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CHAPTER 1

Reconstruction

In these lecture notes we want to present an introduction to (some of)
the analytical aspects of regularity structures, with an emphasis on how to
construct (some of) the most relevant objects.

1.1. Distributions

These lectures will concern the space 2'(RY) of distributions or gen-
eralised functions. We consider the space 2(R¢) := C(R?) of smooth
functions with compact support on R?.

A distribution on RY is a linear functional T : C°(R?) — R such that for
every compact set K — R? there is r = rg € N

T(9)| < |@lcr := max ¥ @], Vo eCP(K) (1.1.1)

|k|<r

where throughout these lecture notes f < g means that there exists a constant
C > O such that f < Cg. If one can find a r € N such that (I.1.1]) holds for
all compact set K — R¢ then we say that T has order r.

Every locally integrable (in particular continuous) function f:R? — R
defines a distribution by integration:

f() = Rdf(x)q)(x)dx, pe2(RY).

A famous example of distribution from quantum mechanics is the Dirac
measure &, at x € R?

S(9)=9), ¢ecC*(RY)
One can also differentiate any distribution 7 € 2’(R?) and obtain a new
distribution: for k € N¢
I (9) := (1)t (dkg).
Distributions form a linear space. If ¢ € C*(R?) and T € 2'(R?) then it
is possible to define canonically the product ¢ - T =T - ¢ as
Q- T(y)=T-9(y):=T(py), VyeCI(R?).

However, if T,T' € 9’ (Rd), in general there is no canonical way of
defining T - T'.
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One may use some form of regularisation of T, T’ or both. Then, the
result could heavily depend on the regularisation and thus be neither unique
nor canonical. For example, there does not seem to exist a reasonable way
to define the square (J,)? of the Dirac function.

Regularity structures give a framework to define products of certain
distributions, and to prove well-posedness of some PDEs where such distri-
butions appear.

1.2. The main question of this chapter

For every x € RY we fix a distribution F, € 2'(R?) and we call the family
(Fy),epa @ germ if for all y € &, the map x — Fy(y) is measurable.

Problem: Can we find a distribution f € 2'(R?) which is locally well
approximated by (Fy) cpa?

1.2.1. Taylor expansions. For example, let us fix f € C*(R?), and let
us define for a fixed y > 0

_\k
Fe(y):= ), 6kf(x)u, x,yeRe. (1.2.1)

k!
[k[<y
Then the classical Taylor theorem says that there exists a function R(x,y)
such that
fO)=F0)=Rxy),  [Rxy)|<x—y[ (122)

uniformly for x,y on compact sets of R?. By (I.2.2)) we say that the distribu-
tion defined by f is locally well approximated by the germ (F),.ga formed
by its Taylor polynomials.

1.2.2. Scaling. Let us introduce now the fundamental tool of scaling:
forall @ € 2(R4), A > 0 and y € R? we set

1 w—
Ok (w) = Wgo(Ty), weR?, (12.3)

When y = 0 we write ¢p* = q)g“,
Then the local approximation property (1.2.2)) implies

Proposition 1.2.1. Let f € C*(R?), y> 0 and Fy be defined by (I.2.1)). Then
(f=F)(@})| < A%, (1.2.4)

uniformly for y in compact sets of R%, A €]0,1] and ¢ € 2(B(0,1)) with
flol<1.
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PROOF. By (I1.2.2) we have f — F, = R(y,-) and |R(y,w)| < |w—y|".
Since ¢} is supported by B(y,A) with §|@}| = {|g],

uniformly for y in compact sets of R?, A €]0,1] and ¢ € 2(B(0,1)) with
flol <1. O

In this context we have another simple formula, which does not seem so
well known.

Proposition 1.2.2. Let f € C*(R?), y> 0 and Fy be defined by (1.2.1)). Then
(F—F)(oh)| < (y—z+ )", (1.2.5)

uniformly for y, z in compact sets of RY, A €]0,1] and ¢ € 2(B(0, 1)) with
flol <1

PROOF. Let us note that we can Taylor expand also the derivatives of f
for [k| <y

