Université Paris 6
Pierre et Marie Curie
Université Paris 7
Denis Diderot

CNRS U.M.R. 7599
``Probabilités et Modèles Aléatoires''

On subordinators, self-similar Markov processes, and some factorizations of the exponential variable


Code(s) de Classification MSC:

Résumé: Let $\xi$ be a subordinator with Laplace exponent $\Phi$, $I=\int_{0}^{\infty}\exp(-\xi_s)ds$ the so-called exponential functional, and $X$ (respectively, $\hat X$) the self-similar Markov process obtained from $\xi$ (respectively, from $\hat{\xi}=-\xi$) by Lamperti's transformation. We establish the existence of a unique probability measure $\rho$ on $]0,\infty[$ with $k$-th moment given for every $k\in\N$ by the product $\Phi(1)\cdots\Phi(k)$, and which bears some remarkable connections with the preceding variables. In particular we show that if $R$ is an independent random variable with law $\rho$ then $IR$ is a standard exponential variable, that the function $t\to\E(1/X_t)$ coincides with the Laplace transform of $\rho$, and that $\rho$ is the $1$-invariant distribution of the sub-markovian process $\hat X$.

Mots Clés: Self-similar Markov process ; subordinator ; exponential functional

Date: 2001-06-11

Prépublication numéro: PMA-666