Existence of densities for jumping S.D.E.s

Nicolas FOURNIER and Jean-Sébastien GIEt

Institut Elie Cartan, Campus Scientifique, BP 239
54506 Vandoeuvre-lès-Nancy Cedex, France
fournier@iecn.u-nancy.fr, giet@iecn.u-nancy.fr

December 22, 2006

Abstract

We consider a jumping Markov process \(\{X_t^x\}_{t \geq 0} \). We study the absolute continuity of the law of \(X_t^x \) for \(t > 0 \). We first consider, as Bichteler-Jacod [2], the case where the rate of jump is constant. We state some results in the spirit of those of [2], with rather weaker assumptions and simpler proofs, not relying on the use of stochastic calculus of variations. We next extend our method to the case where the rate of jump depends on the spatial variable, and this last result seems to be new.

Key words: Stochastic differential equations, Jump processes, Absolute continuity.

MSC 2000: 60H10, 60J75.

1 Introduction

Consider a \(d \)-dimensional Markov process with jumps \(\{X_t^x\}_{t \geq 0} \), starting from \(x \in \mathbb{R}^d \), with generator \(L \), defined for \(\phi : \mathbb{R}^d \to \mathbb{R} \) sufficiently smooth and \(y \in \mathbb{R}^d \), by

\[
L\phi(y) = b(y) \cdot \nabla \phi(y) + \int_{\mathbb{R}^n} \gamma(y) \varphi(z) [\phi(y + h(y, z)) - \phi(y)] \, dz,
\]

with possibly an additional diffusion term, and the integral part written in a (more general) compensated form. Here \(n \in \mathbb{N} \) is fixed, and the functions \(\gamma : \mathbb{R}^d \to \mathbb{R} \) and \(\varphi : \mathbb{R}^n \to \mathbb{R} \) are nonnegative.

We aim to investigate the absolute continuity of the law of \(X_t^x \) with respect to the Lebesgue measure on \(\mathbb{R}^d \), for \(t > 0 \). We will sometimes allow the presence of a Brownian part, but we will actually not use the regularizing effect of the Brownian motion.

Assume for a moment that \(d = n = 1 \). Roughly speaking, the law of \(X_t^x \) is expected to have a density as soon as \(t > 0 \), if for all \(y \in \mathbb{R} \), \(\gamma(y) \int_{\mathbb{R}} \varphi(z) \, dz = \infty \) and if \(h(y, z) \) is not too much constant in \(z \) (for example \(h(y, \cdot) \) of class \(C^1 \) with a nonzero derivative almost everywhere). Indeed, in such a case, \(X_t^x \) has infinitely many jumps immediately after \(t = 0 \). Furthermore, the jumps are of the shape \(X_t^x = X_{t^-}^x + h(X_{t^-}^x, Z) \), with \(Z \) a random variable independent of \(X_{t^-}^x \), with law \(\varphi(z) \, dz \). This produces absolute continuity for \(X_t^x \), if \(h \) is sufficiently non-constant in \(z \).

This simple idea is not so easy to handle rigorously, since \(X_t^x \) has infinitely many jumps, and since \(\varphi(z) \, dz \) is not a probability measure (because \(\int_{\mathbb{R}} \varphi(z) \, dz = \infty \)). To our knowledge, all the known results are based on the use of stochastic calculus of variations, i.e. on a sort of differential calculus with respect to the stochastic variable \(\omega \). The first results in this direction were obtained by Bismut [3]. Important results are due to Bichteler-Jacod [2], and then Bichteler-Gravereaux-Jacod [1]. We refer to Graham-Méléard [7] and Fournier-Giet [6] for applications to physical integro-differential equations such as the Boltzmann and the coagulation-fragmentation equations. See also Picard [11] and Denis [4] for alternative methods.
in the much more complicated case where the intensity measure of \(N \) is singular.

All the previously cited works concern the case where the rate of jump \(\gamma(x) \) is constant. The case where \(\gamma \) is non constant is much more delicate. The main reason for this is that in such a case, the map \(x \mapsto X^x_t \) cannot be regular (and even continuous). Indeed, if \(\gamma(x) < \gamma(y) \), and if \(\int_{\mathbb{R}^n} \varphi(z)dz = \infty \), then it is clear that for all small \(t > 0 \), \(X^y \) jumps infinitely more often than \(X^x \) before \(t \). The only available result with \(\gamma \) not constant seems to be that of [5], of which the assumptions are very restrictive: monotonicity (in \(x \)) is assumed for \(h \) and \(\gamma \).

First, we would like to give some results in the spirit of Bichteler-Jacod [2], with simpler proofs. We will in particular not use the stochastic calculus of variations. We thus consider in Section 2 the case where \(\gamma \) is constant. We state and prove a result under a strong non-degeneracy assumption on \(h \). The proof is elementary, and our result follows the line of Theorem 2.5 in Bichteler-Jacod [2], but our assumptions are rather weaker.

Our method allows us to improve slightly the results of [2] concerning the existence of a density when \(\gamma \) is constant, and to obtain a result when \(\gamma \) is not constant in Section 3. This last result seems to be new, and improves consequently those of [5].

In the whole paper, we denote the collection of Lebesgue-null Borelian subsets of \(\mathbb{R}^d \) by

\[
A = \left\{ A \in \mathcal{B}(\mathbb{R}^d); \int_A dx = 0 \right\}. \tag{1.2}
\]

2 The case of a constant rate of jump

Consider the following \(d \)-dimensional S.D.E., for some \(d \in \mathbb{N} \), starting from \(x \in \mathbb{R}^d \):

\[
X^x_t = x + \int_0^t b(X^x_s)ds + \int_0^t \int_{\mathbb{R}^n} h(X^x_{s-}, z)\tilde{N}(ds, dz) + \int_0^t \sigma(X^x_s)dB_s, \tag{2.1}
\]

where

Assumption (I): \(N(ds, dz) \) is a Poisson measure on \([0, \infty) \times \mathbb{R}^n \), for some \(n \in \mathbb{N} \), with intensity measure \(\nu(ds, dz) = d\varphi(z)dz \). The function \(\varphi : \mathbb{R}^n \mapsto \mathbb{R}_+ \) is supposed to be measurable. We denote by \(\tilde{N} = N - \nu \) the associated compensated Poisson measure. The \(\mathbb{R}^m \)-valued (for some \(m \in \mathbb{N} \)) Brownian motion \(\{B_t\}_{t \geq 0} \) is supposed to be independent of \(N \).

In this case, the generator of the Markov process \(X^x \) is given, for any \(\phi : \mathbb{R}^d \mapsto \mathbb{R} \) sufficiently smooth, any \(y \in \mathbb{R}^d \), by

\[
\mathcal{L}\phi(y) = b(y) \cdot \nabla \phi(y) + \frac{1}{2} \sum_{i,j=1}^d (\sigma^*)_{i,j}(y) \partial_i \partial_j \phi(y) + \int_{\mathbb{R}^n} [\phi(y + h(y, z)) - \phi(y) - h(y, z) \cdot \nabla \phi(y)] \varphi(z)dz. \tag{2.2}
\]

We assume the following hypothesis, \(\mathcal{M}_{d \times m} \) standing for the set of \(d \times m \) matrices with real entries.

Assumption (H1): The functions \(b : \mathbb{R}^d \mapsto \mathbb{R}^d \) and \(\sigma : \mathbb{R}^d \mapsto \mathcal{M}_{d \times m} \) are of class \(C^2 \) and have at most linear growth. The function \(h : \mathbb{R}^d \times \mathbb{R}^n \mapsto \mathbb{R}^d \) is measurable. For each \(z \in \mathbb{R}^n \), \(x \mapsto h(x, z) \) is of class \(C^2 \) on \(\mathbb{R}^d \). There exists \(\eta \in L^2(\mathbb{R}^n, \varphi(z)dz) \) and a continuous function \(\zeta : \mathbb{R}^d \mapsto \mathbb{R} \) such that for all
We first introduce some assumptions. Here are statements, and examples. The proof is handled in a second part.

The process \(\{X_t^x\}_{t \geq 0} \) is well-defined for all \(\phi \in C_b^2(\mathbb{R}^d) \) and it is well-known that the following result holds.

Proposition 2.1 Assume (I) and (H1). Consider the natural filtration \(\{\mathcal{F}_t\}_{t \geq 0} \) associated with the Poisson measure \(N \) and the Brownian motion \(B \). Then, for any \(x \in \mathbb{R}^d \), there exists a unique càdlàg \(\{\mathcal{F}_t\}_{t \geq 0} \)-adapted process \(\{X_t^x\}_{t \geq 0} \) solution to (2.1) such that for all \(x \in \mathbb{R}^d \), all \(T \in [0, \infty) \),

\[
E \left[\sup_{t \in [0, T]} |X_t^x|^2 \right] < \infty. \tag{2.3}
\]

The process \(\{X_t^x\}_{t \geq 0, x \in \mathbb{R}^d} \) furthermore satisfies the strong Markov property.

We now study the absolute continuity of the law of \(X_t^x \) for \(t > 0 \). We first give some assumptions, statements, and examples. The proof is handled in a second part.

2.1 Statements

We first introduce some assumptions. Here \(I_d \) stands for the unit \(d \times d \) matrix, while \(x_0 \) is a given point of \(\mathbb{R}^d \).

