Statistics with R

Chapter 1: Introduction to statistics

Tabea Rebafka

October 2018

Master AIMS 2018–19
Outline

1. What is statistics?

2. Example: Coin tossing

3. Refresher on probability theory

4. Statistical modelling
What is statistics? I

What is the aim of statistics?

Analysis and interpretation of data (or observations, measurements)

- understand an observed phenomenon by statistical inference (i.e. modelling, estimation and testing)
- recover unobserved features (prediction)
What is statistics? II

Statistical approach

- Use a **probabilistic model** to explain the nature of the data (in opposition to data analysis)
- Let x_1, \ldots, x_n be the data. A statistician assumes that (x_1, \ldots, x_n) is the realization of a random variable X with distribution \mathbb{P}.
- The distribution \mathbb{P} is **unknown** (in opposition to probability theory).
What is statistics? III

Choose a **model** for P

- Prior information on observed phenomenon
 - Descriptive statistics

Fit the model to the data

- Parameter estimation
 - Confidence intervals
 - Hypothesis testing
 - Prediction

Interpret the fitted model

- Model selection
- Tests
 - Descriptive statistics

Validate/critize the model

Tabea Rebafka Statistics with R Introduction to statistics 5 / 39
Example: Coin tossing I

Data

- Observations: the outcome of n tosses of the same coin
- *Head* is encoded by 1, *tail* by 0.
- Data: x_1, \ldots, x_n with $x_i \in \{0, 1\}$. The number n is called the sample size.

Probabilistic model

- Consider x_i as independent realizations of a Bernoulli distribution
- More precisely, let X_i be i.i.d. (independent and identically distributed) random variables with **Bernoulli distribution** $B(p)$ with parameter $p \in (0, 1)$, i.e.

 $$P(X_i = 1) = p = 1 - P(X_i = 0)$$

- Bernoulli parameter p is unknown.
Fit the model

- Estimate the Bernoulli parameter p from the data x_1, \ldots, x_n.
- Simple idea: we know that for $X_i \sim B(p)$ i.i.d., we have

\[
E[X_1] = p \quad \text{and} \quad \bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} p \quad (n \to \infty).
\]

- Use the sample mean \bar{X}_n as an estimate of p:

\[
\hat{p}_n = \bar{x}_n = \frac{1}{n} \sum_{i=1}^{n} x_i.
\]
Example: Coin tossing III

Properties of the estimator \(\hat{p}_n \) of \(p \)

- \(\hat{p}_n = \bar{X}_n \xrightarrow{P} p \) as \(n \to \infty \), i.e. when the sample size \(n \) is large, \(\hat{p}_n \) tends to be close to \(p \) (**consistency**).

- \(\mathbb{E}[\hat{p}_n] = p \), i.e. in average \(\hat{p}_n \) takes the target value \(p \) (**unbiased**).

- **Mean squared error (MSE)**

 \[
 \mathbb{E}[(\hat{p}_n - p)^2] = \frac{p(1 - p)}{n} \to 0 \quad (n \to \infty).
 \]

- **Limit distribution and rate of convergence**

 \[
 \sqrt{n}(\hat{p}_n - p) \xrightarrow{d} \mathcal{N}(0, p(1 - p)) \quad (n \to \infty).
 \]
Example: Coin tossing IV

Quantify uncertainty of the estimate

Instead of a point estimator \(\hat{p}_n \) compute an interval \(I \) that depends on the data (i.e. \(I = I(x_1, \ldots, x_n) \)) and that contains the target \(p \) with given probability \(\gamma \) (confidence interval):

\[
P(p \in I) \geq \gamma.
\]

The length of the interval \(I \) indicates the uncertainty about our estimation of \(p \).
Example: Coin tossing V

Confidence interval for p in the Bernoulli model

- An asymptotic confidence interval is given by

$$
I_n = \left[\hat{p}_n + q_{\gamma_1}^N \sqrt{\frac{\hat{p}_n(1 - \hat{p}_n)}{n}}, \hat{p}_n + q_{\gamma_2}^N \sqrt{\frac{\hat{p}_n(1 - \hat{p}_n)}{n}} \right]
$$

with $\gamma_1 = (1 - \gamma)/2$ and $\gamma_2 = (1 + \gamma)/2$ and where q_{α}^N denotes the α-quantile of the standard normal distribution $\mathcal{N}(0, 1)$ defined by

$$
P(Z \leq q_{\alpha}^N) = \alpha \quad \text{for } Z \sim \mathcal{N}(0, 1).
$$

