Large deviations of the current in collisional dynamics

Raphaél Lefevere!

1 Laboratoire de Probabilités et modéles aléatoires. Université Paris Diderot (Paris 7).

Stockholm, Nordita Institute, October 7th 2011.



Collaborations

o T. Gilbert, R. Lefevere, Heat conductivity from molecular chaos hypothesis in
locally confined billiard systems. Physical Review Letters (2008) 101, 200601

o R.Lefevere, L.Zambotti Hot scatterers and tracers for the transfer of heat in
collisional dynamics. Journal of Statistical Physics (2010) 139, 686-713

o R. Lefevere, M. Mariani and L. Zambotti, Macroscopic fluctuations theory of
aerogel dynamics. Journal of Statistical Mechanics (2010) L12004

o R. Lefevere, M. Mariani and L. Zambotti, Large deviations of the current in
stochastic collisional dynamics. Journal of Mathematical Physics (2011) 52,
033302



Aerogels




Local collision dynamics.




Local collisions dynamics

Introduced by Prosen-Campbell
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o Ty, #Tgr,b>0,b< a < 2b.
® (qi,pi)i<i<nN, & € [-b,b] et |g; — qiy1] < a.
o Ballistic motion+ reflections on the interval’s boundaries.

e Interaction if |¢; — gi+1| = a (pi = v,pir1 = V') — (pi = V', pit1 =)



Local collisions dynamics

2b

B={(q1,q2): q1 €[-b,b],q2 € [-b,b],|q1 — q2| < a}



Local collision dynamics.

o Energy of particle n at time ¢ :
En(t) = En(0) = Jn-1([0,1]) = Jn ([0, 1])

e Time-integrated current:

Cn(t)
In([0,8]) = 732 P2 11 (TE) — p2(7F)]

(TF) is the sequence of collision times between particles n and n + 1. Cp(t)
number of collisions up to time ¢.



1
lim =Jn([0,8]) = —&(Thi1 — T
Jim = Jn([0,4]) = —A(Tnta )

e k = v the frequency of collision in equilibrium (at temperature, say %)

Collaboration with T.Gilbert :

In “many” models, when the collisions become rare and the system large

k — v ~/T. Even for systems having no local chaotic properties !



Thermal mean field : stochastic collisions dynamics

Assumption : As N — oo, separation of scales : Atmacro >>> E(7con).

T »@T?,@/v Ty @/4 Ts /@TG /@

Ty, ©—> Tr

Update of the particle’s speed with the law (8 = T~1):

o(v) = foe B |




Stochastic collisions dynamics : equilibrium.

Markov process (¢(s),p(s)) with invariant measure :

Y(da, dp) =/ 3 Lo (@)%




Renewal process

o Waiting times distributed with (8 = T—1)
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) and zexp(—ﬁ.
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o Total time elapsed at the k + 1-st collision :

Spi=S8So+71+ -+ 7%
@ Renewal process :

Nt = Z l(SkSt) = sup{k : Sk S t}
k=1



A Markov renewal process is a pair of stochastic processes (Xn, Tn+1)n>0, such
that

Q@ (Xn)n>0 is a Markov chain in some finite state space E with transition
density (tij)i,jEE

@ conditionally on H = 0((Xn)n>0), (Tn+1)n>0 is an independent sequence of
positive random variables such that for all n > 1

P(Tn < t|'H) = P(Tn < t|Xn,Xn+1) = Gij(t)

on the event {Xn =14, Xpny1 = j}, where (Gij)i jer is a family of distribution
functions on ]0, +oo|.



Average current
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where T7, and Ty are the left and right temperatures.

Proof : Renewal theorem for the (Markov) renewal process Ny with waiting times
7 distributed with (8 =T71)

B n(— By ana BB exp— PR,
T3 272 73 272
. Ny 1

lim — =K, a.s



Back to the spatially extended dynamics

T(n,t+ At)) — T(n,t)
At
We want to look at the limit At — oo, J(n, [¢, (t + At)]) computed with

temperatures {T'(n,t), T(n + 1,t)} at the boundaries of the interval. In the
stationary regime

é{J(n, £, (t+ AY)]) — J(n —1,[t, (t + At)])}

0 = A}t@mK{J( Lt (E+ AD]) — J(n — 1, [t, (t + AD)])
_ T Tn+1 _ Tn 1_Tn -0
(Z)F+ (DY () +(E)E

Compare the stationary solutions between stochastic model and deterministic
models (weakly interacting regime and large N)

Stationary solution in the continuum limit

3 3 3 5
T(x) = (T2 +x(Tg —T2))s, =€]0,1]

Good agreement : remember k = v ~ \/T.



Fluctuations of the current

Study LDF of the current Z(j,7,T):

J[0,t ;
PT,T ( [tv } :]) ~ eftI(],T,T)’ t — 0o.

P 7 stochastic dynamics with a fixed temperature difference 7 = T, — T,
average temperature T = %.

If 7 # 0 then,
. 2
7(34;';7—2) if j7 > kT2
0 if jr €[0,r7?]
lime=2Z(ej, e, T) = G(4, 7, T) = { —<T if jr € [—r72,0]
€l0 2T
-2 2.2
1 rth T ;’;,27 if j7 < —k72,
T i
where k = (5-)2.