Assumption (H2): For all \(x \in \mathbb{R}^d \), all \(z \in \mathbb{R}^n \), \(\det(I_d + h'_x(x, z)) \neq 0 \).

Assumption (H3)(x): There exists \(\epsilon > 0 \) such that for all \(x \in B(x_0, \epsilon) \), there exists a subset \(O(x) \subset \mathbb{R}^n \) such that (recall (1.2)),

\[
\int_{O(x)} \varphi(z) dz = \infty, \quad \text{and for all } A \in \mathcal{A}, \quad \int_{O(x)} 1_{\{h(x, z) \in A\}} \varphi(z) dz = 0, \tag{2.4}
\]

and such that the map \((x, z) \mapsto 1_{\{z \in O(x)\}} \) is measurable on \(B(x_0, \epsilon) \times \mathbb{R}^n \).

The main results of this section are the following.

Theorem 2.2 Let \(x_0 \in \mathbb{R}^d \) be fixed. Assume (I), (H1), (H2) and (H3)(x). Consider the unique solution \(\{X_t^{x_0}\}_{t \geq 0} \) to (2.1). Then the law of \(X_t^{x_0} \) has a density with respect to the Lebesgue measure on \(\mathbb{R}^d \) as soon as \(t > 0 \).

In the case where (H3)(x) holds for all \(x \in \mathbb{R}^d \), we can omit assumption (H2).

Corollary 2.3 Let \(x_0 \in \mathbb{R}^d \) be fixed. Assume (I), (H1) and that (H3)(x) holds for all \(x \in \mathbb{R}^d \). Consider the unique solution \(\{X_t^{x_0}\}_{t \geq 0} \) to (2.1). Then the law of \(X_t^{x_0} \) has a density with respect to the Lebesgue measure on \(\mathbb{R}^d \) as soon as \(t > 0 \).

We do not state a result concerning the regularizing effect of the Brownian part of (2.1), since it seems reasonable that standard techniques of Malliavin calculus (see e.g. Nualart, [10]) may allow one to prove that under (H1), (H2) and if \(\sigma \sigma^*(x_0) \) is invertible, then the law of \(X_t^{x_0} \) has a density with respect to the Lebesgue measure on \(\mathbb{R}^d \) as soon as \(t > 0 \).

These results relax subsequently the assumptions of [2] concerning the regularity (in \(z \)) and boundness conditions on \(h \). However, a mixed non-degeneracy condition between \(h \) and \(\sigma \) was assumed in [2]; it seems hard to obtain such a result without using the Malliavin calculus at least for the Brownian part.
Let us comment on our hypotheses. The second condition in (2.4) means that the image measure of
\(1_{z \in O(x)} \varphi(z) dz \) (where \(dz \) stands for the Lebesgue measure on \(\mathbb{R}^n \)) by the map \(z \mapsto h(x,z) \) has a density with respect to the Lebesgue measure on \(\mathbb{R}^d \), for each \(x \in B(x_0, \epsilon) \). Let us now state a typical case of application.

Proposition 2.4 Assume that \(n = d, \) that \(x_0 \in \mathbb{R}^d, \) and that there exist \(\epsilon > 0 \) and an open subset \(O \) of \(\mathbb{R}^n \) such that \((x, z) \mapsto h(x,z) \) is of class \(C^1 \) on \(B(x_0, \epsilon) \times O \). If for all \(x \in B(x_0, \epsilon) \), \(\int_O 1_{\{\det h_z'(x,z) \neq 0\}} \varphi(z) dz = \infty \), then \((H3)(x_0) \) holds.

Indeed, it suffices to note that, since \(n = d, \) \(h_z'(x,z) \) is a \(d \times d \) matrix for each \(x \in \mathbb{R}^d, \) each \(z \in O \). Choosing \(O(x) = \{ z \in O, \ det \ h_z'(x,z) \neq 0 \} \) for \(x \in B(x_0, \epsilon) \) allows us to conclude, noting that, due to the local inverse Theorem, the map \(z \mapsto h(x,z) \) is a local \(C^1 \)-diffeomorphism on \(O(x) \).

Assumptions \((H1) \) and \((H3)(x_0) \) are quite natural. Note that \((H2) \) is not only a technical condition, as this example shows.

Example 2.5 Assume that \(n = d = 1, \) that \(\varphi \equiv 1, \) that \(b, \sigma \) satisfy \((H1) \) with \(b(0) = \sigma(0) = 0 \), and that \(h(x,z) = -x1_{|z| \leq 1} + (x/|z|)1_{|z| > 1} \). Then \((I) \) and \((H1) \) are satisfied, while \((H3)(x) \) holds for all \(x \neq 0, \) but \((H2) \) fails. One can prove that in such a case, \(P[X_t^{x_0} = 0] > 0 \) for all \(t > 0 \), and thus the law of \(X_t^{x_0} \) is not absolutely continuous. Indeed, it is clear that, if \(T_1 = \inf \{ t \geq 0 : \int_0^t \int_{|z| \leq 1} N(ds, dz) \geq 1 \} \), then \(T_1 \) has an exponential distribution with parameter \(2, \) and \(X_{T_1} = X_{T_1} - (+X_{T_1}) = 0. \) Since furthermore \(b(0) = \sigma(0) = 0 \) and \(h(0,\cdot) = 0 \), an uniqueness argument and the strong Markov property show that \(X_{T_1} = 0 \) a.s. for all \(t \geq 0. \) Hence \(P[X_t^{x_0} = 0] \geq P[T_1 < t] = 1 - e^{-2t} > 0 \) for all \(t > 0. \)

2.2 Proof

We now turn to the proof of Theorem 2.2. We first proceed to a localization procedure.

Lemma 2.6 To prove Theorem 2.2 and Corollary 2.3, we may assume the additional condition \((H4) \) below.

Assumption \((H4) \): The functions \(b, b', b'', \sigma, \sigma', \sigma'' \) are bounded. There exists \(\tilde{\eta} \in L^2(\mathbb{R}^n, \varphi(z) dz) \) such that for all \(x \in \mathbb{R}^d, z \in \mathbb{R}^n, |h(x,z)| + |h_z'(x,z)| + |h_z''(x,z)| \leq \tilde{\eta}(z). \)

Proof We study the case of Theorem 2.2. Let \(x_0 \in \mathbb{R}^d \) be fixed. Assume that Theorem 2.2 holds under \((I), (H_1), (H_2), (H_3)(x_0), (H_4), \) and consider some functions \(b, \sigma, h \) satisfying only \((I), (H_1), (H_2), \) \((H_3)(x_0) \). For each \(l \geq 1, \) consider some functions \(b_l, \sigma_l, h_l \) satisfying \((I), (H_1), (H_2), \) \((H_3)(x_0), (H_4) \) and such that for all \(|x| \leq l, \) all \(z \in \mathbb{R}^n, b_l(x) = b(x), \sigma_l(x) = \sigma(x), \) and \(h_l(x,z) = h(x,z). \) Denote by \(\{X_t^{x_0,l}\}_{t \geq 0} \) the solution to (2.1) with \(h, \sigma, b \) replaced by \(h_l, \sigma_l, b_l. \) Then, by assumption, the law of \(X_t^{x_0,l} \) has a density if \(t > 0. \) Next, denote by \(\tau_l = \inf \{ t \geq 0, |X_t^{x_0}| \geq l \} \). It is clear from (2.3) that \(\tau_l \) increases a.s. to infinity as \(l \) tends to infinity. Furthermore a uniqueness argument yields that a.s. \(X_t^{x_0} = X_t^{x_0,l} \) for all \(t \leq \tau_l. \) Hence, for any \(A \in \mathcal{A}, \) any \(t > 0, \) by the Lebesgue Theorem,

\[
P[X_t^{x_0} \in A] = \lim_{l \to \infty} P[X_t^{x_0,l} \in A, t < \tau_l] = \lim_{l \to \infty} P[X_{t}^{x_0,l} \in A, t < \tau_l] \leq \lim_{l \to \infty} P[X_t^{x_0,l} \in A] = 0,
\]

since the law of \(X_t^{x_0,l} \) has a density for each \(l \geq 1. \) This implies that the law of \(X_t^{x_0} \) has a density. \(\square \)

We now gather some known results about the flow \(\{X_t^x\}_{t \geq 0, x \in \mathbb{R}^d} \).

Lemma 2.7 Assume \((I), (H_1), (H_4). \) Consider the flow of solutions \(\{X_t^x\}_{t \geq 0, x \in \mathbb{R}^d} \) to (2.1). Then a.s., the map \(x \mapsto X_t^x \) is of class \(C^1 \) on \(\mathbb{R}^d \) for each \(t \geq 0. \) If furthermore \((H2) \) holds, then a.s., for all \(t \geq 0, \) all \(x \in \mathbb{R}^d, \) \(\frac{\partial}{\partial t} X_t^x \neq 0. \)
We also consider the stopping time subsets of \mathbb{R} in such a way that for each p

The positivity of τ

We finally consider the stopping time, for \mathbb{R} simultaneously for all x

Step 1: Due to (H3)(x_0), we may build, for each $x \in B(x_0, \epsilon)$, an increasing sequence $\{O_p(x)\}_{p \geq 1}$ of subsets of \mathbb{R}^n such that

$$\cup_{p \geq 1} O_p(x) = O(x) \quad \text{and} \quad \forall \ p \geq 1, \int_{O_p(z)} \varphi(z) dz = p, \quad (2.8)$$

in such a way that for each $p \geq 1$, the map $(x, z) \mapsto 1_{\{z \in O_p(x)\}}$ is measurable on $B(x_0, \epsilon) \times \mathbb{R}^n$.

