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1 Introduction

1.1 First insight into the main results

Let n ≥ 2. We consider the model

Xi = g(Ui) + ξi, i = 1, . . . , n, (1.1)

where the curve g is unknown, the ξi are independent random variables, the Ui are independent
random variables with distribution µi ≥ cλ on [0, 1] for i = 1, . . . , n. Note that we do not
require that the noise ξi is independent from Ui, so that the context is different from that of
a deconvolution problem, even if the distribution of the noise were known. We assume that g
is rectifiable and Lipschitz. Moreover, we suppose that g is injective and reach(Img) ≥ r > 0,
where reach(Img) denotes the maximal radius of a ball rolling on it (see Federer, 1959).

The first important result is the construction of a sequence of curves to estimate the image
of the unknown function g in Hausdorff distance. Asymptotically, the length of the proposed
estimator is equal to the length of g. We provide an upper bound for the rate of convergence of
these estimators for the convergence in probability, in Hausdorff distance. Here, convergence is
to be understood in the sense of the double asymptotic where the sample size n gets large and
the noise gets small.
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1.2 Related work

Estimating the image of g recalls the question of filament estimation and is a particular case,
in dimension 1, of manifold estimation.
Genovese et al. (2012a) study an additive noise model of the form (1.1), where the curve

g is parameterized by arc-length, normalized to [0, 1]. The Ui, i = 1, . . . , n, are assumed to
have a common density with respect to the Lebesgue measure on [0, 1], which is bounded and
bounded away from zero. The noise is supported in a ball B(0, σ), with σ < reach(g), and has a
bounded density with respect to the Lebesgue measure. This density is continuous on B̊(0, σ),
nondecreasing and symmetric, with a regularity condition on the boundary of the support. For
an open curve (with endpoints), in addition, |g(1)− g(0)|/2 > σ. In the plane R2, the authors
estimate the support of the distribution of the observations, and its boundary, in order to find
its medial axis. Clutter noise is also considered: in this situation, the observations are sampled
from a mixture density (1− η)u(x) + ηh(x), where u is the uniform density over some compact
set, and h is the density of points on the shape. Considering manifolds without boundary, with
dimension lower than the dimension of the ambient space, contained in a compact set, Genovese
et al. (2012b) investigates their estimation from an additive model taking the form

Xi = Gi + εi, i = 1, . . . , n. (1.2)

Here the random vectors Gi are drawn uniformly on the shape M , and the noise is drawn
uniformly on the normal to the manifold, at distance at most σ < reach(M). The article
Genovese et al. (2012c) is also dedicated to manifold estimation, in a noiseless model, in the
presence of clutter noise, as well as in an additive noise model, with known Gaussian noise,
which is related to density deconvolution. Estimating manifolds without boundary, with low
dimension and a lower bound on the reach, is also the purpose of Aamari and Levrard (2018,
2019). The observations have a common density with respect to the d-dimensional Hausdorff
measure of the manifold. Is is supposed bounded and bounded away from zero. In Aamari
and Levrard (2018), estimation relies on Tangential Delaunay Complexes. It is performed in
the noiseless case, with additive noise, bounded by σ, and under clutter noise. Aamari and
Levrard (2019) deal with compact manifolds belonging to specific smoothness classes. The
authors examine the noiseless situation, as well as centered bounded noise perpendicular to the
manifold. Estimators based on local polynomials are proposed.
In Delattre and Fischer (2024), we consider a model of the same general form as (1.1). The

goal is also to estimate the image of the unknown function g. We assume a weak condition
on the noise: more precisely, we suppose that 1

n

∑n
i=1 |ξi|q converges in probability to 0 as n

tends to infinity. In this context, we construct a convergent estimator, but, without any further
information on the noise, it is not possible to get a convergence rate. The purpose in Delattre
and Fischer (2024) was to check if it is possible to design a procedure leading to a convergent
estimator when neither the length nor the shape of the noise is known, which is not completely
obvious at first sight.

1.3 Organization of the paper

The manuscript is organized as follows. In Section 2, we set up notation, provide some defini-
tions, and describe the model. In Section 3, we define the estimator and state the main result,
which is an upper bound for the Hausdorff distance between the image of the unknown curve g
and the estimator.
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2 Notation and the model

2.1 Notation and first definitions

For d ≥ 1, the space Rd is equipped with the standard Euclidean norm, denoted by | · |. For
u ∈ R, ⌊u⌋ denotes the floor of x.
For x ∈ Rd, A ⊂ Rd, let d(x,A) = infy∈A |x− y| denote the distance from point x to set A.
We denote by dH(A,B) the Hausdorff distance between two sets A and B, given by

dH(A,B) = sup
a∈A

d(a,B) ∨ sup
b∈B

d(b, A).

