
Volume 15, No. 2 (2006), pp. Allerton Press, Inc.

M A T H E M A T I C A L M E T H O D S O F S T A T I S T I C S

EXACT ADAPTIVE ESTIMATION OF THE SHAPE
OF A PERIODIC FUNCTION WITH UNKNOWN PERIOD

CORRUPTED BY WHITE NOISE
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1. Introduction
Consider the observation of the process {Xt}|t|≤T/2 on the time interval

[−T/2; T/2] satisfying the diffusion equation

(1) dXt = f(t/θ)dt + dWt,
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where θ ∈ (0;+∞) is the unknown period of the signal, the (rescaled) unknown
function f is periodic with period 1 and {Wt} is the standard Brownian motion. We
assume that f belongs to L2([0; 1]), so that we can consider its Fourier coefficients

∀k ∈ Z, ck = ck(f) =
∫ 1

0
f(x)e−2iπkx dx

(in the following, the dependence of the Fourier coefficients on f is dropped).
Such a model arises in a wide variety of areas, e.g., in communication, radio

location of objects, seismic signal processing, and computer assisted medical diag-
nosis. To our knowledge, previous works on this type of data only deal with the
problem of estimation of the unknown period, in an entirely parametric or in a
semiparametric framework.

The aim of this paper is to give an estimation procedure of the function f (the
shape of the signal) in the presence of the nuisance parameter θ using a plug-in
method of a preliminary estimator θ̂T of this unknown period θ.

Nonparametric estimation using the plug-in of a parametric component in a
semiparametric framework is a complicated problem and, to our knowledge, there
is no general theoretical solution regarding the convergence of such procedures (we
refer to [23], Chapter 25, for a general presentation of estimation in semiparametric
models). In fact, in some cases, convergence rates may be lowered by the plug-in
operation. For instance, in a convolution setting, Butucea and Matias [2] studied
the plug-in of an estimator of a scale parameter appearing in the additive noise into
a kernel estimator of the deconvolution density. In this context, the unknown pa-
rameter acts as a real nuisance since the rates of convergence for the deconvolution
density estimator are lowered as compared to the case of a known scale, those rates
being nonetheless optimal in a minimax sense.

It may be also interesting to note that our problem is very similar to those
arising in the framework of diffusion processes satisfying the stochastic differential
equation dXt = g(Xt)dt + dWt. Indeed, estimation of the trend coefficient g in
such models is an extensively studied subject. For instance, this problem has been
solved for ergodic processes by Dalalyan and Kutoyants [5] relying on estimation
of the invariant probability density of the process {Xt}t (see also [16]). More re-
cently, Loukianov and Loukianova [18] have proposed a new approach in the whole
recurrent case (ergodic plus null-recurrent) for Nadaraya–Watson type estimators,
which is based on uniform deterministic equivalent for additive functionals of the
process. Let us also mention that in the case of discrete-time observations of dif-
fusion processes satisfying the differential equation dXt = g(Xt) dt + σ(Xt) dWt,
another interesting problem is to estimate the diffusion coefficient σ (both in the
parametric and non-parametric cases) in the presence of unknown trend coefficient
g (see, for instance, [13]).

Let us come back to the observation of a periodic function in the presence of
additive Gaussian white noise (1). In the classical case, where the period θ is known,
the model simply reduces to a Gaussian sequence space model, using, for instance,
a projection on the Fourier basis {t → exp(2iπkt/θ)}k∈Z of L2([0, θ]). Indeed, let us
introduce [T/θ], the integer part of T/θ. The observation of the process {Xt}|t|≤T/2
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induces the observation of its projection

(2) xk =
1

θ[T/θ]

∫ θ/2[T/θ]

−θ/2[T/θ]
e−2iπkt/θ dXt = ck +

1√
θ[T/θ]

ξk,[ ](θ), k ∈ Z,

where the random terms

ξk,[ ](θ) = (θ[T/θ])−1/2

∫ θ/2[T/θ]

−θ/2[T/θ]
e−2iπkt/θ dWt

are independent random variables. Moreover, ξk,[ ](θ) = (1/
√

2)(v + iw), where v
and w are independent standard Gaussian random variables.

Nonparametric estimation in the presence of additive Gaussian white noise is a
widely studied subject. Among many others, we shall refer to [20, 15, 9], as well
as to [7, 8, 19, 4] for adaptive versions, and the references therein. We shall later
discuss the approach of [20, 4], since our work relies on it. In the framework of
nonparametric estimation, we also want to quote the very general results obtained
by Golubev [12]. In this paper, he proposes a way to derive exact lower bounds
for many nonparametric estimation problems based on a LAN (local asymptotic
normality) property of the model at stake.

Since θ is unknown, model (2) is not observed. But the above projection can be
replaced by a random projection onto the set of functions {t → exp(2iπkt/θ̂T )}k∈Z,
where θ̂T is any consistent estimator of θ based on the observation of {Xt}|t|≤T/2.

It is known since the seminal work of Golubev [11] that in this semiparametric
framework there exist consistent estimators of θ. We will later discuss and use a
modified version of Golubev’s estimator introduced by Castillo [3]. We also mention
that the same kind of estimator has been provided by Gassiat and Lévy-Leduc [10]
in a discretized version of model (1).

Let us assume for a moment that a consistent estimator θ̂T of θ is chosen. We
want to define the projection of the observation process onto the random set of
functions {t → exp(2iπkt/θ̂T )}k∈Z, namely

(3)
∫ T/2

−T/2
e−2iπkt/θ̂T dXt.

Note that this quantity cannot be defined in Itô’s integration framework, since
the process {e−2iπkt/θ̂T (ω)}t is generally not adapted with respect to {Ft}, which
is the σ-field generated by the random variables {Ws,−T/2 ≤ s ≤ t}. Indeed,
the estimators θ̂T are built using the whole observation process. This difficulty is
overcome using the fact that the process {e−2iπkt/θ̂T (ω)}t has paths with finite total
variation. Thus denoting

uθ̂T
(t) = exp(−2ikπt/θ̂T ),

we obtain that ∫ T/2

−T/2
Xt uθ̂T

(dt)
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is well defined as a Stieltjes integral. This remark allows us to define (3) as

∫ T/2

−T/2
e−2ikπt/θ̂T dXt =

∫ T/2

−T/2
e−2ikπt/θ̂T f(t/θ) dt +

∫ T/2

−T/2
uθ̂T

(t) dWt,

where

(4)
∫ T/2

−T/2
uθ̂T

(t) dWt ! uθ̂T
(T/2)WT/2 − uθ̂T

(−T/2)W−T/2 −
∫ T/2

−T/2
Wt uθ̂T

(dt).

For further details, see subsection 4.3.
Finally, the observation of the process {Xt}t as in (1) induces an approximate

Gaussian sequence space model with observations

(5) zk =
1
T

∫ T/2

−T/2
e−2iπkt/θ̂T dXt = γk(θ; θ̂T ) +

1√
T

ξk(θ̂T ), k ∈ Z,

where

γk(θ; θ̂T ) = T−1

∫ T/2

−T/2
f(t/θ)e−2iπkt/θ̂T dt,(6)

ξk(θ̂T ) = T−1/2

∫ T/2

−T/2
uθ̂T

(t) dWt.(7)

Note that ξk(θ̂T ) is not anymore a Gaussian random variable nor γk(θ; θ̂T ) is a
deterministic term. We shall also consider another Gaussian sequence space model
(still unobserved in our context)

(8) yk = ck +
1√
T

ξk,[ ](θ),

which is similar to (2) except for the normalization factor. Our work is based on
the fact that models (8), (5), and (2) are close enough (in a sense to be specified),
so that the observed model (5) inherits classical results on the estimation of the
signal from models (2) or (8).

Note that there is no restriction in using the Fourier basis. Actually, the use of
any periodic orthonormal basis (for instance, periodic wavelets basis defined in [6],
Chapter 9) would lead to the same kind of results as long as we can still define the
projection model (5).

Estimation of the signal in model (1) relies on regularity assumptions on f . From
now on, we assume that f belongs to a (periodic) Sobolev ball

W (β, L) =
{

f 1-periodic, f ∈ L2([0; 1]);
∑

k∈Z
|2πk|2β |ck|2 ≤ L

}
.