- Interval length:

$$
2q_{\gamma_2}^N \sqrt{\frac{\hat{p}_n(1 - \hat{p}_n)}{n}}
$$

by using $q_{\gamma_1}^N = -q_{\gamma_2}^N$.
Example: Coin tossing VI

Statistical testing

Answer questions as: Is the coin a fair coin?

- Mathematically speaking: Is $p = 1/2$ or $p \neq 1/2$?
- Estimate p and evaluate the uncertainty of the estimate
- If the estimate is too far away from $1/2$, then decide that $p \neq 1/2$. Otherwise conserve the hypothesis that $p = 1/2$.
Definition

- A **sample space** is any finite or infinite set Ω (it is thought as the set of all possible outcomes of a random experiment).
- Any subset $A \subseteq \Omega$ is called an **event**, including Ω and the empty set \emptyset.

Example: Dice

- Sample space of rolling a dice: $\Omega = \{1, \ldots, 6\}$.
- Some events:

 $A = \{2\}$,
 $B = \{2, 4, 6\} = \{\text{the result is even}\}$,
 $C = \emptyset$,
 $D = \Omega$.
Probability measures I

Basically, a probability measure assigns a probability to every event.

Definition

Let Ω be a sample space, a **probability measure** \mathbb{P} on Ω is an application

$$\mathbb{P} : \{\text{Events}\} \rightarrow [0, 1]$$

such that

- $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$.
- **(Countable additivity)** For every sequence of disjoint events A_1, A_2, \ldots

$$\mathbb{P} \left(\bigcup_{n \geq 1} A_n \right) = \sum_{n \geq 1} \mathbb{P}(A_n).$$

A pair (Ω, \mathbb{P}) is called a **probability space**.
Probability measures II

Examples

- The **uniform measure** on a finite set Ω is defined by
 \[
 \mu(A) = \frac{\text{card}(A)}{\text{card}(\Omega)}.
 \]

- The **Dirac measure** (or **Dirac mass**) at some point a, denoted by δ_a, puts all the mass on a:
 \[
 \delta_a(A) = \begin{cases}
 1 & \text{if } a \in A, \\
 0 & \text{otherwise}.
 \end{cases}
 \]

The **Lebesgue measure** on \mathbb{R} is the measure λ that assigns the length to each interval $[a, b]$:
\[
\lambda([a, b]) = b - a.
\]

It is not a probability measure as its values are not restricted to $[0, 1]$.
Proposition

Let \((\Omega, \mathbb{P})\) be a probability space.

(i) If \(A \subset B\), then \(\mathbb{P}(A) \leq \mathbb{P}(B)\).

(ii) For any event \(A\), \(\mathbb{P}(A^c) = 1 - \mathbb{P}(A)\).

(iii) For any events \(A, B\),

\[
\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B),
\]

in particular \(\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)\).
Probability measures IV

Proposition

(iv) (Union bound) More generally, let \((A_n)_{n \geq 1}\) be any sequence of sets (not necessarily disjoint),

\[
P \left(\bigcup_{n \geq 1} A_n \right) \leq \sum_{n \geq 1} P(A_n).
\]

(v) (Law of total probability) Let \(A\) be an event and \(B_1, B_2, \ldots\) be a sequence of disjoint sets such that \(\bigcup_{n \geq 1} B_n = \Omega\),

\[
P(A) = \sum_{n \geq 1} P(A \cap B_n).
\]
Random variables I

- From now on, we work on a fixed probability space \((\Omega, \mathbb{P})\) where \(\mathbb{P}\) is a probability measure.
- Elements of \(\Omega\) are often denoted by \(\omega\).

