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Abstract18

Global atmospheric models rely on parametrizations to capture the effects of gravity waves19

on middle atmosphere circulation. The momentum fluxes associated with these waves,20

as they propagate upwards from the troposphere, represent a crucial yet insufficiently21

constrained component. This study employs machine learning (ML) techniques to probe22

the relationship between large-scale flows and small-scale gravity waves within the trop-23

ical lower stratosphere. The measurements collected by eight superpressure balloons from24

the Strateole 2 campaign, comprising a cumulative observation period of 680 days, pro-25

vide valuable reference estimates of the gravity wave momentum fluxes. Multiple explana-26

tory variables, including total precipitation, wind, and temperature, were interpolated27

from the ERA5 reanalysis at each balloon’s location. Three tree-based ensemble ML meth-28

ods are trained using data from seven balloons, and subsequently applied to estimate the29

reference gravity wave momentum flux for the remaining balloon. The numerical results30

show that parts of the gravity wave signal are successfully reconstructed, with correla-31

tions typically around 0.54 and exceeding 0.7 for certain balloons. In addition, the per-32

formances of the ML models exhibit greater sensitivity to the selection of training data33

than to the ML method. The most informative ERA5 inputs generally include total pre-34

cipitation and wind variables near the balloons’ level. However, two distinct methods35

achieving similar accuracy, may favor different flow variables. This study also discusses36

potential limitations of ML methods, such as the intermittent nature of gravity wave mo-37

mentum fluxes and data scarcity, providing insights into the challenges and opportuni-38

ties for advancing our understanding of these atmospheric phenomena.39

Plain Language Summary40

Part of the atmosphere’s large-scale circulation results from motions that are not41

resolved, or partly resolved, by weather or climate models. These include internal grav-42

ity waves (GWs), with horizontal scales from a few to hundreds of kilometers. The main43

sources occur in the troposphere, such as flow over mountains and cloud development.44

Their three-dimensional propagation induces major aggregated impacts in the strato-45

sphere and mesosphere, forcing key aspects of the circulation. This forcing is accounted46

for in climate models by ‘parameterizations’, that mimics the effect of the unresolved waves47

based on the large-scale, resolved flow. These parameterizations necessarily retain crude48

approximations and introduce significant uncertainty in the models. For GWs, sources49

are a major uncertainty. This study makes use of the high-altitude balloon campaign Stra-50

teole 2 (Oct. 2019-Feb. 2020). Eight balloons circled Earth at heights around 18 to 2051

km, providing unique observations of the GWs. These are used as targets for machine52

learning (ML) methods that take as inputs the information from outputs of a numer-53

ical weather prediction model describing the large-scale flow. The successes and difficul-54

ties of ML provide insights which can guide improvements of parameterizations, such as55

the most informative large-scale variables for estimating the unresolved waves.56

1 Introduction57

Climate models and Numerical Weather Prediction models resolve a widening range58

of atmospheric processes as computing power increases, enabling finer spatial resolution.59

Subgrid-scale processes persist nonetheless, and efforts to improve and constrain them60

better are essential. Internal gravity waves constitute one of these subgrid-scale processes,61

with important implications for the circulation and variability of the middle atmosphere62

(Fritts & Alexander, 2003). Motivations for improved modeling of the stratosphere in-63

cludes climate (e.g. Solomon et al. (2010); Kremser et al. (2016)) but also predictabil-64

ity on shorter time scales (F. Vitart and A.W. Robertson, 2018; Butchart, 2022).65

Gravity waves occur on scales ranging from a few to several hundreds of kilome-66

ters. An important effect stems from their vertical propagation: gravity waves are re-67
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sponsible for vertical transfers of momentum from lower layers (troposphere: denser and68

with more gravity wave sources) to upper layers (stratosphere and beyond), where they69

constitute an essential driver of the overall circulation (Fritts & Alexander, 2003). A sig-70

nificant part of the spectrum of gravity waves has been and remains unresolved in global71

models, requiring these effects to be represented by parameterizations (Kim et al., 2003).72

Models display sensitivity to these, calling for coordinated efforts to better constrain these73

parameterizations from both observations and high-resolution modeling (Alexander et74

al., 2010).75

A global comparison of observed, resolved and parameterized gravity wave momen-76

tum fluxes (GWMFs) was carried out by Geller et al. (2013), highlighting significant dis-77

crepancies. Although GWs parameterizations are now used routinely in climate mod-78

els, their validation against in situ obesrvations remain a challenge. There exist global79

observations derived from satellite observations (e.g. Ern et al. (2018)), but there are80

limitations on the wavelengths that can be observed, and significant assumptions are needed81

to indirectly deduce important quantities like the momentum fluxes from temperature82

fluctuations, using polarization relations (Alexander et al., 2010; Ern et al., 2014). For83

these reasons superpressure balloons have been highlighted as a valuable and accurate84

source of information on gravity wave momentum fluxes (Geller et al., 2013). A down-85