In the Gaussian sequence space model (8), classical linear estimates of the form
(λkyk)k∈Z constructed with weight sequences (λk)k∈Z in (2(Z), give consistent esti-
mators of the Fourier coefficients (ck)k∈Z of f . Pinsker [20] introduces a particular
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choice of the weights (λk)k∈Z and establishes that the corresponding linear estima-
tor is asymptotically minimax exact among all estimation procedures of the Fourier
coefficients (ck)k∈Z of f in a Sobolev ball W (β, L) (see also [1] or [22], Chapter 3,
for a complete overview on this topic). Pinsker’s weights depend on the smoothness
parameter β and on the bound L of the Sobolev ball, and thus Pinsker’s estimator
fails to be adaptive.

A natural substitute for linear estimates is obtained when the weights (λk)k∈Z are
data-driven, leading to non-linear estimators. The optimal choice of such a sequence
of weights is commonly considered in two different ways, using oracle inequalities
or minimax adaptivity. On the one hand, oracle inequalities say that an estimator
mimics the oracle within a fixed class of weights. The oracle consists in choosing
weights giving the lowest risk but depending on the unknown parameters and thus
not leading to an estimator. On the other hand, minimax adaptivity says that an
estimator achieves the minimax rate of convergence on every set of a fixed class
of sets. Cavalier and Tsybakov [4] construct a sequence of weights (λk)k∈Z using
Stein’s blockwise method, such that the corresponding linear estimator satisfies
both an exact oracle inequality within the class of monotone weights and sharp
minimax adaptive property on the scale of Sobolev balls {W (β, L);β ≥ 2, L > 0}.

Our approach relies on known results about nonparametric estimation of the
function f when its period θ is known. Since one natural aim would be to get
information about the whole signal g = f(·/θ), we then use in practice (and for the
second time, since f̂T is already built on some estimator of θ) an estimator θ̂T of θ
in order to finally obtain an estimator ĝ = f̂T (·/θ̂T ) of g. Note first that we do not
theoretically assess the quality of the estimation of g itself. There is no natural way
to define a risk for the estimation of g. Indeed, the function g does not naturally
belong to some fixed normed vector space: g does not belong to L2(R) but to the
space L2([0, θ]) where θ depends on g.

We also want to mention that another approach is to directly estimate the func-
tion g from the observation of {Xt =

∫ t
0 g(s)ds + Wt}|t|≤T/2 (i.e., without using its

periodicity). This approach that we call the blind method is compared to ours in
Section 3. The comparison of the two methods is based on an empirical criterion
(see Section 3 for more details).

In this paper, we first prove that Pinsker’s estimator combined with a consistent
(and well-chosen, see assumptions in subsection 2.1) estimator θ̂T of the unknown
period θ is asymptotically minimax exact in model (1) when the unknown function f
belongs to the Sobolev ball W (β, L) (Theorem 3). Then, applying Stein’s blockwise
method combined with the use of θ̂T , we obtain an exact oracle inequality within
the class of monotone sequences of weights (Proposition 2) and the sharp minimax
adaptive property within the family of Sobolev balls {W (β, L);β ≥ 2, L > 0}
(Theorem 4). Section 3 deals with practical implementation of our method. The
proofs are postponed to Section 4.

2. Estimation Procedure
2.1. Main assumptions. We say that a function is a o(1) (respectively

O(1)) if it tends to zero (resp. is bounded) when T goes to infinity. The notation
E θ,f denotes expectation with respect to the distribution of the process {Xt}|t|≤T/2

given by model (1) with unknown parameters θ and f .
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Assumptions on f . For any real numbers h > 0 and M > 0, denote by
F(h,M) the class of smooth functions whose Fourier coefficients (ck) satisfy:

∀r ≥ 2,
∑

k∈Z∗
|crk|2 ≤ (1− h)

∑

k∈Z∗
|ck|2 and

∑

k∈Z
|ck| ≤ M,

where r denotes an integer and Z∗ denotes the set Z\{0}. In particular, this implies
that f has period θ but not θ/r for some integer r ≥ 2.

We assume that there exist constants h > 0, M > 0, β ≥ 2, and L > 0 such
that:

(F) f ∈ F(h,M) ∩W (β, L).

Assumptions on the parameter θ. We assume that θ ∈ [αT ,βT ] and that
this set asymptotically covers ]0, +∞[ in the following way:

lim
T→+∞

αT = 0 and
1

αT
= O(T ),(P1)

lim
T→+∞

βT = +∞ and βT = O(log T ).(P2)

We do not propose here any new method of estimation of the unknown period
θ, but use one of the existing procedures, highlighting the main properties that are
useful in our context. The first estimation procedure of θ in the semiparametric
framework given by (1) is due to Golubev [11]. The idea is to use an approximate
profile likelihood. The estimator θ̂T maximizes (in a proper way) with respect to τ
the following criterion Λ, where N(T ) is a quantity to be well chosen and going to
infinity as T →∞:

(9) Λ(τ) =
N(T )∑

k=1

1
T

∣∣∣∣
∫ T/2

−T/2
e2iπkt/τ dXt

∣∣∣∣
2

.

Golubev defines an estimator θ̂T , which is asymptotically efficient in the sense:

lim
T→∞

E
(
(θ̂T − θ)2IT (θ, f)

)
= 1,

where IT (θ, f) is the Fisher Information in model (1) asymptotically given by

IT (θ, f) = (1 + o(1))
T 3

12θ4

∑

k∈Z
(2πk)2|ck|2,

see [14]. In [3], Castillo considers a weighted version of (9) and establishes second
order properties of the quadratic risk for a large class of weighted estimators.

Here, we shall need to control the tail probabilities in the estimation of θ as
follows.
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Assumptions on the estimator θ̂T .

There exist some p > 23/5 and some positive constant C such that:(C)

P
(
T 3/2θ−2|θ̂T − θ| ≥ C

√
log T

)
= o(T−p).

Remark 1. There exist estimators satisfying condition (C): for instance, the
weighted estimators proposed by Castillo [3] satisfy Assumption (C) for any in-
teger p (see Eq. (16) in [3]). However, to obtain this property, slightly stronger
assumptions on the function f are needed (see [3] for more details). The constant
23/5 comes from technical reasons and may not be optimal.

Let us mention that both the estimator θ̂T introduced in [3] and our estimation
procedure of f do not depend on the parameters h and M introduced in Assump-
tion (F) and thus, the method is adaptive with respect to those parameters.

2.2. Linear estimators of f . Recall that the main idea of the construc-
tion of our estimator of the function f is that the observed model (5) is not very
far away from the non-observed models (2) or (8), where efficient estimators of f
are known. Hence, we first follow the ideas of Pinsker [20] to construct a linear
estimator f̂T of f . Recall the definition of Pinsker’s weights denoted by (qk)k∈Z in
our setup. For any real number u, we denote by (u)+ the quantity max(u, 0), then
Pinsker’s weights are defined by:

(10) ∀ k ∈ Z, qk =
(
1− w|2πk|2β

)
+
,

where w is the solution of the equation

1
wT

∑

k∈Z
|2πk|2β

(
1− w|2πk|2β

)
+

= L.

Moreover, one can establish that, as T goes to infinity,

w =
(

βπ2β

(2β + 1)(β + 1)L

) β
2β+1

T
−β

2β+1 (1 + o(1)).

Remark 2. Note, in particular, that Pinsker’s weights are equal to zero for
|k| > N0, where N0 tends to infinity at the rate T 1/(2β+1). Since β ≥ 2, we have
N0 = O(T 1/5).

Let us introduce, for any sequence of weights λ ∈ [0; 1]Z, he following functional:

(11) R(λ, f) !
∑

k∈Z
(1− λk)2|ck|2 +

λ2
k

T
.

This quantity is nothing but the quadratic risk
∑

k∈Z E (|λkyk−ck|2) associated with
the linear estimator (λkyk)k∈Z in model (8). Note that, as explained for instance
in [22] (Section 3.5), there is no restriction in considering sequences of weights with
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values in [0; 1]Z, since projection of the weights onto [0; 1]Z obviously decreases the
risk. Then, as T goes to infinity, Pinsker’s Theorem (see [20]) gives:

lim
T→+∞

sup
f∈W (β,L)

R(q, f)T 2β/(2β+1)(12)

= lim
T→+∞

inf
λ∈[0;1]Z

sup
f∈W (β,L)

R(λ, f)T 2β/(2β+1)

= lim
T→+∞

inf
fT

sup
f∈W (β,L)

E (‖f − fT ‖2)T 2β/(2β+1) = C∗,

where the second infimum is taken over all estimators fT of f and C∗ is Pinsker’s
constant:

(13) C∗ = [L(2β + 1)]
1

2β+1

(
β

π(β + 1)

) 2β
2β+1

.

