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ABSTRACT2

Whistler-mode waves in the inner magnetosphere cause electron precipitation in the atmosphere3
through the physical process of pitch-angle diffusion. The computation of pitch-angle diffusion4
relies on quasi-linear theory and becomes time-consuming as soon as it is performed at high5
temporal resolution from satellite measurements of ambient wave and plasma properties. Such an6
effort is nevertheless required to capture accurately the variability and complexity of atmospheric7
electron precipitation, which are involved in various Earth’s ionosphere-magnetosphere coupled8
problems. In this work, we build a global machine-learning model of event-driven pitch-angle9
diffusion coefficients for storm conditions based on the data of a variety of storms observed by10
the NASA Van Allen Probes. We first proceed step-by-step by testing 8 nonparametric machine11
learning methods. With them, we derive machine learning based models of event-driven diffusion12
coefficients for the storm of March 2013 associated with high-speed streams. We define 313
diagnostics that allow to highlight the properties of the selected model and to select the best14
method. Three methods are retained for their accuracy/efficiency: spline interpolation, the radial15
basis method, and neural networks (DNN), the latter being selected for the second step of the16
study. We then use event-driven diffusion coefficients computed from 32 high-speed stream17
storms in order to build for the first time a statistical event-driven diffusion coefficients that is18
embedded within the retained DNN model. We achieve a global mean event-driven model in19
which we introduce a two-parameter dependence, with both the Kp-index and time kept as in20
an epoch analysis following the storm evolution. The DNN model does not entail any issue to21
reproduce quite perfectly its target, i.e. averaged diffusion coefficients, with rare exception in the22
Landau resonance region. The DNN mean model is then used to analyze how mean diffusion23
coefficients behave compared with individual ones. We find a poor performance of any mean24
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models compared with individual events, with mean diffusion coefficients computing the general25
trend at best, due to their large variability.26

The DNN-based model allows simple and fast data exploration of pitch-angle diffusion among its27
multiple variables. We finally discuss how to conduct uncertainty quantification of Fokker-Planck28
simulations of storm conditions for space weather nowcasting and forecasting.29

—–30

Keywords: Pitch-angle diffusion, event-driven, machine learning, data exploration31

1 INTRODUCTION

Pitch angle diffusion is one of the major mechanisms that drive the structure of the Van Allen radiation belts32
and cause the well-known two belt structure. Whistler-mode hiss waves are responsible for the scattering33
of energetic electrons by wave-particle interactions and their subsequent precipitation into the atmosphere,34
forming a region devoid of electrons in the inner magnetosphere, known as the slot region, between the35
two radiation belts (Lyons and Thorne, 1973). Observations of the dynamics of the slot from the NASA36
Van Allen Probes (Mauk et al., 2013) are, for instance, presented in Reeves et al. (2016). Radiation dose37
received by the electronics of orbiting spacecraft is then reduced in the slot region. In the atmosphere,38
Breneman et al. (2015) have observed a direct correlation between the pulsation of the whistler-mode hiss39
waves and precipitated electrons at ∼100 km observed from a balloon of the BARREL mission (Millan40
et al., 2013). Linking directly precipitations and wave activity remains an open research subject of the41
ionosphere-magnetosphere system (Millan et al., 2021). The recent review in Ripoll et al. (2020a) and42
references therein brings more insight on radiation belt physics and current open questions.43

Pitch angle scattering can be computed either from statistical models derived from years of satellite44
observations of the hiss waves properties, e.g. from missions such as CRRES (e.g. Meredith et al. 2009),45
the Van Allen Probes (e.g. Li et al. 2015), and combined missions (e.g. Meredith et al. 2018a) or directly46
from the evolving observations of the ambient properties for a particular event (e.g. Ripoll et al. 2016b,47
2017). The latter method is called the event-driven approach (e.g. Thorne et al. 2013) and is the focus48
of this article. It consists in feeding a quasi-linear Fokker-Planck model (here, we use the CEVA code49
developed originally by Réveillé (1997)) with in-situ measurements of wave properties and the plasma50
density observations made by the Van Allen Probes in order to produce pitch angle diffusion coefficients,51
Dαα(t), at a high temporal resolution. The high temporal resolution comes from refreshing the coefficient52
values from the temporally updated parameters, with this new evaluation made at best at every pass of the53
satellite and properties assumed as constant between two passes. Results of Watt et al. (2021) have shown54
that updating the diffusion coefficients at a time rate of less than 9 hours (representing one Van Allen55
Probes orbit) was producing the best accuracy. In return, a computational step requires massively parallel56
computations in order to calculate bounced-averaged pitch angle diffusion coefficients at each satellite pass57
time, t, and location, L, i.e. Dαα (t, L, E, α) = Dαα (wi(t, L), ne(t, L), E, α), with the locally measured58
wave properties denoted here as wi(t, L) for i = 1...5, and the plasma density, ne(t, L), for any electron at59
time t, L-shell L, of energy E, and equatorial pitch angle α. The index i = 1...5 includes the four main60
wave properties, which determine the distribution of a given wave both in frequency and wave normal61
angle, i.e., the wave mean frequency, frequency width, wave normal angle and wave normal angle width.62
The fifth parameter is the wave power, with a quadratic dependence of the diffusion coefficient on wave63
power. General and technical explanation about the computation of the diffusion coefficients are given in64
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the second section of this article. For further details of this method the reader is referred to Ripoll et al.65
(2017, 2019, 2020b).66

Once diffusion coefficients are computed for a given event, one can repeat the procedure for many67
events of the same kind (here applied to high speed stream storms) and derive statistical event-driven68
diffusion coefficients D̃αα (wi, ne, L, E, α), with D̃ denoting, for instance, a temporal average. For69
comparison, the classic statistical approach, for which the mean of the properties is used, produces instead70
Dαα (w̃i, ñe, L, E, α). In statistical methods, a binning on the geomagnetic conditions (using the Kp71
geomagnetic index (Sicard-Piet et al., 2014; Horne et al., 2013) or sometimes the AE index (Meredith et al.,72
2018b)) is commonly introduced in order to reflect at least partially the dynamics of the wave-particle73
interaction. Conversely, our method allows to keep the non-linearity of the functional form of the diffusion74
coefficients and the coupling between all parameters since we compute means of diffusion coefficients D̃αα75
rather than diffusion coefficients of mean properties. We believe this is required to capture accurately the76
variability and complexity of atmospheric electron precipitation, which is crucial for studying the Earth’s77
ionosphere-magnetosphere coupling. Similarly to statistical methods, we will also re-introduce a binning78
with respect to the geomagnetic indices once we generate statistics of event-driven diffusion coefficient79
below, i.e. means of diffusion coefficients D̃αα per geomagnetic activity bin, with the use of machine80
learning techniques.81

Machine-learning (ML) techniques have been used for different problems related to ionospheric physics,82
such as ionospheric scintillation (Linty et al., 2018; McGranaghan et al., 2018), the estimation of maps of83
total electron content (TEC) (Tulunay et al., 2006; Sun et al., 2017; Cesaroni et al., 2020), the modeling of84
the foF2 parameter (which is the highest frequency that reflects from the ionospheric F2-layer) (Oyeyemi85
et al., 2005), the generation of maps of the thermosphere density (Pérez et al., 2014), and the forecast of86
electron precipitation (McGranaghan et al., 2021).87

For radiation belt physics, neural networks (NN) are among the most popular machine learning methods.88
NN have been used for geomagnetic indices prediction, such as Dst/SYM-H, Kp, AE, and AL (Gruet89
et al., 2018; Siciliano et al., 2021; Takalo and Timonen, 1997; Bala and Reiff, 2012) (see also review in90
(Liemohn et al., 2018)). Models of plasmaspheric density have been developed in Zhelavskaya et al. (2016,91
2017, 2018) and Chu et al. (2017b,a) using NN in order to compensate the lack of density data in radiation92
belt Fokker-Planck simulations. For instance, Ma et al. (2018) computed pitch angle and energy diffusion93
coefficients using the NN-based density model of Chu et al. (2017b,a) in the dusk sector where density can94
be hard to infer and used them afterward in Fokker-Planck simulations. Malaspina et al. (2018) use the95
NN-plasmasphere model of Chu et al. (2017b) to quantify the importance of the density for parameterized96
maps of whistler-mode hiss waves, and Camporeale et al. (2019) provide estimates of the uncertainty for the97
predictions of that NN-plasmasphere model. Other neural network-based models of plasmaspheric density98
have been developed in Zhelavskaya et al. (2016, 2017, 2018) and then used in radiation belt Fokker-Planck99
simulations. For instance, Wang et al. (2020) have performed simulations using plasmapause positions100
inferred from a combination of empirical and Zhelavskaya’s NN-based density model and showed the101
importance of the plasmapause positions on the dynamics of relativistic electrons. For a detailed review of102
machine learning methods applied to both ionospheric and magnetospheric problems, the reader is referred103
to the review in Camporeale (2019).104

In this article, we will show that we can construct a ML model for a single storm based on assimilating the105
pitch-angle diffusion coefficient Dαα (t, L, E, α). Ideally, in order to extend that model to the prediction of106
any storm, we would need quantities that describe the electromagnetic waves and the plasma conditions107
for each ongoing storm, which does not exist in practice. Here, we derive the simplest possible global108
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event-driven model encompassed within a ML model and built on an existing large database of event-driven109
diffusion coefficients. This means that we have to do prediction-error experiments, trying to model pitch110
angle diffusion for storms for all their given variables, evaluate model errors with the reference data, and111
modify the type or the number of the used variables to improve the model at best. A similar problem112
was addressed in Zhelavskaya et al. (2016) for a different quantity: the prediction of the cold electron113
density, training multiple neural networks with different variables and producing different time-averages.114
Time averaging is also at stake when constructing a global model: the longer the averaging period, the115
more regularized the model. With a regularized model, the machine learning model is easier to obtain,116
but its predictive ability is degraded considering a sample event. Yet, regularization should also help in117
generalizing the model to out-of-sample events.118