side of superpressure balloon observations is their very sparse sampling of the lower strato-86

sphere: despite a broad coverage of the Southern Ocean (Jewtoukoff et al., 2015) and87

of the equatorial belt (Corcos et al., 2021), each balloon flight provides only local infor-88

mation: one time series along its trajectory.89

There are fundamental difficulties in validating parameterizations of gravity waves:90

the purpose of a parameterization is to provide the forcing to the large-scale which is miss-91

ing because of unresolved processes. Ideally, one would wish to know what this forcing92

should be and validate this outcome of parameterizations. Unfortunately, this forcing93

can not be directly observed. Validating parameterizations by the realism of the clima-94

tology and variability of the atmospheric circulation in global models constitutes a first95

step, but is not a severe test and allows for compensating errors between parameterized96

processes (Plougonven et al., 2020). More stringent tests involve comparisons to obser-97

vations (de la Camara et al., 2014; Trinh et al., 2016). Recently, direct comparisons be-98

tween observed and parameterized gravity waves have been carried out on the scale of99

daily variations rather than at the level of general statistical characteristics (Lott et al.,100

2023). The large-scale environment was described using the ERA5 reanalyses (Hersbach101

et al., 2020), providing the background fields necessary to emulate the parameterization102

of convectively generated waves of Lott & Guez (2013). The comparison was quite en-103

couraging, with the gravity wave momentum fluxes having the right order of magnitude,104

and an appropriate intermittency.105

An essential aspect, and fundamental issue, to keep in mind when comparing ob-106

served and modeled gravity wave momentum fluxes is their strong intermittency: in time-107

series of GWMF, one commonly finds short, intense peaks corresponding to a strong grav-108

ity wave event, surrounded by considerably weaker values. This has been highlighted in109

the long ’tail’ of the Probability Density Function (PDF) of the GWMF (Alexander et110

al., 2010; Hertzog et al., 2012), and quantified in simulations and observations (Plougonven111

et al., 2013; Wright et al., 2013). This intermittency further contributes to making the112

parameterization of gravity waves a challenging task.113

For the improvement of parameterizations in general (not only those of gravity waves),114

machine learning methods provide an array of possibilities. These have been explored115

in different directions:116

• Machine learning can enable the emulation of parameterizations, leading to sig-117

nificant computational time savings (Chantry et al., 2021).118
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• Machine-learning can help to capture the relationship between large-scale fields119

and the unresolved process, as illustrated in the case of convection by Gentine et120

al. (2018). For exploration, the dataset used as the truth came from a higher-resolution121

simulation, not from observations; obtaining observationally based knowledge of122

the effects to be parameterized remains a major challenge.123

• Machine learning can be used to explore the relationship between the large-scale124

flow and the resulting small-scale waves, as has been done for orographic waves125

over Northern Japan (Matsuoka et al., 2020). Again, both the target and the in-126

puts are modelled fields, but at different resolutions.127

• As a preliminary to a data-driven parameterization that would have learned from128

observations, a machine-learning-based emulator of a parameterization for grav-129

ity waves has been used in a climate model, including under climate change con-130

ditions (Espinosa et al., 2022).131

The purpose and scope of the present study is to probe the relationship between132

the large-scale flow and gravity waves in the Tropics, using machine learning approaches133

to address fundamental issues: what fraction of the GWMF can be determined from knowl-134

edge of the large-scale, and what fraction remains as stochastic? Which large-scale vari-135

ables are most informative, and do they match with our common understanding of un-136

derlying gravity wave parameterizations? The present study belongs to the third cat-137

egory outlined above for the uses of machine learning (the purpose is not to produce a138

new parameterization, nor to emulate an existing one). With similar goals, Amiramjadi139

et al. (2023) used Machine Learning methods to probe the relationship between the large-140

scale flow and gravity waves, for non-orographic waves in the mid-latitudes and using141

waves resolved in a reanalysis as a target. In contrast, the present study aims at observed142

momentum fluxes in the Tropics, where the Strateole 2 campaigns provide a wealth of143

new observations (Haase et al., 2018; Corcos et al., 2021).144

The paper is organized as follows: Section 2 provides an overview of the data and145

ML algorithms used in this study. Section 3 presents the performances of ML methods146

in reconstructing the reference GMWFs. Section 4 discusses the factors that influence147

the performances and addresses the limitations of ML methods. Finally, Section 5 con-148

cludes the study with key takeaways and future directions.149

2 Data and methodology150

2.1 Data151

We use in situ observations collected from eight constant-level balloon flights (al-152

titude between 18.5 and 20km) during the Strateole-2 mission from November 2019 to153

February 2020 (Corcos et al., 2021).154

As in Corcos et al. (2021), momentum fluxes (MFs) were computed from raw bal-155

loon measurements following the procedure described in Vincent and Hertzog (2014). Es-156

sentially, the pressure and horizontal wind time series are first projected in the time-frequency157

domain thanks to a continuous wavelet transform (Torrence and Compo, 1998). The pres-158

sure observations inform on the vertical displacements of the balloon, which are related159

to those of air parcels, assuming that the balloon behaves as a perfect isopycnic tracer.160

