Université Paris 6
Pierre et Marie Curie | Université Paris 7
Denis Diderot | |

CNRS U.M.R. 7599
| ||

``Probabilités et Modèles Aléatoires''
| ||

**Auteur(s): **

**Code(s) de Classification MSC:**

- 35Q53 KdV-like equations (Korteweg-de Vries, Burgers, sine-Gordon, sinh-Gordon, etc.), See also {58F07}
- 60H15 Stochastic partial differential equations, See also {35R60}
- 60J65 Brownian motion, See also {58G32}

**Résumé:** We study the statistics of the flux of particles crossing
the origin, which is induced by the dynamics of ballistic aggregation in
dimension $1$, under
certain random initial conditions for the system. More precisely, we
consider the cases when
particles are uniformly distributed on $\R$ at the
initial time, and if
$u(x,t)$ denotes the velocity of the particle located at $x$ at time
$t$, then $u(x,0)= 0$ for $x<0$
and $(u(x,0), x\geq0)$ is either a white noise or a Brownian motion.

**Mots Clés:** *Burgers turbulence ; ballistic aggregation ; sticky particles ; shocks ;
Brownian data*

**Date:** 2001-02-27

**Prépublication numéro:** *PMA-639*

**Postscript file:**PMA-639.ps