The Whys of the LOIS: Credit Skew and Funding Spread Volatility

Abstract
Since the 2007 subprime crisis, OIS and Libor markets (Eonia and Euribor in the EUR market) diverged suddenly (See Fig. 1 and 2). In this note we show how, by optimizing their lending between Libor and OIS markets, banks are led to apply a spread (LOIS) over the OIS rate when lending at Libor.

Introduction
The main reference rate for a variety of fixed income derivatives is Libor in the USD market and Euribor in the EUR market. Libor (resp. Euribor) is computed daily as an average of the rates at which a designated panel of banks believe they (resp. a prime bank) can obtain unsecured funding, for periods of length up to one year. In this note we shall use the term Libor and the letter L to denote any of these two rates. Following the recent credit crunch, which severely impacted trust between financial institutions, overnight interest rate swaps (OIS) became more and more popular. In these financial instruments, the floating rate is obtained by compounding an overnight interbank rate (O/N) r_t, i.e. a rate at which overnight unsecured loans can be obtained in the interbank market (the Federal Funds rate in the USD fixed income market and the EONIA rate in the EUR market). As a result, an OIS rate R can be interpreted as a suitable average of r_t.

In theory, arbitrage relations imply that $L = R$. However, the interbank loan market has been severely impacted since the 2007 subprime crisis and the ensuing liquidity squeeze.

The reference interbank rate remains Libor, though, which still underlies most vanilla interest-rate derivatives like Swaps, FRA, IRS, cap/ floor and swaptions. The resulting situation where an underlying to financial derivatives has become in a sense arbitrarily fixed by a panel of key players in the derivatives market poses insider issues, as illustrated by the recent cases of Libor manipulation. But first of all, it poses a crucial funding issue as, on the one hand, in parallel to the drying up of the interbank loan market, Libor got disconnected from OIS rates (see Fig. 1 and Fig. 2); whilst on the other hand, as more and more trades are collateralized, their effective funding rate is the corresponding collateral rate, which is typically indexed to the O/N r_t.

This creates a situation where the price of an interest-rate product, even the simplest flow instrument like a FRA, involves (at least) two curves, a Libor fixing curve and an OIS discount curve, as well as the related convexity adjustment, which in the case of optional products can be significant (cf. (Mercurio 2010)).

Via the relations between counterparty risk and funding this also has some important CVA implications; see (Crepey 2012; Pallavicini, Perini, and Brigo 2011).

LOIS Formula
Commonly advanced explanations for the Libor-OIS spreads ($L - R$), often called LOIS in the market, are a combination of credit risk and/or liquidity risk.

Nevertheless, in these explanations the meaning of liquidity is either not precisely stated, or it is simply defined as a residual after removal of a credit component. In (Crepey and Douady 2013), we propose a stylized equilibrium model to evaluate at which rate does a bank find it worthwhile to lend at a given tenor horizon, as opposed to rolling an overnight loan which it can cancel at any moment. Let n_t represent the amount of notional that the bank is willing to lend at the O/N rate r_t between t and $t+dt$. Let N represent the (fixed) notional of a Libor loan at rate L over a period of length T. Let $U(r) = \max \{ U(r; n) \}$ and $V(L) = \max \{ V(L; N) \}$ represent the best

continued on next page
tradeoffs between the gain on the re-
muneration of the loan and the cost
of refinancing it a bank can achieve
by lending OIS or Libor, respectively.
Our approach for explaining the LOIS
\((L - R)\), where \(R\) is defined as a suit-
able average of the O/N process \(r\)
(assumed given), consists in solving
the equation
\[
V(L) = U(r)
\]
for \(L\). This equation expresses an
equilibrium relation between the util-
ity of lending rolling overnight versus
Libor for a bank involved in both
markets (indifference value at the
optimal amounts prescribed by the
solution to the corresponding optimi-
ization problems). Then, under suit-
able assumptions on \(U\) and \(V\) LOIS
emerges from (1) as a consequence
of the slope of the credit curve of a
representative Libor panelist (play-
ing the role of the borrower in an
interbank loan), and of the volatility
\(\sigma^*\) of the spread \(c_t = \alpha_t - r_t\) between the
refinancing rate \(\alpha_t\) of a representative
Libor panelist (playing the role of the
lender) and the O/N \(r_t\). More specifi-
cally, we derive from (1) the following
“LOIS formula”:
\[
L - R \approx \lambda^* + \sigma^* \sqrt{T/2}
\]
where the first term, \(\lambda^*\), is a bor-
rower’s credit component, which can be seen as the “intrinsic value”
component of the LOIS; the second
term, \(\sigma^* \sqrt{T/2}\), is a lender’s liquidity
compensation, which can be seen as the “time-value” of
the LOIS.

As illustrated by Fig. 3 and Fig. 4, empirical ob-
servations reveal a square root term structure of the
LOIS consistent with this theoretical analysis, with, on
the EUR market more specifically studied in (Crepey and
Douady 2013) on the period half-2007 half-2012,
LOIS explained in a balanced way by credit and
liquidity until the beginning of 2009 and dominantly
explained by liquidity since then.

Conclusion and Perspectives
Under an equilibrium approach, the Libor-OIS
spread (LOIS) emerges as a consequence of a credit
component determined by the skew of the CDS curve of a
representative Libor panelist (playing the role of the
“borrower” in an interbank loan) and a liquidity
component corresponding to a volatility of the spread
between the refinancing (or funding)
rate of a representative Libor panelist
(playing the role of the “lender”) and
the overnight interbank rate.

From a quantitative trading per-
spective, the LOIS formula (2) can
be used for implying the value \(\sigma^*\)
“priced” by the market from an ob-
served LOIS \((L - R)\), and a borrow-
er’s CDS slope taken as a proxy for
\(\lambda^*\). The implied \(\sigma^*\) can be compared
by a bank to an internal estimate of its "realized" funding spread volatility,
so that the bank can decide whether
it should rather lend Libor or OIS,
much like with going long or short
an equity option depending on the
relative position of the implied and
realized volatilities of the underlying
stock. Another possible application of
the LOIS formula is for the calibra-
tion of the volatility \(\sigma^*\) of the funding
spread process \(c_t\) in a stochastic
model for the latter, e.g. in the con-
text of CVA computations.

*Stephane Crepey is professor at
the mathematics department of Evry
University, France. Raphael Douady
is researcher at CNRS/University
Paris 1 Pantheon Sorbonne. The
research of S. Crepey benefited from
the support of the ‘Chair Risque
de credit’ and the ‘Chair Marches
en mutation’, Federation Bancaire
Francaise.

References