DT YRS L B S N TP e )
[e|<y—|k|

uniformly for x,y on compact sets of R¢. Then we can write

W)k
Fw) = dtrp) WY

k!
|kl<y
= Z 2 ak-l-Ef ) —I—Rk(y ) M
< k!
|kl <y \I€[<y—Ik]
K )"
Z R*(v,2) .
|k|<y !
Therefore we obtain the expression
)k
F.(w) — ~ > Ry2) . (1.2.6)

k| <y
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In particular

k |W—)’|k
Fw-Rw)l< Y R0 2
lkl<y
< D =2 Mw—yF < (ly—z2l+ lw—y)7
k| <y

since a'b® < (a+b)'(a+ D)’ for a,b,t,s > 0. Now by (1.2.3), for all ¢ €
2(B(0,1)) with {|¢| < 1

|, (0 = B o o)
R

< sup qy—d+ww—ybﬂﬁ¢ﬁ
weB(y,4)

<(y—z+A).
We have obtained (1.2.5]). O

1.3. Reconstruction

We define throughout the paper
& :=2"" neN.

We have seen in (1.2.4) that for the germ (F}) cga related to a Taylor expan-
sion of order y > 0

<egl,

((f=F)(¢y)

uniformly for y in compact sets of R?, ne N and ¢ € 2(B(0,1)) with
§|@| < 1. This property does not rely explicitly on the smoothness of f,
and seems to be a promising way of expressing the fact that (Fy>yeRd locally
approximates well (at order y > 0) the distribution f.

This motivates the following:

Definition 1.3.1. Let (Fy),cge € 7' (RY) a family of distributions. We say

that f € 2'(R?) is a reconstruction of (Fy)yera if there exists ¥ > 0 such that
forallpe P

<&l (1.3.1)

(f=F)(¢)

uniformly for y in compact sets of R? and n € N.

We are going to see below sufficient conditions for a family (F) yeRd &

2'(R?) of distributions to admit a reconstruction. A first important remark
is that, with this definition, there is at most one reconstruction for a given

(F;’ ) yeRd
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We are going to use a number of times the following formula: for all
TeZ and 0, g€ P

T(p=g) = JRdT(GD(- —y))g(y)dy.
With the notation @y(x) := @(x —y) = (py1 (x), recall (I.2.3]), we obtain the
basic formula

T(p+g)= fRd T(¢y)g(y)dy, (1.3.2)
Lemma 1.3.2 (Uniqueness). Given any (Fy) ga € 2'(R?) and y > 0, there
is at most one reconstruction of (Fy) g in the sense of Definition|[1.3.1]

PROOF. We fix a test function ¢ € 2 with { @ = 1, and two distributions
f,g € 2" which satisfy, uniformly for y in compact sets,

Tim |(F=R)(ef)| = Jim |g=F)(ef)| 0. (133)

We set T := f —g. For any y € & we have T(y) = lim,,_,o, T (y = @). If
K is any compact set which contains the support of ¥ we have by (1.3.2))

S TN

< |yl sup|T(@5")|.
yekK

It remains to show that lim,—,c T (@§") = 0 uniformly for y € K, for which it
is enough to observe that

T (o) =11 (95") —glof)| < [(f = B) (o) + (g — Fy) (")

and these terms vanish as n — oo uniformly for y in compact sets, by (1.3.3).
O

1.4. Coherence

We have seen in (I.2.5) that for the germ related to a Taylor expansion
we have for any y > 0

(F=FR) (o)< (fy—zl+en)?,  [(f=F)(ef)] < &,
uniformly for y,z in compact sets of R?, n e N and ¢ € 2(B(0,1)) with
flol <1.

However the first estimate implicitly relies on the information that the
distribution F; — F), is a locally bounded function: suppose indeed that this
is not the case; then we expect that the quantity (F; — F,)(@y") does not
necessarily remain bounded as n — o0; this is the case for example if F; — F,,
is a Dirac mass at y, where

1
(F, = F)(gf") = — 9(0). (14.1)
Y
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Therefore, if we want to consider more general families (Fy),cga of genuine
distributions, we expect (1.2.5) to be too strong a requirement.

Formula (1.4.1) suggests that a weaker version of (1.2.5)), which could
be convenient in this context, may be obtained by allowing a multiplicative
factor ey with & <0 in (L.2.5):

(F.— F) (02| < e (|y—z| +&n)". (1.4.2)

However, it turns out that may not be strong enough to obtain (1.3.1):
the multiplicative factor €5, which explodes as n — o if o < 0, makes a
better control on the factor (|y — z| + €y) necessary, as can be seen from the
proof of Theorem below. It turns out that a sufficient condition for the
existence of a (unique) reconstruction is

(F,—F)(oV)| < e (ly—zl + &v) "%,

uniformly for z,y in compact sets of R?, n € N, We call this property coher-
ence, see below.

