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Aerogels
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Local collision dynamics.
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Local collisions dynamics

Introduced by Prosen-Campbell

TL

TL

TR

TR

2b

TL 6= TR, b > 0, b < a < 2b.

(qi, pi)1≤i≤N , qi ∈ [−b, b] et |qi − qi+1| ≤ a.

Ballistic motion+ reflections on the interval’s boundaries.

Interaction if |qi − qi+1| = a (pi = v, pi+1 = v′)→ (pi = v′, pi+1 = v)
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Local collisions dynamics

2b

2b− a

B = {(q1, q2) : q1 ∈ [−b, b], q2 ∈ [−b, b], |q1 − q2| ≤ a}
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Local collision dynamics.

Energy of particle n at time t :

En(t)− En(0) = Jn−1([0, t])− Jn([0, t])

Time-integrated current:

Jn([0, t]) = − 1

2

Cn(t)X
k=1

[p2
n+1(τkn)− p2

n(τkn)]

(τkn)k is the sequence of collision times between particles n and n+ 1. Cn(t)
number of collisions up to time t.
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Guess

lim
t→+∞

1

t
Jn([0, t]) = −κ(Tn+1 − Tn)

κ = ν the frequency of collision in equilibrium (at temperature, say
Ti+Ti+1

2
)

Collaboration with T.Gilbert :

In “many” models, when the collisions become rare and the system large
κ→ ν ∼

√
T . Even for systems having no local chaotic properties !
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Thermal mean field : stochastic collisions dynamics

Assumption : As N →∞, separation of scales : ∆tmacro >>> E(τcoll).

T1 T2 T3 T4 T5 T6

TL TR

Update of the particle’s speed with the law (β = T−1):

ϕ(v) = βve−β
v2
2 .
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Stochastic collisions dynamics : equilibrium.

T T

Markov process (q(s), p(s)) with invariant measure :

γ(dq, dp) =

r
β

2π
1[0,1](q)e

−β p2
2
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Renewal process

Waiting times distributed with (β = T−1)

βL

τ3
exp(−

βL

2τ2
) and

βR

τ3
exp(−

βR

2τ2
).

Total time elapsed at the k + 1-st collision :

Sk := S0 + τ1 + · · ·+ τk

Renewal process :

Nt =
∞X
k=1

1(Sk≤t) = sup{k : Sk ≤ t}
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Markov renewal processes.

A Markov renewal process is a pair of stochastic processes (Xn, τn+1)n≥0, such
that

1 (Xn)n≥0 is a Markov chain in some finite state space E with transition
density (tij)i,j∈E

2 conditionally on H = σ((Xn)n≥0), (τn+1)n≥0 is an independent sequence of
positive random variables such that for all n ≥ 1

P(τn ≤ t |H) = P(τn ≤ t |Xn, Xn+1) = Gij(t)

on the event {Xn = i,Xn+1 = j}, where (Gij)i,j∈E is a family of distribution
functions on ]0,+∞[.
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Average current

J [0, t] = σ0
1

2

NtX
k=1

(−1)kv2
k

Proposition

lim
t→∞

J [0, t]

t
=

TL − TR
( π

2TL
)

1
2 + ( π

2TR
)

1
2

a.s.

where TL and TR are the left and right temperatures.

Proof : Renewal theorem for the (Markov) renewal process Nt with waiting times
τ distributed with (β = T−1)

βL

τ3
exp(−

βL

2τ2
) and

βR

τ3
exp(−

βR

2τ2
).

lim
t→∞

Nt

t
=

1

EβL
(τ) + EβR

(τ)
= κ, a.s.
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Back to the spatially extended dynamics

T (n, t+ ∆t))− T (n, t)

∆t
∼

1

∆t
{J(n, [t, (t+ ∆t)])− J(n− 1, [t, (t+ ∆t)])}

We want to look at the limit ∆t→∞, J(n, [t, (t+ ∆t)]) computed with
temperatures {T (n, t), T (n+ 1, t)} at the boundaries of the interval. In the
stationary regime

0 = lim
∆t→∞

1

∆t
{J(n, [t, (t+ ∆t)])− J(n− 1, [t, (t+ ∆t)])

=
Tn − Tn+1

( π
2Tn

)
1
2 + ( π

2Tn+1
)

1
2
−

Tn−1 − Tn
( π

2Tn−1
)

1
2 + ( π

2Tn
)

1
2

= 0

Compare the stationary solutions between stochastic model and deterministic
models (weakly interacting regime and large N)

Stationary solution in the continuum limit

T (x) = (T
3
2
L + x(T

3
2
R − T

3
2
L ))

2
3 , x ∈ [0, 1]

Good agreement : remember κ = ν ∼
√
T .
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Fluctuations of the current

Study LDF of the current I(j, τ, T ):

Pτ,T
„
J [0, t]

t
= j

«
∼ e−tI(j,τ,T ), t→∞.

Pτ,T stochastic dynamics with a fixed temperature difference τ = TL − TR,

average temperature T = TL+TR
2

.

Theorem

If τ 6= 0 then,

lim
ε↓0

ε−2I(εj, ετ, T ) = G(j, τ, T ) =

8>>>>><>>>>>:

(j−κτ)2

4κT2 if jτ > κτ2

0 if jτ ∈ [0, κτ2]

− jτ
2T2 if jτ ∈ [−κτ2, 0]

j2+κ2τ2

4κT2 if jτ < −κτ2,

where κ = ( T
2π

)
1
2 .

