Lyapunov exponents of random product of diffeomorphisms

schedule le mardi 26 février 2019 de 10h30 à 12h00

Organisé par : David Burguet et Pierre-Antoine Guiheneuf

Intervenant : Mauricio Poletti (Orsay)
Lieu : Jussieu, salle 16.26.209

Sujet : Lyapunov exponents of random product of diffeomorphisms

Résumé :

For the space of $C^1$ volume preserving diffeomorphism on surfaces Bochi proved that generically they are uniformly hyperbolic or have zero exponents. In particular if the surface is not a torus, then generically we have zero exponents.

We prove that if instead of one diffeomorphism we take several of them and iterate randomly, then there exists a $C^1$ open and dense set with positive exponents.