We also consider the stopping time

$$\tau = \inf\{s \geq 0; |X_{x_0}^s - x_0| \geq \epsilon\} > 0 \ \text{a.s.} \quad (2.9)$$

The positivity of τ comes from the fact that $X_{x_0}^s$ is a.s. right-continuous and starts from x_0.

We finally consider the stopping time, for $p \geq 1$,

$$S_p = \inf\left\{s \geq 0; \int_0^s \int_{\mathbb{R}^n} 1_{\{z \in O_p(x_{u \wedge \tau}^s)\}} N(du, dz) \geq 1\right\}, \quad (2.10)$$

and the associated mark $Z_p \in \mathbb{R}^n$, uniquely defined by $N(\{S_p\} \times \{Z_p\}) = 1$.

Due to (2.8), and to the fact that $X_{x_0}^s$ always belongs to $B(x_0, \epsilon)$, one may prove that

(i) $p \mapsto S_p$ is a.s. nonincreasing,

(ii) $\lim_{p \to \infty} S_p = 0$ a.s.,

(iii) conditionally to F_{S_p}, the law of Z_p is given by $\frac{1}{p} \varphi(z) \int_{\{z \in O_p(x_{u \wedge \tau}^s)\}} N(du, dz)$, where

$$F_{S_p} = \sigma(B \cap \{S_p > s\}; \ s \geq 0, \ B \in \mathcal{F}_s). \quad (2.11)$$

Indeed, (i) is obvious by construction, since $p \mapsto O_p(x)$ is increasing for each $x \in \mathbb{R}^d$. Next, an easy computation shows that the compensator of the (random) point measure $N_p(ds, dz) = 1_{\{z \in O_p(x_{u \wedge \tau}^s)\}} N(ds, dz)$ is given by $pds \times p^{-1} \int_{\{z \in O_p(x)\}} \varphi(z) dz$. Since for each $x \in \mathbb{R}^d$, $\int_{\mathbb{R}^d} p^{-1} \int_{\{z \in O_p(x)\}} \varphi(z) dz = 1$, we deduce that the rate of jump of N_p is constant and equal to p, so that S_p, which is its first instant of jump, has an exponential distribution with parameter p. This and (i) ensure (ii). We also obtain (iii) as a consequence of the shape of the compensator of N_p.
Step 2: We now prove that conditionally to \(\sigma(S_p) \), the law of \(X^{x_0}_{\infty} \) has a density with respect to the Lebesgue measure on \(\mathbb{R}^d \), on the set \(\Omega^0_p = \{ \tau \geq S_p \} \). Since \(S_p \) is \(\mathcal{F}_{S_p} \)-measurable, it suffices to prove that for any \(A \in \mathcal{A} \), a.s., \(P[\Omega^0_p, X^{x_0}_{\infty} \in A \mid \mathcal{F}_{S_p}] = 0 \). But, using the notations of Step 1, a.s., \(X^{x_0}_{\tau} = X^{x_0}_{S_p} + h[X^{x_0}_{\tau}, Z] \) on \(\Omega^0_p \). Furthermore, we know that on \(\Omega^0_p \), \(X^{x_0}_{S_p} \in B(x_0, \varepsilon) \) a.s. Thus, using Step 1 (see (iii)), since \(\{ \tau \geq S_p \} \) and \(X^{x_0}_{S_p} \) are \(\mathcal{F}_{S_p} \)-measurable,

\[
P[\Omega^0_p, X^{x_0}_{\tau} \in A \mid \mathcal{F}_{S_p}] = 1_{\Omega^0_p} P\left[X^{x_0}_{S_p} + h[X^{x_0}_{\tau}, Z] \in A \mid \mathcal{F}_{S_p} \right]
\]

\[
= 1_{\{ \tau \geq S_p \}} 1_{\{ X^{x_0}_{S_p} \in B(x_0, \varepsilon) \}} \frac{1}{p} \varphi(z) 1_{\{ z \in O_p \}} dz = 0
\]

due to (H3)(x_0) (use (2.4)) with \(x = X^{x_0}_{S_p} \), since for any \(y \in \mathbb{R}^d \), \(A - y = \{ x - y, x \in A \} \) belongs to \(\mathcal{A} \).

Step 3: We may now deduce that for any \(p \geq 1 \), the law of \(X^{x_0}_{\tau} \) has a density on the set \(\Omega^1_p = \{ S_p \leq \tau \wedge t \} \). We deduce from Step 2 that on \(\Omega^1_p \subseteq \Omega^0_p \) the law of \((S_p, X^{x_0}_{\tau}) \) is of the shape \(\nu_p(ds) f_p(s, x) dx \), where \(\nu_p \) is the law of \(S_p \) while \(f_p(s, \cdot) \) is the density of \(X^{x_0}_{\tau} \) conditionally to \(S_p = s \).

Hence, for any \(A \in \mathcal{A} \), using the strong Markov property, we obtain, conditioning with respect to \(\mathcal{F}_{S_p} \),

\[
P[\Omega^1_p, X^{x_0}_{\tau} \in A] = E \left[1_{\Omega^1_p} E \left[\int_0^t \nu_p(ds) \int_{\mathbb{R}^d} f_p(s, x) dx 1_{\{ X^{x_0}_{\tau} \in A \}} \right] \right].
\]

It thus suffices to show that a.s., for any \(s < t \) fixed,

\[
\int_{\mathbb{R}^d} f_p(s, x) dx 1_{\{ X^{x_0}_{\tau} \in A \}} = 0.
\]

Of course, it suffices to check that a.s., for \(s < t \) fixed,

\[
\int_{\mathbb{R}^d} dx 1_{\{ X^{x_0}_{\tau} \in A \}} = 0.
\]

But this is immediate from Lemma 2.7, using that the Jacobian of the map \(x \mapsto X^{x_0}_{\tau} \) does (a.s.) never vanish and that \(A \) is Lebesgue-null: one may find, due to the local inverse Theorem, a countable family of open subsets \(R_i \) of \(\mathbb{R}^d \), on which \(x \mapsto X^{x_0}_{\tau} \) is a \(C^1 \) diffeomorphism, and such that \(\mathbb{R}^d = \bigcup_{i=1}^{\infty} R_i \). The conclusion follows, performing the substitution \(x \mapsto y = X^{x_0}_{\tau} \) on each \(R_i \). This allows us to conclude that \(P[\Omega^1_p, X^{x_0}_{\tau} \in A] = 0 \).

Step 4: The conclusion readily follows: due to Step 1 (see (2.9) and (ii)), \(1_{\Omega^1_p} \) goes a.s. to 1 as \(p \) tends to infinity. We thus infer from the Lebesgue Theorem that for any \(A \in \mathcal{A} \),

\[
P[X^{x_0}_{\infty} \in A] = \lim_{p \to \infty} P[\Omega^1_p, X^{x_0}_{\tau} \in A] = 0.
\]

thanks to Step 3. Thus the law of \(X^{x_0}_{\infty} \) has a density with respect to the Lebesgue measure on \(\mathbb{R}^d \).

We finally show how to relax assumption (H2) when (H3)(x) holds everywhere.

Proof of Corollary 2.3 Due to Lemma 2.6, we may suppose the additional assumption (H4). We consider \(\delta_0 > 0 \) such that for any \(M \in \mathcal{M}_{d, \delta_0} \) satisfying \(|M| \leq \delta_0 \), \(\det(I_d + M) \geq 1/2 \). We then split \(\mathbb{R}^n \) into \(O_F \cup O_I \), with

\[
O_F = \{ z \in \mathbb{R}^n \mid \tilde{\eta}(z) \geq \delta_0 \}, \quad O_I = \{ z \in \mathbb{R}^n \mid \tilde{\eta}(z) < \delta_0 \}.
\]

Since \(\tilde{\eta} \in L^2(\mathbb{R}^n, \varphi(z) dz) \), we deduce that \(\lambda_F := \int_{O_F} \varphi(z) dz \leq \delta_0^{-2} \int_{\mathbb{R}^n} \tilde{\eta}(z) \varphi(z) dz < \infty \). We next consider the solution \(\{ Y^z_{\tau} \}_{\tau \geq 0} \) to the S.D.E.