As a first step, we construct a specific-event model using data from one storm (i.e. March 1, 2013). In119
other words, we build a regression model for Dαα (L,E, α) in 3 dimensions. We compare the results of 8120
machine learning methods, such as deep neural networks, functional approximation and tree-based models,121
and we use different sizes of training dataset to test each model.122

As a second step, we construct a global event-driven model Dαα (t,Kp, L, E, α) with a deep neural123
network using data from the 32 high-speed streams (HSS) storms. For each storm, we extract the124
geomagnetic index Kp evolving in time during the 3 days of the main and recovery phases of the HSS125
storms (Turner et al., 2019). Time will be kept as a main parameter and serve to produce a superposed epoch126
analysis of diffusion during the 3 first days of the HSS storms. This is based on the recognition that each127
storm has a time history, considering, for instance, that two storms having the same geomagnetic activity128
index at the beginning of the storm, or at the end, can still give different pitch-angle diffusion coefficients129
(as the data show). The deep neural network is thus used to learn from a giant diffusion coefficient database130
and construct the first statistical event-driven model diffusion coefficient by whistler-mode hiss waves131
during HSS events, parameterized by both epoch time and Kp index. The machine learning model is thus132
used to replace averages and interpolations of the database elements, which one would perform usually by133
hand, by a numerical expression, which is afterward extremely easy to call for any epoch time, Kp index,134
location, energy and pitch angle, without notably altering the accuracy of the initial database. The article135
is organized as follows. After the introduction in section 1, we present in section 2, the dataset and the136
machine learning methods that are used and tested in this study. In section 3, we present our results first for137
all methods for the March 1, 2013, storm with regularized data and, then, for the global, i.e. statistical,138
even-driven model diffusion coefficient of HSS events made from a database of 32 HSS storms. In section139
4, we discuss the global DNN pitch angle diffusion model and its use for exploration of the database.140
Conclusions are given in Section 5.141

2 MATERIALS AND METHODS

2.1 Description of datasets142

2.1.1 Pitch angle diffusion coefficients143

The diffusion coefficient represents the diffusive effect of a given electromagnetic wave (defined by its144
wave properties) on an energetic electron (with energy E and pitch angle α) trapped on a magnetic field line145
at a L-shell L in a medium containing cold electrons of density ne. Equations 2 to 8 of Lyons et al. (1972)146
define the diffusion coefficients as they are used here. A more synthetic and modern expression of the147
diffusion coefficients is available through Equations 8, 9 in Mourenas and Ripoll (2012) using the notations148
of Albert (2005). One can see that the coefficient directly and explicitly depends on: wave amplitude,149
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wave frequency distribution (defined by a mean frequency and a mean frequency width), a wave normal150
distribution (defined by a mean wave normal angle and mean wave-normal-angle) and plasma density.151
Diffusion coefficients are computed with the CEVA code originally developed by Réveillé et al. (2001).152
In this code, bounce averaged diffusion coefficients are computed following the method and equations of153
Lyons et al. (1972), which account for a sum over all harmonics (−n..., 0, ..., n), a wave normal integration,154
and bounce averaging between the mirror points. The limit of low frequency (ωmed/ωce < 1) and high-155
density (ωmedωce/ω2

pe << 1) are assumed in these computations. (See also Albert (1999) where this156
model is derived within these approximation and analyzed). Drift averaging is then performed in order to157
produce mean diffusion coefficients over the full electron drift. Verification by comparison with diffusion158
coefficients computed with the codes from the US AFRL and BAS (e.g. Albert 1994, 2008; Meredith et al.159
2007) have been performed in Ripoll and Mourenas (2012). Validation studies of the CEVA code include160
Ripoll et al. 2016b, 2017, 2020b; Loridan et al. 2019; Millan et al. 2021.161

Diffusion coefficients are evaluated from observed properties in a dynamic way so as to generate event-162
driven pitch angle diffusion coefficients. Event-driven diffusion coefficients are computed by temporal bins163
of 8 hours each day (3 bins a day). As time is frozen within a 8-hour bin and corresponds to roughly a full164
orbit of the Van Allen Probes, this allows to have frozen parameters for the whole L-shell range (from165
apogee to perigee of the probes) during each temporal bin. This is made to be able to solve the Fokker-166
Planck equation over the entire radiation belt regions through which trapped electrons are transported during167
storms and where they can interact with electromagnetic ambient waves (albeit the wave is present). An168
8-hours temporal resolution also allows to account for short timescales causing non-equilibrium diffusion169
effects (i.e. solutions far from steady states) (e.g. (Ripoll et al., 2016a; Watt et al., 2021; Millan et al.,170
2021)). This means that we evaluate the diffusion coefficients with new properties each 8 hours during171
the few days the storm lasts. We use Van Allen Probes observations of wave amplitude, mean frequency,172
mean frequency width, mean wave normal angle, mean wave-normal-angle and plasma density so that all173
parameters are data-driven. Each one of these ambient properties changes with time and L-shells as the174
satellite observes a new value at each pass. In between two passes, we assume conditions are stable enough175
so that we can keep all parameters constant. This assumption is forced by the lack of available satellite data176
at higher rates. Eventually, the diffusion coefficients are specific to particular chosen events and qualified177
as ’event-driven’ or ’event-specific’.178

All the wave properties, which were listed above as wi(t, L) for i = 1...5, have been extracted from179
data of whistler-mode hiss waves (0.05 to 2kHz; e.g., (Santolı́k et al., 2001)). These primitive data are180
taken from measurements by the Electric and Magnetic Field Instrument Suite and Integrated Science181
(EMFISIS) Waves instrument aboard the Van Allen Probes (Kletzing et al., 2013). As we do, a Magnetic182
Local Time (MLT) dependence of the wave amplitude (i.e. the square root of the power) is taken into183
account by rescaling the locally observed wave amplitude by the MLT-dependence derived statistically184
from 4 years of Van Allen Probes data by Spasojevic et al. (2015). The latter approximation is required185
to account for the great variability of the wave amplitude with MLT (since measurements at all MLTs186
do not exist) but may introduce temporal inaccuracies due to the use of a statistical model. The MLT187
rescaling produces diffusion coefficients that apply over the full azimuthal drift of the electron. Similarly,188
dependence of the diffusion coefficient with the cold electron plasma density (ne(t, L)) is accounted for by189
using either the density deduced from the upper hybrid line measured by EMFISIS (Kurth et al., 2015) or190
the density computed from spacecraft charging (Thaller et al., 2015) measured by the Electric Field Wave191
instrument (EFW) (Wygant et al., 2013) aboard the Van Allen Probes. We note that the wave properties are192
taken from past measured events and that they are unknown for future events so that any model of diffusion193
coefficients cannot be made with the wave properties set as mathematical variable. Wave properties remain194
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Name # of Storm time L E α # data Comment
DS1 32 9 43 60 256 1.90E8 Raw data
DS2 L 1 37 5 60 1E4 Storm of March 2013, from DS1
DS2 32 9 4 60 256 1.8E7 Filtered in L, from DS1
DS3 M13 1 4 60 256 6.1E4 Storm of March 2013, from DS2
DS3 AVG avg 9 4 60 256 2.3E6 Averaged (from DS2) global data

Table 1. List and properties of the various datasets in use.

mandatory parameters that one can either take from direct measurements as here or from statistical models195
(e.g. (Horne et al., 2013; Sicard-Piet et al., 2014; Spasojevic et al., 2015; Li et al., 2015; Ma et al., 2018;196
Wang et al., 2020; Cervantes et al., 2020)). Prediction can then be made from postulating a temporal series197
of one (or more) geomagnetic index for a given period of time or a known type of event.198

Once the diffusion coefficients have been generated from all the primitive ambient properties, they only199
remain dependent on time t, L-shell L, energy, E, and equatorial pitch angle, α. The original spatial grid of200
the diffusion coefficients, Dαα (t, L, E, α), is composed of 43 uniformly distributed bins in L-shell, from201
L = 1.3 to L = 5.5. The energy grid is composed of 60 logarithmically distributed bins from E = 50 keV202
to E = 6 MeV. The pitch angle grid is composed of 256 uniformly distributed pitch angle, from the loss203
cone pitch angle to 90 degrees. This leads to 660480 values per time of interest.204

Due to the large variability of the ambient properties, geomagnetic conditions, and position, the values205
of interest of the pitch-angle diffusion coefficient spread over many decades (from 10−19 to 10−4 s−1) so206
that all our machine learning models will output the logarithm of the diffusion coefficient. However, all207
averages will be made directly on the pitch-angle diffusion coefficient, since averaging instead its logarithm208
would have weighted excessively the lowest diffusion coefficients and biased them.209

During the storm evolution, some of the highest L-shells are located outside the plasmasphere where hiss210
waves are absent, which produces at best a null (when there are traces of the wave in some denser detached211
regions) or undefined diffusion coefficients (when the absence of the wave makes the main parameters212
missing). In this case, the coefficients need to be kept as a null pitch-angle diffusion coefficient in the213
database and in the statistics. If they were removed of the data, it would result in the rare events in which214
the wave are presents wrongly dominating the statistics.215

2.1.2 Original full dataset216

In this study, we consider either 1 or 32 storms, 1 or 9 time intervals, 43 positions, 60 energies, 256 pitch217
angles. This corresponds to 190 million data points, which we call the full dataset, DS1 in Table 1. This218
original set is too large for the herein regression in dimension 3 (i.e. L,E,α) or 5 (i.e. t, geomagnetic index,219
L,E,α) and the first task is a strategy to reduce the amount of data.220

In this article, we first restrain the dataset by choosing values of L at a few discrete points L = 2, 3, 4221
and 5, which gives around 18 millions data. Five L-shells are enough to be representative of the general222
behavior of the diffusion coefficients, i.e. the spread of the cyclotron component over pitch angle, in order223
to first focus on the reduction in (E,α) at fixed L. This dataset is called DS2, see Table 1. The reduction224
method in (E,α) is then directly extended to a finer grid in L in the case of the 32 storms global model (cf.225
section 2.1.4).226
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2.1.3 Dataset for the storm of March 2013227