Definition

Any function \(X : \Omega \rightarrow \mathbb{R}\) is a **random variable**.
Example: Indicator function

For a given event A, the **indicator function** of A is denoted by 1_A and defined as

$$1_A(\omega) = \begin{cases}
1 & \text{if } \omega \in A, \\
0 & \text{otherwise.}
\end{cases}$$

Indicator functions are similar to Dirac measures as $1_A(\omega) = \delta_\omega(A)$.
Random variables III

Definition

- The **distribution** or **law** of X, denoted by \mathbb{P}_X, is the probability measure on \mathbb{R} such that for any event A

 $$\mathbb{P}_X(A) = \mathbb{P}(\{\omega \text{ such that } X(\omega) \in A\}) = \mathbb{P}(X \in A).$$

 We write $X \sim \mathbb{P}_X$.

- The **cumulative distribution function** (or just distribution function) of X is the function $F_X : \mathbb{R} \mapsto [0, 1]$ defined by

 $$F_X(t) = \mathbb{P}(X \leq t) \quad \text{for every } t.$$

Theorem

X and Y have the same law $\iff F_X(t) = F_Y(t)$ for every t.

Properties of the distribution function

(i) \(F_X \) is non-decreasing.
(ii) \(F_X \) is right-continuous.
(iii) \(\lim_{t \to -\infty} F_X(t) = 0, \quad \lim_{t \to +\infty} F_X(t) = 1. \)

Theorem

Any function \(F \) with properties (i), (ii) and (iii) above, is the distribution function of some random variable.
We say that X has a **discrete distribution** if X takes its values in a finite or countable set $\{x_1, x_2, \ldots \}$.

Discrete distributions are entirely described by their **probability mass function** $p(x) = \mathbb{P}(X = x)$ for $x \in \{x_1, x_2, \ldots \}$.
Examples of discrete distributions

- **Bernoulli distribution** $B(p)$ with parameter $p \in [0, 1]$ with values in $\{0, 1\}$:

 \[\mathbb{P}(X = 1) = p, \quad \mathbb{P}(X = 0) = 1 - p. \]

 Model of the success or failure of an experiment.

- **Binomial distribution** $B(n, p)$ with parameters $n \geq 1$ and $p \in [0, 1]$:

 \[\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k} \quad \text{for } k = 0, 1, \ldots, n. \]

 Model of the number of successes in n Bernoulli trials.
Examples of discrete distributions

- **Geometric distribution** with parameter $p \in [0, 1]$:
 \[\mathbb{P}(X = k) = (1 - p)^{k-1}p \quad \text{for } k = 1, 2, \ldots \]
 Model of the number of Bernoulli trials until the first success.

- **Poisson distribution** with parameter $\lambda > 0$:
 \[\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!} \quad \text{for } k = 0, 1, 2, \ldots \]

- **Discrete uniform distribution** on a finite set of values $\{x_1, \ldots, x_m\}$:
 \[\mathbb{P}(X = x_k) = \frac{1}{m} \quad \text{for } k = 1, \ldots, m. \]
Discrete distribution IV

Bernoulli distribution with parameter \(p = 0.4 \)

- Probabilities
- CDF
Discrete distribution V

Binomial distribution with parameters $n = 8$ and $p = 0.4$
Discrete distribution VI

- The cumulative distribution function of any discrete distribution is a step function.
- The jumps indicate the values taken by the random variable and
- the height of the jump indicates the associated probability.
Continuous distribution I

Definition

We say that X has **continuous distribution** if X takes its values in \mathbb{R} (or in an interval of \mathbb{R}) and if there is a non-negative function f such that for any event A

$$
P(X \in A) = \int_{A} f(x) \, dx.
$$

The function f is called the **density** of X.