The time-frequency MF decomposition is then derived from the wavelet cross-spectrum161

of the horizontal winds and air-parcel vertical displacements. Segments polluted by non-162

geophysical artifacts (e.g. depressurization events) are discarded.163

For our analysis, and following Corcos et al. (2021), we considered gravity wave164

MFs integrated over two frequency bands: a high-frequency (HF) band (i.e. short pe-165

riods, ranging from 15 minutes to 1 hour) and wide-frequency (WF) band (i.e., long pe-166

riods, ranging from 15 minutes to 1 day). Additionally, we also differentiate between eastward-167
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propagating waves that yield positive MF in the zonal direction (eastward) and westward-168

propagating waves that produce negative MF (westward). We use these MFs as a ref-169

erence for the true target MFs. Then, we pair them with large-scale flow input informa-170

tion from ERA5. These input variables are sampled at 5 by 5 horizontal grid, with each171

grid cell having a resolution of 1◦×1◦. The grid spans across 67 vertical levels, consist-172

ing of all odd levels within the 137-level model. It shifts along the balloon trajectories,173

with the center being the nearest point to the balloon position. The inputs and the tar-174

gets are interpolated and averaged into 1-hour time resolution. The three ML models175

are trained using 3-hour time averaging data, and their performance will be evaluated176

based on daily averaging time resolution, as presented in Lott et al. (2023).177

2.2 Methodology178

In this study, three tree-based ensemble ML methods are considered: random for-179

est (RF) introduced in Breiman (2001), extremely randomized trees also known as extra-180

trees (ET) by Geurts et al. (2006), and Adaptive Boosting or Adaboost regressors by181

Freund & Schapire (1997). These algorithms construct multiple decision trees, and the182

final prediction is determined by aggregating the individual decision tree predictions.183

It should be noted that other methods, such as deep neural networks, as well as184

other types of networks including convolutional and recurrent neural networks, have also185

been implemented. However, the performances of these methods are not comparable to186

the presented tree-based algorithms, as these models typically require a large number187

of observations to achieve comparable results. The limitations and concerns regarding188

the models, the large-scale input variables, the target observations, and the nature of the189

relation between the large-scale and small-scale flows will be discussed later in Section 4.3.190

2.2.1 Decision tree191

The decision tree algorithm (Breiman et al., 1984) is the foundational building block
of the primary ML methods used for our predictions. They are widely used for nonlin-
ear prediction problems due to their efficiency and interpretability. To construct a de-
cision tree, the training data is recursively partitioned into small hyperrectangular re-
gions of the forms R1 = {X ≤ α} and R2 = {X > α} for some ERA5 input variable
X (wind velocity or precipitation, for instance) and threshold α. At each step, we re-
cursively split the input space into hyperrectangular regions that are as pure as possi-
ble. Purity refers to the homogeneity of the target y (GWMF) within each region, and
Total Within Sum of Squares (TWSS) is utilized as the impurity measure in this study.
Specifically, a split is performed at any input variable X at threshold α if it minimizes
the following TWSS criterion:∑

y of R1

(y − µ1)2 +
∑

y of R2

(y − µ2)2,

where192

• R1 and R2 are the left and right regions of the split193

• µ1 and µ2 are the average target within region R1 and R2 respectively.194

Any new observation must belong to one of these regions, and its prediction is determined195

by averaging the target values of all the neighboring observations within that block. Con-196

structing an optimal tree is generally challenging, and the tree’s structure, such as its197

depth and the minimum size of regions allowed to split, are hyperparameters that need198

to be optimized. Figure 1 below provides an example of a simple decision tree trained199

on 100 observations of precipitation and zonal wind velocity to predict absolute GWMF.200

201
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Figure 1. An example of a simple decision tree built using precipitation and wind velocity to

predict absolute GWMF. The left side is the partition cell representation of the tree on the right

side. The data points are colored according to the value of its target GWMF.

2.2.2 Random forest202

Random forest (RF) is a powerful ensemble learning method that aims at minimiz-203

ing variance across a collection of decision trees by averaging their predictions (Breiman,204

2001). The term ‘random’ signifies the deliberate characteristic of constructing individ-205

ual trees using different bootstrap samples (sampling observations with replacement) and206

exploring only a small, randomly selected, subset of the complete input features. This207

approach effectively decorrelates the individual trees, resulting in a reduction of predic-208

tion variance. Additionally, the construction of each individual tree using only a small209

subset of input features enables random forest to handle high-dimensional data effectively.210

The key hyperparameters in a random forest are the number of trees, tree complexity,211

and the number of randomly selected features used in building the individual trees. Fine-212

tuning these hyperparameters is essential to optimize the performance of the method.213