The dynamics of the electron radiation belts during the month of March 2013 have been subject to much228
attention (e.g., Baker et al. 2014; Li et al. 2014; Reeves et al. 2016; Ripoll et al. 2016b, 2017, 2019). The229
storm of March 1, 2013, is associated with a high-speed solar wind stream that created strong erosion of230
the plasmasphere and resulted in outer belt flux dropout events. The storm was followed by enhancements231
of relativistic electrons in the slot region and outer belt during the three days. An extended period of quiet232
solar wind conditions persisted then for the 11 next days, with the plasmasphere expanding outward to233
L ∼ 5.5. For this event, Ripoll et al. (2016b) showed the electron depletion in both the slot region and234
the outer belt was caused by pitch angle scattering from whistler mode hiss waves. Ripoll et al. (2019)235
extended the demonstration to a global analysis of the 3D (L, E, α) structure of the radiation belts during236
the quiet times from 4 to 15 March and compared the output of event-driven Fokker-Planck simulations to237
pitch angle-resolved Van Allen Probes flux observations with good agreement.238

In this section, we focus on the specific storm of March 1, 2013, and we use the event-driven diffusion239
coefficients database that was generated for the studies of Ripoll et al. (2019). Specific parameters of240
the diffusion coefficients are given there and not recalled here. These coefficients use the local wave and241
data parameters and as such can contain the noise and the variability of the measurements. But since the242
expression of the diffusion coefficients is made of the combination of tractable mathematical expressions,243
with some oscillating Bessel functions, and a series of summation (over the harmonics) and integration244
(over both frequency and wave normal angle) (e.g. Albert (1999)), the database ends up being quite smooth245
and not too noisy. This will be a key property of the data for choosing or developing an adapted machine246
learning method. In addition, the diffusion coefficients are also time-averaged from March 1 to March247
5 in order to provide a single diffusion coefficient defined for L-shell L, energy E, pitch angle α. This248
time-averaging made over 5 days (representing 15 temporal bins of 8-hours averaged together) produces249
smoothed data, i.e. a regularized dataset, which may otherwise be more variable over time and less smooth250
(e.g. Figure 5 in Ripoll et al. (2017)). As we average, we mix different geomagnetic conditions and create a251
mean diffusion coefficient for that 5-day event. The time-averaging is only done in this section and will not252
be done in the HSS section in which we will keep time as another variable. Absence of noise and regularized253
data make our problem specific. On the contrary, in general, data have uncertainties coming either from254
our partial knowledge of the variables, or from data variability. In our case, we can have experimental and255
simulation uncertainties. In such cases, machine learning models have to avoid over-fitting, by not being256
too close to the data during training. In this article, regularization of data was such that over-fitting was not257
an issue.258

For this storm, we use 4 positions, 60 energies, 256 pitch-angles, i.e. 61440 data points for (L,E, α,Dαα)259
listed as DS3 M13 in Table 1. We extract a subset of DS3 M13 that is composed of 84 pitch angles and 60260
energies bins, thus 20 160 data points, listed as TRAIN M13 in Table 2. This dataset is used for training261
and calibrating the internal parameters of the various machine learning models using cross-validation.262

To evaluate the ability of the machine learning models that we trained on the TRAIN M13 dataset, to263
generalize on new data, we consider 2 test datasets, see Table 2. The first dataset TEST M13 L contains264
more values in the L input. The model was trained with 4 L-values (L = 2, 3, 4, 5), and here we have 37265
values from L = 2 to L = 5 : thus we test the interpolation between the discretization used during the266
training in the case of a very low resolution. The other test dataset (TEST M13) has full resolution in angles267
and energies, but the same resolution in L. The test datasets have no intersection with the training dataset.268
We have also excluded all extrapolation points (with an exception for Kp in section 3.2.3), signifying that269
we bound the test datasets with the bounds of the corresponding training datasets, when evaluating errors.270
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Name Obtained from How # data Comment
TRAIN M13 DS3 M13 84 chosen α 20 160 all models trained

8 ≤ α ≤ 89
TRAIN AVG DS3 AVG shuffled sampling 230 000 DNN trained (only)
TEST M13 L DS2 L shuffled sampling, 5000 High resolution in L

substraction of TRAIN M13
TEST M13 DS3 M13 by substracting TRAIN M13 40 000 Test (L,E, α)
TEST AVG DS3 AVG shuffled sampling, 230 000 Test (Kp, t, L, E, α)

substraction of TRAIN AVG

Table 2. The datasets used for training (2 first rows) and testing (3 last rows). Test data are obtained by
substracting the training and validation datasets from the data, and also all points that are outside the
bounds of these training and validation datasets, so as to avoid extrapolation in the test.

2.1.4 Dataset for the 32 HSS storms271

In this section, we extend massively the previous problem from 1 storm to 32 storms. We choose storms272
all among the same family of storms called high-speed streams (HSS) so that we can compare them273
together, characterize the differences, and compute relevant statistics. By doing so, we try to optimize our274
chances to address similar physical processes and their spatio-temporal timescales. These 32 HSS were275
each identified in Turner et al. (2019) between September 2012 and December 2016 listed in Table 3). Each276
storm is observed at various MLT positions, changing with the Probes orbit. When Van Allen Probe B is277
at its apogee, the corresponding MLT is reported in the right column of Table 3. This MLT corresponds278
roughly to the most observed MLTs from L above ∼ 4 up to L ∼ 6. The 32 storms are such that we have279
10 events observed from the night side (MLT=21-3), 11 from the dusk side (MLT=15-21), 4 from the day280
side (MLT=9-15), and 7 from the dawn side (MLT=3-9). Some of the differences we will found may be281
attributed to MLT variations, though keeping in mind that the statistical MLT-rescaling of the wave power282
makes the coefficients valid and comparable over all MLTs.283

For each observed storm, we extract wave and plasma data from the Van Allen Probes during 3 days,284
every 8 hours, which gives 9 intervals of 8 hours. The timescale of 3 days is representative of the HSS285
main and recovery phases (Turner et al. (2019)). The measurements are used as inputs in the simulations of286
the quasi-linear pitch-angle diffusion coefficients (Ripoll et al. (2019)) outputted at this rate, producing the287
full database DS1.288

For each storm and for a given time bin, we have a discretized grid (L,E, α) of the diffusion coefficient.289
For each temporal bin, we store the Kp index (itself averaged over the 8 hour bin duration). The Kp-290
index is the global geomagnetic activity index that is based on 3-hour measurements from ground-based291
magnetometers around the world. The Kp-index ranges from 0 (very little geomagnetic activity) to 9292
(extreme geomagnetic storms). The Kp index is largely used in the radiation belt models as a main parameter293
of wave models driving radiation belt simulations (e.g. Cervantes et al. (2020); Sicard-Piet et al. (2014);294
Wang et al. (2020)). Here, it works as a measure of the storm strength at a given time. We define averages295
per Kp index and regroup the diffusion coefficients per Kp. The Kp index then becomes the 5th variable,296
which was first meant to replace the time variable, as any Kp average model, but we will explain later that297
time was nevertheless kept. As such, we have 18 millions of data points in (t,Kp, L, E, α,Dαα), which298
gives data set DS2.299

We build a first set of averaged diffusion coefficients by considering all the 32 storms, each defined at 9300
temporal bins, which now define 9 epoch times. For a given temporal bin j = 1..9, for a given Kp = 0...6,301
we average Dαα(L,E, α) over all the storms. We obtained this way 2 300 000 data points, listed as302
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Event # Minimum Date/Time Min. SYM-H MLT
1 2013-01-26/22:19:00.000 -6.2e+01 2.9
2 2013-04-24/18:11:00.000 -5.2e+01 23.1
3 2013-08-05/02:20:00.000 -5.6e+01 15.5
4 2013-08-16/04:29:00.000 -5.4e+01 15.1
5 2013-08-27/21:43:00.000 -6.4e+01 18.8
6 2013-10-15/03:18:00.000 -5.2e+01 17.2
7 2013-12-08/08:30:00.000 -7.2e+01 15.2
8 2014-02-23/22:48:00.000 -6.3e+01 12
9 2014-08-27/18:18:00.000 -9.0e+01 5.5
10 2014-10-14/18:38:00.000 -5.2e+01 3.7
11 2014-10-20/17:10:00.000 -5.7e+01 3.5
12 2014-11-16/07:24:00.000 -5.1e+01 2.5
13 2015-02-17/23:55:00.000 -7.0e+01 23.3
14 2015-02-24/03:36:00.000 -7.6e+01 23
15 2015-04-16/23:29:00.000 -8.8e+01 21.1
16 2015-05-13/06:59:00.000 -9.8e+01 20
17 2015-05-19/02:55:00.000 -6.4e+01 19.7
18 2015-06-08/07:45:00.000 -1.05e+02 18.9
19 2015-07-05/04:52:00.000 -5.8e+01 17.8
20 2015-07-23/07:28:00.000 -8.3e+01 17.1
21 2015-08-23/08:34:00.000 -6.2e+01 15.8
22 2015-10-04/07:33:00.000 -5.2e+01 14.3
23 2015-12-14/19:04:00.000 -6.0e+01 12
24 2016-02-18/00:28:00.000 -6.0e+01 9.5
25 2016-03-16/23:41:00.000 -6.9e+01 8.4
26 2016-04-13/01:09:00.000 -7.0e+01 7.3
27 2016-05-08/08:15:00.000 -1.05e+02 6.3
28 2016-06-06/06:47:00.000 -5.5e+01 5.3
29 2016-08-23/21:13:00.000 -8.3e+01 2.8
30 2016-10-25/22:57:00.000 -8.1e+01 0.4
31 2016-10-29/07:25:00.000 -7.8e+01 0.3
32 2016-11-25/06:38:00.000 -5.3e+01 23.2

Table 3. From left to right: number, Date and time, minimum Sym-H index (i.e. high resolution Dst index)
and MLT of the apogee of probe B of the Van Allen Probes for each of the 32 high speed streams between
September 2012 and December 2016 of this study (reported from the selection of the HSS events of Turner
et al. (2019)).