Unfortunately, model (8) is unobserved. However, we shall prove that we can
achieve the same sharp rate using projection model (5).

Define the linear estimator f̂T in the following way: if f belongs to W (β, L) and
θ̂T is a preliminary estimator of θ used to define the projection model (5), let

(14) f̂T (x) =
∑

k∈Z
qkzke2iπkx,

where the qk’s are Pinsker’s weights defined by (10) and associated with
W (β, L), and the zk’s are defined in (5). In the sequel, the Fourier coefficients
of the function f̂T are denoted by ĉk. Note that the estimator f̂T in (14) depends
on the plugged θ̂T only via zk. From (14), we get: ĉk = qkzk, for any k ∈ Z.

The linear estimator obtained with Pinsker’s weights is asymptotically exact
minimax in our setup, as ensured by the following theorem to be proved in Section 4.

Theorem 3. Fix β ≥ 2 and L > 0. Under the assumptions (F), (P1), (P2),
(C), the estimator f̂T defined by (14) satisfies:

lim
T→+∞

sup
θ∈[αT ;βT ]

sup
f∈W (β,L)

T 2β/(2β+1)E θ,f‖f̂T − f‖2
2

= lim
T→+∞

inf
fT

sup
θ∈[αT ;βT ]

sup
f∈W (β,L)

T 2β/(2β+1)E θ,f‖fT − f‖2
2 = C∗,

where the infimum is taken over all estimators fT based on the observation of
{Xt}|t|≤T/2 described by model (1) and C∗ is Pinsker’s constant defined in (13).

Theorem 3 provides an efficient and minimax procedure of estimation of f in the
class W (β, L). However, in practice, the parameters β and L are unknown. Thus,
we would like to construct an estimator of f which does not require the knowledge of
the regularity parameters β and L. This issue is treated in the following subsection.

2.3. Stein’s blockwise procedure. In order to construct an adaptive
estimator of f , i.e., an estimator which does not require the knowledge of β and L,
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we let the sequence of weights depend on the data {Xt}|t|≤T/2. Let us first recall
the idea of Stein’s blockwise procedure as explained in [4]. Define a partition of
the interval [−Nmax; Nmax], where Nmax = T 1/4, in subintervals Bj called blocks
for j = −J, . . . , J . We denote by Tj the cardinality of Bj . We shall make precise
the construction of the Bj ’s in the sequel.

Given blocks Bj ’s with cardinalities Tj ’s, the positive James–Stein’s weights are
defined by:

(15) ψk(z) =
J∑

j=−J

(
1− Tj

T‖z‖2
j

)

+

1k∈Bj , for k ∈ Z,

where ‖z‖j denotes the L2-norm on the block Bj , i.e., ‖z‖2
j =

∑
l∈Bj

|zl|2 and 1 is
the indicator function. The idea is to take into account only the observations such
that the energy ‖z‖2

j on the jth block is larger than the expected level of the noise
Tj/T on the same block. Remark also that the weights ψk(z) are constant over
each block and that in fact ψk(z) = 0 for |k| > T 1/4.

2.3.1. Definition of Bj’s and Tj’s. We choose weakly geometrically increasing
blocks as introduced in [14] or in [22], Section 3.6 (here the construction slightly
differs from the quoted references since we work with complex Fourier coefficients
ck’s and not real ones). Let ρT = log−1(T ) and define the Tj ’s for j ≥ 0 as follows:

(16)

T1 = +ρ−1
T , = +log(T ),, T2 = -T1(1 + ρT )., . . .

TJ−1 = -T1(1 + ρT )J−2., TJ = Nmax −
J−1∑

j=1

Tj ,

where

(17) J = min
{

m, T1 +
m∑

j=2

-T1(1 + ρT )j−1. ≥ Nmax

}
.

Here, -x. is the largest integer smaller than the real number x and +x, is the
smallest integer larger than x.

Now let us define blocks B+
j ’s as the partition of {1, 2, . . . , Nmax} such that

B+
1 = {1, . . . , T1} and min{k ∈ B+

j } > max{k ∈ B+
j−1} for any 2 ≤ j ≤ J . Then

for all j ∈ {1, . . . , J}, define B−
j = {−k, k ∈ B+

j }. Finally, let

(18) B1 = B−
1 ∪ {0} ∪B+

1 and Bj = B−
j ∪B+

j for j ∈ {2, . . . , J}.

2.3.2. Properties of weakly geometrically increasing weights. Let us recall some
well-known properties of this system of blocks (see, for instance, [4] or [22], Sec-
tion 3.6).

Lemma 1 (Lemma 3.11 in [22]). Let {Bj} be the system of blocks defined above.
Then for T large enough, there exists a constant C such that the number J of blocks
satisfies:

(19) J ≤ C log2(T ).
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Now recall the following inequality, which is satisfied in the non-observed
model (8). Let f∗T be the natural estimator if model (8) were observed:

(20) f∗T =
∑

k∈Z
ψk(y)yke2ikπx.

(Note that f∗T is not an estimator in our setup). In the sequel, we shall say that a
sequence of weights (λj)j∈Z ∈ [0; 1]Z is symmetric and decreasing when λj = λ−j

for any j ≥ 1 and the sequence (λj)j≥1 is decreasing.

Lemma 2 (Theorem 2, Proposition 6 in [4], Theorem 3.6 of [22]) Let Λmon be
the class of symmetric and decreasing weights (λj)j∈Z ∈ [0; 1]Z such that λj = 0
for |j| > Nmax. Then for T large enough, if f∗T is defined by (20), there exists a
constant C such that

(21) E ‖f∗T − f‖2 ≤ (1 + 3ρT ) min
λ∈Λmon

R(λ, f) +
C

T
log2(T ),

where ρT = log−1(T ).

The setup of this lemma is exactly the same as the one in [4] or [22], except for
the fact that here, Nmax = T 1/4 (instead of Nmax = T ). But one can easily see that
this only changes the constant C in the above theorem by a multiplicative factor
and hence the result still holds in our setup.

2.3.3. Data-driven estimator of f . If θ̂T is a preliminary estimator of θ used to
define the projection model (5), let

(22) f̃T (x) =
∑

k∈Z
ψk(z)zke2ikπx.

In the sequel, the Fourier coefficients of the function f̃T are denoted by c̃k. It
follows from (22) that c̃k = ψk(z)zk for any k ∈ Z.

In the following theorem, we establish that f̃T is a sharp minimax adaptive esti-
mator of f in model (1) among the family of Sobolev balls {W (β, L);β ≥ 2, L > 0}.

Theorem 4 (sharp minimax adaptivity). Under assumptions (F), (P1), (P2),
(C), the estimator f̃T defined by (22) and with a system of blocks defined by
(16)–(18), satisfies, for any β ≥ 2 and L > 0:

lim
T→∞

sup
θ∈[αT ;βT ]

sup
f∈W (β,L)

T 2β/(2β+1)E θ,f‖f̃T − f‖2
2 = C∗,

where C∗ is Pinsker’s constant defined in (13).

Remark 5. This result means also that the data-driven method introduced
in [4] for the Gaussian sequence model is stable with respect to the plug-in of a
sufficiently well chosen estimator of the nuisance parameter θ, since we obtain the
same sharp rate of convergence. It would be interesting to investigate if this is also
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the case in a more general semiparametric setup, i.e., for a more general form (with
respect to θ) of the model.

4. Practical Implementation of the Estimation Method
In this section, we deal with the following discrete-time model:

Xj = f

(
j

nθ

)
+ εj , j = 1, . . . , n,

where the εj ’s are i.i.d. Gaussian random variables with zero mean and unit variance
and f is a periodic function with period 1. Indeed, when we are faced with an
observed signal in a practical situation, the data at hand are sampled and the
number of observations n is fixed. Then the estimator (22) is constructed using the
discrete version of the z′ks:

zk =
1
n

n∑

j=1

e−2ikπj/(nθ̂)Xj , k = 1, 2, . . .

The estimation algorithm can be split into several steps, which show how to
obtain an estimate of the shape function f by using the previous adaptive procedure.

• The first step consists in estimation of the period θ of the regression function.
This can be done either by maximizing a penalized cumulative periodogram of
the observations (this method is explained in [17]) or by maximizing a penalized
weighted cumulative periodogram of the observations (this approach is developed
in [3]).

• At the second step, we use the estimator of θ to compute the zk’s as explained
above. Next we obtain Stein’s blocks, which allow us to define f̃T .

