SMILE

Stochastic Models for the Inference of Life Evolution

Presentation

SMILE is an interdisciplinary research group gathering probabilists, statisticians, bio-informaticians and biologists.
SMILE is affiliated to the Stochastics and Biology group of LPSM (Lab of Probability, Statistics and Modeling) at Sorbonne Université (ex Université Pierre et Marie Curie Paris 06).
SMILE is hosted within the CIRB (Center for Interdisciplinary Research in Biology) at Collège de France.
SMILE is supported by Collège de France and CNRS.
Visit also our homepage at CIRB.

Directions

SMILE is hosted at Collège de France in the Latin Quarter of Paris. To reach us, go to 11 place Marcelin Berthelot (stations Luxembourg or Saint-Michel on RER B).
Our working spaces are rooms 107, 121 and 122 on first floor of building B1 (ask us for the code). Building B1 is facing you upon exiting the traversing hall behind Champollion's statue.

Contact

You can reach us by email (amaury.lambert - at - upmc.fr) or (smile - at - listes.upmc.fr).

Light on

Publication

2017

The genealogical decomposition of a matrix population model with applications to the aggregation of stages

Matrix projection models are a central tool in many areas of population biology. In most applications, one starts from the projection matrix to quantify the asymptotic growth rate of the population (the dominant eigenvalue), the stable stage distribution, and the reproductive values (the dominant right and left eigenvectors, respectively). Any primitive projection matrix also has an associated ergodic Markov chain that contains information about the genealogy of the population. In this paper, we show that these facts can be used to specify any matrix population model as a triple consisting of the ergodic Markov matrix, the dominant eigenvalue and one of the corresponding eigenvectors. This decomposition of the projection matrix separates properties associated with lineages from those associated with individuals. It also clarifies the relationships between many quantities commonly used to describe such models, including the relationship between eigenvalue sensitivities and elasticities. We illustrate the utility of such a decomposition by introducing a new method for aggregating classes in a matrix population models to produce a simpler model with a smaller number of classes. Unlike the standard method, our method has the advantage of preserving reproductive values and elasticities. It also has conceptually satisfying properties such as commuting with changes of units.

Publication

2015

Time Reversal Dualities for some Random Forests

We consider a random forest \$$\mathcal{F}^*\$$, defined as a sequence of i.i.d. birth-death (BD) trees, each started at time 0 from a single ancestor, stopped at the first tree having survived up to a fixed time \$$T\$$. We denote by \$$\left(\xi^*_t, 0\leq t \leq T \right)\$$ the population size process associated to this forest, and we prove that if the BD trees are supercritical, then the time-reversed process \$$\left(\xi^*_{T-t}, 0 \leq t \leq T\right)\$$, has the same distribution as \$$\left(\widetilde\xi^*_t, 0 \leq t \leq T\right)\$$, the corresponding population size process of an equally defined forest \$$\widetilde{\mathcal{F}}^*\$$, but where the underlying BD trees are subcritical, obtained by swapping birth and death rates or equivalently, conditioning on ultimate extinction. We generalize this result to splitting trees (i.e. life durations of individuals are not necessarily exponential), provided that the i.i.d. lifetimes of the ancestors have a specific explicit distribution, different from that of their descendants. The results are based on an identity between the contour of these random forests truncated up to \$$T\$$ and the duality property of L\'evy processes. This identity allows us to also derive other useful properties such as the distribution of the population size process conditional on the reconstructed tree of individuals alive at \$$T\$$, which has potential applications in epidemiology.

Upcoming seminars

seminar

TBA

Thomas LENORMAND (CNRS et U Montpellier)

April 28, 2020 at 10 - Collège de France


seminar

TBA

Sarah PENNINGTON (U Bath)

June 2, 2020 at 10 - Collège de France


seminar

TBA

Bastien MALLEIN (U Sorbonne Paris Nord)

June 23, 2020 at 10 - Collège de France


Resources

Planning des salles du Collège de France.
Intranet du Collège de France.