SMILE

Stochastic Models for the Inference of Life Evolution

Presentation

SMILE is an interdisciplinary research group gathering probabilists, statisticians, bio-informaticians and biologists.
SMILE is affiliated to the Stochastics and Biology group of LPSM (Lab of Probability, Statistics and Modeling) at Sorbonne Université (ex Université Pierre et Marie Curie Paris 06).
SMILE is hosted within the CIRB (Center for Interdisciplinary Research in Biology) at Collège de France.
SMILE is supported by Collège de France and CNRS.
Visit also our homepage at CIRB.

Directions

SMILE is hosted at Collège de France in the Latin Quarter of Paris. To reach us, go to 11 place Marcelin Berthelot (stations Luxembourg or Saint-Michel on RER B).
Our working spaces are rooms 107, 121 and 122 on first floor of building B1 (ask us for the code). Building B1 is facing you upon exiting the traversing hall behind Champollion's statue.

Contact

You can reach us by email (amaury.lambert - at - upmc.fr) or (smile - at - listes.upmc.fr).

Light on

Publication

2018

Ranked Tree Shapes, Nonrandom Extinctions, and the Loss of Phylogenetic Diversity

Phylogenetic diversity (PD) is a measure of the evolutionary legacy of a group of species, which can be used to define conservation priorities. It has been shown that an important loss of species diversity can sometimes lead to a much less important loss of PD, depending on the topology of the species tree and on the distribution of its branch lengths. However, the rate of decrease of PD strongly depends on the relative depths of the nodes in the tree and on the order in which species become extinct. We introduce a new, sampling-consistent, three-parameter model generating random trees with covarying topology, clade relative depths and clade relative extinction risks. This model can be seen as an extension to Aldous' one parameter splitting model (\$$\beta\$$, which controls for tree balance) with two additional parameters: a new parameter \$$\alpha\$$ quantifying the correlation between the richness of a clade and its relative depth, and a parameter \$$\eta\$$ quantifying the correlation between the richness of a clade and its frequency (relative abundance or range), taken herein as a proxy for its overall extinction risk. We show on simulated phylogenies that loss of PD depends on the combined effect of all three parameters, \$$\beta\$$, \$$\alpha\$$ and \$$\eta\$$. In particular, PD may decrease as fast as species diversity when high extinction risks are clustered within small, old clades, corresponding to a parameter range that we term the `thin ice zone' (\$$\beta<-1\$$ or \$$\alpha<0\$$; \$$\eta>1\$$). Besides, when high extinction risks are clustered within large clades, the loss of PD can be higher in trees that are more balanced (\$$\beta>0\$$), in contrast to the predictions of earlier studies based on simpler models. We propose a Monte-Carlo algorithm, tested on simulated data, to infer all three parameters. Applying it to a real dataset comprising 120 bird clades (class Aves) with known range sizes , we show that parameter estimates precisely fall close to close to a 'thin ice zone': the combination of their ranking tree shape and non-random extinctions risks makes them prone to a sudden collapse of PD.

Publication

2017

The genealogical decomposition of a matrix population model with applications to the aggregation of stages

Matrix projection models are a central tool in many areas of population biology. In most applications, one starts from the projection matrix to quantify the asymptotic growth rate of the population (the dominant eigenvalue), the stable stage distribution, and the reproductive values (the dominant right and left eigenvectors, respectively). Any primitive projection matrix also has an associated ergodic Markov chain that contains information about the genealogy of the population. In this paper, we show that these facts can be used to specify any matrix population model as a triple consisting of the ergodic Markov matrix, the dominant eigenvalue and one of the corresponding eigenvectors. This decomposition of the projection matrix separates properties associated with lineages from those associated with individuals. It also clarifies the relationships between many quantities commonly used to describe such models, including the relationship between eigenvalue sensitivities and elasticities. We illustrate the utility of such a decomposition by introducing a new method for aggregating classes in a matrix population models to produce a simpler model with a smaller number of classes. Unlike the standard method, our method has the advantage of preserving reproductive values and elasticities. It also has conceptually satisfying properties such as commuting with changes of units.

Upcoming seminars

seminar

A brief checkup on the genome scan methods to detect local adaptation

Pierre de VILLEMEREUIL (EPHE)

December 17, 2019 at 10 - Collège de France


Resources

Planning des salles du Collège de France.
Intranet du Collège de France.