Note : € will be N in the diffusive scaling limit below.
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Figure: Plot of G as a function of j for k7 = kT2 =1

Gallavotti-Cohen symmetry:

JT

g(]v T, T) - g(_j’ T, T) = 272 ‘




Flat part

Origin:
@ Current :
1
J[0,t] = 705 Z(—l)kvz
k=1

@ Large deviations of N; for a renewal process whose renewal times (7 )xen are
distributed with density :

1 1
P(r) = zCXP(—ﬁ)
Va > 0,
N,
P (Tt < Oé) = P (S[at]+1 > t)

> P(r1 >t) ~t 2, fort large enough.



Large deviations : thermodynamic potentials in equilibrium

Take the Ising model : spin variables o; = £1, i € Z¢ distributed according to
Boltzmann-Gibbs at temperature 81

e—BHA(oA)

ploa) = NCDR

with Hamiltonian:

Hp(o) = — Z U¢Gj+hZUi, +b.c.

<i,j>€A i€EA

Large deviations of ﬁ ZiEA o

p(ﬁ ZAU € dm) ~ exp(—NI(m, 3))
1€

I(m, B) is the Legendre transform of the Helmholtz free energy :

. 1

o Compute the cumulants (correlation functions)

e See phase transitions (lack of strict convexity of I(m, 3))



Non-equilibrium and large deviations : diffusive description.

Macroscopic fluctuations theory
Onsager-Machlup 1953

Bodineau,Derrida

Bertini, De Sole, Gabrielli, Jona-Lasinio, Landim

For diffusive systems (i.e ey and jy are related to microscopic energy and current
by a diffusive scaling):

P({en ~¢,jn =~ j} onl0,1] X [0,S]) ~ exp[fo(j7 €)]

where Z(j, €) is given by
. s 1
2.0 = [ dt [ do (a0, 0u(a,0)ela1)
0 0

if j and e satisfy dse(z, s) = —8xj(x, s), and T = +o0 otherwise.
“Almost” all known examples :

G—r)?

R
g@,7T) T2

Local billard dynamics might be different!



Diffusive scaling

Define Ty : [0,1] x RT — RT and J,, : [0,1] x Rt — R.

Tn(z,t) = T([Nz], N?t)
1

“yang T (Nal [N*6 N2(6 4 AD)), - At arbitrary

JN(:L‘, t)

Want to show in the original model :

When N — oo, At — 0, (T, Jn) converge in L? to the unique solution (’f“, j) of
o 0T (z,t) = —0:7 (x,t)
o J(z,t) = —k(T(,1))0:T (z,t)

1
with (T) = (%) 2 and suitable b.c.

2

One can modify the static model :

T(n,N%(t + At)) = T(n,N?t) = N {J(n, [N?t, N2(t + At)])

L
N2At
- J(n—1,[N%, N2(t + At)]) }At

Tn(z,t+ At) — Tn(z,t) = N(JN(x—%,t)—JN(x,t))At

Current computed with {T'([Nz],t),T([Nz] + 1,t)}.
I



Fluctuations at finite /N

Want to look at :
P({Ty =T, Jn = j} on[0,1] x [0,S]) ~ exp[~N Z(j, )]

At finite N, and for each (z,t) € [0,1] x [0, S], Jn(z,t) is a random variable (and
so is Ty (x,t)).
Independence over small space-time windows :

P({Tn ~T,Jn ~ j} on[0,1] x [0,8]) = [ [P(In (zk, 1) ~ j(zk, 1))
k,l
Compute :
log ]P)[jN(x’ t) = j(:E, t)}
At - N? log PlIN (,t) = j(x, t)]

1 Nz],[N?t, N2(t + At j(2,t
At N2 L ogp (NTLINL N2 AD)) ),

NZ2At NZ2At N
Current computed with temperatures {T([Nz], N2t), T([Nz] + 1, N2t)}.
Remember : the theorem allows to compute:

J([Nz], [0, s])

N2At

11
lim lim —2710 g P =¢ej(z,t)]

g—0s—o0 g

= g( ( ) )’830 ((E,t),T(:L’,t))



Macroscopic fluctuation theory

Putting everything together :
P({Tn ~T,jn ~j}) ~ exp[-N (5, T)]

where Z(§,T) is given by

S 1
f(j,T):/O dt/o dz G(j(x,1), 0T (x, 1), T(w,1))

if j and T satisfy 0sT(z,s) = —0zj(z,s), and 7 = 400 otherwise.
. 2
(JZ;';TQ) if jr > kT2
0 if jr € (0,57
G(G,mT)=q —5= if j7e[-rr,0]

7j2;';2272 if jr < —kT2,

, (G = r7)?

’ 7T !

96,7 T) # =



Conclusions.

o Argument based on the fact that under (local) equilibrium distributions there
are slow particles with sufficiently large probability.

o Apply to “tracer models” introduced by Larralde, Mejia-Monasterio, Leyvraz

@ Draw experimental consequences and observe them in numerical simulations.



