) - Dc¢($ - C)a reC.
Then,

n

E sup (W (pn, ¢) — W(p,c)) < 2E sup lz& 'nlnn le;(X5).

CEC?2 CECII% n i=1 J=4ee

<k<Esgcp Zez (X +%s€up|— 4(0) + Do (o)]).

(iii)
1
E sup — e:D.p(X <—sup D.o||(E||X||*)Y2.
Z 77 Sup D0 (EILX])

Proof of Lemma 5.2. (i) Let X{,..., X! be an independent copy of X1, ..., X,
independent of the Rademacher variables ¢4, ...,¢,. We have

E sup (W(um c) — W(u, C))

cecg

=E sup (% Z 'n}inkfcj (X;) —E minkﬂcj(X))

ceck

1 , 1 ,
=E e (530 min, (40 ~EL 3 min, (X))
1 n
= sup E( min (., (X;) — — min (.. (X)) X3, ,Xn>.
ceck n = j=1,....k n = j=1,...,
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By Jensen’s inequality,

E sup (W(Mna C) - W(:uv C))

CECE
1
<E hl < in 0. (X)) — min £, X(>
SEsup o3 ((min, G (X) = min £, (X)
1 n
sup > e min, £ (X) = i, £, (X)
~ cecgn p Zj:1 ..... k cj 7 cecgn ot 7 PZionk c; i

1
= 2E sup — g; min 4. (X;).
ce(,’zn; Jj=1,...k ]( )

(ii) To obtain the inequality (ii), we argue by induction on k. For k = 1,

ceCr N i=1
1 n

=E sup — Z&(—cb(c) — Deg(X; — ¢))

CECR n i=1

| — ¢(c) + Deg(c)] | ¢

< Esu gD, )+ Esu i

CECI]){ zz ¢ cECI; n zzl

n 1/2

<Baw L3 o) + |- ote) + Dot (B( D))

ceCp N i—1 7’L c€Cr i=1

1
=E su gD, )+ —=sup | — + D.¢(c)|,
sup Z 6(X,) + = sup | = 9(c) + Deo(e)

using the fact that the ¢;’s are independent. Assume that statement (ii) is true
for k — 1, and let us show that it is true for k. Let c*~* = (¢1,..., cp_1).

n

1
IFﬂsup—X:»sz HlllIl le;(Xi)

CECII% n i=1 ]7 """
1 n
=[E sup — E £; min <€ck (X;), min ﬁc‘(Xi)>
kN 4 j=1,..k—1
CGCR i=1

n

1 . :
=E sup — Zéi (EC,C(XZ») + _min lécj (X3) — e, (X)) — min IZC].(XZ»)D,

CEC% n =1 Jj=1,.., - Jj=1,., -

22



since min(a, b) = (a+b)/2 — |a — b|/2. By properties of Rademacher averages,

n

1
E sup — Z g Hllln le;(X3)

Ceck n/,_l J=1,...,

< Esup — Ze€ klﬁz&'mlrlﬁ le;(X5)

CECR i—1 Ck le 7777

—’“<E§e‘£ z Deo(X +%ng21— 8(c) + Ded(0)] ).

which is the desired bound for k.
(iii) We have

E sup — Zéz 0(X;) = E sup Dc¢(25X)

CECR i=1 CECR
<! ~ sup ||DC¢||EH Zgz
n cec R
1/2
< Lawp ||Dc¢||(EH > eiX )
n cec R

IN

1 1/2
—sup || D.¢ (E( X; ) )
s Dol (E( 1

Using the fact that the X;’s are independent and identically distributed,

1 n 1/2
B sup Y500 < 1 sup Do) (23 1)
ceCRr =1

1
— sup || Degl| (nE [ X|*)"2

ceCr

1
= — sup || D.o||(E||X||*)2.
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Erratum

Theorem 4.3 and Corollary 4.1 must be replaced by the statements below.

Theorem 4.3. Suppose that E is a type 2 Banach space with constant Ty. For
Cr C 1i(C), the following inequality holds:

E sup (W (un,c) — W(p,c))

c€C§

< \2/1%@;2& | = 0(6) + Deofe)] + T sup I Ded|(ELX)2).

Corollary 4.1. Suppose that E is a type 2 Banach space with constant T, and
that, for all x € C, y — dy(x,y) is weakly lower semi-continuous, which ensures
the existence of an optimal codebook c;,. Assume that there exists R > 0 such that
P{X €Cr} =1. If | — ¢(c) + D.p(c)| and ||D.¢|| are uniformly bounded on Cr by
My = Mi(¢,R) > 0 and My = Ms(¢, ) > 0 respectively, then

B (1 ¢3) — W (1) < o= (My + ToM(B X [P)?)

T
and thus n
EW(/L,C:) — W*(M) < ﬁ (Ml + TQMQR) .

Lemma 5.2 (iii) and its proof are to be modified as follows:

Lemma 5.2 (iii) If E' is of type 2, with a constant T,

[sup S eDeo(X ] < % sup | Dol B XY
CGCR i=1
Proof. (iii) We have

{sup S eiDu(X ] [sup DC¢(Z& >]

CGCR i—1

< s IDoE]| >

1 - 2
< — sup | Do (B Y =ixi*)
o up 1D:01 (B 2|

1/2
As FE is of type 2, and since the X; are identically distributed,

[bup Zel D.gp(X ]S

ceCr M i—1

sup HDC¢||T2[ZEHX )"

ceCr

1
= — sup || Degl| To(nE| X )"/

ceCr

15
= —= sup || Deo || (B[ X [|%)"/2.
n ceCp