For ρ > 0, let B(x, ρ) denote the open ball of Rd with center x and radius ρ.
Moreover, for d ≥ 1, λ denotes the Lebesgue measure on Rd. Let αd stand for the volume of

the unit ball in Rd.
The reach of a set A ⊂ Rd is the supremum of the radii ρ such that every point at distance

at most ρ of A has a unique projection on A. More formally, following Federer (1959), we set
for A ⊂ Rd

reach(A) = sup
{
ρ ≥ 0 | ∀x ∈ Rd d(x,A) ≤ ρ ⇒ ∃!a ∈ A d(x, a) = d(x,A)

}
∈ [0,+∞].

For A ⊂ Rd and r ≥ 0, we denote by

A⊕ r =
{
x ∈ Rd | d(x,A) ≤ r

}
the r-enlargement of A.

A continuous function from [0, 1] to Rd will be called a curve. If a curve f is rectifiable, its
length will be denoted by L (f).

2.2 Description of the model

Let q ∈ [1,∞) and n ≥ 2. We consider the model

Xi = g(Ui) + ξi, i = 1, . . . , n, (2.1)

where the curve g is unknown, the ξi are independent random variables, the Ui are independent
random variables with distribution µi ≥ cλ on [0, 1] for some constant c > 0, for i = 1, . . . , n. We
assume that g is rectifiable and L (g)-Lipschitz and that it is injective, with reach(Img) ≥ r > 0.

We also suppose that:

� E[|ξi|q] ≤ mq
q,

� Var
(
|ξi|q

)
≤ σ2q

q .

3 Convergent estimation

3.1 Definition of the estimator and upper bound in Hausdorff distance

The definition of the estimator is based on the notion of principal curves with bounded length,
introduced by Kégl et al. (2000). Let
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∆n(f) =

(
1

n

n∑
i=1

d(Xi, Imf)q
)1/q

=

(
1

n

n∑
i=1

d(g(Ui) + ξi, Imf)q
)1/q

.

Let γ > 0. For each L ≥ 0, we define f̂L such that

L (f̂L) ≤ L, ∆n(f̂L) ≤ min
L (f)≤L

∆n(f) + γ. (3.1)

In the next theorem, which is the main result in this article, we define an estimator f̂L̂
based on this optimization criterion (3.1), and state an upper bound for the Hausdorff distance
between its image and the image of the unknown curve g.

Theorem 3.1. Let n ≥ 1, ε ∈ (0, 1/2]. We set

s = s(q, ε, n) =
(
mq

q + n−1/2(1/ε− 1)1/2σq
q

)1/q
and define

L̂ = min{L ∈ δN,∆n(f̂L) ≤ s+ γ}.

With probability larger than 1− 3ε,

dH(Imf̂L̂, Img) ≤ F

[
3 +

αdd

αd−1
+

L (g)(d− 1)

r + F

]
+ δ,

where

F = 2s+ γ +
(
(q + 1)2q+3

) 1
q+1

(
L (g)

c

) 1
q+1

(2s+ γ)
q

q+1 + 16(q + 1)
ln(n

2(q+1)

ε )

n

L (g)

c
.

Proposition 3.1. Assume that mq, γ and δ tend to 0. Then, the length L̂ converges in proba-
bility to L (g) as n tends to infinity.

3.2 Proof of Theorem 3.1

A first step consists in examining the behavior of the noise of the model, which is the purpose
of the next statement.

Lemma 3.1. The errors in Model 2.1 satisfy

P

(
1

n

n∑
i=1

|ξi|q ≥ sq
)

≤ ε.

Proof. By the Chebyshev-Cantelli inequality, we have

P

(
1

n

n∑
i=1

|ξi|q ≥ sq
)

= P

(
1

n

n∑
i=1

|ξi|q −mq
q ≥

σq
q√
n

(
1

ε
− 1

)1/2)

≤ P

(
1

n

n∑
i=1

(|ξi|q − E[|ξi|q]) ≥
σq
q√
n

(
1

ε
− 1

)1/2)
≤ ε.
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Lemma 3.2. We have
P
(
∆n(f̂n,L (g)) ≥ s+ γ

)
≤ ε.

Proof. We have

∆n(g) =
( 1

n

n∑
i=1

d
(
g(Ui) + ξi, Im(g)

)q)1/q

≤
( 1

n

n∑
i=1

|ξi|q
)1/q

.

Consequently, as ∆n(f̂L (g)) ≤ ∆n(g) + γ, using Lemma 3.1,

P (∆n(f̂L (g)) ≥ s+ γ) ≤ P (∆n(g) + γ ≥ s+ γ) ≤ P (∆n(g) ≥ s) ≤ ε.