\[
Y^z_{\tau} = x + \int_0^\tau b(Y^z_{s}) ds + \int_0^\tau \int_{\mathbb{R}^n} h(Y^z_{s}, z) 1_{\{ z \in O_I \}} \tilde{\eta}(ds, dz) - \int_0^\tau \int_{O_F} h(Y^z_{s}, z) \varphi(z) dz ds + \int_0^\tau \sigma(Y^z_{s}) dB_s.
\]
Clearly, this S.D.E. satisfies (I), (H1), (H2), and (H3)(x) for all x, so that due to Theorem 2.2, the law of Y^x_t has a density for each $t > 0$, each $x \in \mathbb{R}^d$. The solution $\{X^x_t\}_{t \geq 0}$ to (2.1) may now be realized in the following way (see Ikeda-Watanabe [8] for details): consider a standard Poisson process with intensity λ and with jumps at $0 = T_0 < T_1 < T_2 < \ldots$, a family of i.i.d. \mathbb{R}^n-valued random variables $(Z_i)_{i \geq 1}$ with law $\tilde{X}_P^i \varphi(z)1_{(z \in \partial P)}dz$, and a family of i.i.d. solutions $(\{Y^i_{t,x}\}_{x \in \mathbb{R}^d})_{t \geq 0}$ to (2.18), all of which random objects being independent. Set

$$X^x_0 = x_0, \quad \forall \ i \geq 0, \ X^x_{T_{i+1}} = Y^i_{T_{i+1} - T_i} + h(Y^i_{T_{i+1} - T_i}, Z_i) \quad \text{and} \quad \forall \ t \geq 0, \ X^x_t = \sum_{i \geq 0} Y^i_{t - T_i} 1_{\{t \in [T_i, T_{i+1})\}}.$$

Then $\{X^x_t\}_{t \geq 0}$ is solution (in law) to (2.1). To conclude, notice that for any $t > 0$, one has $t \not\in \cup_i \{T_i\}$ a.s., so that for any $A \in \mathcal{A}$,

$$P[X^x_0 \in A] = \sum_{i \geq 0} P[Y^i_{t - T_i} \in A, \ t \in (T_i, T_{i+1})] \leq \sum_{i \geq 0} P[Y^i_{t - T_i} \in A, \ t > T_i] = 0.$$

The last equality comes from the facts that for each i, $\{Y^i_{t,x}\}_{t \geq 0, x \in \mathbb{R}^d}$ is independent of (T_i, X_{T_i}), and that the law of $Y^i_{t,x}$ has a density for each $t > 0$, each $x \in \mathbb{R}^d$. \square

Let us conclude this section with a remark. One may obtain, with such a method, some results in the spirit of [1]: the existence of a density under some non-degeneracy assumptions less stringent than (H3). The main idea is to use a finite number of jumps (instead of one), and the method becomes quite complicated. The result we can obtain is slightly better than that of [1] from the point of view of the regularity of h. However, we cannot obtain some mixed non-degeneracy conditions on the Brownian motion and on the Poisson measure, which was possible in [1], and which makes the result of [1] much more general.

3 The case of a non constant rate of jump

Consider now the following d-dimensional S.D.E., for some $d \in \mathbb{N}$, starting from $x \in \mathbb{R}^d$:

$$X^x_t = x + \int_0^t b(X^x_s)ds + \int_0^t \int_{\mathbb{R}^n} h(X^x_s, z)1_{\{u \leq \gamma(X^x_u, z)\}}N(ds, dz, du),$$

where

Assumption (J): $N(ds, dz, du)$ is a Poisson measure on $[0, \infty) \times \mathbb{R}^n \times [0, \infty)$, for some $n \in \mathbb{N}$, with intensity measure $\nu(ds, dz, du) = d\nu \varphi(z)dzdu$. The function $\varphi : \mathbb{R}^n \mapsto \mathbb{R}_+$ is supposed to be measurable.

In this case, the generator of the Markov process X^x is given, for any $\phi : \mathbb{R}^d \mapsto \mathbb{R}$ sufficiently smooth and $y \in \mathbb{R}^d$, by

$$\mathcal{L}\phi(y) = b(y) \cdot \nabla \phi(y) + \int_{\mathbb{R}^n} \gamma(y) [\phi(y + h(y, z)) - \phi(y)] \varphi(z)dz.$$

It might be possible to add a Brownian term and consider a compensated Poisson measure. However, the present situation simplifies the computations. We assume the following hypothesis.

Assumption (A1): The function $b : \mathbb{R}^d \mapsto \mathbb{R}^d$ is of class C^1, and has at most linear growth. The function $\gamma : \mathbb{R}^d \mapsto \mathbb{R}_+$ is of class C^1. The function $h : \mathbb{R}^d \times \mathbb{R}^n \mapsto \mathbb{R}^d$ is measurable. For each $z \in \mathbb{R}^n$, $x \mapsto h(x, z)$ is of class C^1 on \mathbb{R}^d. There exists $\eta \in L^1(\mathbb{R}^n, \varphi(z)dz)$ and a continuous function $\zeta : \mathbb{R}^d \mapsto \mathbb{R}$ such that for all $x \in \mathbb{R}^d, z \in \mathbb{R}^n$, $\gamma(x)h(x, z) \leq (1 + |x|)\eta(z)$, while $|h(x, z)| \leq \zeta(x)\eta(z)$.

Then $\mathcal{L}\phi$ is well defined for all $\phi \in C^1_b(\mathbb{R}^d)$, and it is well-known that the following result holds.
The main results of this section are the following.

Proposition 3.1 Assume (J) and (A1). Consider the natural filtration \(\{ \mathcal{F}_t \}_{t \geq 0} \) associated with the Poisson measure \(N \). Then, for any \(x \in \mathbb{R}^d \), there exists a unique càdlàg \(\{ \mathcal{F}_t \}_{t \geq 0} \)-adapted process \(\{ X_t^x \}_{t \geq 0} \) solution to (3.1) such that for all \(x \in \mathbb{R}^d \), all \(T \in [0, \infty) \),

\[
E \left[\sup_{s \in [0,T]} |X_s^x| \right] < \infty. \tag{3.3}
\]

The process \(\{ X_t^x \}_{t \geq 0, x \in \mathbb{R}^d} \) furthermore satisfies the strong Markov property.

We refer to [5] (Section 2) for the proof of a very similar result. We divide the section into three parts: we start with the statements and proofs, and we end with an example of application.

3.1 Statements

To obtain some absolute continuity results, we will assume the following conditions. Here \(x_0 \) is fixed in \(\mathbb{R}^d \).

Assumption (A2): There exists \(c_0 \in (0, 1) \) such that for all \(x \in \mathbb{R}^d \), all \(z \in \mathbb{R}^n \), \(\det(I_d + h_z'(x, z)) \geq c_0 \). For each \(z \in \mathbb{R}^n \), the map \(x \mapsto x + h(x, z) \) is a \(C^1 \)-diffeomorphism.

Remark that if \(d = 1 \), the condition \(1 + h_z'(x, z) \geq c_0 > 0 \) ensures that (A2) holds.

Assumption (A3)(\(x_0 \)): The function \(\gamma \) does never vanish. There exists \(\epsilon > 0 \) such that for all \(x \in B(x_0, \epsilon) \), there exists a subset \(O(x) \subset \mathbb{R}^n \) such that, (recall (1.2)),

\[
\int_{O(x)} \varphi(z)dz = \infty, \quad \text{and for all } A \in \mathcal{A}, \quad \int_{O(x)} 1_{\{h(x, z) \in A \}} \varphi(z)dz = 0, \tag{3.4}
\]

and such that the map \((x, z) \mapsto 1_{\{z \in O(x)\}} \) is measurable on \(B(x_0, \epsilon) \times \mathbb{R}^n \).

The main results of this section are the following.

Theorem 3.2 Let \(x_0 \in \mathbb{R}^d \) be fixed. Assume (J), (A1), (A2) and (A3)(\(x_0 \)). Consider the unique solution \(\{ X_{t}^{x_0} \}_{t \geq 0} \) to (3.1). Then the law of \(X_{t}^{x_0} \) has a density with respect to the Lebesgue measure on \(\mathbb{R}^d \) as soon as \(t > 0 \).

As previously, an immediate consequence is the following.

Corollary 3.3 Let \(x_0 \in \mathbb{R}^d \) be fixed. Assume (J), (A1) and that (A3)(\(x \)) holds for all \(x \in \mathbb{R}^d \). Consider the unique solution \(\{ X_{t}^{x_0} \}_{t \geq 0} \) to (3.1). Then the law of \(X_{t}^{x_0} \) has a density with respect to the Lebesgue measure on \(\mathbb{R}^d \) as soon as \(t > 0 \).

These results improve consequently those of [5], where many restrictive conditions were assumed, such as the monotonicity of \(x \mapsto \gamma(x) \) and \(x \mapsto h(x, z) \), and the positivity of \(h(x, z) \).

Exactly as in Section 2 (see Proposition 2.4), we have a general example of application, using the local inverse Theorem.

Proposition 3.4 Assume (J) and (A1), and let \(x_0 \in \mathbb{R}^d \). Suppose that \(n = d \), that \(\gamma \) does never vanish. Assume that there exists \(\epsilon > 0 \) and an open subset \(O \subset \mathbb{R}^d \) such that \(h \) is of class \(C^1 \) on \(B(x_0, \epsilon) \times O \). If for all \(x \) in \(B(x_0, \epsilon) \), \(\int_{O} 1_{\{\det h_z'(x,z) \neq 0\}} \varphi(z)dz = \infty \), then (A3)(\(x_0 \)) holds.
3.2 Proof

First of all, we proceed to a localization procedure.

Lemma 3.5 To prove Theorem 3.2 and Corollary 3.3, we may assume the additional condition (A4) below.