Definition 1.4.1. We say that a germ (F;) cga < 9" is (o, 7)-coherent for
veR, and o0 < Y A0, if there exists ¢ € D(R?) with § @ # 0, such that

|(F. = F)(¢y")

uniformly for z,y in compact sets of R%, n e N.
We denote by %7 the set of (@, 7y)-coherent germs.

<eX(ly—z+&)" % (1.4.3)

Remark 1.4.2.

e Measurability of the map x — F,(y) is a technical assumption,
which is needed in the definition of suitable approximations to the
reconstruction of (F)_cpa-

e It is a non obvious (but true) fact, see [2, Proposition 13.1], that
relation (3.3.1) actually holds uniformly over ¢ € Z(B(0, 1)) with
bounded | @ |cr«. More precisely:

(B = B)(95)] < |@llcre &7 (Iy — 2| + €)%, (1.4.4)

uniformly for x,y,z in compact sets, n € N and ¢ € 2(B(0,2)),
where rg ;= min{ke N: k> —a}.
e In particular, %7 is a vector space.

1.5. Hairer’s Reconstruction Theorem (without regularity structures)
We define the following family of test functions:

Br:={yeZ(B(0,1): |ylc <1} (1.5.1)
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THEOREM 1.5.1 (Reconstruction Theorem). Suppose that (F;) cpa © 2
is a (a,7y)-coherent germ in the sense of Definition with y > 0, namely
there exist Yy > 0, & < yand a ¢ € 2(R?) with § ¢ # 0, such that

|(Fy = F)(@")| < &7 (|x—y[ +&)" %,

uniformly for x,y in compact sets of R%, n e N. Then there exists a unique
KF € D' (R?) such that

(ZF —F)(w")| s €] (1.5.2)

uniformly for x in compact sets of R%, ne N, y € B,, see (I.5.1), for any
fixed integer r > —aL.

e This result was stated and proved by Martin Hairer in [S, Thm.
3.10] for a subclass of germs related to regularity structures. He
used wavelets.

e Later Otto-Weber [7] proposed an approach based on a semigroup.
This corresponds to a special choice of the test functions @, v. See
also [6]].

e The above statement is a slight improvement of [2, Thm. 5.1]. It
i1s more general and requires no knowledge of regularity structures.
The improvement is due to [8] and concerns the fact that it is not
necessary to impose a homogeneity condition on the germ (see
below).

e This result can be seen as a generalisation of the Sewing Lemma in
rough paths [4, 3].

e The construction is completely local: constants and even the expo-
nent o can depend on the compact set.

e We also cover the case ¥ < 0 (see below).

e There is clearly an analogy between the Reconstruction Theorem
and the Sewing Lemma: see [1, section 5] for a discussion.

Example 1.5.2. Let A < R be a (locally) finite set such that o := infA € R.
Let F = (F,) cga be a germ such that, for some y > o and a ¢ € D (R?) with
S(p # 0, we have

(F=FR)(e)ls ), ez—y"",
acA: a<y (1.5.3)
uniformly for z,y in compact sets and for € € (0,1].
Then the germ F is (o, Y)-coherent, since
ey =% M ey < €% (e + [z —y)T

For example we saw in (1.2.5) that the Taylor expansions (1.2.1) satisfy
(1.5.3) with A = N and o0 = 0.
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Remark 1.5.3. If (F,) .pa © 2" is a (&, y)-coherent germ and & > 0, then
the map z — F; is constant, so that we implicitly assume from now on that
o < 0. In order to prove the claim, we apply the triangular inequality

|(Fy = E)(9)| < |(Fy = F) (9)| + |(F: = Fo) (95)| — 0
as n — +0o0 (uniformly for x,y,z in compact sets) by the coherence assump-
tion. Then we obtain for all y € & by (1.3.2)

(F—E)(y) = lim (K~ F)(w9%)
= lim | (B—F)(e™) y(z)de=0.

