Bienvenue sur la page de Thierry MEYRE

meyre

  • Adresse physique : Université de Paris. UFR de Mathématiques. Bâtiment Sophie Germain (bureau 543). 8 place Aurélie Nemours. 75013 PARIS
  • Adresse postale : Université de Paris. UFR de Mathématiques. Bâtiment Sophie Germain. Case courrier 7012. 8 place Aurélie Nemours 75205 PARIS CEDEX 13
  • Contact : meyre[at]lpsm.paris (remplacez [at] par @)
  • Téléphone : 01.57.27.92.02

Le livre électronique Séries, intégrales et probabilités est disponible pendant les oraux du concours. Il a été mis à jour le 22/03/2022.

Date Thème
22/09/21 Chap.1 : Intégrale de Riemann (sections 1.1 et 1.2)
29/09/21 Fin du chap. 1
6/10/21 Chap.2 : Intégrales impropres
26/10/21 Séance spéciale leçons (voir tableau ci-dessous)
24/11/21 Chap.3 : Fonctions intégrables sur un intervalle quelconque.
1/12/21 Section 3.3 : Intégrales à paramètres. Chap.4 : Intégrales multiples.
15/01/22 Introduction au calcul des probabilités
19/01/22 Calcul des probabilités (suite)

Séance du mardi 26 octobre 2021

Numéro Titre Intervenant
402 Exs d'étude de suites ou de séries divergentes Aïssatou
403 Exs d'étude de suites définies par une relation de récurrence Estelle

→ Pierre présentera un développement sur la règle de Raabe-Duhamel et son application à la formule de Stirling (p.ex. pour la leçon 202)

Le calcul des probabilités y est présenté avec de nombreux exemples et exercices, de façon beaucoup plus détaillée que dans le livre électronique ci-dessus. Pour tenir compte de l'évolution du programme 2019, la statistique mathématique fait l'objet de trois chapitres dans le tome second.

Tome premier : probabilités discrètes

Table des matières:

  1. Modélisation d'une expérience aléatoire
  2. Espace probabilisé fini ou dénombrable
  3. Probabilité conditionnelle et évènements indépendants
  4. Loi et espérance d'une variable aléatoire discrète
  5. Indépendance de variables discrètes
  6. Moments d'une variable discrète
  7. Covariance. Corrélation
  8. Approximations de la loi binomiale, applications

Tome second : probabilités continues, statistique mathématique

Table des matières:

  1. Probabilités sur R
  2. Moments d'une variable aléatoire à densité
  3. Vecteurs aléatoires et indépendance
  4. Loi des grands nombres
  5. Le théorème-limite central
  6. Modèle statistique
  7. Estimation paramétrique ponctuelle
  8. Échantillons gaussiens

  • Calcul stochastique et modèles de diffusions (cours et exercices corrigés), 3e édition
    en collaboration avec F.Comets, chez Dunod (2020). Couverture et sommaire

  • Exercices de probabilités (licence, master, écoles d'ingénieurs)
    en collaboration avec M.Cottrell, V. Genon-Catalot et C. Duhamel, chez Cassini (4ème édition, 2016)
  • On the occupation times of cones by Brownian motion
    en collaboration avec W.Werner, Probab.Theory Relat.Fields 101, 409-419 (1995)
  • Estimation asymptotique du rayon du plus grand disque recouvert par la saucisse de Wiener plane
    en collaboration avec W.Werner, Stochastics and Stoch.Reports Vol.48 , p.45-59 (1994).
  • Points cônes du mouvement brownien plan, le cas critique
    en collaboration avec J-F.Le Gall, Probab.Th.Rel.Fields 93 , 231-247 (1992).
  • Etude asymptotique du temps passé par le mouvement brownien dans un cône
    Ann.Inst.Henri Poincaré Vol.27, n°1, p.107-124 (1991).