Assumption (A4): The functions b, b', γ and γ' are bounded. There exists $\tilde{h} \in L^1(\mathbb{R}^n, \varphi(z)dz)$ such that for all $x \in \mathbb{R}^d, z \in \mathbb{R}^n, |h(x, z)| + |h'_z(x, z)| \leq \tilde{h}(z)$. There exists $\gamma_0 > 0$ such that for all $x \in \mathbb{R}^d, \gamma(x) \geq \gamma_0$.

We omit the proof of this lemma, since it is the same as that of Lemma 2.6 (see also [5] Section 2). We will need the following Lemma.

Lemma 3.6 (i) There exists $\beta_0 > 0$ such that for any C^1 function $\delta : \mathbb{R}^d \to \mathbb{R}^d$ satisfying $||\delta'||_{\infty} \leq \beta_0$, the map $x \mapsto x + \delta(x)$ is a C^1-diffeomorphism, and for all $x \in \mathbb{R}^d$, $\det(I_d + \delta'(x)) \geq 1/2$. (ii) There exist some constants $\theta_1 \in (0, 1)$ and $\theta_2 > 0$ such that for all $M \in \mathcal{M}_{d \times d}$ with $|M| \leq \theta_1$, $\det(I_d + M) \geq 1 - \theta_2|M| \geq 1/2$.

Proof (i) Set $\zeta(x) = x + \delta(x)$. First of all, it is clear, by continuity of the determinant, that if β_0 is small enough, $\det \zeta'(x) = \det(I_d + \delta'(x)) \geq 1/2$ for all $x \in \mathbb{R}^d$. Thus, it classically suffices to show that, if β_0 is small enough, ζ is injective. Consider thus x, y such that $\zeta(x) = \zeta(y)$. Then $|x - y| = |\delta(x) - \delta(y)| \leq ||\delta'||_{\infty}|x - y| \leq \beta_0|x - y|$, which implies that $x = y$ if $\beta_0 < 1$.

(ii) We use the norm $|M| = \sup_{i,j} |M_{i,j}|$. A rough computation shows that, if $|M| \leq 1$,

$$\det(I_d + M) \geq (1 - |M|)^d - d! \sum_{i=0}^{d-1} (1 - |M|)^i |M|^{d-i} \geq 1 - d|M| - d!d|M|.$$ (3.5)

The result follows, setting $\theta_2 = d(1 + d!)$ and $\theta_1 = 1/2d(1 + d!)$. \hfill \square

Next, we note that the proof of Corollary 3.3 is the same as that of Corollary 2.3, using of course Theorem 3.2 instead of that of Theorem 2.2, and using β_0 defined in Lemma 3.6 rather than δ_0. We thus omit the proof of Corollary 2.3.

The main novelty of this section consists in the following Proposition, which allows us to overcome the irregularity of the map $x \mapsto X^x_t$.

Proposition 3.7 Assume (J), (A1), (A2) and (A4), and denote by $\{X^x_t\}_{t \geq 0, x \in \mathbb{R}^d}$ the unique solution to (3.1). Consider a probability density function f_0 on \mathbb{R}^d. Then for all $t \geq 0$, all $A \in \mathcal{A}$,

$$\int_{\mathbb{R}^d} f_0(x) P[X^x_t \in A] dx = 0.$$ (3.6)

In other words, if X_0 is a random variable (independent of N) with law $f_0(x)dx$, then X^N_0 has a density for each $t \geq 0$. To prove this, we first consider the case where f_0 satisfies some additional conditions.

Lemma 3.8 Assume (J), (A1), (A2) and (A4), and denote by $\{X^x_t\}_{t \geq 0, x \in \mathbb{R}^d}$ the unique solution to (3.1). Consider a d-dimensional random variable X_0, independent of N, satisfying $E[|X_0|] < \infty$. Assume that the law of X_0 is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^d, and that its density f_0 satisfies

$$\int_{\mathbb{R}^d} f_0^2(x) dx < \infty.$$ (3.7)

Then for all $t \geq 0$, the law of X^x_0 has a density $f(t, x)$, and furthermore, for any $T \in [0, \infty)$,

$$\sup_{[0, T]} \int_{\mathbb{R}^d} f^2(t, x) dx < \infty.$$ (3.8)
Proof We split the proof into several steps. We first introduce an approximating process \(X_t^l \) in Step 1. We next show some non-uniform \(L^\infty \) estimates for the density of \(X_t^l \) in Step 2, which allow us to prove rigorously some uniform (in \(l \)) \(L^2 \) estimates in Step 3. We go to the limit in Step 4.

Step 1: We consider a sequence \(\{ f_{t,i}^l \}_{i \geq 1} \) of bounded and continuous probability density functions, converging to \(f_0 \) in \(L^2(\mathbb{R}^d) \). We build a sequence \(\{ X_t^l \}_{i \geq 1} \) of random variables (independent of \(N \)), such that for each \(l \), the law of \(X_t^l \) is given by \(f_{t,i}^l(x)dx \). Since \(E[|X_0^l|] < \infty \), we may handle this construction in such a way that \(\lim_l E[|X_0^l - X_0^l|] = 0 \). We also consider an increasing sequence \(K_l \) of subsets of \(\mathbb{R}^n \) such that \(\bigcup_l K_l = \text{supp} \tilde{\eta} \) (recall (A4)), and such that for each \(l \), \(\Lambda_l = \int_{K_l} \varphi(z)dz < \infty \) (choose for example \(K_l = \{ z \in \mathbb{R}^n, \tilde{\eta}(z) \geq 1/l \} \)). We finally denote, for each \(l \in \mathbb{N} \), by \(\{ X_t^l \}_{t \geq 0} \) a \(\mathbb{R}^d \)-valued Markov process starting from \(X_0^l \) and with generator \(\mathcal{L}^l \), defined for any bounded measurable function \(\phi : \mathbb{R}^d \mapsto \mathbb{R} \) and any \(x \in \mathbb{R}^d \), by

\[
\mathcal{L}^l \phi(x) = t\gamma(x) [\phi(x) + b(x)/t\gamma(x)] - \phi(x) + \gamma(x) \int_{K_l} \varphi(z)dz [\phi(x + h[x,z]) - \phi(x)].
\] (3.9)

We now show that for each \(t \geq 0 \), \(X_t^l \) converges to \(X_t \) in law as \(l \) tends to infinity. To this aim, we build \(\{ X_t^l \}_{l \geq 0} \) with the help of \(N \), and of another independent Poisson measure \(M^l(ds, du) \) on \([0, \infty) \times [0, \infty) \) with intensity measure \(dsdu \):

\[
X_t^l = X_0^l + \int_0^t \int_0^\infty \frac{b(X_s^l)}{t\gamma(X_s^l)} \mathbf{1}_{[u \leq \gamma(X_s^l)]} M^l(ds, du) + \int_0^t \int_{K_l} \int_0^\infty h(X_s^l, z) \mathbf{1}_{[u \leq \gamma(X_s^l)]} N(ds, dz, du),
\] (3.10)

Noting that

\[
Y_t^l = \int_0^t \int_0^\infty \frac{b(X_s^l)}{t\gamma(X_s^l)} \mathbf{1}_{[u \leq \gamma(X_s^l)]} M^l(ds, du) - \int_0^t b(X_s^l)ds
\] (3.11)

is a martingale with bracket

\[
\langle Y_t^l \rangle_t = \frac{1}{t} \int_0^t \frac{b^2(X_s^l)}{\gamma(X_s^l)} ds \leq \frac{||b/\gamma||_\infty^2}{\gamma^2} t \to 0,
\] (3.12)

and using (A1) and (A4) repeatedly, one may then show that for any \(T \geq 0 \),

\[
\lim_{l \to \infty} E[\sup_{[0,T]} |X_t^l - X_t^0|] = 0.
\] (3.13)

Step 2: Consider now \(l_0 > \|(b/\gamma')\|_\infty/\beta_0 \), where \(\beta_0 \) was defined in Lemma 3.6-(i). This is possible due to (A4). We aim to prove that for any \(l \geq l_0 \), any \(t \geq 0 \), \(X_t^l \) has a bounded density \(f_l(t,x) \), and that for any \(T > 0 \),

\[
\sup_{[0,T]} \sup_{x \in \mathbb{R}^d} f_l(t,x) < \infty.
\] (3.14)

We thus consider \(l \geq l_0 \) to be fixed. We also denote, for any \(a \in (0, \infty) \), by \(\mathcal{C}_a = \{ A \in \mathcal{B}(\mathbb{R}^d); \int_A dx \leq a \} \). A direct computation, using (3.10), the fact that \(\gamma \) is bounded, and neglecting all the non positive terms, yields that there exists a constant \(C \) (depending on \(l \)) such that for any \(A \in \mathcal{B}(\mathbb{R}^d) \),

\[
P[X_t^l \in A] = P[X_0^l \in A] + \int_0^t E[\gamma(X_s^l) \{ 1_{\{X_s^l+b(X_s^l)/l\gamma(X_s^l) \in A\}} - 1_{\{X_s^l \in A\}} \}] ds + \int_0^t \int_{K_l} \mathbb{E}[\gamma(X_s^l) \{ 1_{\{X_s^l+b(X_s^l,z) \in A\}} - 1_{\{X_s^l \in A\}} \}] \varphi(z) dz ds
\] (3.15)

\[
\leq P[X_0^l \in A] + C \int_0^T P[X_s^l+b(X_s^l)/l\gamma(X_s^l) \in A] ds + C \int_{z \in K_l} \sup_{x \in \mathcal{C}_a} P[X_s^l+b(X_s^l,z) \in A] ds.
\]
For $A \in \mathcal{B}(\mathbb{R}^d)$, set $\tau(A) = \{x \in \mathbb{R}^d, x + b(x)/\gamma(x) \in A\}$, and $\tau_z(A) = \{x \in \mathbb{R}^d, x + h(x, z) \in A\}$. Then, using (A2), we deduce that for any $z \in \mathbb{R}^n$, any $A \in \mathcal{B}(\mathbb{R}^d)$,

$$
\int_{\tau_z(A)} dx = \int_{\mathbb{R}^d} 1_{\{x + h(x, z) \in A\}} dx = \int_{\mathbb{R}^d} 1_{\{y \in A\}} \frac{dy}{|\det(I_d + h^*_z(x, z))|} \leq \frac{1}{c_0} \int_A dx. \quad (3.16)
$$