• An estimator of the periodic regression function g = f(·/θ) is obtained by
plugging in the estimator of θ obtained at the first step. This enables us to compare
our procedure with the blind method (see subsection 3.2).

3.1. Illustration on synthetic data.
3.1.1. Presentation of the synthetic data. We present hereafter a periodic signal

which we aim to estimate from noisy data. We shall estimate the following synthetic
signal:

(23) s(t) = a cos
[
c cos

(
2πt

θ

)]
,

where a = 0.1, θ = 1/20, c = 15 in the first case and c = 150 in the second one
from the data:

(24) Xj = s

(
j

n

)
+ εj , j = 1, . . . , n.

This specific form allows us to synthesize very easily signals having as many signif-
icant Fourier coefficients as we want.
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Figure 1. A synthetic signal s: (a),(d) (s(j/n), 1 ≤ j ≤ 200000);
(b),(e) the DFT spectrum of s; (c),(f) zoom of (b) and (e)

Note that the parameter θ is assumed to be unknown in our practical estimation
procedure and that this type of signal for s is only used for simulating a periodic
signal but we do not use its parametric form in the algorithm.

With such a definition, s is a periodic function with frequency 20Hz with
about 15 positive harmonics in the first case and 150 in the second one.

Figures 1 (a), (d) display (s(j/n), j = 1, . . . , 200000) with n = 220 for c = 15
and c = 150 respectively. Figures 1 (b), (e) display, in these two cases, the squared
modulus of the DFT (Discrete Fourier Transform) of (s(j/n), j = 1, . . . , n) defined
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by

Is(q) =
1
n

∣∣∣∣
n∑

j=1

e−
2iπqj

n s

(
j

n

)∣∣∣∣
2

, 0 ≤ q ≤ n− 1.

We represent the sequence Is(q) only for 1 ≤ q ≤ 500 and for 1 ≤ q ≤ 2500
respectively in Figures 1 (b), (e).

Figures 1 (c), (f) are respective zooms of Figures 1 (b), (e).
The observed sequence is obtained by adding a Gaussian white noise to s:

Xj = s

(
j

n

)
+ εj , j = 1, . . . , n,

where the εj ’s are independent Gaussian random variables with zero mean and unit
variance.

For a signal of the form (23), we define the signal-to-noise ratio by

SNR = 10 log10

(
a2

2

)
.

The quantity inside the parentheses is the ratio of the power of the signal to the
variance of the noise. With the above values of the parameters, SNR = −23 dB in
these examples.
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−6

−4

−2

0

2

4

6

(a)

j/n

0 50 100 150 200 250 300
0

1

2

3

4

5

6
x 107

q

(b)

Figure 2. The observed signal X: (a) (Xj , 1 ≤ j ≤ 200000); (b) the
DFT spectrum of X
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Figures 2 (a), (b) display the observations Xj in the case where c = 150 as well
as its DFT spectrum. The signal-to-noise ratio is so low in this example that the
original signal cannot be visually detected in Figure 2 (a) and the DFT spectrum
of the observations is very different from the one obtained without noise displayed
on Figure 1 (f).

3.1.2. Results of our algorithm. We give hereafter the denoised signals, that is
estimators of the signal s obtained by using our algorithm.
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Figure 3. (a), (d) the original data Xj ; (b), (e) the original signals s;
(c), (f) the denoised signals

Figures 3 (a), (d) display the original data, Figures 3 (b), (e) display the original
signals, while our estimators of s appear in Figures 3 (c), (f). In these examples, we
can see that our algorithm provides denoised signals which appear to be visually
close to the original ones despite the low signal-to-noise ratio. We shall make this
’closeness’ more precise in the following section by computing the empirical risk of
our estimator defined by (25) in various cases.

3.2. Comparison of our method with existing ones. In the following,
we illustrate the performance of our algorithm by an example and compare it with
that of a method using no periodicity assumption. We shall call it a blind method.

More precisely, we synthesize a signal of the same form as the one in (23) but
with a parameter a chosen so that to have SNR = −20 dB. Then, we use the
denoising method implemented in the Wavemenu of Matlab with a symlet 6 to the
level 9 and a hard thresholding. This type of wavelets seem to be the most adapted
to the signals at stake.

Figures 4 (a), (b) display respectively the original signal s with a plain line, the
denoised signals obtained using the blind method with crosses and using our algo-
rithm with points.
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As can be seen in Figures 4 (a), (b), our estimator performs much better point-
wise on the interval than the estimator constructed without using the periodicity
assumption. We quantify this fact by performing some Monte-Carlo experiments.
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Figure 4. Comparison with a blind method; ‘−’: the original signal s,
‘+’: denoising with a blind method, ‘·’: denoising with our algorithm.
(b) is a zoom of (a)

We propose several numerical comparisons of the two approaches, obtained for
a signal s defined by (23) for c = 15 and different values of a. For each value of a,
we simulate L = 10 observed series (Xj) satisfying (24) and estimate s by the two
methods proposed previously: our algorithm and the blind method.

The quality of an estimator is quantified by computing the root mean squared
error (RMSE) on the whole observation interval defined by:

(25)

√√√√ 1
L

L∑

l=1

[
1
n

n∑

j=1

(ŝl(j/n)− s(j/n))2
]
,

where (ŝl) are the L estimates obtained for s.
In Table 1, Rper, Rblind are the RMSE’s for our algorithm and the blind method,

respectively, and Ps is an approximation of the L2-norm of s (the square root of its
power) computed by

√
n−1

∑n
j=1 s2(j/n). These Monte-Carlo experiments show,

as expected, that our algorithm provides better estimators than a method not using
the periodicity of s.
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Table 1. Comparison of the RMSE’s given by a blind
method with our method, where a is defined in (23)

a 0.1 0.5 1 2 4
Rper 0.0083 0.0113 0.0162 0.0297 0.0576
Rblind 0.0733 0.0768 0.1008 0.0833 0.0795

Ps 0.0676 0.3379 0.6760 1.3519 2.7039
Rper/Ps 0.1226 0.0336 0.0241 0.0219 0.0212
Rblind/Ps 1.085 0.2272 0.1491 0.0616 0.0294

5. Proofs
In this section, C denotes an absolute nonnegative constant, which may change

along the lines. Let us first mention that according to the assumption that f belongs
to W (β, L) ∩ F(h,M) with β ≥ 2, we have the following uniform bounds:

∑

k∈Z
|ck| ≤ M ;

∑

k∈Z
|2πk|4|ck|2 ≤ L.

4.1. Proof of Theorem 3. We first prove here the upper bound part of
Theorem 3, namely

lim sup
T→+∞

sup
θ∈[αT ;βT ]

sup
f∈W (β,L)

T 2β/(2β+1)E θ,f‖f̂T − f‖2
2 ≤ C∗.

Note first that E θ,f‖f̂T − f‖2
2 = E

∑
k∈Z |ĉk − ck|2, where we drop the dependence

on θ and f in the expectation. Let us denote by Re(v) and v̄ respectively the real
part and the complex conjugate of v. Now,

E
[ ∑

k∈Z
|ĉk − ck|2

]
= E

[ ∑

k∈Z
|qkzk − ck|2

]
= E

[ ∑

k∈Z
|qkyk − ck|2

]

+ E
[ ∑

k∈Z
|qk(zk − yk)|2

]
+ 2E

[ ∑

k∈Z
Re(qkyk − ck)(qk(zk − yk))

]
.

We shall prove that the first term is the main one, where (as defined in the Intro-
duction)

yk = ck +
1√
T

ξk,[ ](θ) and ξk,[ ](θ) =
1√

θ[T/θ]

∫ [T/θ]θ/2

−[T/θ]θ/2
e−2ikπt/θ dWt.

By the Cauchy–Schwarz inequality, the third term is negligible as soon as it is the
case for the second one. Let us then focus on the second term. Introducing the
random variable ξk(θ) defined in the same way as ξk(θ̂T ) (see (7)) but using the
deterministic period θ, we get

(26) E
[ ∑

k∈Z
|qk(zk − yk)|2

]
≤ 3

{
E

[ ∑

k∈Z
q2
k|γk(θ, θ̂T )− ck|2

]

+ T−1E
[ ∑

k∈Z
q2
k|ξk(θ̂T )− ξk(θ)|2

]
+ T−1E

[ ∑

k∈Z
q2
k|ξk(θ)− ξk,[ ](θ)|2

]}
.
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Consider the quantity ξk(τ), where τ is any deterministic point in [αT ,βT ]. First,
recall that by definition (4), we have

T 1/2ξk(τ) = uτ (T/2)WT/2 − uτ (−T/2)W−T/2 −
∫ T/2

−T/2
Wt uτ (dt).