Then, with probability larger than 1− ε, L̂ ≤ L (g) + δ. Set

M :=
( 1

n

n∑
i=1

d
(
g(Ui), Im(f̂)

)q)1/q
,

and
S = max

1≤i≤n
d
(
g(Ui), Im(f̂)

)
.

Lemma 3.3. We have P
(
M ≥ 2s+ γ

)
≤ ε and S ≤ n1/qM .

Proof. By Minkowski’s inequality,

M ≤ ∆n(f̂) +
( 1

n

n∑
i=1

|ξi|q
)1/q

≤ s+ γ +
( 1

n

n∑
i=1

|ξi|q
)1/q

.

Hence, by Lemma 3.1,
P
(
M ≥ 2s+ γ

)
≤ ε.

We have

Sq = max
1≤i≤n

d
(
g(Ui), Im(f̂)

)q
≤

n∑
i=1

d
(
g(Ui), Im(f̂)

)q
,

thus

S ≤
( n∑

i=1

d
(
g(Ui), Im(f̂)

)q)1/q
= n1/qM.
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We set
H1 = sup

u∈[0,1]
d(g(u), Imf̂)

and
H2 = sup

u∈[0,1]
d(f̂(u), Img).

In order to study dH(Imf̂ , Img) = H1 ∨H2, we will first control H1 in Proposition 3.2 and then
H2 in Proposition 3.4 below. Putting these two results together leads to Theorem 3.1.

Proposition 3.2. Let n ≥ 1, ε ∈ (0, 1/2]. With probability larger than 1− 3ε,

H1 ≤ 2s+ γ +
(
(q + 1)2q+3

) 1
q+1

(
L (g)

c

) 1
q+1

(2s+ γ)
q

q+1 + 16(q + 1)
ln(n

2(q+1)

ε )

n

L (g)

c
.

The proof relies on Lemma 3.4 and Lemma 3.6 below.

Lemma 3.4. Let U(1) ≤ U(2) ≤ · · · ≤ U(n) the order statistics corresponding to U1, . . . , Un. Set
U(0) = 0 and U(n+1) = 1. On has for all t > 0

P
(

max
1≤i≤n+1

U(i) − U(i−1) ≥
log(n+ 1)

n
t
)
≤ 3

t(n+ 1)ct/3−1 log(n+ 1)
.

Proof. Let s ∈ (0, 1] and set k = ⌊2/s⌋+ 1. One has{
max

1≤i≤n+1
U(i) − U(i−1) ≥ s

}
=

{
∃a ∈ [0, 1− s] ∀i = 1, . . . , n Ui /∈ (a, a+ s)

}
⊂

{
∃ℓ ∈ {1, . . . , k} ∀i = 1, . . . , n Ui /∈ ((ℓ− 1)/k, ℓ/k)

}
since 1/k ≤ s/2. It follows that

P
(

max
1≤i≤n+1

U(i) − U(i−1) ≥ s
)
≤

k∑
ℓ=1

P
( n⋂
i=1

{Ui /∈ ((ℓ− 1)/k, ℓ/k)}
)

=
k∑

ℓ=1

n∏
i=1

P
(
Ui /∈ ((ℓ− 1)/k, ℓ/k)

)
≤ k

(
1− c/k

)n
≤ k exp(−cn/k) since 1− c/k ≤ exp(−c/k)

≤ 3

s
exp(−cns/3) since k ≤ 3/s

Using that max1≤i≤n+1 U(i) − U(i−1) ≤ 1 a.s., one obtains

∀s > 0 P
(

max
1≤i≤n+1

U(i) − U(i−1) ≥ s
)
≤ 3

s
exp(−cns/3)

For t ∈ [0, 1] and x ≥ 0, we set (where z+ = max(z, 0))

Zn(t, x) =
1

n

n∑
i=1

(
x− |Ui − t|

)q

+
(3.2)

6



Lemma 3.5. For all t ∈ [0, 1], x ∈ (0, 1/2], z ≥ 0 one has

P
(
Zn(t, x) ≤

cxq+1

q + 1
− z

)
≤ exp

(
−n(2q + 1)z2

2cx2q+1

)
Proof. Let t ∈ [0, 1] and x ∈ (0, 1/2]. One has Zn(t, x) ≥ Z̃n(t, x) where

Z̃n(t, x) =


1
n

∑n
i=1 1{t ≤ Ui ≤ t+ x}

(
t+ x− Ui

)q
if t ≤ 1/2

1
n

∑n
i=1 1{t− x ≤ Ui ≤ t}

(
Ui − (t− x)

)q
if t > 1/2

thus it suffices to prove the result for Z̃n(t, x).
First consider the case where t ∈ [0, 1/2]. Set Yi = 1{t ≤ Ui ≤ t+ x}

(
t+ x−Ui

)q
, 1 ≤ i ≤ n.