By the same way, using that $l \geq l_0$ and Lemma 3.6-(i), we get

$$
\int_{\tau(A)} dx \leq 2 \int_A dx. \quad (3.17)
$$

Gathering (3.15), (3.16) and (3.17), we obtain, setting $n_0 = [2 \vee 1/c_0] + 1$, that for some constant C, for any $a \in (0, \infty)$,

$$
\sup_{A \in \mathcal{C}_a} P[X^l_i \in A] \leq \sup_{A \in \mathcal{C}_a} P[X^l_0 \in A] + C \int_0^t \sup_{A \in \mathcal{C}_{n_0}} P[X^l_s \in A] ds
$$

$$
\leq a||f_0||_\infty + n_0 C \int_0^t \sup_{A \in \mathcal{C}_a} P[X^l_s \in A] ds. \quad (3.18)
$$

To obtain the last term, we have used that any $A \in \mathcal{C}_{n_0}$ may be written as a union of n_0 elements of \mathcal{C}_a. We finally obtain, using the Gronwall Lemma, that for any T, there exists $C_{T,l}$ such that for all $a \in (0, \infty)$,

$$
\sup_{[0,T]} \sup_{A \in \mathcal{C}_a} P[X^l_t \in A] \leq C_{T,l} \times a. \quad (3.19)
$$

This ensures (3.14).

Step 3: We now show, and it is the heart of the proof, that for any $T \geq 0$, there exists a constant C_T, not depending on $l \geq l_0$, such that

$$
\sup_{[0,T]} \int_{\mathbb{R}^d} f^l_{t}(t, x) dx \leq C_T. \quad (3.20)
$$

We will rather work with the weight function $\gamma(x)$, which seems artificial: we are however not able to conclude working directly with $\int f^l_{t} dx$. We consider $l \geq l_0$ to be fixed, and we set for simplicity $\gamma f_0(t, x) = \gamma(x)f_0(t, x)$.

Step 3.1: We first show rigorously, and this is a purely technical issue, that for all $t \geq 0$,

$$
\int_{\mathbb{R}^d} \gamma(x) f^l_{t}(t, x) dx = \int_{\mathbb{R}^d} \gamma(x) (f^0_{t_0})^2(x) dx + 2 \int_0^t ds \int_{\mathbb{R}^d} f_{t}(t, x) \mathcal{L}^l(\gamma f_{t_0}(., t))(x) dx. \quad (3.21)
$$

Using Lemma 3.6-(i) and that $l \geq l_0$, we may define the inverse function τ^*_1 of $x \mapsto x + b(x)/\gamma(x)$, and denote by J_{l}^1 the associated Jacobian function. Using (A2), we may also define, for all fixed $z \in K_l$, the inverse function τ^*_z of $x \mapsto x + h(x, z)$, and denote by $J^1_{l}(., z)$ the associated Jacobian function. Let $B_b(\mathbb{R}^d)$ denote the set of Borelian bounded functions on \mathbb{R}^d. We now define, for $g \in B_b(\mathbb{R}^d) \cap L^1(\mathbb{R}^d, dx)$ and $y \in \mathbb{R}^d$,

$$
\mathcal{L}^*_l g(y) = -\gamma(y) \left(l \int_{K_l} \varphi(z) dz \right) g(y) + \gamma(\tau^*_1(y)) \left(J^1_{l}(\tau^*_1(y)) \right)^{-1} g(\tau^*_1(y))
$$

$$
+ \int_{K_l} \gamma(\tau^*_2(y, z)) \left(J^2_{l}(\tau^*_2(y, z)) \right)^{-1} g(\tau^*_2(y, z)) \varphi(z) dz. \quad (3.22)
$$

One easily checks that for $\phi \in B_b(\mathbb{R}^d)$ and $g \in B_b(\mathbb{R}^d) \cap L^1(\mathbb{R}^d, dx)$, $\mathcal{L}^1 \phi \in B_b(\mathbb{R}^d)$ while $\mathcal{L}^*_l g \in B_b(\mathbb{R}^d) \cap L^1(\mathbb{R}^d, dx)$, and

$$
\int_{\mathbb{R}^d} g(x) \mathcal{L}^1 \phi(x) dx = \int_{\mathbb{R}^d} \phi(y) \mathcal{L}^*_l g(y) dy. \quad (3.23)
$$
We may now prove (3.21). We know from the classical theory that for all \(\phi \in B_0(\mathbb{R}^d) \), all \(t \geq 0 \),

\[
\int_{\mathbb{R}^d} \phi(x)f_i(t,x)dx = \int_{\mathbb{R}^d} \phi(x)f_i^0(x)dx + \int_0^t ds \int_{\mathbb{R}^d} f_i(s,x)\mathcal{L}^s \phi(x)dx
\]

\[
= \int_{\mathbb{R}^d} \phi(x)f_i^0(x)dx + \int_0^t ds \int_{\mathbb{R}^d} \phi(x)\mathcal{L}^s f_i(s,.)(x)dx.
\]

(3.24)

Using now that for \(t \geq 0 \) fixed, \(\gamma f_i(t,.) \in B_0(\mathbb{R}^d) \) (due to Step 2), and then that \(\gamma f_i^0 \in B_0(\mathbb{R}^d) \) while for all \(s \geq 0 \) fixed, \(\gamma \mathcal{L}^s f_i(.,.) \in B_0(\mathbb{R}^d) \), we obtain

\[
\int_{\mathbb{R}^d} \gamma(x)f_i^2(t,x)dx = \int_{\mathbb{R}^d} \gamma(x)f_i^0(x)f_i(t,x)dx + \int_0^t ds \int_{\mathbb{R}^d} \gamma(x)f_i(t,x)\mathcal{L}^s f_i(s,.)(x)dx
\]

\[
= \int_{\mathbb{R}^d} \gamma(x)(f_i^0)^2(x)dx + \int_0^t ds \int_{\mathbb{R}^d} \gamma(x)\mathcal{L}^s f_i(s,.)(x)dx
\]

\[
+ \int_0^t ds \left(\int_{\mathbb{R}^d} \gamma(x)\mathcal{L}^s f_i(s,.)(x)dx + \int_0^t ds \int_{\mathbb{R}^d} \gamma(x)\mathcal{L}^s f_i(u,.)(x)\mathcal{L}^u f_i(s,.)(x)dx \right).
\]

(3.25)

Using now a symmetry argument in the last term, and then that \(\gamma \mathcal{L}^s f_i(s,.) \in B_0(\mathbb{R}^d) \) for each \(s \geq 0 \), we get

\[
\int_{\mathbb{R}^d} \gamma(x)f_i^2(t,x)dx = \int_{\mathbb{R}^d} \gamma(x)(f_i^0)^2(x)dx + 2 \int_0^t ds \int_{\mathbb{R}^d} \gamma(x)f_i^0(x)\mathcal{L}^s f_i(s,.)(x)dx
\]

\[
+ 2 \int_0^t ds \int_{\mathbb{R}^d} \gamma(x)\mathcal{L}^s f_i(s,.)(x)dx
\]

\[
= \int_{\mathbb{R}^d} \gamma(x)(f_i^0)^2(x)dx + 2 \int_0^t ds \int_{\mathbb{R}^d} \gamma(x)f_i(s,x)\mathcal{L}^s f_i(s,.)(x)dx
\]

\[
(3.26)
\]

from which (3.21) follows immediately.