2.2.3 Extremely randomized trees214

Extremely randomized trees or Extra-trees (ET) operates similarly to RF approach,215

with the distinction that each tree is constructed using the complete training data, and216

each split is performed at random values using a random subset of input features (Geurts217

et al., 2006). This results in a high degree of independence among the trees and can oc-218

casionally yield remarkable results compared to the random forest method.219

2.2.4 Adaptive boosting220

Adaptive boosting (Adaboost) combines weak learners to create a strong predic-221

tive model (Freund & Schapire, 1997). Weak learners refer to predictive models that per-222

form slightly better than random guesses, and simple decision trees with only a few splits223

(stumps) are used as weak learners in this study. During each iteration, Adaboost com-224

bines an individual stump by using a weighted sum, where the weight assigned to the225

current stump is determined based on its overall performance in predicting the target226

variable. Additionally, the weights associated with the individual training data points227

are adjusted manually based on their prediction accuracy, giving more attention or weight228

to points with poor predictions in the next iteration. Adaboost is well known for its abil-229

ity to mitigate overfitting (Rätsch et al., 2001) and has achieved significant success in230

various prediction challenges (see, for example, Benjamin Bossan (2015) and ZEWEICHU231

(2019)).232
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2.2.5 K-fold cross validation233

K-fold cross-validation is the most commonly used model selection technique in ma-
chine learning. It involves dividing the training data into K parts or folds, namely F1, . . . , FK ,
then a model is trained on K−1 folds, and it is tested on the remaining one. This pro-
cess is repeated K times and the final performance is the average performance over all
the K different testing folds. In this study, K-fold cross-validation is used to prevent over-
fitting and to select the best possible hyperparameters of each ensemble method. More
precisely, if fθ is the considered method (random forest, for example) with a hyperpa-
rameter θ ∈ Θ, then the optimal hyperparameter θ∗ is defined by,

θ∗ = argmin
θ∈Θ

1

K

K∑
k=1

∑
(xi,yi)∈Fk

(fθ(xi)− yi)2. (1)

In our study, θ consists of the depth of the decision trees, the size of random subsets of234

the ERA5 input features to be considered when building individual trees, and the num-235

ber of decision trees used in each ensemble learning method. All these keys are tuned236

using 10-fold cross-validation.237

2.3 Training238

We first train ML models with an extensive set of ERA5 inputs. Subsequently, we
refine these inputs to a more manageable subset (see Table 1 below) using importance
feature scores, which will be described in Section 3. To reduce the influence of extreme
values in the target y and increase its normality, the Box-Cox transformation (Box &
Cox, 1964) is performed on the GWMF to obtain the transformed target ỹ:

ỹ =
yλ − 1

λ
.

In the experiment, the exponent λ = 0.6 is chosen based on the performance of mod-
els trained on the corresponding transformed target data. The predictions given by ML
models are then reverted using the inverse transformation:

y = (1 + λỹ)1/λ.

239

Moreover, to predict any GWMFs (absolute, eastward, or westward of HF or WF240

case) of any given balloon, the ML models are trained using data from the seven other241

balloons. The models are fine-tuned using a 10-fold cross-validation method to optimize242

their performances.243

3 Results244

This section reports the correlations of ML methods in reconstructing various types245

of observed GWMFs. The numerical study is carried out using sklearn.ensemble mod-246

ule in Python (Pedregosa et al., 2011). In general, the three ML models exhibit similar247

performances on several balloons, and their variations on any given balloon are insignif-248

icant compared to the variations between different balloons. Additionally, ML models249

can achieve an encouraging level of correlation larger than 0.7. The average performance250

over all balloons and data exceeds 0.5, with the westward GWMF showing the worst per-251

formance at a correlation of approximately 0.2. Overall, the performances of ML mod-252

els are sensitive to the choice of balloons and the types of GWs being considered. The253

numerical results for these cases are provided in the following subsections.254

1 Solar zenith angle is the only input obtained from the balloons, not from the ERA5. It is a periodic

function that provides an estimation of time of the day and the balloon’s location.
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Name Notation Description

Zonal, meridional wind
velocity (m/s) & tempera-
ture (K)

uj , vj &
tempj

with vertical level j ∈ {0, 2, 9, 19} (km),
where 0 is the surface and 19 is the bal-
loon’s level.

Total precipitation (m) tp at center of horizontal grid points.

Mean & standard devia-
tion of precipitation (m)

tpmean &
tpsd

over horizontal grid points.

Solar zenith angle (°) sza1 at the location of the balloon.

Log surface pressure
(log(hPa))

lnsp at the surface level.

Table 1. Large-scale input data for training ML models.