Remark that, since t+x ≤ 1 and L (Ui) ≥ cλ, one has E(Yi) ≥ cxq+1/(q+1). Let z ≥ 0. Since
the Yi are independent, for all b > 0 one has

P
(
Z̃n(t, x)−

cxq+1

q + 1
≤ −z

)
≤ exp

(
−bz + b

cxq+1

q + 1

)
E
(
exp(−bZ̃n(t, x))

)
≤ exp

(
−bz + b

cxq+1

q + 1

) n∏
i=1

E
(
exp(− b

n
Yi)

)
and moreover, using that

exp(− b

n
Yi) = 1− 1{t ≤ Ui ≤ t+ x}

(
1− exp(− b

n
(t+ x− Ui)

q
)

and L (Ui) ≥ cλ,

E
(
exp(− b

n
Yi)

)
≤ 1− c

∫
[t,t+x]

(
1− exp

(
− b

n
(t+ x− u)q

))
du

= 1− c

∫ x

0

(
1− exp

(
− b

n
yq
))

dy

≤ 1− c

∫ x

0

( b

n
yq − b2

2n2
y2q

)
dy since 1− e−z ≥ z − z2/2 for z ≥ 0

= 1− c
( b

n

xq+1

q + 1
− b2

2n2

x2q+1

2q + 1

)
Therefore for all b > 0

P
(
Z̃n(t, x)−

cxq+1

q + 1
≤ −z

)
≤ exp

(
−bz + b

cxq+1

q + 1

)(
1− c

( b

n

xq+1

q + 1
− b2

2n2

x2q+1

2q + 1

))n

≤ exp
(
−bz +

cb2

2n

x2q+1

2q + 1

)
using that 1− u ≤ e−u. Minimizing with respect to b, we get

P
(
Z̃n(t, x)−

cxq+1

q + 1
≤ −z

)
≤ exp

(
−n(2q + 1)z2

2cx2q+1

)
as desired. The proof in the case where t ∈ (1/2, 1] is similar since

Zn(t, x) =
1

n

n∑
i=1

(
x− |1− Ui − (1− t)|

)q

+

and L (1− Ui) ≥ cλ.
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Lemma 3.6. For all η ∈ (0, 1], for all p ∈ N∗, for all n such that 8(q+1)2 log(1/η)
(2q+1)cn ≤ 1/2, one has

P
(
∃t ∈ [0, 1] ∃x ∈

[8(q + 1)2 log(1/η)

(2q + 1)cn
,
1

2

]
Zn(t, x) ≤

cxq+1

2(q + 1)
− 3

p

)
≤ p2η.

Proof. Set a(n, η) = 8(q+1)2 log(1/η)
(2q+1)cn . From Lemma 3.5, we have

∀t ∈ [0, 1] ∀x ∈ [0, 1/2], P
(
Zn(t, x) ≤

cxq+1

q + 1
−
(2c log(1/η)

n(2q + 1)

)1/2
xq+1/2

)
≤ η

and, for x ≥ a(n, η), (2c log(1/η)
n(2q + 1)

)1/2
xq+1/2 ≤ cxq+1

2(q + 1)
.

Thus,

∀t ∈ [0, 1] ∀x ∈
[
a(n, η),

1

2

]
P
(
Zn(t, x) ≤

cxq+1

2(q + 1)

)
≤ η.

We compute

∂

∂t
Zn(t, x) = − 1

n

n∑
i=1

q sign(t− Ui)
[
x− |Ui − t|

]q−1

+
,

so that ∣∣∣ ∂
∂t

Zn(t, x)
∣∣∣ ≤ q

2q−1
≤ 2.

Set Yn(t, x) = Zn(t, x)− cxq+1

2(q+1) for x, t ∈ R. Then,

∂

∂x
Yn(t, x) =

1

n

n∑
i=1

q
[
x− |Ui − t|

]q−1

+
− cxq

2

and ∣∣∣ ∂
∂t

Yn(t, x)
∣∣∣ ≤ q

2q−1
∨ c

2q+1
=

q

2q−1
≤ 2.

