SMILE

Stochastic Models for the Inference of Life Evolution

Presentation

SMILE is an interdisciplinary research group gathering probabilists, statisticians, bio-informaticians and biologists.
SMILE is affiliated to the Stochastics and Biology group of LPSM (Lab of Probability, Statistics and Modeling) at Sorbonne Université (ex Université Pierre et Marie Curie Paris 06).
SMILE is hosted within the CIRB (Center for Interdisciplinary Research in Biology) at Collège de France.
SMILE is supported by Collège de France and CNRS.
Visit also our homepage at CIRB.

Recent contributions of the SMILE group related to SARS-Cov2 and COVID-19.

Directions

SMILE is hosted at Collège de France in the Latin Quarter of Paris. To reach us, go to 11 place Marcelin Berthelot (stations Luxembourg or Saint-Michel on RER B).
Our working spaces are rooms 107, 121 and 122 on first floor of building B1 (ask us for the code). Building B1 is facing you upon exiting the traversing hall behind Champollion's statue.

Contact

You can reach us by email (amaury.lambert - at - upmc.fr) or (smile - at - listes.upmc.fr).

Light on

Publication

2018

Exchangeable coalescents, ultrametric spaces, nested interval-partitions: A unifying approach

Kingman's representation theorem (Kingman 1978) states that any exchangeable partition of \$$\mathbb{N}\$$ can be represented as a paintbox based on a random mass-partition. Similarly, any exchangeable composition (i.e.\ ordered partition of \$$\mathbb{N}\$$) can be represented as a paintbox based on an interval-partition (Gnedin 1997. Our first main result is that any exchangeable coalescent process (not necessarily Markovian) can be represented as a paintbox based on a random non-decreasing process valued in interval-partitions, called nested interval-partition, generalizing the notion of comb metric space introduced by Lambert & Uribe Bravo (2017) to represent compact ultrametric spaces. As a special case, we show that any \$$\Lambda\$$-coalescent can be obtained from a paintbox based on a unique random nested interval partition called \$$\Lambda\$$-comb, which is Markovian with explicit semi-group. This nested interval-partition directly relates to the flow of bridges of Bertoin & Le~Gall (2003). We also display a particularly simple description of the so-called evolving coalescent by a comb-valued Markov process. Next, we prove that any measured ultrametric space \$$U\$$, under mild measure-theoretic assumptions on \$$U\$$, is the leaf set of a tree composed of a separable subtree called the backbone, on which are grafted additional subtrees, which act as star-trees from the standpoint of sampling. Displaying this so-called weak isometry requires us to extend the Gromov-weak topology, that was initially designed for separable metric spaces, to non-separable ultrametric spaces. It allows us to show that for any such ultrametric space \$$U\$$, there is a nested interval-partition which is 1) indistinguishable from \$$U\$$ in the Gromov-weak topology; 2) weakly isometric to \$$U\$$ if \$$U\$$ has complete backbone; 3) isometric to \$$U\$$ if \$$U\$$ is complete and separable.

Publication

2018

The genomic view of diversification

Evolutionary relationships between species are traditionally represented in the form of a tree, called the species tree. The reconstruction of the species tree from molecular data is hindered by frequent conflicts between gene genealogies. A standard way of dealing with this issue is to postulate the existence of a unique species tree where disagreements between gene trees are explained by incomplete lineage sorting (ILS) due to random coalescences of gene lineages inside the edges of the species tree. This paradigm, known as the multi-species coalescent (MSC), is constantly violated by the ubiquitous presence of gene flow revealed by empirical studies, leading to topological incongruences of gene trees that cannot be explained by ILS alone. Here we argue that this paradigm should be revised in favor of a vision acknowledging the importance of gene flow and where gene histories shape the species tree rather than the opposite. We propose a new, plastic framework for modeling the joint evolution of gene and species lineages relaxing the hierarchy between the species tree and gene trees. As an illustration, we implement this framework in a mathematical model called the genomic diversification (GD) model based on coalescent theory, with four parameters tuning replication, genetic differentiation, gene flow and reproductive isolation. We use it to evaluate the amount of gene flow in two empirical data-sets. We find that in these data-sets, gene tree distributions are better explained by the best fitting GD model than by the best fitting MSC model. This work should pave the way for approaches of diversification using the richer signal contained in genomic evolutionary histories rather than in the mere species tree.

Upcoming seminars

Resources

Planning des salles du Collège de France.
Intranet du Collège de France.