Here, the process uτ (t) = exp(−2ikπt/τ) is deterministic, and we shall check that
this quantity corresponds to the classical Itô’s integral

∫ T/2
−T/2 exp(−2ikπt/τ) dWt.

Indeed, using the Integration by parts formula (see, for instance, [21], Proposi-
tion 3.1), we have for any continuous semimartingales Y and Z,

YtZt = Y0Z0 +
∫ t

0
YsdZs +

∫ t

0
ZsdYs + 〈Y,Z〉t,

where 〈Y, Z〉t is the bracket of Y and Z. Applying this formula to Yt = Wt and
Zt = uτ (t), we get

(27) uτ (T/2)WT/2 − uτ (−T/2)W−T/2

=
∫ T/2

−T/2
Wsuτ (ds) +

∫ T/2

−T/2
uτ (s) dWs + 〈uτ ,W 〉T/2 − 〈uτ , W 〉−T/2.

Since the process uτ has finite variation, the bracket 〈uτ ,W 〉 vanishes, giving the
expected result. Moreover, note that ξk(τ) = 2−1/2(v + iw), where v and w are
independent standard Gaussian random variables.

Now, let us return to the control of (26). The last term of the upper bound
in (26) can be rewritten as follows:

T−1E
[ ∑

k∈Z
q2
k|ξk(θ)− ξk,[ ](θ)|2

]

=
∑

k∈Z
E

[
q2
k

T

∣∣∣∣
1√
T

∫ T/2

−T/2
e
−2ikπt

θ dWt −
1√

θ[T/θ]

∫ [T/θ]θ/2

−[T/θ]θ/2
e
−2ikπt

θ dWt

∣∣∣∣
2]

≤ 2
∑

k∈Z
E

[
q2
k

T 2

∣∣∣∣
∫ T/2

−T/2
e
−2ikπt

θ dWt −
∫ [T/θ]θ/2

−[T/θ]θ/2
e
−2ikπt

θ dWt

∣∣∣∣
2]

+ 2
∑

k∈Z
E

[
q2
k

T

(
1√
T
− 1√

θ[T/θ]

)2∣∣∣∣
∫ [T/θ]θ/2

−[T/θ]θ/2
e
−2ikπt

θ dWt

∣∣∣∣
2]

.

Since ∫ T/2

[T/θ]θ/2
e−2ikπt/θ dWt

is a centered random variable with variance T/2− [T/θ]θ/2, which is less than θ/2,
the first term in the right-hand side is bounded by 4θ(

∑
k q2

k)/T 2. In the same way,
using the bound

∣∣∣∣
1√
T
− 1√

θ[T/θ]

∣∣∣∣
2

≤
|
√

θ[T/θ]−
√

T |2

Tθ[T/θ]
≤ |θ[T/θ]− T |

Tθ[T/θ]
≤ 1

T [T/θ]
,
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we get that the second term is less than 2θ(
∑

k q2
k)/T 2. Finally,

(28) T−1E
[ ∑

k∈Z
q2
k|ξk(θ)− ξk,[ ](θ)|2

]
≤ 6βT

T 2

( ∑

k∈Z
q2
k

)
.

Let us now control the first and the second terms of the right-hand side of
inequality (26). For this, we shall use the following two lemmas.

Lemma 3. For p = 1 or 2 and for (λk)k∈Z ∈ [0; 1]Z a sequence of weights such
that λk = 0 for |k| > T 1/4, there exists an absolute nonnegative constant C such
that

E
[( ∑

k∈Z
λ2

k|γk(θ, θ̂T )− ck|2
)p

]

≤ C

[( ∑

k∈Z
|k|4λ2

k|ck|2
)p

(
log2 T

T 2

)p

+
( ∑

k∈Z
λ2

k

)p
(

βT

T

)2p]
.

Lemma 4. Under the assumptions of Lemma 3, there exists an absolute non-
negative constant C such that

E
[( ∑

k∈Z
λ2

k|ξk(θ̂T )− ξk(θ)|2
)p

]
≤ C

( ∑

k∈Z
λ2

k

)p−1( ∑

k∈Z
|k|2pλ2p

k

)(
log T

T

)p

.

The proofs of these lemmas are postponed to the end of this subsection.
From (26), (28) and Lemmas 3 and 4, which can be applied according to Re-

mark 2, we deduce that

E
[ ∑

k∈Z
|qk(zk − yk)|2

]
≤ C

[( ∑

k∈Z
|k|4q2

k|ck|2
)(

log2 T

T 2

)
+

( ∑

k∈Z
q2
k

)(
βT

T

)2

+
1
T

( ∑

k∈Z
|k|2q2

k

)(
log T

T

)
+

βT

T 2

( ∑

k∈Z
q2
k

)]
.

Now we use assumption (P2) and Remark 2 to obtain an explicit upper bound for
the preceding quantity:

E
[ ∑

k∈Z
|qk(zk − yk)|2

]
≤ C

[
log2 T

T 2
+

log2 T

T 7/4
+

log T

T 5/4

]
≤ C

log T

T 5/4
.

Let us now turn to the first term in the expansion of E [
∑

k∈Z |ĉk − ck|2]:

E
[ ∑

k∈Z
|qkyk − ck|2

]
=

∑

k∈Z

{
(1− qk)2|ck|2 +

q2
k

T

}
≥ T−1

∑

k∈Z
q2
k.
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But since q0 = 1, we have
∑

k∈Z q2
k ≥ 1. From this and the bounds for the second

and third terms in the right-hand side of inequality (26), we deduce that:

E
[ ∑

k∈Z
|ĉk − ck|2

]
=

{ ∑

k∈Z
(1− qk)2|ck|2 +

q2
k

T

}
(1 + o(1)).

According to Pinsker’s Theorem [20], the last quantity

R(q, f) =
∑

k∈Z
(1− qk)2|ck|2 +

q2
k

T

satisfies
sup

f∈W (β,L)
R(q, f) ≤ C∗T−2β/(2β+1)(1 + o(1)).

Since in our setup we have

sup
θ∈[αT ;βT ]

sup
f∈W (β,L)

E θ,f‖f̂T − f‖2
2 =

{
sup

f∈W (β,L)
R(q, f)

}
(1 + o(1)),

we finally obtain the upper bound in Theorem 3.
Let us now focus on the lower bound part of this Theorem, namely

lim inf
T→+∞

inf
fT

sup
θ∈[αT ;βT ]

sup
f∈W (β,L)

T 2β/(2β+1)E θ,f‖fT − f‖2
2 ≥ C∗.

Obviously, the left-hand side is larger than the same term taken at a fixed θ, say
θ = 1. So, it is enough to establish

lim inf
T→+∞

inf
fT

sup
f∈W (β,L)

T 2β/(2β+1)E f‖fT − f‖2
2 ≥ C∗,

in the model given by dXt = f(t) dt + dWt, t ∈ [−T/2;T/2]. But according to
Girsanov’s Theorem (see Appendix II in [14]),

inf
fT

sup
f

E f‖fT − f‖2 = inf
c̄T

sup
c

E c‖c̄T − c‖2,

where the first infimum concerns any estimator fT based on the observation of
{Xt}|t|≤T/2 satisfying dXt = f(t) dt + dWt, while the function f ranges over the
Sobolev ball W (β, L), whereas the second one concerns any estimator c̄T based on
the observation of the corresponding projection yk = ck + T−1/2ξk,[ ](1), for any
k ∈ Z, and the sequence of Fourier coefficients c ranges over the set

{
c = (ck)k∈Z;

∑

k∈Z
|2πk|2β |ck|2 ≤ L

}
.

Now, Pinsker’s lower bound [20] establishes

inf
c̄T

sup
c

E c‖c̄T − c‖2
2 ≥ C∗T−2β/(2β+1)(1 + o(1)),
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which quite achieves the proof. The last thing to see is that Assumption (F) (which
is necessary in our setup since the period is unknown) does not affect Pinsker’s
proof. But we may assume without restriction that the finite set of sequences c
used in Pinsker’s proof to obtain the lower bound satisfy

∑
k |ck| ≤ M and for any

integer r ≥ 2 we choose c such that
∑

k∈Z∗ |crk|2 ≤ (1− h)
∑

k∈Z∗ |ck|2. "
4.1.1. Proof of Lemma 3. This proof and the next one rely on the convergence

property of the estimator θ̂T given by Assumption (C). Let us denote by ϕT the
rate

ϕT =
θ2
√

log T

T 3/2
.