Since t 7→ Yn(t, x) is 2-Lipschitz for each x ∈ [0, 1/2] and x 7→ Y (t, x) is 2-Lipschitz on [0, 1/2]
for each t, we have

min
t∈[0,1]

min
x∈[a(n,η),1/2]

Yn(t, x) ≥ min

{
Yn

( i

p
,
j

2p

)
− 3

p
; i, j ∈ {1, . . . , p}, j

2p
≥ a(n, η)

}

P
(
min
t∈[0,1]

min
x∈[a(n,η),1/2]

Yn(t, x) ≤ −3

p

)
≤ P

(
min

{
Yn

( i

p
,
j

2p

)
; i, j ∈ {1, . . . , p}, j

2p
≥ a(n, η)

}
≤ 0

)
≤

p∑
i=1

p∑
j=1

1{
j
2p ≥ a(n, η)

}P(
Yn

( i

p
,
j

2p

)
≤ 0

)
≤ p2η.

Proposition 3.3. For all n ≥ 1, for all ε ∈ (0, 1/2],

P

(
S ≤ M +

((q + 1)2q+3

c

) 1
q+1

L (g)
1

q+1M
q

q+1 +
16(q + 1)2 log(n2(q+1)/ε)

(2q + 1)cn
L (g)

)
≥ 1− ε.
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Proof. 1. Let I a random variable taking its values in {1, . . . , n} such that d
(
g(UI), Im(f̂)

)
=

S. Since the function t 7→ d
(
g(t), Im(f̂)

)
is L (g)-Lipschitz, one has for 1 ≤ i ≤ n:

d
(
g(UI), Im(f̂)

)
≤ d

(
g(Ui), Im(f̂)

)
+ L (g)|Ui − UI | ≤ d

(
g(Ui), Im(f̂)

)
+ L (g)

therefore, by Minkowski inequality,

S ≤ M + L (g) (3.3)

and

M q ≥ 1

n

n∑
i=1

[
d
(
g(UI), Imf̂

)
− L (g)|Ui − UI |

]q
+

= L (g)q
1

n

n∑
i=1

[
S/L (g)− |Ui − UI |

]q
+

= L (g)qZn

(
UI , S/L (g)

)
where Zn is given by (3.2). Hence

M q ≥ L (g)q min
t∈[0,1]

Zn

(
t, S/L (g)

)
(3.4)

2. Let ε ∈ (0, 1/2] and set

a(n, ε) =
8(q + 1)2 log(n2(q+1)/ε)

(2q + 1)cn

We have to show that

P

(
S ≤ M +

((q + 1)2q+3

c

) 1
q+1

L (g)
1

q+1M
q

q+1 + 2a(n, ε)L (g)

)
≥ 1− ε.

If a(n, ε) > 1/2 then S ≤ M + 2a(n, ε)L (g) since we have (3.3) and the desired result
holds.

3. From now on we assume that a(n, ε) ≤ 1/2 and we define the event

Ω1 =

{
min
t∈[0,1]

min
x∈[a(n,ε),1/2]

Zn(t, x) ≥
cxq+1

2(q + 1)
− 3

nq+1

}
Applying Lemma 3.6 with p = nq+1 and η = ε/n2(q+1), we obtain P (Ω1) ≥ 1−ε. Therefore
it suffices to prove that on Ω1:

S ≤ M +
((q + 1)2q+3

c

) 1
q+1

L (g)
1

q+1M
q

q+1 + 2a(n, ε)L (g) (3.5)

4. On {L (g)a(n, ε) ≤ S < L (g)/2} ∩ Ω1, one has

M q ≥ L (g)q min
t∈[0,1]

Zn

(
t,

S

L (g)

)
≥ L (g)q

( c

2(q + 1)

( S

L (g)

)q+1
− 3

nq+1

)
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therefore

Sq+1 ≤ 2(q + 1)L (g)M q

c
+

6(q + 1)L (g)q+1

cnq+1

S ≤
(2(q + 1)L (g)

c

)1/(q+1)
M q/(q+1) +

(6(q + 1)

c

)1/(q+1)L (g)

n

Moreover, using that ε ≤ 1/2 and q ≥ 1, one has a(n, ε) ≥
(
6(q+1)

c

)1/(q+1)
1
n . Thus (3.5)

holds true on {L (g)a(n, ε) ≤ S < L (g)/2} ∩ Ω1.

5. On {S ≥ L (g)/2} ∩ Ω1, one has

M q ≥ L (g)q min
t∈[0,1]

Zn

(
t,
1

2

)
≥ L (g)q

( c

(q + 1)2q+2
− 3

nq+1

)
≥ L (g)q

c

(q + 1)2q+3
using that a(n, ε) ≤ 1/2

that is

L (g) ≤ 21+3/q(q + 1)1/q

c1/q
M

One obtains on {S ≥ L (g)/2} ∩ Ω1:

S ≤ M + L (g)

≤ M + L (g) ∧
(21+3/q(q + 1)1/q

c1/q
M

)
≤ M + L (g)1/(q+1) 2

(q+3)/(q+1)(q + 1)1/(q+1)

c1/(q+1)
M q/(q+1)

≤ M +
(2q+3(q + 1)L (g)

c

)1/(q+1)
M q/(q+1)

using that x ∧ y ≤ x1/(q+1)yq/(q+1). We see that (3.5) holds true on {S ≥ L (g)/2} ∩ Ω1.