3.1 Overall performances255

Three examples of observed and predicted GWMFs of the HF case are presented256

in Figure 2 below. Each subplot displays the eastward component of the GWMFs in the257

positive part and the westward ones in the negative part. It can be observed that the258

models effectively capture the fluctuations of the observed momentum fluxes, particu-259

larly on balloon 2. However, the models struggle to fully estimate the amplitudes of high-260

peak events, especially for balloons 3 and 7. Overall, the performances of all ML mod-261

els are quite similar; however, there are cases where one outperforms the others. For ex-262

ample, Adaboost appears to do a slightly better job on balloon 2 than the other two mod-263

els in capturing the amplitudes of high-peak events. It is worth noting that balloon 2264

represents the most satisfying performance of ML methods, balloon 7 is considered the265

average case, and balloon 3 is the most challenging one to predict.266

Figure 4 presents boxplots of Pearson’s correlation coefficients between predicted267

and true GWMFs of the HF case. Firstly, choosing the best model is challenging due268

to the variability in the boxplot positions, which depends on the choices of balloons and269

GWMF types. For instance, on balloon 2, the correlation boxplot of Adaboost is higher270

than the other two methods for the absolute and westward cases but lower than Ran-271

dom Forest for the eastward case. However, these differences are generally insignificant272

compared to the variations observed between different balloons. Secondly, ML models273

demonstrate strong performance on balloons 2, 6, and 8 across all types of momentum274

fluxes, and they also excel in predicting the eastward momentum flux of balloon 1. Nev-275

ertheless, balloons 3, 4, 5, and 7 pose greater challenges, with the most difficult being276

the westward component of GWMF on balloon 3. Finally, the ML models generally out-277

perform the offline gravity wave drag scheme by Lott et al. (2023), except for two cases278

of balloon 3 (east and westward) and balloon 4. Moreover, Table 4 provides the statis-279

tical significance of the correlations presented in Figure 4.280

=281

3.2 Which large-scale inputs are informative for ML models?282

The tree-based ensemble ML models employed in this study are not only proficient283

in predicting GWMFs but also offer valuable insights into the importance of large-scale284

input information during their training process. Each method exploits the feature im-285
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Figure 2. Observed and predicted time series of high-frequency east and westward GWMFs of

the best, worst and medium cases: balloon 2, 3 and 7, respectively. The x-axis “Day” represents

the number of flying days, with 0 corresponding to the moment when the individual balloon was

launched.

Figure 3. Scatterplots of predictions against observed GWMF corresponding to the time se-

ries of Figure 2.

portance (decrement of impurity measure at each split) of its individual decision trees286

for determining the overall feature importance, resulting in a ranking of input features287

from most to least important. Figure 5 showcases the ranking of the top 5 input features288

for all ML methods and GWMF types of the HF case.289

Generally, the high-ranking inputs consist of variables that describe precipitation290

and wind velocity at and below the balloon’s level. It is important to note that differ-291

ent models may not rank input features in exactly the same way for a given target (as292

seen along the rows), due to the variations in the way individual trees are grown. How-293

ever, the three models concur on the strongly impactful input features; for example, wind294

velocity at the balloon’s level (u19) ranked first in the eastward case (second row) for295
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Figure 4. The boxplots display the correlations between predicted and observed high-

frequency GWMFs obtained from 50 runs of ML methods as shown in Table 2. For each balloon,

moving from left to right, the three boxplots correspond to the Random forest, Extra-trees, and

AdaBoost methods, respectively. The dashed horizontal red lines indicate the performance of the

parametrization by Lott et al. (2023).

all models. This suggests that the wind velocity surrounding the balloons is the most296

informative large-scale variable for predicting eastward gravity wave momentum fluxes297

(GWMFs). Furthermore, the few most significant inputs show a similar preference in both298

absolute and eastward GWMFs within the same model, as demonstrated in the columns299

of the first and second rows. For instance, standard deviation and average total precip-300

itation (tp sd and tp mean) are identified as impactful inputs in random forests, while301

surface zonal wind velocity (u0) is deemed the most important one in extra trees.302

4 Discussion303

While the results of the machine-learning models are generally encouraging, defi-304

ciencies and cases with poor performances were also found. The main motivation for this305

study being to probe the relationship between the large-scale and the unresolved pro-306

cess, these somewhat negative results are also of interest and can provide useful insights.307

Possible explanations for the main difficulties encountered are discussed below.308

4.1 Why are westward GWMFs more challenging?309

Figure 4 displays the performances of the ML models and those of the parameter-310

ization used in the IPSL climate model. Balloon 4 constitutes an exception, for which311
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Figure 5. The boxplots show the 5 most important features given by different ML models

(by column) on different types of targets (by row). Each boxplot is obtained from the same 50

simulations as displayed in Figure 4.

the parameterization systematically performs better than the ML methods. Leaving bal-312

loon 4 aside, ML approaches unambiguously outperform the parameterization for the ab-313

solute momentum fluxes. For the eastward momentum fluxes, ML approaches generally314

perform better or are similar to the parameterization. In contrast, both ML approaches315

and the parameterization have poorer performances for westward MF, and with greater316

variability for both: for five balloons, ML outperforms clearly the parameterization, whereas317

for two balloons (including balloon 4) the parameterization clearly outperforms the ML.318