Step 3.2: We may now prove (3.20). Using (3.21), we first get

\[
\int_{\mathbb{R}^d} \gamma(x)f_i^2(t,x)dx = \int_{\mathbb{R}^d} \gamma(x)(f_i^0)^2(x)dx + 2 \int_0^t ds \int_{\mathbb{R}^d} \gamma f_i(s,x)\gamma(x)[\gamma f_i(s,x + b(x)/l\gamma(x)) - \gamma f_i(s,x)]dx
\]

\[
+ 2 \int_0^t ds \int_{\mathbb{R}^d} f_i(s,x)\gamma(x) \int_{K_1} \varphi(z) [\gamma f_i(s,x + h(x,z)) - \gamma f_i(s,x)] dz dx
\]

\[
= \int_{\mathbb{R}^d} \gamma(x)(f_i^0)^2(x)dx + 2 \int_0^t ds \int_{\mathbb{R}^d} A_i(s)dx + 2 \int_0^t B_i(s)ds,
\]

(3.28)

the last equality standing for a definition. First, using the Cauchy-Schwartz inequality, we obtain, setting

\[
||g||_2^2 = \int_{\mathbb{R}^d} g^2(x)dx,
\]

\[
A_i(t) \leq l \left(||\gamma f_i(t,.)||_2 ||\gamma f_i(t,.) + b(.)/l\gamma(.)||_2 - ||\gamma f_i(t,.)||_2^2 \right).
\]

(3.29)

But the substitution \(x \mapsto y = x + b(x)/l\gamma(x) \), which is valid for \(t \geq t_0 \) due to Lemma 3.6, leads to the conclusion that

\[
||\gamma f_i(t,.) + b(.)/l\gamma(.)||_2 \leq \int_{\mathbb{R}^d} (\gamma f_i^2)(t,y) \frac{1}{\det(I_4 + (b/\gamma)'(\tau_1(y))/l)} dy \leq \frac{||\gamma f_i(t,.)||_2^2}{\inf_{x \in \mathbb{R}^d} \det(I_4 + (b/\gamma)'(\tau_1(y))/l)}
\]

(3.30)

Using that \((b/\gamma)' \) is bounded due to (A4), that \(l \geq l_0 \), and Lemma 3.6-(ii)-(ii), we deduce that for some constant \(C \), not depending on \(l \),

\[
||\gamma f_i(t,.) + b(.)/l\gamma(.)||_2 \leq ||\gamma f_i(t,.)||_2 \left(1 - \frac{1}{l_2} ||(b/\gamma)'||_\infty ||t < \theta_1 \right) 1_{||b/\gamma'||_\infty /l \geq 0} + 21_{||b/\gamma'||_\infty /l \geq \theta_1} \leq ||\gamma f_i(t,.)||_2 \left(1 + \frac{C}{l} \right).
\]

(3.31)
We finally obtain, for some constants C_1, C_2, for any $l \geq l_0$,
\[
A_l(t) \leq ||\gamma f_l(t, \cdot)||_2^2 \times l \left[\sqrt{1 + C_1/l} - 1 \right] \leq C_2 ||\gamma f_l(t, \cdot)||_2^2.
\] (3.32)

Next, using the Fubini Theorem and then the Cauchy-Schwarz inequality, we get
\[
B_l(t) = \int_{K_t} \varphi(z)dz \int_{\mathbb{R}^d} \left[\gamma f_l(t, x)\gamma f_l(t, x + h(x, z)) - (\gamma f_l)^2(t, x) \right] dx \\
\leq \int_{K_t} \varphi(z)dz \left[||\gamma f_l(t, \cdot)||_2^2 ||\gamma f_l(t, \cdot + h(\cdot, z))||_2 - ||\gamma f_l(t, \cdot)||_2^2 \right].
\] (3.33)

But the substitution $x \mapsto y = x + h(x, z)$, valid due to (A2), shows that
\[
||\gamma f_l(t, \cdot + h(\cdot, z))||_2^2 = \int_{\mathbb{R}^d} (\gamma f_l)^2(t, y) \frac{1}{\det(I_d + h'_x(x, z))} dy \leq \alpha(z) ||\gamma f_l(t, \cdot)||_2^2,
\] (3.34)

where $\alpha(z) = \sup_{x \in \mathbb{R}^d} [1/\det(I_d + h'_x(x, z))]$ is well-defined due to (A2). We thus obtain, with the notation $r_+ = \max(x, 0)$, that
\[
B_l(t) \leq ||\gamma f_l(t, \cdot)||_2^2 \int_{K_t} \varphi(z)dz \left(\sqrt{\alpha(z)} - 1 \right)_+ \leq ||\gamma f_l(t, \cdot)||_2^2 \int_{\mathbb{R}^n} \varphi(z)dz \left(\sqrt{\alpha(z)} - 1 \right)_+ = C ||\gamma f_l(t, \cdot)||_2^2.
\] (3.35)

The constant C is finite here due to (A2) and (A4): one may check, using Lemma 3.6-(ii) that
\[
\left(\sqrt{\alpha(z)} - 1 \right)_+ \leq \left((1 - \theta_2 \tilde{\eta}(z))^{-1/2} - 1 \right) \mathbf{1}_{\{\tilde{\eta}(z) < \theta_1\}} + \left(\frac{1}{\sqrt{\theta_0}} - 1 \right) \mathbf{1}_{\{\tilde{\eta}(z) \geq \theta_1\}} \\
\leq \theta_2 \tilde{\eta}(z) \mathbf{1}_{\{\tilde{\eta}(z) < \theta_1\}} + \frac{1}{\sqrt{\theta_0}} \mathbf{1}_{\{\tilde{\eta}(z) \geq \theta_1\}} \leq \left(\frac{1}{\theta_1 \sqrt{\theta_0}} \vee \theta_2 \right) \tilde{\eta}(z) \in L^1(\mathbb{R}^n, \varphi(z)dz).
\] (3.36)

Using finally (3.28), (3.32), (3.35), and that γ is bounded, we obtain, for some constant C not depending on $l \geq l_0$,
\[
\int_{\mathbb{R}^d} \gamma(x) f_l^2(t, x) dx \leq \int_{\mathbb{R}^d} \gamma(x) (f_l^0)^2(x) dx + C \int_0^t ||\gamma f_l(s, \cdot)||_2^2 ds \\
\leq \int_{\mathbb{R}^d} \gamma(x) (f_l^0)^2(x) dx + C \int_0^t ds \int_{\mathbb{R}^d} \gamma(x) f_l^2(s, x) dx.
\] (3.37)

Since γ is bounded, we deduce that $\sup_t \int_{\mathbb{R}^d} \gamma(x) (f_l^0)^2(x) dx < \infty$. Furthermore, we deduce from (3.14) that for all $T \geq 0$, for each $l \geq l_0$, $\int_{\mathbb{R}^d} \gamma(x) f_l^2(t, x) dx$ is bounded on $[0, T]$. We thus may conclude, using the Gronwall Lemma and the fact that γ is bounded below, that for any T,
\[
\sup_{l \geq l_0} \sup_{[0, T]} \int_{\mathbb{R}^d} f_l^2(t, x) dx \leq \gamma^{-1} \sup_{l \geq l_0} \sup_{[0, T]} \int_{\mathbb{R}^d} \gamma(x) f_l^2(t, x) dx < \infty.
\] (3.38)

Step 4: We now fix $t \geq 0$. The finite balls of $L^2(\mathbb{R}^d)$ being weakly compact, using (3.38) allows us to find a subsequence $f_{l_k}(t, \cdot)$, going weakly to a function $f(t, \cdot) \in L^2(\mathbb{R}^d)$. On the other hand, we know that X^l_t converges in law to $X^{N_0}_t$. Hence the law of $X^{N_0}_t$ is given by $f(t, x) dx$, and (3.38) allows us to conclude that (3.8) holds.

Proposition 3.7 follows easily from Lemma 3.8.

Proof of Proposition 3.7 For each $n \in \mathbb{N}$, consider the probability density function f^0_n on \mathbb{R}^d defined by $f^0_n(x) = c_n [f_0(x) \wedge n] \mathbf{1}_{\{|x| \leq n\}}$. Here c_n is a normalization constant. Consider a random variable X^0_t,
Thus X_t^n has a density for each $t \geq 0$, which implies that for all $n \in \mathbb{N}$, all $t \geq 0$, all $A \in \mathcal{A}$,
\[\int_{\mathbb{R}^d} [f_0(x) \land n] 1_{|x| \leq n} P[X_t^x \in A] dx = c_n^{-1} \int_{\mathbb{R}^d} f_0^n(x) P[X_t^x \in A] dx = c_n^{-1} P[X_t^n \in A] = 0. \tag{3.39} \]

The Lebesgue Theorem allows us to conclude that (3.6) holds, since $[f_0(x) \land n] 1_{|x| \leq n}$ increases pointwise to $f_0(x)$ as n tends to infinity. \hfill \Box

We are finally able to conclude.

Proof of Theorem 3.2 Due to Lemma 3.5, we assume the additional condition (A4), and we in particular denote by $\gamma_0 > 0$ a lower bound of γ. We consider $x_0 \in \mathbb{R}^d$ and $t > 0$ to be fixed. The proof follows closely the line of that of Theorem 2.2, so that we will only sketch it.

Step 1: Due to (A3)(x_0), we may build, for each $x \in B(x_0, \epsilon)$, an increasing sequence $\{O_p(x)\}_{p \geq 1}$ of subsets of \mathbb{R}^n satisfying (2.8), in such a way that for each $p \geq 1$, the map $x, z \mapsto 1_{\{z \in O_p(x)\}}$ is measurable on $B(x_0, \epsilon) \times \mathbb{R}^n$. We also consider the a.s. positive stopping time $\tau > 0$ defined by (2.9).

We finally consider the stopping time, for $p \geq 1$,
\[S_p = \inf \left\{ s \geq 0; \int_0^s \int_{\mathbb{R}^d} \int_0^\infty 1_{\{z \in O_p(x)} X^{x_0, (s, \tau-\gamma)_{\leq n}} N(dr, dz, du) \geq 1 \right\}, \tag{3.40} \]
and the associated mark $Z_{S_p} \in \mathbb{R}^n$, uniquely defined by $N(\{S_{S_p}\} \times \{Z_{S_p}\} \times [0, \infty)) = 1$.