6. All it remains is to prove that (3.5) holds true on {S < a(n, ε)L (g)}. This is straightfor-
ward.

Lemma 3.7. Recall that

H1 = sup
u∈[0,1]

d(g(u), Imf̂), S = max
1≤i≤n

d
(
g(Ui), Im(f̂)

)
.

For all n ≥ 1, for all ε ∈ (0, 1]

P

(
H1 ≤ S + L (g)

3 log(n+ 1)

cn

(
1 +

log+
(

1
ε log(n+1)

)
log(n+ 1)

))
≥ 1− ε

Proof. Since the function t 7→ d
(
g(t), Im(f̂)

)
is L (g)-Lipschitz, one has

H1 ≤ S + L (g) max
1≤i≤n+1

(
U(i) − U(i−1)

)

10



where U(1) ≤ U(2) ≤ · · · ≤ U(n) are the order statistics associated to U1, . . . , Un (with U(0) = 0
and U(n+1) = 1). Therefore, it suffices to prove that

P
(

max
1≤i≤n+1

(
U(i) − U(i−1)

)
≥ log(n+ 1)

n
t(n, ε)

)
≤ ε

with

t(n, ε) =
3

c

(
1 +

log+
(

1
ε log(n+1)

)
log(n+ 1)

)
From Lemma 3.4, we have

P
(

max
1≤i≤n+1

U(i) − U(i−1) ≥
log(n+ 1)

n
t(n, ε)

)
≤ 3

t(n, ε)(n+ 1)ct(n,ε)/3−1 log(n+ 1)

≤ 1

(n+ 1)ct(n,ε)/3−1 log(n+ 1)
since t(n, ε) ≥ 3

≤ ε

The next proposition allows to control the term H2 = supu∈[0,1] d(f̂(u), Img).

Proposition 3.4. On the event where L̂ ≤ L (g)+ δ, the quantity H2 = supu∈[0,1] d(f̂(u), Img)
satisfies

H2 ≤ H1

[
2 +

αdd

αd−1
+

L (g)(d− 1)

r +H1

]
+ δ.

Proof. Recall that, by definition of H1,

Img ⊂ Imf̂ ⊕H1.

Assume that H2 ≥ 2H1. (Otherwise, there is nothing to show, since H2 is of the order H1.) Let
t∗ such that d(f̂(t∗), Img) = H2. We set x∗ := f̂(t∗). Let

f̂0 : t ∈ [0, t∗] 7→ f̂(t∗ − t), f̂1 : t ∈ [t∗, 1] 7→ f̂(t).

Note that Imf̂ is the union of Imf̂0 and Imf̂1. Since Img ⊂ Imf̂ ⊕H1 and Img∩B(x∗, H2) = ∅,
Imf̂ is not included in the ball B(x∗, H2 − H1). Hence, there exists a first time of exit from
B(x∗, H2 −H1) of at least one of the two branches f̂0 and f̂1. When they exist, the exit times
are denoted by t∗0 and t∗1 respectively, and we set

ĥ0 : t ∈ [0, t∗0] 7→ f̂(t∗0 − t), ĥ1 : t ∈ [t∗1, 1] 7→ f̂(t).

1. We start by observe that L̂ ≥ H2 − H1, so that H2 ≤ H1 + L̂. Then, on the event where
L̂ ≤ L (g) + δ, we have

H2 ≤ H1 + L (g) + δ.

2. a) Now, let us first address the case where only one branch, say f̂1, exits fromB(x∗, H2−H1).

11



x∗
•

H2

H1

•
ĥ1

Figure 1: The branch f̂1 exits from the ball B(x∗, H2 −H1), the part after first exit is denoted
by ĥ1.

In this case, Img ⊂ Imĥ1 ⊕H1. Thus, Img ⊕ r ⊂ Imĥ1 ⊕ (r +H1) and consequently

λ(Img ⊕ r) ≤ λ(Imĥ1 ⊕ (r +H1))

From Federer (1959), since Img has a reach larger than r, we have

λ(Img ⊕ r) = L (g)αd−1r
d−1 + αdr

d,

and from Mosconi and Tilli (2005) (Lemma 4.2), we have

λ(Imĥ1 ⊕ (r +H1)) ≤ L (ĥ1)αd−1(r +H1)
d−1 + αd(r +H1)

d.