Now, we write

E
[( ∑

k∈Z
λ2

k|γk(θ, θ̂T )− ck|2
)p

]
(30)

= E
[( ∑

k∈Z
λ2

k

∣∣∣∣
∑

p∈Z
cpΦ

[
T

θ

(
p− kθ

θ̂T

)]
− ck

∣∣∣∣
2)p

1{|θ̂T−θ|≤ϕT }

]

+ E
[( ∑

k∈Z
λ2

k

∣∣∣∣
∑

p∈Z
cpΦ

[
T

θ

(
p− kθ

θ̂T

)]
− ck

∣∣∣∣
2)p

1{|θ̂T−θ|>ϕT }

]
,

where

Φ(t) =
∫ 1/2

−1/2
e2iπtu du =

sin(πt)
πt

.

Note that we shall abundantly use the following properties of Φ.

There exist absolute nonnegative constants M1 and M2 such that(B1)

|Φ(u)| ≤ M1

|u| for |u| > 1/4, ‖Φ
′′
‖∞ ≤ M2.

By using assumption (C) on the estimator θ̂T , we can deduce that the last term
in the right-hand side of (30) satisfies for any integer q and large enough T :

E
[( ∑

k∈Z
λ2

k

∣∣∣∣
∑

p∈Z
cpΦ

[
T

θ

(
p− kθ

θ̂T

)]
− ck

∣∣∣∣
2)p

1{|θ̂T−θ|>ϕT }

]
(32)

≤
(

2
∑

k∈Z
|ck|

)2p( ∑

k∈Z
λ2

k

)p

P
(
|θ̂T − θ| > ϕT

)
≤ C

T q

( ∑

k∈Z
λ2

k

)p

.

Let us now turn to the first term:

E
[( ∑

k∈Z
λ2

k

∣∣∣∣
∑

p∈Z
cpΦ

[
T

θ

(
p− kθ

θ̂T

)]
− ck

∣∣∣∣
2)p

1{|θ̂T−θ|≤ϕT }

]
(33)

= E
[( ∑

k∈Z
λ2

k

∣∣∣∣ck

{
Φ

[
kT

θ

(
1− θ

θ̂T

)]
− 1

}

+
∑

p )=k

cpΦ
[
T

θ

(
p− kθ

θ̂T

)]∣∣∣∣
2)p

1{|θ̂T−θ|≤ϕT }

]
.
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First, note that
∣∣∣∣
T

θ

(
p− kθ

θ̂T

)∣∣∣∣ =
∣∣∣∣
T

θ
(p− k) +

Tk

θ̂T θ
(θ̂T − θ)

∣∣∣∣,

where
∣∣∣∣
Tk

θ̂T θ
(θ̂T − θ)

∣∣∣∣1{|θ̂T−θ|≤ϕT } ≤
T |k|
θ2

θ2
√

log T

T 3/2
(1 + o(1)) ≤

√
log T

T
|k|(1 + o(1)).

Since λk = 0 for |k| > T 1/4, by using that
∣∣T

θ (p− k)
∣∣ ≥ T

θ when p 2= k, we get
∣∣∣∣
T

θ

(
p− kθ

θ̂T

)∣∣∣∣ ≥
T

θ
(1 + o(1)) ≥ T

βT
(1 + o(1)),

ensuring that for large enough T , we have (using property (B1)),
∣∣∣∣
∑

p)=k

cpΦ
[
T

θ

(
p− kθ

θ̂T

)]∣∣∣∣1{|θ̂T−θ|≤ϕT } ≤ C
θ

T
.

Secondly, a Taylor expansion of Φ gives, for some ζ (depending on T and θ) in a
neighborhood of zero:

∣∣∣∣Φ
[
kT

θ

(
1− θ

θ̂T

)]
− 1

∣∣∣∣1{|θ̂T−θ|≤ϕT } =
|k|2T 2

2θ2

∣∣∣∣1−
θ

θ̂T

∣∣∣∣
2

|Φ′′(ζ)|1{|θ̂T−θ|≤ϕT }

≤ C
|k|2 log T

T
.

We can deduce from the previous inequalities an upper bound for (33):

E
[( ∑

k∈Z
λ2

k

∣∣∣∣
∑

p∈Z
cpΦ

[
T

θ

(
p− kθ

θ̂T

)]
− ck

∣∣∣∣
2)p

1{|θ̂T−θ|≤ϕT }

]

≤ C

( ∑

k∈Z
|k|4λ2

k|ck|2
)p( log2 T

T 2

)p

+ C

( ∑

k∈Z
λ2

k

)p(βT

T

)2p

.

This result together with (32) leads to the expected upper bound for the quantity
at stake. "

4.1.2. Proof of Lemma 4. We have

E
[( ∑

k∈Z
λ2

k|ξk(θ̂T )− ξk(θ)|2
)p]

(34)

= E
[( ∑

k∈Z
λ2

k|ξk(θ̂T )− ξk(θ)|2
)p

1{|θ̂T−θ|≤ϕT }

]

+ E
[( ∑

k∈Z
λ2

k|ξk(θ̂T )− ξk(θ)|2
)p

1{|θ̂T−θ|>ϕT }

]
.
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Let us focus on the first term. Remember that p = 1 or 2, so that

E
[( ∑

k∈Z
λ2

k|ξk(θ̂T )− ξk(θ)|2
)p

1{|θ̂T−θ|≤ϕT }

]

≤
( ∑

k∈Z
λ2

k

)p−1 ∑

k∈Z
λ2p

k E
[
|ξk(θ̂T )− ξk(θ)|2p 1{|θ̂T−θ|≤ϕT }

]

≤
( ∑

k∈Z
λ2

k

)p−1 ∑

k∈Z
λ2p

k E
[

sup
τ∈VϕT

(θ)
|ξk(τ)− ξk(θ)|2p

]

≤
( ∑

k∈Z
λ2

k

)p−1 ∑

k∈Z
λ2p

k E
[(

sup
τ∈VϕT

(θ)
|ξk(τ)− ξk(θ)|

)2p
]
,

where

(35) VϕT (θ) =
{

τ ∈ [αT ,βT ], |τ − θ| ≤ ϕT

}
.

To control this last expected value, we use the following equality, which holds for a
positive random variable X and an integer r:

E (X2r) = 2r

∫ +∞

0
P (X ≥ y) y2r−1dy.

This leads to

E
[(

sup
τ∈VϕT

(θ)
|ξk(τ)− ξk(θ)|

)2p
]

= 2p

∫ +∞

0
P

(
sup

τ∈VϕT
(θ)

|ξk(τ)− ξk(θ)| ≥ y
)
y2p−1dy.

We now use, without proving it, the following classical result (see, e.g., [11]).

Lemma 5 (Generalized Markov inequality). Let L be a stochastic process and
A = [α; β], then for all µ > 0 and for all R > 0,

P
(

sup
τ∈A

L(τ) > R
)
≤ exp(−µR) sup

τ∈A

(√
E [e2µL(τ)]

) [
1 + µ

∫

τ∈A

√
E [ |L′(τ)|2] dτ

]
,

as soon as the quantities at stake are well defined.

We deduce that for µ, y > 0

P
(

sup
τ∈VϕT

(θ)
|ξk(τ)− ξk(θ)| ≥ y

)

≤ e−µy sup
τ∈VϕT

(θ)

{[
E (e2µ(ξk(τ)−ξk(θ)))

]1/2
}(

1 + µ

∫

τ∈VϕT
(θ)

[
E (|ξ′k(τ)|2)

]1/2
dτ

)

≤ e−µy exp
(

Ck2µ2 log T

T

)(
1 + µ

∫

τ∈VϕT
(θ)

|k|πT√
3τ2

dτ

)

≤ e−µy exp
(

Cµ2k2 log T

T

)(
1 + Cµ|k|

√
log T

T

)

≤ exp
(
− y2T

4Ck2 log T

)(
1 +

y
√

T

2|k|
√

log T

)
, by taking µ =

yT

2Ck2 log T
.
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This leads to the bound

(36) E
[(

sup
τ∈VϕT

(θ)
|ξk(τ)− ξk(θ)|

)2p]
≤ C

(
|k|
√

log T√
T

)2p

.

Thus,

E
[( ∑

k∈Z
λ2

k|ξk(θ̂T )− ξk(θ)|2
)p

1{|θ̂T−θ|≤ϕT }

]

≤ C
( ∑

k∈Z
λ2

k

)p−1( ∑

k∈Z
k2pλ2p

k

)(
log T

T

)p

.