- Any density function f is non-negative and $\int_{\mathbb{R}} f(x) \, dx = 1$.
- The density entirely describes the distribution of the random variable.
Continuous distribution II

Examples continuous distributions

- **Uniform distribution** $U[a, b]$ on $[a, b]$:

 $$f(x) = \frac{1}{b-a} \mathbb{1}_{[a,b]}(x).$$

- **Exponential distribution** $\mathcal{E}(\lambda)$ with parameter $\lambda > 0$:

 $$f(x) = \lambda \exp(-\lambda x) \mathbb{1}_{x \geq 0}.$$

- **Normal distribution** or gaussian distribution $\mathcal{N}(\mu, \sigma^2)$ with parameters $\mu \in \mathbb{R}, \sigma^2 > 0$:

 $$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right).$$
Continuous distribution III

Exponential distribution $\mathcal{E}(1)$ with parameter $\lambda = 1$
Continuous distribution IV

Normal distribution $\mathcal{N}(2, 1)$ with parameters $\mu = 2$ and $\sigma^2 = 1$
Continuous distribution \(V \)

Uniform distribution \(U[-1, 3] \) on \([-1, 3]\)
The cumulative distribution function of any continuous distribution is continuous.

We have $F_x(t) = \int_{-\infty}^{t} f(x)dx$ for all t and

$f(t) = F'(t)$ for almost all t.
There exist random variables which are **neither discrete nor continuous**!

For instance $X = \min\{1, Y\}$ where $Y \sim \mathcal{E}(1)$ (censored distribution).
In statistics, data $\mathbf{x} = (x_1, \ldots, x_n)$ are considered as a realization of a random vector $\mathbf{X} = (X_1, \ldots, X_n)$ with distribution \mathbb{P}.

The distribution \mathbb{P} is **unknown**.

Statistical model

- We introduce a family \mathcal{P} of (known) probability distributions and suppose that \mathbb{P} belongs to this family \mathcal{P}, i.e.

 $$\mathbb{P} \in \mathcal{P}.$$

- \mathcal{P} is called a **statistical model** and it is indeed a set of candidate distributions for \mathbb{P}.

Statistical modelling II

- A statistical model \mathcal{P} is determined by using
 - our prior knowledge on the observed phenomenon and
 - tools from descriptive statistics.

- Any model is false. A model is only an approximation of reality.

- A model is always a trade-off between a precise description of a complex reality and mathematical convenience.
Model parameter

- In general, we write \(P = \{P_\theta, \theta \in \Theta\} \) where \(\theta \) is the **model parameter** and \(\Theta \) the **parameter set**.
- Denote \(\theta_0 \in \Theta \) the “true value” of the parameter such that \(P = P_{\theta_0} \).
- The problem of estimating \(P \) becomes the problem of estimating the parameter \(\theta_0 \) from the data.

Identifiability

The model \(P \) is said to be **identifiable** if and only if

\[
\forall \theta, \theta' \in \Theta, P_\theta = P_{\theta'} \implies \theta = \theta'.
\]
Example: Coin tossing

- The data \(x = (x_1, \ldots, x_n) \) are considered as a realization the random vector \(\mathbf{X} = (X_1, \ldots, X_n) \) with \(X_i \sim B(p) \) i.i.d. and unknown parameter \(p \in (0, 1) \).

- In other words, we suppose that the distribution \(\mathbb{P} \) of \(\mathbf{X} \) belongs to the family

\[
\mathcal{P} = \{ B(p)^{\otimes n}, p \in (0, 1) \}.
\]

Here, \(p \) is the model parameter.
How to estimate θ_0 from the data $\mathbf{x} = (x_1, \ldots, x_n)$?

Definition

- Any function $S = S(\mathbf{x})$ defined on the data \mathbf{x} is called a **statistic**.
- Examples: $S_1(\mathbf{x}) = 0, \forall \mathbf{x}$; $S_2(\mathbf{x}) = \bar{x}_n$.
- A statistic is called an **estimator** of θ_0 if the statistic is supposed to approach θ_0.
Parameter estimation II

There are different estimation approaches depending on the size of the parameter set Θ.

- If $\Theta \subset \mathbb{R}^d$ (i.e. if θ is a d-vector) for some $d < \infty$, the model is called **parametric**.
- If no parametrization of \mathcal{P} exists such that Θ is of finite dimension, the model is called **non parametric**.

Examples of non parametric models:
- $\mathcal{P} =$ the set of all probability measures
- $\mathcal{P} =$ the set of all absolutely continuous probability measures
- $\mathcal{P} =$ the set of all absolutely continuous probability measures with continuous density