Note that L (ĥ1) ≤ L̂+H1 −H2. On the event where L̂ ≤ L (g) + δ, we get

L (g)
[
αd−1r

d−1 − αd−1(r +H1)
d−1

]
≤ (H1−H2+δ)αd−1(r+H1)

d−1−αdr
d+αd(r+H1)

d,

that is

H2αd−1(r +H1)
d−1

≤ (H1 + δ)αd−1(r +H1)
d−1 + αd

[
(r +H1)

d − rd
]
+ L (g)αd−1

[
(r +H1)

d−1 − rd−1
]

≤ (H1 + δ)αd−1(r +H1)
d−1 +H1αdd(r +H1)

d−1 +H1L (g)αd−1(d− 1)(r +H1)
d−2

≤ H1

[
(αd−1 + αdd)(r +H1)

d−1 + L (g)αd−1(d− 1)(r +H1)
d−2

]
+ δαd−1(r +H1)

d−1.

Thus,

H2 ≤ H1

[
1 +

αdd

αd−1
+

L (g)(d− 1)

r +H1

]
+ δ.

b) Let us turn to the situation where there are two branches, ĥ0 and ĥ1, exiting from
B(x∗, H2 −H1). Using again that Img ⊂ Imf̂ ⊕H1 and Img ∩ B(x∗, H2) = ∅, we know
that

Img ⊂
(
Imĥ0 ⊕H1

)
∪
(
Imĥ1 ⊕H1

)

12



x∗

H2

H1

••

•

ĥ1

ĥ0

Figure 2: Two branches f̂0 and f̂1 exit from the ball B(x∗, H2 −H1), the parts after first exit
are denoted by ĥ0 and ĥ1 respectively.

Now,
Img ⊕ r ⊂

(
Imĥ0 ⊕ (r +H1)

)
∪
(
Imĥ1 ⊕ (r +H1)

)
(3.6)

As already noted above,

λ(Img ⊕ r) = L (g)αd−1r
d−1 + αdr

d.

Moreover,

λ
(
Imĥ0 ⊕ (r +H1) ∪ Imĥ1 ⊕ (r +H1)

)
= λ

(
Imĥ0 ⊕ (r+H1)) + λ

(
Imĥ1 ⊕ (r+H1))− λ

(
Imĥ0 ⊕ (r+H1)∩ Imĥ1 ⊕ (r+H1)

)
.

Here,

λ
(
Imĥ0⊕(r+H1))+λ

(
Imĥ1⊕(r+H1)) ≤ (L (ĥ0)+L (ĥ1))αd−1(r+H1)

d−1+2αd(r+H1)
d

Since Img ⊂ Imĥ0⊕H1∪Imĥ1⊕H1, by connectivity of Img, there exists x ∈ Img∩Imĥ0⊕
H1∩Imĥ1⊕H1. Hence, there exist x0 ∈ Imĥ0 and x1 ∈ Imĥ1 such that |x−x0| ≤ H1 and
|x−x1| ≤ H1, so that η := |x0−x1| ≤ 2H1. Observe that B(x0, r+H1) ⊂ Imĥ0⊕(r+H1)
and B(x1, r +H1) ⊂ Imĥ1 ⊕ (r +H1), so that B(x0, r +H1) ∩ B(x1, r +H1) ⊂ Imĥ0 ⊕
(r +H1) ∩ Imĥ1 ⊕ (r +H1).

Consequently,

λ
(
Imĥ0 ⊕ (r +H1) ∩ Imĥ1 ⊕ (r +H1)

)
≥ λ

(
B(x0, r +H1) ∩B(x1, r +H1)

)
:= Vd(r +H1, η).

Here, Vd(ρ, c) denotes the volume of the intersection of two d-dimensional balls with
radius ρ, with their centers c apart. Note that this quantity corresponds to twice the
volume of a hyperspherical cap with radius ρ and height ρ− c/2.
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× ×
x0 x1

r +H1× ×

Figure 3: Illustration in dimension 2 of the intersection of two balls: the volume is twice the
volume of a spherical cap.

The computation of Vd(ρ, c) may be found for instance in Li (2011):

Vd(ρ, c) = 2αd−1ρ
d

∫ arccos( c
2ρ

)

0
sind(t)dt.

Here, we need a lower bound for

Vd(r +H1, η) = 2αd−1(r +H1)
d

∫ arccos( η
2(r+H1)

)

0
sind(t)dt.

Let us compute the first and second derivatives of Vd(r +H1, η) with respect to η. We
have

∂Vd

∂η
(r +H1, η) = αd−1(r +H1)

d−1 arccos′
( η

2(r +H1)

)
sind

(
arccos

( η

2(r +H1)

))
= −αd−1(r +H1)

d−1

(
1− η2

4(r +H1)2

) d−1
2

,

∂2Vd

∂η2
(r +H1, η) =

αd−1(r +H1)
d−3(d− 1)η

4

(
1− η2

4(r +H1)2

) d−3
2

.