Note : ε will be N in the diffusive scaling limit below.
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Figure: Plot of G as a function of j for κτ = κT 2 = 1

Gallavotti-Cohen symmetry:

G(j, τ, T )− G(−j, τ, T ) =
jτ

2T 2
.
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Flat part

Origin:

1 Current :

J [0, t] = σ0
1

2

NtX
k=1

(−1)kv2
k

2 Large deviations of Nt for a renewal process whose renewal times (τk)k∈N are
distributed with density :

ψ(τ) =
1

τ3
exp(−

1

2τ2
).

∀α > 0,

P
„
Nt

t
≤ α

«
= P

`
S[αt]+1 > t

´
≥ P (τ1 > t) ∼ t−2, for t large enough.
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Large deviations : thermodynamic potentials in equilibrium

Take the Ising model : spin variables σi = ±1, i ∈ Zd distributed according to
Boltzmann-Gibbs at temperature β−1

µ(σΛ) =
e−βHΛ(σΛ)

ZΛ(β, h)

with Hamiltonian:

HΛ(σ) = −
X

<i,j>∈Λ

σiσj + h
X
i∈Λ

σi, +b.c.

Large deviations of 1
Nd

P
i∈Λ σi

P(
1

Nd

X
i∈Λ

σi ∈ dm) ∼ exp(−NdI(m,β))

I(m,β) is the Legendre transform of the Helmholtz free energy :

F (h, β) = − lim
N→∞

1

Nd
logZΛ(h, β)

Compute the cumulants (correlation functions)

See phase transitions (lack of strict convexity of I(m,β))
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Non-equilibrium and large deviations : diffusive description.

Macroscopic fluctuations theory
Onsager-Machlup 1953
Bodineau,Derrida
Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim

For diffusive systems (i.e εN and jN are related to microscopic energy and current
by a diffusive scaling):

P ({εN ' ε, jN ' j} on[0, 1]× [0, S]) ∼ exp[−N Î(j, ε)]

where Î(j, ε) is given by

Î(j, ε) =

Z S

0
dt

Z 1

0
dx G(j(x, t), ∂xε(x, t), ε(x, t))

if j and ε satisfy ∂sε(x, s) = −∂xj(x, s), and Î = +∞ otherwise.
“Almost” all known examples :

G(j, τ, T ) =
(j − κτ)2

4κT 2
.

Local billard dynamics might be different!
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Diffusive scaling

Define TN : [0, 1]× R+ → R+ and Jn : [0, 1]× R+ → R.

TN (x, t) = T ([Nx], N2t)

JN (x, t) = N ·
1

N2∆t
· J([Nx], [N2t,N2(t+ ∆t)]), ∆t arbitrary

Want to show in the original model :

Proposition

When N →∞, ∆t→ 0, (TN ,JN ) converge in L2 to the unique solution (T̂ , Ĵ ) of

∂tT̂ (x, t) = −∂xĴ (x, t)

Ĵ (x, t) = −κ(T̂ (x, t))∂xT̂ (x, t)

with κ(T ) = ( T
2π

)
1
2 and suitable b.c.

One can modify the static model :

T (n,N2(t+ ∆t))− T (n,N2t) = N ·
1

N2∆t
{J(n, [N2t,N2(t+ ∆t)])

− J(n− 1, [N2t,N2(t+ ∆t)])}∆t

TN (x, t+ ∆t)− TN (x, t) = N

„
JN (x−

1

N
, t)− JN (x, t)

«
∆t

Current computed with {T ([Nx], t), T ([Nx] + 1, t)}.
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Fluctuations at finite N

Want to look at :

P ({TN ' T,JN ' j} on[0, 1]× [0,S]) ∼ exp[−N Î(j, ε)]

At finite N , and for each (x, t) ∈ [0, 1]× [0, S], JN (x, t) is a random variable (and
so is TN (x, t)).
Independence over small space-time windows :

P ({TN ' T,JN ' j} on[0, 1]× [0,S]) =
Y
k,l

P(JN (xk, tl) ' j(xk, tl))

Compute :

log P[JN (x, t) = j(x, t)]

= ∆t ·N2 1

N2∆t
log P[JN (x, t) = j(x, t)]

= ∆t ·N2 1

N2∆t
log P[

J([Nx], [N2t,N2(t+ ∆t)])

N2∆t
=
j(x, t)

N
]

Current computed with temperatures {T ([Nx], N2t), T ([Nx] + 1, N2t)}.
Remember : the theorem allows to compute:

lim
ε→0

lim
s→∞

1

ε2
1

s
log P[

J([Nx], [0, s])

s
= εj(x, t)]

= G(j(x, t), ∂xT (x, t), T (x, t))
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Macroscopic fluctuation theory

Putting everything together :

P ({TN ' T, jN ' j}) ∼ exp[−N Î(j, T )]

where Î(j, T ) is given by

Î(j, T ) =

Z S

0
dt

Z 1

0
dx G(j(x, t), ∂xT (x, t), T (x, t))

if j and T satisfy ∂sT (x, s) = −∂xj(x, s), and Î = +∞ otherwise.

G(j, τ, T ) =

8>>>>><>>>>>:

(j−κτ)2

4κT2 if jτ > κτ2

0 if jτ ∈ [0, κτ2]

− jτ
2T2 if jτ ∈ [−κτ2, 0]

j2+κ2τ2

4κT2 if jτ < −κτ2,

G(j, τ, T ) 6=
(j − κτ)2

4κT 2
!
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Conclusions.

Argument based on the fact that under (local) equilibrium distributions there
are slow particles with sufficiently large probability.

Apply to “tracer models” introduced by Larralde, Mejia-Monasterio, Leyvraz

Draw experimental consequences and observe them in numerical simulations.