DS3 AVG in Table 1. The model is defined for (t,Kp, L, E, α). Averages are made at fixed Kp for each tj .303
(If we were averaging without binning by the Kp index, we would produce a superposed epoch model of304
diffusion coefficients). Here, the approach produces a superposed epoch model of the diffusion coefficient,305
further binned by Kp. Such an approach allows the diffusion coefficients to evolve in time, keeping within306
its origins ambient properties that are consistent with each other, always keeping the coupling between307
the electron plasma density and all wave properties. This approach is different from making a superposed308
epoch model of the wave properties of HSS and computing afterwards a single diffusion coefficients from309
them. The latter approach has low numerical cost but neglects correlations between all the properties of310
the ambient domain and, therefore, introduces some error (e.g. Ripoll et al. (2020b)). From a machine311
learning perspective, the Kp averaging helps producing smoothed data, acting as a regularization of the312
solution that makes the solution less fluctuating, i.e. less noisy from a ML-perspective, similarly to the313
temporally-averaged data of the March 2013 storm (as discussed in section 2.1.3). From DS3 AVG, we314
train on 10% of the data, listed as TRAIN AVG in Table 2. All datasets are described in Table 1, training315
and validation datasets in Table 2 (2 first rows), and test datasets in Table 2 (3 last rows).316
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2.2 Machine learning methods317

In this section we briefly describe the several statistical and machine learning methods that we used318
to build the various models of this study. We considered methods based on local evaluation (k-nearest319
neighbors and kernel regression), tree-based methods (regression tree, bagging and random forest), neural320
networks and function approximations (Radial basis and splines). All are nonparametric so that we make no321
assumption about the distribution of the data. A detailed description of all these machine learning methods322
can be found in Hastie et al. (2009), and complementary informations about neural networks can be found323
in Géron (2017), Goodfellow et al. (2016).324

2.2.1 k-nearest neighbors (KNN)325

A key idea in many supervised machine learning methods is to think that the targets associated to nearby326
inputs should be close to each other. Based on this idea, to predict the target of any new input data points, it327
is reasonable to look at the target values of their surrounding neighbors. This is the whole framework of328
k-nearest neighbors machine learning method which predicts the target of a new input data by averaging329
the target values of its k-nearest neighbors, measured using the Euclidean distance (see, for example, Fix330
and Hodges (1951); Altman (1992) and Hastie et al. (2009)). The number of nearest neighbors k is the331
key parameter and it is very crucial to tune it using cross-validation technique described in the following.332
On one hand, if k is too large, a large number of observations, among which not very representative333
ones, contribute to the prediction, resulting in too rough predictions. On the other hand, if k is too small,334
the prediction is made relying only on a small number of neighbors of the query point, resulting in high335
variance.336

2.2.2 Kernel regression (KerReg)337

The k-nearest neighbors procedure may be modified to obtain a smoother method, which gives more
weight to the closest points and less to the furthest: instead of specifying a number of neighbors, the
neighborhood is defined according to a distance notion, via a kernel function, that is a function K : Rd →
R+, such that K(x) = L(‖x‖), where x 7→ L(x) is nonincreasing. More specifically, a prediction ŷ of a
new data point x is obtained by setting :

ŷ =

∑n
i=1Kh(Xi − x)Yi∑n
i=1Kh(Xi − x)

,

where the kernel Kh is defined by Kh(x) = K(x/h), with h the bandwidth of the kernel, and (Xi, Yi),
i = 1, 2, ..., n, denotes the input-output training data. Here, a Gaussian kernel has been considered:

K(x) = exp(−‖x‖2/σ2),

for some σ > 0. For more about the method see, for example, Nadaraya (1964) and Watson (1964).338

2.2.3 Regression tree (Tree)339

Another nonparametric model commonly used in regression problems is regression tree. It is an iterative340
partitioning algorithm aiming at each step to split the input space along the value of a chosen predictor and341
threshold, minimizing the target variance on both parts of the split (see Breiman et al. (1984)). Growing342
a tree is equivalent to partitioning the input space into smaller and smaller regions containing lesser and343
lesser points. The prediction of a new data point is the average target values of the points falling into the344
same region as the query point. Growing a single deep depth tree on the training data (small terminal nodes345
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or small region) will most likely lead to over-fitting. Moreover, a deep depth tree can be very sensitive346
(high variance) meaning that a small change in splitting the training data can result in a very different347
structure of the tree. It is then important to tune the depth of the tree, which is the key parameter. This may348
be done using cross validation technique.349

2.2.4 Bagging (Bag)350

The aim of this method is to reduce the variance of regression trees by introducing bootstrap samples351
from the training data. A regression tree is grown on each bootstrap sample, and the final prediction is the352
average of the predictions of all the trees (see Breiman (1996)). This method is shown to be significantly353
more accurate in generalization capability. The parameters of the method are the number and the depth of354
the trees to be constructed on the bootstrap samples.355

2.2.5 Random Forest (RF)356

As each tree in Bagging method is constructed using a bootstrap sample of the training data, the357
constructed trees are likely to be quite correlated. Random forests have been proposed to enhance reduction358
of the variance. They aim at producing uncorrelated trees by randomly selecting only a subset of features359
at each split in the process of growing the trees. In regression problems, the size of the set of features to be360
randomly selected at each split is usually taken around

√
p, where p is the total number of features (see, for361

instance, Ho (1995) and Breiman (2001)). In addition to the number of selected features, the parameters of362
the method are the depth and the number of trees.363

2.2.6 Neural Networks (DNN)364

We use feed-forward neural networks as a regression model. A neuron is the composition of a nonlinear365
function (here we use Relu(x) = max(0, x)) and a linear function. All inputs enter the N1 neurons of the366
first layer. Then each neuron gives an output, and each output connects to the N2 neurons of the second367
layer. We do the same for all the layers (the number of such layers is the depth of the network), and we end368
with a layer of one neuron (because we have one output, the pitch-angle diffusion coefficient), which has no369
nonlinear function. It has been shown (Cybenko, 1989) that any reasonable function may be approximated370
by one layer of neurons, but the practice has showed that it is better to go deep, which means to use a lot of371
layers (which entails a lot of composition of nonlinear functions, that is to say a lot of interactions between372
the inputs).373

The coefficients of the linear functions of all the neurons are tuned by an optimization algorithm. This374
phase is called the training. We use a variant of the stochastic gradient descent method (the Adam optimizer)375
to minimize the mean square error between data and predictions.376

Neural networks are accurate for regression problems, and extend well to huge dataset, or to high377
dimension problems. One difficulty is that such a model involves a lot of hyperparameters, and many378
combinations of these hyperparameters may give low accuracy results. For example, we have to choose379
the architecture (number of layers and neurons per layer), the initialization of the linear coefficients, the380
optimization algorithm, the number of epochs (iterations of the algorithm) and batches (splitting of the381
data to calculate gradients in the stochastic gradient descent). In order to optimize this choices, an original382
specificity of our DNN model is to use a data-driven method for selecting all these hyperparameters383
(Humbird et al., 2019; Kluth et al., 2020). It uses random forest methods (which has a few hyperparameters,384
see section 2.2.5) and a mapping between the obtained trees and the architecture of an ensemble of neural385
networks. We obtain this way accurate neural networks with only 2 hyperparameters, the depth and the386

Frontiers 11



Kluth et al. Global Event-Driven Pitch Angle Diffusion Model

number of trees. When we obtain this accurate network, we may search for higher accuracy by playing387
with other hyperparameters that were fixed in the first step.388

2.2.7 Thin plate spline (Spline)389

Thin plate splines, introduced by (Duchon, 1977), may be seen as an extension of cubic smoothing splines
to the multivariate case (Green and Silverman, 1994). In the one-dimensional case, cubic smoothing splines
are used to construct new points within the boundaries of a set of observations. They are fitted using a
penalized least squares criterion, with the penalty based on the second derivative. The interpolation function
consists of several piecewise cubic polynomials. Fitting low-degree polynomials to small subsets of values
instead of fitting a single high-degree polynomial to all data allows to avoids the Runge phenomenon, that
is oscillation between points occurring with high-degree polynomials. Cubic smoothing splines are widely
used since they are easy to implement and the resulting curve seems very smooth. More specifically, if we
observe data (X1, Y1), . . . , (Xn, Yn), the quantity to be minimized is defined by

‖Y − f‖2 + λ

∫
(f ′′(t))2dt,

where Y is the vector of observed outputs Y1, . . . , Yn and f = (f(X1), . . . , f(Xn)). In the general case,
the main part of the criterion remains the same, but the shape of the penalty is far more involved, based on
several partial derivatives. Thin plate splines are given as functions f minimizing

‖Y − f‖2 + λpen(f),

where

pen(f) =

∫
Rd

∑
ν1+···+νd=m

m!

ν1! . . . νd!