Let us now turn to the second term of (34). By using the Cauchy–Schwarz inequal-
ity, we have

E
[( ∑

k∈Z
λ2

k|ξk(θ̂T )− ξk(θ)|2
)p

1{|θ̂T−θ|>ϕT }

]

≤
(
E

[( ∑

k∈Z
λ2

k|ξk(θ̂T )− ξk(θ)|2
)2p])1/2

P
(
|θ̂T − θ| > ϕT

)1/2

≤
( ∑

k∈Z
λ2

k

)p−1/2{ ∑

k∈Z
λ4p

k E
[(

sup
τ∈[αT ,βT ]

|ξk(τ)− ξk(θ)|
)4p

]}1/2

× P(|θ̂T − θ| > ϕT )1/2

≤ C(N0)p−1/2
( ∑

k∈Z
|k|λ4p

k

)1/2
(

T

αT

)1/2

P
(
|θ̂T − θ| > ϕT

)1/2
,

where the last inequality is obtained by the same method as the one applied in
(36), except that VϕT (θ) is replaced by [αT ,βT ] and N0 is defined in Remark 2.

Thanks to the convergence property (C) of θ̂T , the expectation

E
[( ∑

k∈Z
λ2

k|ξk(θ̂T )− ξk(θ)|2
)p

1{|θ̂T−θ|≤ϕT }

]

is then the main term of (34).
The expected result thus follows. "

4.2. Proof of Theorem 4. We want to bound from above the quantity
E

[∑
|k|≤Nmax

|c̃k − ck|2
]
, c̃k being defined by

c̃k = ψk(z)zk, where ψk(z) =
(

1− Tj

T‖z‖2
j

)

+

for k ∈ Bj ,

with ‖z‖2
j =

∑
l∈Bj

|zl|2 and x+ = max(0, x) for all x ∈ R.
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Indeed, the term E
∑

|k|>Nmax
|ck|2 = O(T−1) is negligible compared to this

main term

E
[ ∑

|k|≤Nmax

|c̃k − ck|2
]

=
J∑

j=1

E
[ ∑

k∈Bj

|ψk(z)zk − ck|2
]
.

From now on, we shall focus on

E
[ ∑

k∈Bj

|ψk(z)zk − ck|2
]

(37)

= E
[ ∑

k∈Bj

|ψk(y)yk − ck|2
]

+ E
[ ∑

k∈Bj

|ψk(z)zk − ψk(y)yk|2
]

+ 2 Re E
[ ∑

k∈Bj

(
ψk(z)zk − ψk(y)yk

) (
ψk(y)yk − ck

)]
,

where yk was introduced in (8). We shall prove that the first term in the right-hand
side is the main one. To do this, we just have to prove that the second term is
negligible thanks to the Cauchy–Schwarz inequality.

Let us then focus on the second term,

E
[ ∑

k∈Bj

|ψk(z)zk − ψk(y)yk|2
]

≤ 2E
[ ∑

k∈Bj

∣∣(ψk(z)− ψk(y)
)
zk

∣∣2
]

+ 2E
[ ∑

k∈Bj

|ψk(y)rk|2
]

≤ 2E
[ ∑

k∈Bj

∣∣(ψk(z)− ψk(y)
)
zk

∣∣2
]

+ 2E
[ ∑

k∈Bj

|rk|2
]
,

since ∀k, ψk(y) ∈ [0, 1] and rk = zk − yk.
Let us remark that for k ∈ Bj ,

|ψk(z)− ψk(y)|2 ≤ |ψk(z)− ψk(y)| =
∣∣∣∣

(
1− Tj

T‖z‖2
j

)

+

−
(

1− Tj

T‖y‖2
j

)

+

∣∣∣∣

≤
∣∣∣∣

(
1− Tj

T‖z‖2
j

)
−

(
1− Tj

T‖y‖2
j

)∣∣∣∣ =
Tj

T

∣∣∣∣
‖z‖2

j − ‖y‖2
j

‖y‖2
j‖z‖2

j

∣∣∣∣

≤ Tj

T

∣∣∣∣
‖r‖2

j + 2
∑

k∈Bj
Re(rkyk)

‖y‖2
j‖z‖2

j

∣∣∣∣.

Finally, the second term in the right-hand side of (37) is bounded from above as
follows:

E
[ ∑

k∈Bj

|ψk(z)zk − ψk(y)yk|2
]
≤ 2E

[
Tj

T

∣∣∣∣
‖r‖2

j + 2
∑

k∈Bj
Re(rkyk)

‖y‖2
j

∣∣∣∣

]
+ 2E

(
‖r‖2

j

)

≤ 2
Tj

T
E

(‖r‖2
j

‖y‖2
j

+ 2
‖r‖j

‖y‖j

)
+ 2E

(
‖r‖2

j

)
.
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Now, using the Cauchy–Schwarz inequality and a sequence {δT } of positive numbers
going to zero as T →∞, we have

E
[ ∑

k∈Bj

|ψk(z)zk − ψk(y)yk|2
]

(38)

≤ 2
Tj

T

[
2E (‖r‖2

j )
1/2

{
E

(
1

‖y‖2
j

1‖y‖j≤δT

)1/2

+ O(δ−1
T )

}

+ E (‖r‖4
j )

1/2E
(

1
‖y‖4

j

)1/2]
+ 2E

(
‖r‖2

j

)
.

To control the upper bound of (38), we shall use the following lemmas.

Lemma 6. There exists a positive constant C such that

E
(

1
‖y‖2

j

1‖y‖j≤δT

)
≤ C

TTj/2δ
Tj−2
T

[Tj/2]!
.

Lemma 7. There exists a positive constant C such that

E
(

1
‖y‖4

j

)
≤ CT 2.

Lemma 8. For p = 1 or 2, there exists a positive constant C such that

E
(
‖r‖2p

j

)
≤ C

[
T p−1

j

( ∑

k∈Bj

k2p
) logp T

T 2p
+

(
log2 T

T 2

)p

+ T p
j

(
βT

T

)2p]
.

The proofs of these lemmas are postponed to the end of the proof of Theorem 4.
Thus,

E
[ ∑

k∈Bj

|ψk(z)zk − ψk(y)yk|2
]

≤ C
Tj

T

(
TTj/4δ

Tj/2−1
T√

[Tj/2]!
+ δ−1

T

)[( ∑

k∈Bj

k2
)1/2

√
log T

T
+

log T

T
+ T 1/2

j

(
βT

T

)]

+ CTj

[
T 1/2

j

( ∑

k∈Bj

k4
)1/2 log T

T 2
+

log2 T

T 2
+ Tj

(
βT

T

)2]

+ C

[( ∑

k∈Bj

k2
) log T

T 2
+

(
log2 T

T 2

)
+ Tj

(
βT

T

)2]
.

We choose
δT =

1
T 1/2

{[Tj/2]!}1/Tj
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in order to obtain

TTj/4δ
Tj/2−1
T√

[Tj/2]!
+ δ−1

T = 2T 1/2{[Tj/2]!}−1/Tj .

Using the bounds
( ∑

k∈Bj

kα
)

= O(Tα+1
j ) for any integer α ≥ 1,

∑

j

Tα
j ≤ Nα

max = O(Tα/4) for any α ≥ 1, and J ≤ C log2(T ), by Lemma 1,

we finally obtain:
∑

j

E
[ ∑

k∈Bj

|ψk(z)zk − ψk(y)yk|2
]

≤ C
log T

T 3/2

∑

j

exp
{
− 1

Tj
log

(
Tj

2

)
! +

5
2

log Tj

}
+ C

log2 T

T
.

Now, Stirling’s Inequality gives the bound x! > (x/e)x
√

2πx for large enough x,
leading to

∑

j

E
[ ∑

k∈Bj

|ψk(z)zk − ψk(y)yk|2
]

≤ C
log T

T 3/2

∑

j

exp
{
− 1

Tj
log

[(
Tj

2e

)Tj/2

(πTj)1/2

]
+

5
2

log Tj

}
+ C

log2 T

T

≤ C
log T

T 3/2

∑

j

exp
{
− 1

2
log Tj −

1
2Tj

log Tj +
5
2

log Tj

}
+ C

log2 T

T

≤ C
log T

T 3/2

∑

j

T 2
j + C

log2 T

T
≤ C

log2 T

T
.

Hence
J∑

j=1

E
[ ∑

k∈Bj

|ψk(z)zk − ck|2
]
≤

J∑

j=1

E
[ ∑

k∈Bj

|ψk(y)yk − ck|2
]

+ C
log2(T )

T
.