The present section discusses possible reasons for this difficulty in reproducing the west-319

ward momentum fluxes.320

Figure 6 displays the Probability Density Function of winds for three balloons as321

blue curves: balloon 2 has flown in winds that include a majority of westward, strong322

winds. Like balloon 1, it traveled near 10◦S in easterly flow for a significant portion of323

its flight. In contrast, balloons 3 and 7 have flown in weaker winds, with a mild dom-324

inance of westerly winds. Also plotted in figure 6 are conditional PDFs of the zonal winds,325

conditioned on the intensity of the absolute GWMF. The purpose is to detect if strong326

values of GWMF were associated to specific wind conditions. For balloon 2, strong GWMF327

values were found mostly for moderate to strong easterly winds, and this distribution328

is insensitive to the quantile chosen for the GWMF (90th, 95th or 99th percentile). For329

balloon 7, the distribution is somewhat sensitive to the quantile chosen. Finally, for bal-330

loon 3, the conditional distribution of zonal wind dramatically changes when it is restricted331

to the 99th percentile. This detects a particularly intermittent time series, with variabil-332

ity dominated by one extreme event. These findings contribute to explaining the poor333

performances for balloon 3: the variability of GWMF was dominated there by one (or334

very few) extreme events, occurring in a specific condition with very weak winds (close335
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to zero, less than 5 m s−1). In contrast, the good performances for balloon 2 occur in336

a case with less intermittency, for which large GWMF are found in strong (easterly) winds.337

Figure 6. Conditional densities of zonal wind given different values of high-frequency west-

ward GWMFs. Here, q(0.9), q(0.95) and q(0.99) are the 90%, 95% and 99% quantiles of the

absolute value of high-frequency westward GWMFs, respectively.

From table 2, Figure 4 and the trajectories of the balloons (Corcos et al., 2021),338

it appears that drifting with easterly winds may constitute a favorable factor (balloon339

2), but neither a sufficient one (the correlation for westward momentum fluxes for bal-340

loon 1, which has a similar trajectory, is moderate, 0.43 at most) nor a necessary one:341

balloons 6 and 8 generally drift eastward, but good performances are found for the ML342

reconstruction of the westward MF (0.66 and 0.72 respectively).343

Another aspect that influences the performances is the geographical location, and344

more specifically the latitude of the balloons. Figure 7 displays the PDF of latitude for345

the eight balloons, distinguishing those for which the ML reconstruction of westward MF346

is satisfactory (balloons 1, 2, 6 and 8, full lines) from those for which it remains chal-347

lenging (balloons 3, 4, 5 and 7). Here again, one does not isolate a necessary condition,348

but the balloons for which reconstruction remain challenging are those that remain clos-349

est to the equator. This is consistent with the general expectation that dynamics is more350

complicated near the Equator, although it is not completely clear why this should mat-351

ter for a small-scale process such as convectively generated gravity waves. It may be that352

it is not the dynamics itself that is intrinsically more difficult to capture at the Equa-353

tor: it may be the input variables that are poorer, less accurate, very close to the Equa-354

tor. It is known indeed that significant errors, in particular in the wind, are present in355

the reanalyses very near the Equator (Podglajen et al., 2014; Baker et al., 2014) and the356

errors are enhanced within a few degrees of the Equator (roughly between 8◦S and 8◦N).357
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4.2 Why are some balloons easier to predict than others?358

Figure 7 indicates that the predictability of the observed GWMFs is influenced by359

the balloons’ position, specifically, their distances from the equator. Balloons that trav-360

eled farther from the equator, primarily south (except for balloon 6, which also explored361

farther to the north), were found to be easier to predict. This tendency is observed for362

balloons 1, 2, 6, and 8 which are the well-predicted balloons. In contrast, the challeng-363

ing balloons spent most of their time flying within a few degrees of the equator, where364

the atmospheric conditions are not well described by ERA5 data.

Figure 7. The trajectories of the balloons during the whole flight (a), and their latitude PDFs

(b) and (c). Dashed lines correspond to balloons that pose challenges in prediction.

365

4.3 Exploring potential reasons for unsatisfactory cases366

Several factors could potentially lead to ML models underestimating the observed367

fluxes:368

• Part of the relationship between the large-scale flow and a subgrid-scale process369

such as gravity waves is non-deterministic, or stochastic: for given values of the370

large-scale fields, a range of different realizations of the subgrid-scale process is371

possible.372

• Input variables from ERA5, which could provide relevant information, may have373

been omitted.374

• The input variables have errors, especially the winds near the Equator (Podglajen375

et al., 2014). The ML models can not make accurate predictions with an inaccu-376

rate description of the flow.377

• The GWMF are estimated from observations, as a derived quantity; observational378

error is present in the targeted quantity.379

• Given the intermittency of the targeted phenomenon, the sampling by the balloons380

remains too limited to appropriately train the ML models.381
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In our study, we mitigated some of the controllable risks mentioned above by first train-382