(
∂mf

∂uν11 . . . ∂uνdd

)2

du,

and the factor λ drives the weight on the penalty. Here, m is such that 2m − d > 0, and the νi’s are390
nonnegative integers such that

∑d
i=1 νi = m.391

2.2.8 Radial Basis Function Interpolation (RBF)392

A Radial Basis Function (RBF) is a function that depends only on the distance between the input and a393
predetermined fixed point, called a node. We can use RBF as a basis for an interpolator in the form:394

f(x) =
N∑
i=1

hiφi(x), (1)

where N is the number of nodes, hi are unknown coefficients, and φi(x) = ||x − xi||, with xi the395
coordinates of the i-th node. Here, we use all the points in the training set as nodes. The training consists in396
finding the values of the coefficients hi by imposing that the interpolant passes exactly through the targets397

in the training set, that is f(xi) = Y (xi). This amounts to solve the linear system X
−→
h =

−→
Y for the vector398 −→

h = (h1, . . . , hN )T , where X is the N ×N symmetric matrix containing all the distances between nodes.399
Once we have the coefficients hi, the targets in new data points can be evaluated directly by using the400
interpolator in Eq. (1). Even though the RBF could be generalized by introducing hyper-parameters (called401
in this context shape parameters), for instance defining φi(x) = ||x− xi||+ ci, in this work we have not402
investigated more general choices of RBF and used only the form in Eq. (1).403
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2.2.9 Cross-validation404

Each method depends on some key smoothness parameters (usually called hyperparameters) that need to405
be tuned properly to get a good performance. This is done via cross-validation. K-fold cross-validation406
consists of breaking down the training data into K folds {Fk : k = 1, 2, ..., K}, and for a given candidate407
parameter, the corresponding model is constructed using as training set theK−1 folds where the remaining408
fold is treated as a validation dataset. Thus, for a given value of parameter β, the corresponding model f409
is trained K times (K different combination of K − 1 folds choosing from the total K folds). We then410
measure the performance of f at the choice of parameter β using the cross-validation error defined by411

CVE(β) =
1

K

K∑
k=1

∑
xi∈Fk

(f(xi)− yi)2

In the particular case where each data subset only contains one single observation, the method is called412
leave-one-out cross validation.413

Roughly speaking, this provides the average performance of f associated with the parameter β on K414
different unseen folds of the training data. The parameter β̂ minimizing this cross-validation error would415
be a suitable one to be used as a global parameter in predicting the real testing dataset.416

For k-nearest neighbors, kernel regression, regression tree, bagging and random forest, a 10-fold cross417
validation was used. For thin plate splines, the penalty coefficient is estimated through generalized cross418
validation, which may be regarded as an approximation to leave-one-out. For the neural networks, the419
training data set was randomly cut in 3 parts : 80% for the training, 10% for checking over-fitting during the420
training, and 10% for selecting the final network. After that hyperparameters selection, all results presented421
in this article are obtained on huge separated test dataset, as showed in Table 2.422

2.2.10 Complexity of the training and computational time423

Training phases are very different between all methods: for KNN there is only a search over the existing424
space of data. In tree-based methods the training corresponds to the construction of the trees. In DNN the425
training corresponds to the search for the weighting factors in the interconnections. All training phases426
agreed in the choice of the hyperparameters: as data have no uncertainties, and are somehow regularized,427
our methods have to fit to the training data. This means for tree-based methods to grow deep trees (one428
point in the final node), to be very localized for the k-nearest neighbors method (K = 2) and kernel429
regression, and to go deep with neural networks, with many epochs. Ensemble methods do not need to430
be pushed too far: for tree-based methods, we used 100 trees, and for neural networks, we averaged the431
outputs of around 5 networks. Moreover, thin plate splines are specifically dedicated to interpolation.432

Even if the methods depend on the choice of hyperparameters, we can still say that the cpu-cost of training433
is about a minute for both regression tree and k-nearest neighbours, about 10 minutes for bagging and434
random forests, and 2 hours for neural networks, with each method using around 20000 data. Predictions435
are fast for all methods, meaning they take a few seconds maximum for 60000 data.436
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3 RESULTS

3.1 Results for the storm of March 2013437

The numerical results reported in the following tables and figures present an analysis of the distribution438
of the errors: ei = yi − ŷi, for i = 1, 2, ..., n, for the different investigated methods, where yi = log(Dαα),439
ŷi is the prediction of the considered model, and n is the size of the considered test dataset. We train our440
models on the TRAIN M13 data set, containing 20160 samples.441

The TEST M13 test data set is detailed in pitch-angles and energies but contains only 4 discrete L-shells442
values (L = 2, 3, 4, 5). The TEST M13 L data set is however detailed in L and contains L-shell values443
regularly spaced from L = 1.6 to L = 5.2 by 0.1 step (37 values) and a few angles and energies values.444
These datasets are sampled on a grid and there is no uncertainty on the points. Hence, as already mentioned,445
all models are trained until reaching a small error value on the training data set. We first start by addressing446
the error with respect to the (E,α) resolved grids and then on the grid resolved in L-shell.447

3.1.1 Variation with (E,α)448

Results in table 4 show that the Spline, the RBF and the DNN models outperform with the lowest mean449
and maximal absolute error. We also observe that the Spline and the RBF have very low medians which450
show that they are very good on many samples, but have also many outliers, with big error. The DNN451
shows a median error close to the mean.452

Mean Std Q1 Med Q3 Max
Tree 0.014 0.026 0.001 0.005 0.014 0.620
Bag 0.012 0.025 0.001 0.004 0.012 0.483
RF 0.012 0.025 0.001 0.004 0.012 0.448
KNN 0.010 0.017 0.002 0.006 0.011 0.420
KerReg 0.005 0.014 0.000 0.001 0.003 0.466
RBF 0.002 0.009 0.000 0.000 0.001 0.349
Spline 0.002 0.009 0.000 0.000 0.001 0.394
DNN 0.003 0.008 0.001 0.002 0.003 0.302

Table 4. Performances of all the methods trained on TRAIN M13 and tested on TEST M13. We consider
the absolute error |ei| and report the mean error, standard deviation, first quartile, median error, third
quartile, and maximal error.

The violin plots in the top panel of Figure 1 complement well Table 4 in showing that the underlying453
statistical distributions of the errors differ from one method to the other. DNN, Splines and RBF have the454
most concentrated distributions at low errors, especially both the Splines and RBF methods, with spline455
with a mode around the mean and RBF with a mode around the median. As seen on Table 4 with the456
maximal error, this hides more outliers with Splines and RBF than with DNN.457

This results start to exhibit two main families of methods: on one hand the Tree family (Tree, Bag, RF)458
with KNN and KerReg and on the other the RBF, spline and DNN methods.459

In order to get insights on the differences and similarities between the machine learning models, we now460
compute the correlation between the errors provided by couples of different models. The correlation errors461
are given in Figure 2 for TEST M13, on the left. First, Figure 2 confirms the 3 methods (Tree, Bag, RF) fall462
into the same family, with high correlation (> 0.8). We will see in the next section that KNN and KerReg463
will join this same family but this is not obvious from the correlation errors of the left part of Figure 2. On464
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Figure 1. Violinplots of error ei = yi − ŷi evaluated on (top) TEST M13 and (bottom) TEST M13 L
of all the methods, trained on TRAIN M13. For each ML-method, the outside envelop is the smoothed
distribution of error, symmetric for visualization consideration, with a box-whiskers plot inside (median
with a white circle, 1st and 3rd quartiles are represented by the border of the box).

the contrary, we see the specificity of the DNN method which errors does not correlate with any of the465
other method. The closest methods to DNN are the spline and RBF methods. Similarly, the spline and RBF466
methods correlate less with the forest tree method family.467

Finally, this study was also conducted at low resolution with 13 energies and 14 pitch angle resolution,468
representing 728 data points (results not shown). Although some small changes of behavior either within469
or among the methods were visible, the conclusions were similar, for an admissible accuracy of the470
diffusion coefficients. Machine learning methods can thus be used to find an optimum between accuracy471
and resolution, reducing this way the high original cost of computation of the diffusion coefficients.472
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Figure 2. Correlations of error ei = yi − ŷi evaluated on (left) TEST M13 and (right) TEST M13 L for
all methods, trained on TRAIN M13.

3.1.2 Variation with L-shell473

In this section, we consider each method for its ability to capture the L-shell dependence. It should be474
noticed that all methods have been trained on a very crude L-shell resolution, containing 5 L-shells only,475
and that they are now tested against data fully resolved in L-shell. This test is therefore very challenging476
and only made to gain insight on the properties of the ML methods. If a full model in (L,E,α) had to477
be generated (cf. section 3.2), the approach would be to train on a higher L-shell resolution and not to478
interpolate a low resolution grid.479

Tables 5 presents the main error global metrics, with errors much higher than in the previous section due480
to the initially low L-shell resolution. The mean error gradually decays from the Forest tree family to DNN481
(from top to bottom). However the median error remains more similar, still decaying from top to bottom.482
Best performances are always obtained from either the Spline, the RBF or the DNN method.483

Violin plots of the distributions of errors have been generated (on the bottom of Figure 1). All the484
distributions are found very alike in their global shape, with only subtle differences. Some methods show485
two or even three modes which appear as peculiar oscillations on the edge of the distribution.486

Mean Std Q1 Med Q3 Max
Tree 0.371 0.419 0.102 0.265 0.521 4.451
Bag 0.372 0.418 0.102 0.269 0.524 4.448
RF 0.372 0.418 0.102 0.267 0.525 4.459
KNN 0.364 0.378 0.108 0.279 0.520 4.374
KerReg 0.363 0.379 0.111 0.280 0.512 4.350
Spline 0.339 0.320 0.099 0.255 0.462 2.332
RBF 0.316 0.297 0.100 0.234 0.440 2.587
DNN 0.315 0.306 0.100 0.237 0.439 3.063

Table 5. Performances of all the methods trained on TRAIN M13 and tested on TEST M13 L. We
consider the absolute error |ei| and report the mean error, standard deviation, first quartile, median error,
third quartile, and maximal error.