Due to (2.8), and to the fact that $X^{x_0, (s, \tau-\gamma)_{\leq n}}$ always belongs to $B(x_0, \epsilon)$, one may prove that (see the proof of Theorem 2.2 Step 1 for details)

(i) $p \mapsto S_p$ is a.s. nonincreasing,

(ii) $\lim_{p \to \infty} S_p = 0$ a.s.,

(iii) conditionally to \mathcal{F}_{S_p}, the law of Z_{S_p} is given by $\frac{1}{p} \nu(x) 1_{\{z \in O_p(x)} X^{x_0, (s, \tau-\gamma)_{\leq n}} dz$.

Step 2: We now claim that conditionally to $\sigma(S_p)$, the law of $X^{x_0, (s, \tau-\gamma)_{\leq n}}_{S_p}$ has a density with respect to the Lebesgue measure on \mathbb{R}^d, on the set $\Omega^1_p = \{\tau \geq S_p\}$. It indeed suffices to follow line by line Step 2 of the proof of Theorem 2.2.

Step 3: We may now deduce that for any $p \geq 1$, the law of $X^{x_0, (s, \tau-\gamma)_{\leq n}}_{S_p}$ has a density on the set $\Omega^1_p = \{S_p \leq \tau \land \Lambda\}$. We deduce from Step 2 that on $\Omega^1_p \subset \Omega^1_S$, the law of $(S_p, X^{x_0, (s, \tau-\gamma)_{\leq n}}_{S_p})$ is of the shape $\nu_p(ds) f_p(s, x) dx$. Hence, for any $A \in \mathcal{A}$, using the strong Markov property, we obtain, conditioning with respect to \mathcal{F}_{S_p},
\[P[\Omega^1_p, X^{x_0, (s, \tau-\gamma)_{\leq n}}_{S_p} \in A] = E \left[\nu_p \left| \left(\int_0^t \nu_p(ds) \int_{\mathbb{R}^d} f_p(s, x) dx 1_{\{X^{x_0, (s, \tau-\gamma)_{\leq n}}_{S_p} \in A\}} \right) \right] \right] = 0. \tag{3.41} \]

The last inequality follows from Proposition 3.7, applied with $f_0(x) = f_p(s, x)$ for each s fixed.

Step 4: The conclusion readily follows, copying line by line Step 4 of the proof of Theorem 2.2. \hfill \Box

3.3 Application to some fragmentation equations

We would like to end this paper with an example of application of Theorem 3.3. We will show a regularization property for a class of fragmentation equations. We refer to [6] for details concerning this type of equations. We call fragmentation kernel any nonnegative symmetric function $F(x, y) = F(y, x)$ on $(0, \infty) \times (0, \infty)$. A function $c(t, x) : [0, \infty) \times (0, \infty) \to [0, \infty)$, representing the concentration of particles with size x at time t, is said to solve the fragmentation equation if for all $t \geq 0$, all $x \in (0, \infty)$,
\[\partial_t c(t, x) = \int_x^\infty F(x, y - x) c(t, y) dy - \frac{1}{2} c(t, x) \int_0^x F(y, x - y) dy. \tag{3.42} \]
We will assume in the sequel the following assumptions on the fragmentation kernel (see Remark 3.3 of [6]).

Assumption (K): \(F(x,y) = \alpha(x + y)\beta(x/(x + y)) \) for some \(C^1 \) functions \(\alpha : (0,\infty) \to [0,\infty) \) and \(\beta : (0,1) \to [0,\infty) \), \(\beta \) being symmetric at 1/2.

The conservation of mass \(\int_0^\infty xc(t,x)dx = \int_0^\infty xc(0,x)dx = 1 \) being expected to hold, we may rewrite (3.42) in terms of the probability measures \(Q_t(dx) = xc(t,x)dx \) (see Definition 2.1 in [6]). It is shown in [6] (see Remark 2.4, Theorem 3.2, Remark 3.3, Proposition 3.8, and Remark 3.10) that the following result holds.

Proposition 3.9 Assume (K). Consider a probability measure \(Q_0 \) on \((0,\infty) \), satisfying \(\langle Q_0, x^p \rangle < \infty \) for some \(p \geq 1 \). Assume that \(\int_0^1 z(1-z)\beta(z)dz < \infty \), that \(\lim_{x \to 0} x^2\alpha(x) = 0 \), while \(x^2\alpha(x) \leq C(1+x^p) \) for some constant \(C \). Then there exists a \(\mathbb{R} \)-valued Markov process \(\{X_t\}_{t \geq 0} \) enjoying the following properties:

1. \(X \) is a.s. càdlàg, nonincreasing, and takes its values in \([0,\infty)\);
2. the law of \(X_0 \) is given by \(Q_0 \), while its generator is given, for any \(\phi \in C^1_b([0,\infty)) \), \(y \in (0,\infty) \), by
 \[
 L^F(y) = \gamma(y) \int_0^1 [\phi(y-z) - \phi(y)](1-z)\beta(z)dz;
 \]
 (this is possible since \(\gamma \) is strictly increasing).
3. if \(x^2\alpha(x) \leq C(x + x^p) \) for some constant \(C \), then \(X \) does a.s. never reach \(0 \), that is \(P[X_t = 0] = 0 \) for all \(t \geq 0 \);
4. if \(x^2\alpha(x) \geq c \delta \) for some \(\delta \in (0,1) \), some \(c > 0 \), then \(P[X_t = 0] > 0 \) for each \(t > 0 \);
5. setting \(Q_t = Q(X_t) \) for each \(t > 0 \), the family \(\{x^{-1}Q_t(dx)\}_{t \geq 0} \) solves (3.42) in a weak sense.

We will prove here the following regularization result, which improves consequently [6] Proposition 3.12.

Proposition 3.10 Additionally to the hypotheses of Proposition 3.9, suppose that for all \(x > 0 \), \(\alpha(x) > 0 \), and that \(\int_0^1 \beta(z)dz = \infty \).

1. Then the law of \(X_t \) has a density with respect to \(dx + \delta_{x_0}(dx) \) as soon as \(t > 0 \). Here \(dx \) stands for the Lebesgue measure on \(\mathbb{R} \) and \(\delta_{x_0}(dx) \) is the Dirac measure at \(0 \).
2. In the case where \(x^2\alpha(x) \geq C(x + x^p) \) for some constant \(C \), this implies that the law of \(X_t \) has a density with respect to \(dx \) as soon as \(t > 0 \). Hence the measure weak solution \(\{x^{-1}Q_t(dx)\}_{t \geq 0} \) to (3.42) becomes a function weak solution (possibly starting from a measure initial condition).

Proof First note that point 2 follows immediately from point 1 and Proposition 3.9-(iii). On the other hand, it clearly suffices to prove 1 when \(Q_0 = \delta_{x_0} \), for some arbitrary \(x_0 > 0 \), by linearity. The Markov process \(X \) taking its values in \([0,\infty)\), we just have to check that for each \(\epsilon > 0 \), each Lebesgue-null subset \(A \subset (\epsilon,\infty) \), each \(t > 0 \), \(P[X_t \in A] = 0 \). Let thus such a couple \(\epsilon, A \) be fixed.

We unfortunately cannot not apply Corollary 3.3 directly, since the map \(\gamma(x) = x\alpha(x) \) may explode or vanish when \(x \) tends to 0, while \(h(x,z) = -xz \) is degenerated when \(x = 0 \). We thus consider a \(C^1_b \) strictly positive function \(\gamma : \mathbb{R} \to (0,\infty) \), and such that \(\gamma(\epsilon) = \gamma(y) \) for all \(y \in [\epsilon, x_0] \) (this is possible since \(\gamma \) is strictly positive and of class \(C^1 \) on \((0,\infty)\)). Consider also a \(C^1_b \) function \(f_\epsilon : \mathbb{R} \to (\epsilon/2,\infty) \), such that \(f_\epsilon(y) = y \) for all \(y \in [\epsilon, x_0] \). Finally, set \(h_\epsilon(y,z) = -f_\epsilon(y)z \). Then there exists a unique Markov process \(X^\epsilon \) starting from \(x \), nonincreasing, with generator

\[
L^F_\epsilon(y) = \gamma_\epsilon(y) \int_0^1 [\phi(y + h_\epsilon(y,z)) - \phi(y)](1-z)\beta(z)dz.
\]

Noting that \(\int_0^1 (1-z)\beta(z)dz = \infty \) (because \(\beta \) is symmetric at 1/2 and since \(\int_0^1 \beta(z)dz = \infty \) by assumption), one may easily check that \((A1)\) and \((A3)(y)\) (for any \(y \in \mathbb{R} \)) holds for \(X^\epsilon \). Corollary 3.3 thus ensures that \(P[X^\epsilon_t \in A] = 0 \) for any \(t > 0 \).

Finally, \(X \) and \(X^\epsilon \) being almost surely nonincreasing, starting both from \(x_0 \), and having the same generator for \(y \in [\epsilon, x_0] \), they clearly coincide while one of them is greater than \(\epsilon \) (in distribution). Since \(A \subset (\epsilon,\infty) \), we deduce that \(P[X_t \in A] = P[X^\epsilon_t \in A] \) for any \(t > 0 \). This concludes the proof. \(\square \)
References