ing ML models on a large set of ERA5 inputs, then selectively reducing them to a rea-383

sonably small subset, as described in Section 2. This approach ensures that essential ERA5384

inputs are not inadvertently omitted. Furthermore, fine-tuning the hyperparameters of385

the models enhances their predictive capacity. Moreover, we observe that all the balloons386

often flew over many convective processes, and the high-peak events often correspond387

to deep convective systems, as illustrated for selected cases in Figure 8 below. On Jan-388

uary 12th, 2020, balloon 2 was flying in an area of convection (upper panels (a1) and (a2)),389

which is likely responsible for the highest peaks in its GWMF timeseries. Interestingly,390

for balloon 2, almost all events correspond very well with precipitation as described by391

ERA5 (first column of Figure 9). On the contrary, there is only one big event that hap-392

pened for balloon 3 around January 29th, 2020 (lower left panel (b)). However, the ML393

models failed to capture it, as it appears to be absent from the ERA5 input variables394

(not reflected in precipitation nor winds as shown in the second column of Figure 9). This395

is also true for other challenging balloons, such as the 4th and 5th. Regarding balloon396

7, the large-scale flows provide partial information for the high-peak events, resulting in397

partial success in the model’s predictions.

Figure 8. Brightness temperature from NOAA/NCEP GPM MERGIR product (Janowiak,

2017), positions, and the corresponding observed GWMFs at the high-peak events of balloon 2

(top), balloon 3 (lower left) and balloon 7 (lower right).

398
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Figure 9. Timeseries of absolute GWMFs and the most informative ERA5 inputs in daily

time resolution. The clear correspondence between precipitation and GWMF of balloon 2 can be

visually observed in column (a). In contrast, this is not the case at all for balloon 3 as shown in

column (b), and it partially presents in column (c) of balloon 7.

5 Conclusion and perspectives399

5.1 Key messages400

The relationship between the large-scale atmospheric flow and gravity waves in the401

lower stratosphere has been investigated using Machine Learning (ML) approaches. This402

relationship is accounted for in global models through parameterizations. ML approaches403

allow us to revisit these in several ways, notably investigating how much of the subgrid-404

scale signal may be estimated deterministically, and which are the key variables for that405

purpose.406

Estimates from superpressure balloon measurements were chosen as the target ob-407

servations for gravity wave momentum fluxes (GWMF). The first campaign of the Stra-408

teole 2 project (Haase et al., 2018) consisted of eight balloons flying an average of about409

85 days each around the globe in the equatorial band. The quasi-Lagrangian nature of410

the balloons allows an accurate estimate of gravity wave momentum fluxes (Geller et al.,411

2013), the latter being a key quantity for parameterizations (Alexander et al., 2010). Anal-412

ysis of the GWMF estimated from measurements in this first campaign has highlighted413

and confirmed convection as the main source of gravity waves in this region, especially414

for waves with high frequencies (periods shorter than one hour); see Corcos et al. (2021).415

The description of the large-scale flow environment was provided from the ERA5416

reanalysis, along with vertical profiles co-located with each balloon at each time. These417

variables included wind, pressure, temperature, wind speed, and precipitation. The lat-418

ter being a noisy and uncertain field, values of total precipitation were retrieved in a 500× 500419

km2 area around each balloon location, and was generally described by the mean and420

standard deviation over this area.421

The ML methods used focused on tree-based methods: random forests, extremely422

randomized trees, and adaptive boosting. Other methods were also investigated, as sen-423

sitivity experiments, without yielding major improvements. For each method, seven out424

of eight balloons were used for training, and the last balloon was used for testing.425

The main results obtained from these investigations are as follows:426
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1. Based on the information from the large-scale flow described by ERA5, ML meth-427

ods can reconstruct up to encouraging levels of the observed GWMFs (balloon 2,428

6, and 8) with correlations larger than 0.7. The performances of ML methods how-429

ever vary considerably from one balloon to another, with correlations down to 0.4430

for some other balloons, and even down to 0.2 in one case. The overall average431

correlation is 0.54.432

2. The datasets used for training and testing were more crucial to the performances433

of the ML approaches than the choice of the ML approaches: for any given bal-434

loon, the performances of the three methods are mostly similar though not iden-435

tical, and not always ordered the same way. The tree-based methods proved gen-436

erally efficient, but there is not an overwhelming preference for one of them. Adap-437

tive boosting frequently performed a bit better, but all three failed to capture the438

intensity of the (very intermittent) peaks in GWMF.439

3. The most informative explanatory variables are those describing the precipitation440

and the zonal wind at and below the balloon’s level. It is indeed an advantage of441

tree-based methods to provide information about the usefulness of the different442

inputs, e.g. through the Gini importance (Hastie et al., 2001). The importance443

of precipitation is consistent with the convective generation of the waves (Lott &444