Figure 2 (on the right) shows the error correlation among the couples of models for the test with respect487
to L-shell. The main families previously mentioned remain, this time with KNN and KerReg performing488
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similarly to the Forrest tree family. Based on these results and the one of the previous section, all 5 models489
(Tree, Bag, RF, KNN, KerReg) are regrouped into the same family.490

We finalize this series of tests by Figure 3, in which we compare the forest tree family (represented by491
the RF method), the spline method, and the DNN method for a few selected (E,α) but resolved in L-shell.492
The training phase being done at L = 2, 3, 4, 5 (indicated by vertical bars), we see all models provide493
an exact answer at these points. Everything in between these points is modeled (orange line plots) and494
compared with the exact solution (blue crosses). The random forest model plotted in Figure 3 (left) uses495
constant approximation around the training points so that the approximation is made by step functions and496
is extremely crude. It is the same for tree-based methods, k-nearest neighbor and kernel regression (not497
shown). The spline method does much better in Figure 3 (center), but cannot approximate brutal variations,498
as for radial basis model (not shown). The DNN method in Figure 3 (right) seems to us the most capable499
for this difficult exercise, which confirms the global metrics of Table 5.500

We conclude that without any prior assumption on a physical phenomenon and on the database, it is501
difficult to advise the use of a particular machine learning model. One main reason is the data used to train502
the model have a big influence on the model performance, which makes hard to generalize the capabilities503
of a given model. Here, we believe the different series of tests and comparisons are explicit enough to504
conclude that the DNN method is a good candidate to perform the rest of the study and to generate a more505
global model.506

3.2 Results for the global model of pitch angle diffusion during HSS storms507

In this section, we use the data from 32 storms in order to build a database of statistical event-driven508
diffusion coefficients that is embedded within a machine learning model for facilitating its use. The method509
relies on constructing first an averaged model and then using the deep neural network (DNN) previously510
selected to learn and output the solution of the averaged model. As in the previous sections, we will see511
the machine learning model does not entail any issue to interpolate and reproduce the averaged model.512
Questions arise more about the physical choices we make to build the averaged model (cf. discussion513
below and in section 4.1). Interestingly, the machine learning model was of great help for the various514
investigations we conducted. As the training step was quite fast (based on the knowledge acquired during515
the March 2013 storm study), we could test different ways of manipulating and averaging the data when516
iterating to choose how to best parametrize the statistical model. Another strength of the machine learning517
approach is the simplicity of performing comparisons with model since it delivers continuous maps of the518
solution with a simple numerical subroutine able to output a 5 to 6 dimensions solution. On the contrary,519
manipulating directly the database and use discrete points is very constraining. It can also be source of520
direct errors or interpretation errors when it is a given plotting software (e.g. Python subroutines) that521
carries intrinsic ad-hoc interpolation with integrated smoothing procedures.522

3.2.1 Training the DNN global model523

The data used to generate the global model is DS3 AVG described in Section 2.1.4 with 2.3e6 data points.524
We then use TRAIN AVG (2.3e5 data points), unless specified differently for training and validation, and525
TEST AVG (2.3e5 data points) for test.526

The training of the global model Dαα(Kp, t, L, E, α) was not harder than the model previously trained527
for the storm of March 2013 in section 3.1. The two more dimensions of the input space entailed a larger528
neural network. The bigger amount of data (from 20000 to 230000) caused a longer training. Generating529
the whole model took a few hours of computation on a standard computer. For comparison the simple530
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Figure 3. Machine learning pitch angle diffusion coefficients (Dαα(L) in s−1 on the Y-axis) for the March
2013 storm plotted in orange color versus L-shell (X-axis) for various pitch-angles (20° and 40°) and
energies (131, 537, 1018, 2033 Kev) computed from (top) random forest, (center) thin plate spline, (bottom)
neural network. The blue dots are the reference original diffusion coefficients (points of TEST M13 L
which were not used in the training and testing phase). Vertical lines represents the location of the training
data of TRAIN M13 (L = 2, 3, 4, 5). These plots were made with methods that were trained on a subset of
TRAIN M13 : we used fewer points in energy and pitch-angles.
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generation of a mean model, without Machine learning and performing only means throughout the whole531
database, took a few days on the same computer. Again for comparison, computing 19.3M diffusion532
coefficients for around 10-day event takes around 15600 hours spread over 1300 processors on a CEA533
massively parallel supercomputer (Ripoll et al., 2020b). This brings another advantage of machine learning534
methods to be able to manipulate simply and at low cost large database, with the possibiliy to operate on535
them basic statistical operations useful for the understanding of the database.536

In Figure 4 (left), we represent the mean average error (MAE), the mean square error (MSE), and one537
minus the explained variance score (EVS) computed when the model is evaluated against the TEST AVG538
test dataset (230 000 data not used during the training phase performed with the TRAIN AVG dataset).539
Because the dataset contains little noise, we can train neural networks going deep, with depths of the540
network going from 6 to 11 hidden layers on the x-axis. We see an optimum of low values of the three541
metrics is found for a depth of 9.542

The same three quantities are plotted in Figure 4 (center) using different sizes of training dataset (from543
1% to 15% of the TRAIN AVG dataset), with DNN of depth 8 or 9. From these results, we selected the544
neural network of depth 9 trained with 10% of the data. As over-fitting is not an issue here, we could545
reach better accuracy by taking a more important capacity for the model, or just by taking more epochs as546
discussed next. This is not obvious on Figure 4 as with a higher depth, error is growing (after depth 9), but547
it is possible to be more accurate by varying all hyper-parameters. However, we have also seen that the548
loss of accuracy due to the DNN model is less the issue than the loss of accuracy caused by an averaged549
statistical approach (cf. discussion in section 3.2.2).550

Figure 4 (right) represents the loss function during the training and the validation phases of the model551
of depth 9 over 10% of the data. The loss function is the minimal MSE computed over all the data and552
evolving according to the epoch number, which represents the number of cycles the data are used in a553
training or validation step. After 900 epochs, we evaluate more often the loss function, because we stop at554
the best loss value obtained on the validation dataset.555
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Figure 4. Errors calculated on the dataset TEST AV G are plotted for different DNN models, with
various depth on the left, and various sizes of training dataset on the middle. On the left, models are trained
on 10% of the data, meaning around 230 000 data. On the middle, dot lines with circles are for a model of
depth 8, and continuous lines with crosses for a model of depth 9. In blue, we plot the Mean Average Error,
in red the Mean Square Error and in black one minus the Explained Variance Score. On the right, the loss
function (MSE) is plot during the training, evaluated on the training dataset, and on the validation dataset.
We see at the end that we make more often evaluations of these errors, and the training stops selecting the
more accurate model in the last epochs. Note that this loss may not be compared with anything in this
article, as it is given on scaled data.
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3.2.2 Accuracy of the DNN global model556

We present in Figure 5 the obtained deep neural network (DNN) global model of diffusion coefficients,557
which is plotted in green for two of the 32 selected storms. We choose for illustration storm 8 (3 top rows)558
as event-driven and average diffusion coefficients agree quite well and storm 5 because the opposite occurs.559
We also plot in red the average model, which represents what the DNN model (in green) has to reproduce.560
Each storm is decomposed in 9 times with its Kp index history (as shown in the bottom panel of Figure 5)561
and the DNN model is played for the (t,Kp(t)) sequence of this storm. Results are presented at L=3, 4, 5.562
We omit L=2 for the sake of brevity since diffusion is limited to high energy (see discussion in section563
3.2.3 and Figure 6 top row).564

As we can see for storm 8, the DNN model is very close to the average model, as it should, as soon as the565
intrinsic interpolation rules of the model have been learnt well. This is confirmed for storm 5 in Figure 5,566
which ends our demonstration that the restitution of the DNN model is accurate. Figures like Figure 5 (3567
top rows) have been generated for each of the 32 HSS storms (not shown), which allows us to reach an568
individual view of each of them and confirm the accuracy of the DNN approach. This occurs at all L-shells569
used to derive the DNN model.570

We now use the DNN mean model to analyze how mean coefficients behave compared with individual571
ones. An important physical question arising in space weather forecasting is the ability of an average572
model (e.g. from the DNN approach or directly from averaged data) to precisely predict the history of573
the diffusion during the storm. We thus compare in Figure 5 the DNN statistical model (in green) with574
the event-driven diffusion coefficients (blue cross). We find the average procedure captures quite well the575
global variations of the pitch-angle diffusion coefficient in general for storm 8 but fails by a significant576
factor at various (t,L,E,α). This way we start to enlighten the difference between an event-driven approach577
and a mean approach thanks to the machine learning interface. We see for instance a interesting strong578
departure at (L=3, E=0.3 MeV, α =60°, t= 1.6 days) for storm 8 between both the average models (green579
and red) and the event driven model (blue). Readers will understand in the next section (based on Figure 6580
top, left) that α =60° falls right at the sharp edge between significant diffusion of the cyclotron harmonics581
and absence of diffusion for E=0.3 MeV electrons at L=3. Both average models capture thus (on average)582
significant diffusion while for storm 8 at t=1.6 day the diffusion is negligible, causing an error by more583
than 2 orders of magnitude. Note that all models agree for the time before (t=1.3) and after (t=2.). This is584
likely due to the particularity of the wave conditions at t=1.6. Conversely, Storm 5 (fourth to sixth rows of585
Figure 5) is an example of the opposite, with a storm for which the diffusion coefficient behavior (in blue)586
is opposite to the mean behavior (red and green). The error between the average model and the event-driven587
coefficient is often large, up to 2 orders of magnitude. We see the same feature as for storm 8 at L=3, E=0.3588
MeV, α =60. Large errors at L=2 (not shown) for 1 MeV electrons are also likely due to the average model589
missing the particularity of a local increase of diffusion close to a strong gradient region. At L=5, we see590
the absence of the event-driven coefficients for that case, except for the point at the latest time, at t=3 day.591
This can be due to the plasmasphere that has not recovered up to L=5 during the first 2.6 days and the592
absence of hiss waves, to the absence of measurements for that event, or both. The average model returns593
low diffusion most of the time (below 10−6), except for E=0.3 MeV and α=60.594

3.2.3 Exploring the DNN global model595

We now explore and discuss the main physical characteristics of the statistical mean model of pitch angle596
diffusion coefficients for HSS storms thanks to the DNN encapsulation.597
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Figure 5. Pitch angle diffusion coefficients for (1-3 rows) storms 8 and (4-6 rows) storm 5. The first 6
panels show historic pitch-angle diffusion coefficient at different (L,E, α) values, with (blue crosses and
lines) the raw data of event-driven coefficients, (red crosses) the averaged data (on the 32 storms at given
(Kp, t, L, E, α)), and (green lines) the DNN model. The average data (in red) and the DNN model (in
green) (trained on a subset of the average model) are ran from the Kp(t) sequence of each storm plotted at
the bottom panel for each of the 9 temporal bins. The good agreement between red crosses and the green
line shows the success of the DNN model at matching its target. Both captures levels and variations, but
are not very accurate compared with the event-driven diffusion reference values in blue, showing the limits
of a mean model.
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At fixed (t,Kp), we see pitch angle diffusion occurs at lower energy as L increases in Figure 6 (four top598
rows). At low L-shell (L < 3), we see a wide region of negligible diffusion in the (E,α) plane. This region599
of no interaction is due to the first cyclotron harmonic that does not reach pitch angles higher than the600
loss cone pitch angle (Ripoll et al., 2017). The DNN model has thus to learn more very low values at low601
L-shell. This absence of pitch angle diffusion explains why electrons are not scattered out by hiss waves602
and remain trapped at low L-shell in the inner belt. With the storms compressing the plasmapause, the603
model allows to see better if there is more effect at low L-shell. Figure 6 shows diffusion is non negligible604
above ' 700 keV at L=2 and becomes stronger for active conditions (Kp=5 at t=1, first row and third605
column) when hiss power is localized deep inside the plasmasphere. For Landau diffusion (pitch angle606
above 80°) of electron below 300 keV, we notice a transition between significant Landau diffusion and an607
absence of diffusion for the highest pitch angle (above 85°) at Kp=3 and t=1 day, which is likely the DNN608
model reaching its limit. We will come back on this negative feature in the next section.609