Note that
η2

4(r +H1)2
< 1, since η ≤ 2H1. Thus,

∂2Vd

∂η2
(r +H1, η) ≥ 0, and the function

η 7→ ∂Vd

∂η
(r+H1, η) is nondecreasing. Moreover, by the mean value theorem, there exists

ζ ∈ (0, η) such that

Vd(r +H1, η) = Vd(r +H1, 0) + η
∂Vd

∂η
(r +H1, ζ)

= λ(B(0, r +H1)) + η
∂Vd

∂η
(r +H1, ζ).

Consequently, by monotonicity of η 7→ ∂Vd

∂η
(r +H1, η), we obtain

Vd(r +H1, η) ≥ λ(B(0, r +H1)) + η
∂Vd

∂η
(r +H1, 0)

= αd(r +H1)
d − ηαd−1(r +H1)

d−1.
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Finally,

λ
(
Imĥ0 ⊕ (r +H1) ∩ Imĥ1 ⊕ (r +H1)

)
≥ αd(r +H1)

d − ηαd−1(r +H1)
d−1.

Hence,

λ
(
Imĥ0 ⊕ (r +H1) ∪ Imĥ1 ⊕ (r +H1)

)
≤ L (ĥ0)αd−1(r +H1)

d−1 + αd(r +H1)

+ L (ĥ1)αd−1(r +H1)
d−1 + αd(r +H1)

− αd(r +H1)
d + ηαd−1(r +H1)

d−1

≤ (L (ĥ0) + L (ĥ1))αd−1(r +H1)
d−1 + αd(r +H1)

d

+ ηαd−1(r +H1)
d−1

≤ (L̂− 2(H2 −H1))αd−1(r +H1)
d−1 + αd(r +H1)

d

+ 2H1αd−1(r +H1)
d−1.

On the event where L̂ ≤ L (g) + δ, using the inclusion (3.6), we obtain

L (g)
[
αd−1r

d−1 − αd−1(r +H1)
d−1

]
≤ δαd−1(r +H1)

d−1 − 2H2αd−1(r +H1)
d−1 + 2H1αd−1(r +H1)

d−1

+ αd(r +H1)
d − αdr

d + 2H1αd−1(r +H1)
d−1,

that is

2H2αd−1(r +H1)
d−1

≤ δαd−1(r +H1)
d−1 + L (g)αd−1

[
(r +H1)

d−1 − rd−1
]
+ αd

[
(r +H1)

d − rd
]

+ 4H1αd−1(r +H1)
d−1

≤ δαd−1(r +H1)
d−1 + L (g)αd−1H1(d− 1)(r +H1)

d−2 + αdH1d(r +H1)
d−1

+ 4H1αd−1(r +H1)
d−1.

Hence,

H2 ≤ H1

[
2 +

αdd

2αd−1
+

L (g)(d− 1)

2(r +H1)

]
+

δ

2
.

3.3 Proof of Proposition 3.1

The next lemma, based on the computation of the volume of r-enlargements, allows to link L̂
and L (g). We recall the notation H1 = supu∈[0,1] d(g(u), Imf̂).

Lemma 3.8. We have

(L (g)− L̂)αd−1η
d−1 ≤ H1

[
L̂αd−1(d− 1)(H1 + η)d−2 + αdd(H1 + η)d−1

]
.
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Proof. By definition of H1,
Img ⊂ Imf̂ ⊕H1.

Thus,
Img ⊕ r ⊂ Imf̂ ⊕ (H1 + r).

According to Federer (1959), the volumes of both enlargements satisfy:

λ(Img ⊕ r) = L (g)αd−1r
d−1 + αdr

d,

λ(Imf̂ ⊕ (H1 + r)) ≤ L̂αd−1(H1 + r)d−1 + αd(H1 + r)d.

Hence,
L (g)αd−1r

d−1 + αdr
d ≤ L̂αd−1(H1 + r)d−1 + αd(H1 + r)d,

so that

(L (g)− L̂)αd−1r
d−1 ≤ H1

[
L̂αd−1(d− 1)(H1 + r)d−2 + αdd(H1 + r)d−1

]
.

Let us assume that mq, α and δ tend to 0, as n tends to infinity. Then, H1 tends to 0 and
the difference L (g) − L̂ converges to a limit which is less than or equal to 0. Hence, on the
event where L̂ ≤ L (g) + δ, the selected length L̂ converges in probability to the length of the
objective curve L (g).
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