Guez, 2013; Corcos et al., 2021). The importance of winds is consistent with the445

general understanding of the generation and propagation of waves (Kim et al., 2003);446

the relevance of wind at the balloon level is reminiscent of previous findings (Plougonven447

et al., 2017; Amiramjadi et al., 2023).448

4. The ML methods were more efficient at reconstructing the part of GWMF asso-449

ciated with high-frequency waves (periods shorter than an hour) than the whole450

spectrum. This is consistent with the local character of the explanatory variables451

provided as inputs: high-frequency waves will be shorter-lived and propagate more452

vertically. Despite their smaller scales, it is therefore consistent that they are bet-453

ter reconstructed from local information.454

5. To be more precise about the target, different decompositions of the GWMF were455

used: absolute, eastward and westward GWMF. Interestingly, the performances456

significantly differed between these. The most difficult to reconstruct was found457

to be westward GWMF. Reasons for this likely include limitations of the dataset,458

to be further discussed below.459

However, there are still parts where the large-scale flows are not informative enough460

in the estimation. There are cases where high peaks are present in the observed target,461

which indicates interesting events; however, large-scale flows are missed to describe them.462

As a result, the models failed to reconstruct such events in GWMFs (balloon 1 and 3,463

for example).464

5.2 Perspectives465

Although the ML approaches have performed well, and nearly always better than466

the parameterization, there are clear limitations to the current investigation, calling for467

further research. The very strong sensitivity of the performances to the balloon that is468

left out and then used for testing is a clear indication that we lack data: the results strongly469

depend on the split of the data for training and testing, the performances are far from470

convergence. This is consistent with the strong intermittency of the GWMF (Hertzog471

et al., 2012; Plougonven et al., 2013) and with the illustrative time series of Figure 2:472

for each balloon, GWMF are dominated by a few events, such that even with 680 days473

of balloon measurements, only a few handfuls of GWMF peaks are described. This is474

too little for data-driven methods. This also explains why clear distinctions between the475

different methods are not found: the ML methods do their best but still lack data to clearly476

separate a better method for this problem, if there is one.477
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Ways forward include:478

• Obtaining more observations to use as the target, keeping the same framework for479

the ML. Additional observations would come from the second Strateole 2 campaign480

(in 2021) and from Loon balloons (Schoeberl et al., 2017; Köhler et al., 2023). The481

additional Strateole data would enhance the data by less than a factor 2 and is482

therefore not expected to suffice to make a dramatic change. The Loon data would483

come with other difficulties as the observations were not made for research pur-484

poses and come with their own challenges (Green et al., 2023).485

• Additional data could be provided not for the targets, but for the explanatory vari-486

ables. A first step could be including additional input variables from the reanal-487

yses. However, preliminary attempts have not suggested significant gains from the488

most evident additional culprits. A second step would consist of providing much489

more detailed and more accurate information about the background flow: this could490

be obtained from satellite observations, such as the observations of brightness tem-491

peratures from geostationary satellites shown in Figures 8. This would constitute492

a very interesting new study but in a profoundly new framework and with differ-493

ent aims: to fully use the information available from satellites would a priori re-494

quire providing maps (or images, or 2D fields) as input variables (more akin to495

Matsuoka et al. (2020), although their inputs were from models, not observations).496

The ML used would need to be reassessed (Matsuoka et al. (2020) used neural net-497

works, for instance). Such a study would be of great interest because the perfor-498

mance of the ML methods would much less be tainted by the uncertainty (or er-499

rors) present in the inputs that serve to describe the background. Additionally,500

much more detailed information would be provided about the background flow,501

allowing the ML methods to tap into a greater reservoir of potentially relevant in-502

formation, and hence providing more precise answers regarding the relationship503

of the large- scale flow to the gravity wave signal. However, if the outcome of such504

an exercise would be of interest fundamentally, it would be more removed from505

the framework in which current parameterizations operate.506

• A third way forward consists of applying similar investigations on datasets where507

more data is available, albeit at the cost of more uncertainty on the realism of the508

data. High-resolution models such as global convection permitting simulations (Stephan509

et al., 2019) provide a wealth of information on the resolved gravity wave field,510

and many studies have repeatedly highlighted the ability of models to simulate511

efficiently many features of the observed gravity wave field (Plougonven & Teit-512

elbaum, 2003; Wu & Eckermann, 2008; Preusse et al., 2014; Stephan et al., 2019).513

Model output from global simulations would provide amounts of data for which514

the sampling limitations of the Strateole balloons would not be present. The down-515

side is the limitations of model data, relative to observations, and the need for strate-516

gies to validate which aspects of the simulations are realistic.517
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.ipsl.polytechnique.fr. The ERA5 input variables are described in Hersbach et al.528
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and can be downloaded from its website: https://scikit-learn.org/stable/install532

.html. Finally, the source codes for implementing machine learning methods in our anal-533

ysis are made available at the following GitHub repository: https://github.com/hassothea/534

Reconstruction of GWMF using ML ERA5.535
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