At higher L shell (L ≥ 3) and fixed energy, the minimum pitch angle diffusion occurs between first610
cyclotron harmonic and the Landau (n = 0) harmonic (e.g., between α = 75 at L = 4, E = 200 keV, Kp =3,611
and t=1). At fixed L shell, the maximal pitch angle diffusion from cyclotron harmonics occurs at higher612
energy as pitch angle increases. The sharp gradients that occur for given (L,E, α) values in the region613
of transition between Landau and cyclotron resonance reduces at L increases, but it remains a region of614
possible errors as commented in the previous section for L=3, E=0.3 MeV, and α =60 in the third row of615
Figure 5.616

One could wonder why the diffusion at L = 4 and Kp = 5 is negligible at t=1. This is due to the fact617
that for such active condition the center of the plasmasphere where hiss are dominant (e.g.Malaspina et al.618
2018) is located at lower L-shell, while L=4 is in a region of minimal hiss activity, likely in the vicinity619
of the plasmapause (if beyond, the wave would not be defined and the diffusion would be null). Further620
investigation in section 4.1 and Figure 7 will show that there exists only once case of storm having Kp=5621
and t=1 so that the mean DNN model has learnt the solution shown in Figure 6 (two top rows and third622
column) from a single storm event. As interesting is the absence of storms with Kp=5 at t=2 days (cf.623
Figure 7) so that the model is extrapolating with respect to Kp in Figure 6(two top rows and fourth column).624
At t=2 days, the model statistically predicts some waves with some power due to the fact that likely the625
plasmasphere has often recovered to above L=4 at that time, bringing some hiss power. We understand the626
model could learn such behavior from the data. But would that be occurring in reality if Kp was still as627
high as Kp=5 on the second day of a HSS storm? We cannot tell from the current data.628

Looking at fixed (L,E, α) values in Figure 6 (two bottom rows), we see any storm can be represented by629
its evolving path in the (t, Kp) space, with possibly great differences from one time to another although each630
storm belongs to the same kind. There is a large variability of pitch angle diffusion coefficients with respect631
to time looking at a horizontal line of fixed Kp. The diversity of the wave and plasma conditions leads to632
decay rates varying by orders of magnitude and although the Kp indices are the same. This contributes to633
explain why storms can be so different from one event to the other (e.g. Reeves et al. 1998). This brings the634
question of the time resolution of Kp (here 8 hours) and the pertinence of this index when considered as635
the only parameter. The MLT location of all the observations could also explain the differences. Time plays636
a crucial role in the solution (cf. the discussion on the interpretation of time in section 4.1), while diffusion637
coefficients do not depend on time in most common space weather simulations (e.g. Cervantes et al. 2020)638
in which only Kp remains in both the wave models and the diffusion coefficients (sometime even in the639
absence of the L-shell dependence (e.g. Zhu et al. 2019). The variability of the wave parameters calls for640
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the use of at least two geomagnetic indices or one geomagnetic index and another relevant parameter (here,641
directly time).642

For a given (L,E), we see in Figure 6 (two bottom rows) the pattern and shape in at fixed (E,α) is roughly643
conserved while the levels changes. This is true because the solution is presented at not too low L-shell644
(L ≤ 3) such that the region of minimal diffusion at moderately high pitch angle between the Landau645
and cyclotron resonance is narrower than at lower L-shell (Ripoll et al. (2017)). Nevertheless, there exist646
regions in the (E,α) with shapes and variations that differ from the main general trend, as, for instance,647
illustrated in Figure 6 (two top rows).648

Further exploration of pitch angle diffusion during HSS events is discussed in Ripoll et al. (2022) and,649
in particular, the variability of diffusion within a same Kp index bin. This exploration of the DNN model650
leads us to look at which diffusion is predicted by the model during sustained HSS yet unobserved.651

4 DISCUSSION

4.1 Average vs. Event-driven models652

The number of storms for each activity (Kp, t) is represented in Figure 7. The specificity of storms653
(e.g. Reeves et al. 1998) appears clearly with a few or none events for some combinations of (Kp, t). For654
instance, there is no HSS storm that have a mean Kp = 0 within the 8 first hours. However, there is one655
HSS storm (over 32) for which Kp=1 occurs within the second period of 8 hours of the storm. In great656
majority, HSS storms have a mean Kp index of Kp=4 during the first 8 hours. 2.6 days after the storm657
70% of HSS storms (22 over 32) have Kp between 1 and 2, indicative of a quite fast recovery. We also see658
that averages are made at fixed Kp on a maximum of 16 storms (over 32) at best for a single (Kp, t). This659
maximum is reached at Kp=4 in the first temporal 8 hour bin (t=0.33). The second bin with the largest660
number of data is (t = 2.3 day, Kp=2) with 14 storms. The largest spread in Kp is for the 2nd day with 5 to661
9 storms in each of the Kp=0,1,2,3 bin. We have only 3 HSS storms reaching Kp = 6, each at 3 different662
times. One of them has Kp = 6 within the first 8 hours. Figure 7 also shows the most probable activity663
history of HSS, which is Kp=4, 3, 3, 2, 1, 3, 2, 2, 1. This is quite the activity of storm 12 for which we664
confirm we have good agreement between the event-driven diffusion coefficients and the average models665
(DNN and data) (not shown but similar to the results of storm 8 in Figure 5). The most probable activity666
history of HSS shows interestingly a main decay followed by a second milder peak of activity (with a667
mean Kp reaching Kp=3 again) after 48 hours. This second peak is then followed by a decay to quite times668
within the next 24 hours.669

As we see that the error is caused by the use of averages, the immediate question arising is why averaging670
when making the DNN model? This is necessary here because of the way our problem is defined. If one671
wanted to learn directly from the individual diffusion coefficients of the 32 storms, the problem becomes672
multi-valued and cannot be treated by any machine learning method (unless one DNN model is done for673
each storm at each time, which asks then the question on how to aggregate n DNN models together). For a674
given (t, L, E, α), or a given (Kp, L, E, α) we found there exist multiple values of the diffusion coefficient675
Dαα. We can solve this issue by two ways: either by using more input parameters, or by averaging data. The676
Kp-only model is too rough and causes too much error as we will discuss next and thus Dαα(t,Kp, L, E, α)677
was retained. Here, time could be interpreted as representing any other geomagnetic index (or some global678
measure of them). Similarly, one could have use 2 (e.g. Dst and Kp) or 3 (or more) geomagnetic indices679
and their history (Dst∗ = max24hours(Dst(t)) , Kp∗ = max24hours(Kp(t))) or characteristic quantities680
(such as solar wind velocity, dynamic pressure, etc) so that the problem becomes single valued, without681
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Figure 6. The DNN model of (Dαα) (Log10 of s−1) in the (top) (α, E) plane at fixed (L,Kp, t) and
(bottom) (t,Kp) plane at fixed (L, E, α).

averaging. In principle, one could also use all wave parameters as entry parameters of the unitary diffusion682
coefficients Dαα(t, L, E, α) since they were used for the generation of the single diffusion coefficients. In683
that case, the complexity of merging and coupling correctly various complex database together becomes an684
issue. Another is the knowledge of predicted wave parameters in order to use them in the model (as they are685
yet non unknown). Adding parameters, we reduce the possibility of encountering prohibitive multi-valued686
solutions and we expect it will improve the accuracy of single events.687

There are still in turn 3 drawbacks to increase the data size that can alter accuracy, in particular if too688
many parameters were chosen. First, it increases the problem dimensions, thus the numerical cost, which689
should not be a problem for methods such as neural networks. Machine learning methods relying on690
solving for a linear system (such as the RBF method) become however unusable with too large matrices.691
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Dimensionality is an issue for methods that require the computation of geometrical distances, as KNN, and692
methods that solve for a linear system as RBF. The DNN method does not suffer from this issue and has693
been used in problems with hundreds and thousands of different input features. Second, there will be a694
larger domain in the parameter space with sparse data that will cause loss of accuracy in the region of rare695
occurrence. Third, increasing too much the dimension can cause over fitting of the problem, in the sense696
that the model loses its ability to be general and represents new events.697

When going to more input variables, there is also a trade-off to find between the expected model698
accuracy and the variability we do not want to keep in the model, such as the dispersion caused by some699
measurements or very specific geophysical parameters that may be spurious. This trade-off can be quantified700
by the same method we use to avoid over-fitting during the training phase of the machine-learning models.701
The way is to start by testing models on storms that have not been seen during the training phase. When the702
chosen model has reached enough learning capacity, its error on these new storms will not improve, and703
will even grow, signifying that the learning limit has been reached.704

That is why the approach we present in this article is not unique. Although we retained an approach705
parametrized with two paramaters, i.e. (Kp, t), the approach should be repeated for different various set706
of other relevant parameters, comparisons among them performed, and ultimately a choice can be made707
of the best parametrization reproducing the variability of the diffusion coefficients (more generally of the708
targeted quantity). That is why the simplest, most efficient, and accurate machine learning method has to709
be chosen in the first place since the method needs to be implemented quickly and replicated multiple times710
for different choices until eventually reaching a more definitive and more robust model.711
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Figure 7. Numbers of storms that have Kp and t values. The number of storms in each (t,Kp) bin is written
and colored and represents the number of elements averaged together per (t,Kp).
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4.2 On a Kp-only model712

