Bienvenue
Le LPSM est une unité mixte de recherche (UMR 8001) dépendant du CNRS, de Sorbonne Université et de l’Université Paris Cité. Le laboratoire compte environ 200 personnes (dont env. 90 permanents), répartis sur deux sites (Campus P. et M. Curie de Sorbonne Université et Campus Paris Rive Gauche de l’Université Paris Cité).
Les activités de recherche du LPSM couvrent un large spectre en Probabilités et Statistique, depuis les aspects les plus fondamentaux (qui incluent notamment l'Analyse Stochastique, la Géométrie Aléatoire, les Probabilités Numériques et les Systèmes Dynamiques) jusqu’aux applications à la Modélisation dans diverses disciplines (Physique, Biologie, Sciences des Données, Finance, Actuariat, etc), applications qui incluent des partenariats en dehors du monde académique.
Le LPSM est un laboratoire relativement récent. Cependant, ses composantes sont anciennes et proviennent du développement des « mathématiques du hasard » dans le centre de Paris, depuis le premier quart du 20ième siècle (voir ici pour plus de détails).
NB: Site largement inspiré de celui de l'IRIF (merci à eux pour la mise à disposition de leur maquette).
Actualités
12.3.2024
Arrêté portant report des élections au conseil de l'UFR 929 de Mathématiques: arrêté.
(Ces actualités sont présentées selon un classement mêlant priorité et aléatoire.)
Événements
Soutenances de thèse
Lundi 9 septembre 2024, 14 heures, Salle Paul Lévy, 16-26 209
Nikolai Kuchumov (LPSM) Limit shapes of the dimer model in multiply-connected domains
Séminaire sur les processus de Hawkes
Mardi 24 septembre 2024, 11 heures, Jussieu, Salle Emile Borel, 15-26 201
Miguel Martinez Herrera (LPSM, SU) Noisy Hawkes process inference
Séminaire de Probabilités
Mardi 1 octobre 2024, 14 heures, Jussieu, Salle Paul Lévy, 16-26 209
Fanny Augeri (LPSM) A venir
Séminaire de statistique
Mardi 1 octobre 2024, 9 heures 30, Jussieu en salle 15-16.201
Marc Hoffmann (CEREMADE) Sur l'estimation d'une diffusion multidimensionnelle
Dans cet exposé, issu de travaux en commun avec Chiara Amorino, Claudia Strauch et aussi Kolyan Ray, nous montrons que si l'on se contente d'un programme théorique non-paramétrique classique (perte L^2, minimax adaptatif à la Lepski, mais pas tellement plus), alors il est possible d'obtenir des résultats relativement généraux qui améliorent en dimension arbitraire ce que l'on connaît, et ceci dans plusieurs directions : pour (i) des observations en temps grand avec pas de discrétisation arbitrairement lent (ii) une réflexion du processus aux bords d'un domaine, mais pas forcément (iii) des situations où la diffusion peut dégénérer, ce qui permet d'inclure des modèles de type position-vitesse ; (iv) dans certains cas (conductivité, schémas rapides) des vitesses de contraction bayésiennes.
L'approche est toujours un peu la même : pour les bornes supérieures, construire une équivalence de modèle par un schéma de régression martingale, découpler les propriétés de concentration du bruit martingale de la “vitesse de remplissage” de l'espace par le “design” (souvent mal connue, ou tout au moins difficile à estimer) ; pour les bornes inférieures, des méthodes perturbatives utilisant un peu de calcul de Malliavin et pour les résultats bayésiens, plus fins, des développements en temps petit du noyau de la chaleur pour une “bonne” géométrie.