Now remark that if f∗T is defined by (20), we have:

E ‖f∗T − f‖2 =
∑

k∈Z
|ψk(y)yk − ck|2 =

J∑

j=1

E
[ ∑

k∈Bj

|ψk(y)yk − ck|2
]

+ O
( 1

T

)
.

This together with Lemma 2 gives:

E ‖f̃T − f‖2 ≤ (1 + 3ρT ) min
λ∈Λmon

R(λ, f) +
C

T
log2(T ) + O

( 1
T

)
.
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Now using the fact that Pinsker’s weights fulfill (12) and that they belong to Λmon,
we deduce:

lim
T→+∞

sup
θ∈[αT ;βT ]

sup
f∈W (β,L)

T 2β/(2β+1)E θ,f‖f̃T − f‖2
2 ≤ C∗,

which concludes the proof of the theorem using the minimax lower bound. "

4.2.1. Proof of Lemma 6. To prove this lemma, we shall compute more generally
E

(
‖y‖−2

Rd 1‖y‖Rd≤δT

)
, where ‖ · ‖Rd is the classical Euclidean norm in Rd and d ≥ 3.

For notational simplicity, ‖ · ‖Rd will be replaced in the sequel by ‖ · ‖. Let us
recall that y = c + ξ/

√
T , where ξ is a standard Gaussian random variable in Rd.

Denoting B(a; ρ) the Rd-ball centered at a with radius ρ, we have

E
(
‖y‖−21‖y‖≤δT

)
=

1
(2π)d/2

∫

B(−c;δT

√
T )

e−‖x‖
2/2

‖c + x/
√

T‖2
dx ≤ T d/2

(2π)d/2

∫

B(0;δT )

dy

‖y‖2

=
T d/2δd−2

T

(2π)d/2
Vol(Bd(0; 1))

d

d− 2
≤ C

T d/2δd−2
T

[d/2]!
,

where the last inequality follows from the classical expression for Vol(Bd(0; 1)). This
quantity is equal to (2πd/2)/(dΓ(d/2)), where Γ is the Gamma function. "

4.2.2. Proof of Lemma 7. In the same way as in the preceding proof,

E (‖y‖−4) =
T 2

(2π)d/2

∫

Rd

1
‖
√

Tc + x‖4
exp

(
− ‖x‖2

2

)
dx

=
T 2

(2π)d/2

[ ∫

x∈Bd(−
√

Tc,1)

1
‖
√

Tc + x‖4
exp

(
− ‖x‖2

2

)
dx

+
∫

x)∈Bd(−
√

Tc,1)

1
‖
√

Tc + x‖4
exp

(
− ‖x‖2

2

)
dx

]

≤ T 2

(2π)d/2

[ ∫

x∈Bd(0,1)

1
‖x‖4

dx + (2π)d/2

]

≤ T 2

(2π)d/2

[
Vol(Bd(0, 1)) d

∫ 1

0

1
r4

rd−1dr + (2π)d/2

]

= T 2 +
dT 2

(2π)d/2(d− 4)
Vol(Bd(0, 1)) ≤ CT 2,

since the volume Vol(Bd(0, 1)) of the unit ball in Rd is uniformly bounded with
respect to d. "

4.2.3. Proof of Lemma 8. Recall that for k ∈ Bj , rk can be rewritten as follows:

rk =
(
γk(θ, θ̂T )− ck

)
+

1√
T

(
ξk(θ̂T )− ξk(θ)

)
+

1√
T

(
ξk(θ)− ξk,[ ](θ)

)
.



28 I. Castillo, C. Lévy-Leduc, and C. Matias

Thus, for p = 1 or 2,

(39) E
(
‖r‖j

2p) = E
[( ∑

k∈Bj

|rk|2
)p]

≤ CE
[( ∑

k∈Bj

∣∣γk(θ, θ̂T )− ck

∣∣2
)p]

+
C

T p
E

[( ∑

k∈Bj

∣∣ξk(θ̂T )− ξk(θ)
∣∣2

)p]
+

C

T p
E

[( ∑

k∈Bj

∣∣ξk(θ)− ξk,[ ](θ)
∣∣2

)p]
.

Let us first control the last term of the upper bound (39) using that there are Tj

elements in Bj :

1
T p

E
[( ∑

k∈Bj

∣∣ξk(θ)− ξk,[ ](θ)
∣∣2

)p]
≤ 1

T p

( ∑

k∈Bj

1
)p−1

E
[ ∑

k∈Bj

∣∣ξk(θ)− ξk,[ ](θ)
∣∣2p

]

≤
T p−1

j

T p
E

[ ∑

k∈Bj

∣∣ξk(θ)− ξk,[ ](θ)
∣∣2p

]
.

But,

E
[ ∣∣ξk(θ)− ξk,[ ](θ)

∣∣2p ]

= E
[∣∣∣∣

1√
T

∫ T/2

−T/2
e−2ikπt/θ dWt −

1√
θ[T/θ]

∫ [T/θ]θ/2

−[T/θ]θ/2
e−2ikπt/θ dWt

∣∣∣∣
2p]

≤ C

T p
E

[∣∣∣∣
∫ T/2

−T/2
e−2ikπt/θ dWt −

∫ [T/θ]θ/2

−[T/θ]θ/2
e−2ikπt/θ dWt

∣∣∣∣
2p]

+ C

(
1√

θ[T/θ]
− 1√

T

)2p

E
[∣∣∣∣

∫ [T/θ]θ/2

−[T/θ]θ/2
e−2ikπt/θ dWt

∣∣∣∣
2p]

≤ C
θp

T p
≤ C

βp
T

T p
.

Finally, the last term in (39) can be bounded as follows:

(40)
1

T p
E

[( ∑

k∈Bj

∣∣ξk(θ)− ξk,[ ](θ)
∣∣2

)p]
≤ C

T p
j βp

T

T 2p
.

Let us now control the first term of the upper bound (39). For this, we shall use
Lemma 3, which gives:

E
[( ∑

k∈Bj

∣∣γk(θ, θ̂T )− ck

∣∣2
)p]

(41)

≤ C

[( ∑

k∈Bj

k4|ck|2
)p

(
log2 T

T 2

)p

+
( ∑

k∈Bj

1
)p

(
βT

T

)2p]

≤ C

[(
log2 T

T 2

)p

+ T p
j

(
βT

T

)2p]
.
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Now we address the second term of (39) by using Lemma 4, which provides the
following upper bound:

1
T p

E
[( ∑

k∈Bj

∣∣ξk(θ̂T )− ξk(θ)
∣∣2

)p]
≤ C

T p

( ∑

k∈Bj

1
)p−1( ∑

k∈Bj

k2p
)( log T

T

)p
(42)

≤ CT p−1
j

( ∑

k∈Bj

k2p
) logp T

T 2p
.

The inequalities (40), (41), and (42) lead to the expected result. "
4.3. Additional comments on Equation (3). Recall that for any real-

valued function G with finite total variation, the Stieltjes integral with respect
to G is defined in the following way. There exists a decomposition G = G1 −
G2, where each Gi is an increasing function. For any continuous function ψ and
any subdivision π = {−T/2 = t0 < t1 < . . . < tm = T/2} of the time interval
[−T/2; T/2], with |π| = max(ti+1 − ti), we define

∫ T/2

−T/2
ψ(t)Gi(dt) = lim

|π|→0

m−1∑

j=0

ψ(tj)
(
Gi(tj+1)−Gi(tj)

)
, i = 1, 2,

and ∫ T/2

−T/2
ψ(t)G(dt) =

∫ T/2

−T/2
ψ(t)G1(dt)−

∫ T/2

−T/2
ψ(t)G2(dt)

(the first limit is independent of the choice of the subdivision π as is the resulting
Stieltjes integral from the choice of the Gi’s). We then denote

∫ T/2

−T/2
e−2ikπt/θ̂T dXt ! uθ̂T

(T/2)XT/2 − uθ̂T
(−T/2)X−T/2 −

∫ T/2

−T/2
Xt uθ̂T

(dt).

Note that

Xt =
∫ t

0
f(s/θ) ds + Wt = F (t) + Wt,

and a simple integration by parts formula gives that

∫ T/2

−T/2
e−2ikπt/θ̂T f(t/θ) dt

= uθ̂T
(T/2)F (T/2)− uθ̂T

(−T/2)F (−T/2)−
∫ T/2

−T/2
F (t) uθ̂T

(dt).
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