Before the retained average model presented above, we tried a simpler model, based only on Kp,713
i.e. Dαα(Kp, L, E, α), as the modeling of pitch-angle diffusion is not time-dependent in most common714
space weather simulations and follows only the dynamics of a single index, such as the Kp or AE index.715
Interestingly, Dαα(Kp, L, E, α) can be obtained in three different ways: averaging the whole data DS2716
over times and storms, averaging DS3 AVG over time (cf. section 2.1.4) or by averaging the machine717
learning model over time. The two first methods require to run through the dataset many times and to select718
the right data in order to perform the proper averages. These operations are prone to errors. On the other719
hand, averaging the DNN model is extremely seductive because immediate and simple to perform. It may720
contain errors due to the DNN intrinsic errors but this is compensated by the simplicity. This gives another721
example of positive outcome of machine learning methods.722

Figure 8 shows the performance of the Dαα(Kp, L, E, α) approach for storm 8, with the DNN mean-Kp723
model plotted with green circle and the mean-Kp averaged data plotted with red circles (all plotted on top724
of the data represented in Figure 5 for illustrating the departure from the time-varying solution). First the725
DNN mean-Kp model and the mean-Kp averaged data agree well together which shows the success of the726
data assimilation by the DNN method. This also confirms a simple way to perform further global averages727
is to directly average the DNN model rather than to further average the data (lowering the risk of errors and728
simplifying greatly the task). However, both mean-Kp models gives a very rough approximation of the729
diffusion for a given event. They predict almost a flat curve giving only at best the central tendency. The730
globally low accuracy is more visible for storm 5 (which diffusion is further away to the mean diffusion)731
than for storm 8 (closer to the mean). This confirms the deterioration of the accuracy by any form of732
average; the bigger the ensemble, the higher the error.733

4.3 Model limitations and future improvements734

The data we use were not created specifically for this study and, as such, the discretization is not best735
optimized for further encapsulation by a machine learning method. The original set is too large for the736
herein regression in dimension 3 or 5 and the first task is a necessary strategy to reduce the amount of737
data. Moreover, when generating data for the purpose of machine learning modeling, an adaptive sampling738
strategy should be preferred. Such a method consists in optimizing at which variable in (L, E, α) the739
diffusion coefficient should be computed. This task is left for a future improvement of the model.740

The present DNN model of HSS storms has been computed for 5 L-shells with a ∆L = 1. One of the741
next tasks is to generalized the method to 50 L-shells covering the whole domain with ∆L = 0.1. One742
way is to repeat the study but spread the teaching onto randomly chosen L-shells in order to keep the same743
resolution or to increase the sampling size, which remains possible with DNN.744

Landau diffusion is the highest diffusion we see for pitch angle above αL >∼ 80° in Figure 6 (top, left).745
At lower pitch angle, Landau diffusion is well defined but negligible (cf Mourenas and Ripoll (2012) for746
an approximation of αL for a given L-shell and energy). For very large pitch angle, Landau diffusion is747
strong almost everywhere in the (L, E) plane, but this strong diffusion is surrounded by very weak diffusion748
outside [αL, 90 − ε], which traps and diffuses the particle within that pitch angle range. Only coupled749
energy-pitch angle diffusion effects can then change the electron pitch angle outside of that range (Albert750
et al., 2016). The region of Landau diffusion is a region with a distinct behavior that requires particular751
attention and can cause the DNN network to make higher local errors (as discussed previously). There can752
be various strategy to avoid that difficulty. One can either choose to generate two distinct DNN model, one753
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Figure 8. History of the storms 8 and 5. We plot here the same results as in Figure 5 (blue: raw data, red
crosses: (Kp, t, L, E, α) average model, green crosses: (Kp, t, L, E, α) DNN model) to which we added
circles obtained from averaging in time either the average data (red) or directly the DNN model (green); it
produces a Kp-dependent (only) model. The DNN model approaches well its target (the average data) but
both have a degraded accuracy compared to the event-driven model (in blue), particularly visible for storm
5 which diffusion coefficients depart significantly from the average.

for low and moderate pitch angles (which has the effect to focus on cyclotron resonance) and the other754
for larger ones (above αL >∼ 80° where Landau generally occurs). This strategy can be tricky because755
the exact position of the Landau resonance varies also with the wave and density properties (Mourenas756
and Ripoll, 2012) leading to a dependence with (t, Kp, L, E). The better and simpler strategy, which our757
study brings, is to separate the sum of the n-cyclotron harmonics of the diffusion coefficient from the758
Landau harmonic (n = 0) when the diffusion coefficients are computed and to store both. Then, it is759
straightforward and more accurate to build a DNN model for each of the two components: one for the760
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n-cyclotron and one for the Landau component. The full model is then made by the sum of both models.761
The only drawback is the increase of the memory storage by a factor 2.762

Finally, machine learning models provide a wide and continuous model in a high dimensional space,763
which can produce extrapolation and surprising results (right or wrong) in particular for rare events and764
in the various high-dimensional corners of the model. These solutions always require for verification to765
go back to the database and to explore it more and more to the point of knowing (or trying to know) the766
data in all its aspects. This is often very time consuming, if not practically impossible, even if facilitated767
by the machine learning method in use. These difficulties call for reliable and robust testing methods and768
metrics to be able to rely more and more on the machine learning method with less and less verification of769
the database. In this work, even though the DNN model has shown a good accuracy, we do not think we770
have yet reached this level as, for instance, there are some remaining issues due to strong gradients (e.g.771
associated to Landau diffusion) or there is no possibility to verify and validate the behavior of the model772
for special configuration (e.g. low Kp in the first time of the HSS storm). The second point may call for773
using a given mean model simultaneously with its variance, which signifies using DNN that propagate the774
distribution of the data. A mean answer would be given with a confidence index based on the variance.775
The generation of DNN-based median, quartile, and standard deviation of the diffusion coefficients is thus776
a promising next step to help selecting a given model. A second important application brought by the777
knowledge of both the mean and variance is the ability to perform with them uncertainty analysis of Fokker778
Planck simulation (e.g. Camporeale et al. 2019) and better establish the variability caused by storms and779
better rank the best possible scenarios for given conditions.780

5 CONCLUSIONS

In this work, we consider 8 nonparametric methods of machine learning based on local evaluation (k-781
nearest neighbors and kernel regression), tree-based methods (regression tree, bagging and random forest),782
neural networks and function approximations (Radial basis and splines). With them, we derive machine783
learning based models of event-driven diffusion coefficients first for the storm of March 2013 associated to784
high-speed streams. We present an approach that exhibits some selected properties of the machine learning785
models in order to select the best method for our problem among the 8 methods. The approach is based on786
3 diagnostics: compute the main global metrics (including mean, median, minimum, maximum, standard787
deviation and quartiles errors) at various resolution of the database, generate violin plots for analyzing the788
error distribution, and compute the correlation of each method with the other to enlighten their differences789
and exhibit the main families. We find that neural networks (DNN), radial basis functions and splines790
methods performed the best for this storm, with DNN retained for the next steps of the study.791

We then use the diffusion coefficients computed from 32 high-speed storms in order to build a statistical792
event-driven diffusion coefficients that is embedded within the retained DNN model. This is the first model793
of that kind for two reasons. First the machine learning model encapsulates the statistical event-driven794
diffusion coefficients. Second, this is the first statistical diffusion coefficients made from averaging event-795
driven coefficients. The common approach is to rather build statistical wave and plasma properties and to796
compute single diffusion coefficients from them.797

The statistics of the event-driven diffusion coefficients is based on the mean with a double parametrization798
in epoch time and Kp. The double parametrization is chosen to keep both the strength of the storm and799
follow its history through epoch time. In comparison, a Kp-only model is found too inaccurate compared800
with specific event-driven diffusion coefficients (by 1 to 2 orders of magnitudes depending on the event).801
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The machine learning model step is made for greatly facilitating the use of the mean model, for instance,802
in providing a continuous solution in a high dimensional space (e.g. (t, L, E, α, Kp). We find the DNN803
model does not entail any issue to interpolate the averaged model and reproduces quite perfectly its target.804
Some small deviations are found at very high pitch angle for Landau resonance for which we propose a805
future solution to by-pass this difficulty. We then use the DNN mean model to analyze how mean diffusion806
coefficients behave compared with individual ones. We find a poor performance of any mean models807
compared with individual events, with mean models computing the general trend at best. Degradation of the808
accuracy of mean diffusion coefficients comes for the large variance of event-driven diffusion coefficients.809
Mean models can easily deviate by 2 orders of magnitude. This is shown to occur, for instance, in region of810
strong gradients of the diffusion coefficients, basically delimited by the edge of the first cyclotron resonance811
in the (E, α) plane.812

The strength of the DNN approach is the simplicity of performing comparisons since the model delivers813
continuous map of the solution with a simple numerical subroutine for a problem with 5 to 6 dimensions814
here. This is illustrated by model exploration provided in section 3.2.3. Plotting diffusion coefficients in815
the (t, Kp) plane, for instance, shows a wide variety of solutions, contributing to explain why storms can be816
so different from one event to the other.817

Machine learning methods and the easily accessible numerical procedures that favor their use have a wide818
potential for the type of problems we presented, whether it is for manipulating, interpolating, representing,819
or for analyzing huge database of event-driven diffusion coefficients and, more generally, database of820
diffusion coefficients combined with the main parameters used to compute them, such as plasma density821
and wave parameters. A inherent drawback is the human involvement required to analyze these huge822
database in order to potentially identify regions of model deviance or model breakthrough.823

The DNN method that is proposed here has the advantage to be extended to more parameters824
characterizing storms (including OMNI solar wind and geomagnetic index data), which should improve825
the accuracy and predictability of global models. DNN can similarly be used to derive DNN-based median,826
quartile and standard deviation of the diffusion coefficients. With them, one can perform uncertainty827
analysis of Fokker Planck simulation and better establish the variability caused by storms and better rank828
the best possible scenarios for given conditions. We expect this approach to take more importance in the829
coming years.830
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