n—+0o0 R4

1.6. Sketch of the proof

In this section we give a sketch of the proof of Theorem|(1.5.1
We fix a (o, y)-coherent germ (F) .pa © 2, i.e. we suppose that there
exist y > 0, < 0 and ¢ € Z(R?) with {¢ # 0, such that
|(F. = F)(of)] < & (ly -2 + &), (1.6.1)

uniformly for z,y in compact sets of R¢, n € N. We find in an elementary
way a related ¢ € 2(B(0,1)) such that

fRdWy)dy:l, thly"@(y)dy:O, VkeN’: I<|k<r—1,
(1.6.2)

for a given r > —a, and (1.6.1)) holds with ¢ replaced by @, see [2, Lemma
8.3]. Then we define

p:=@>«p and &:=2"", neN, (1.6.3)

where we recall that Y = y;" is a scaling of ¥ as in (I.2.3). Note that
{p ={®>{¢ = 1. This peculiar choice of p ensures that the difference
1

p2 —p is a convolution:
p%—pz(i)*qv), where we define Q= (f)%—g?)z. (1.6.4)
By (1.6.2),
fRdyk¢(y)dy=O, VkeN?: 0< |kl <r—1. (1.6.5)

This will be used below to subtract suitable Taylor polynomials. Moreover it
follows that

pEt —pfn = (p2 —p)E =« G (1.6.6)
With these definitions, we can now set

A= | Ee v e vez, a6
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recall (1.3.2)). We study the function
fen(2) == fo— Fx(ps") = (F.— F)(p7"), x,zeRY. (1.6.8)

We write f , as a telescoping sum:
Frkr1(2) = fur(z) = (F; —F)(p! — )
~(F=F)@" %) = | (F-F)@%) 6% 0—2)dy

_ j <Fy—Fx><¢;k>¢€k<y—z>dy+f (F.— F)(98) % (y—2)dy.
R4 R4

e J N J

g;c,k(z) 8 (2)
(1.6.9)
where again we use (1.3.2). We have first, for all z € RY
ge(@)] <[@%|p sup [(F-FR) (¢ <efel “=¢,
ly—zl<&
since | @%| ;1 = | @[ ;1. Then we obtain for all y € ¥
| @ v < el vl (16.10)

Now we want to estimate
| du@v@e= | (-R)@0 @) e, 61D
If K is the support of W and K; is the subset of R¢ which has distance < 1

from K, we obtain that ¢ = ¥ has support in K;. Then by the coherence
condition

[ERCIEE:
R4
Note now that by

(@ w)(y) = Rd(ﬁg(y—Z){w(Z)—py(Z)}da

< sup [(Fy — Fo) (@7 9% = wllp < &7 [@% <y
yeki

where py () 1= 2 j5<,—1 % (- — y)* the Taylor polynomial of y of order

r— 1 based at y; therefore
[(@° = w) ()| < [ wlcr JRd 95— lz—y"dz < [Wlcr @[ e", yeR?
We obtain

[ dutrvred < e vl (16.12)
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In particular we obtain by m-m since ¥ > 0 and o + r > 0, that

fx,n( fxO +Z gxk +gk W)]

converges as n — +o0 to a distribution of order r. Note now that F(p®)
converges to Fy in &', since by (1.3.2)

fRd F(p) y(z)dz = F(p™ «y) > Fx(y), Ve,

We obtain by (1.6.8) that f,, converges to a distribution ZF in 2’. Moreover,
since for all n > ¢ we have

Fen(W) = fro(w) + 2 ger(W) + 8L (w)], (1.6.13)
letting n — 400 we obtain that for all xe R, w € Z and £ € N
RF (y) = F(y) + fre(W +Z gei(w) +gl(w)] . (1.6.14)

Formula is due to [8].

We want now to prove the reconstruction bound (1.5.2]). We recall the
following result, proved in [2, Lemma 9.3]: let A, > 0 and G : RY >Ra
measurable function; then for all x € R? and y € 4,, see (I.5.1)),

|, 601 @ w0 oy| <41y minfe/aty s al.

B(x,A+¢)
(1.6.15)
By (1.6.1T)) and (1.6.13)
] j DU () de| <49 B min{e/a 1) sup  |(F— F)(@%)].
R4 YEB(x,A+¢)

For y € B(x,A + &), by (1.6.1)) with ¢ replaced by @, we have
|(Fe=F)(@7)] < & (lx—y[+ &) < max{g, A} g

We have obtained

f ¢ (DY () dz
Rd

<

~

AV—a—r (x+r if 2
{ & M= (1.6.16)

gl ifg=A1"

We now fix A = g. We want to estimate fy := #ZF — F, and in particular
Fe(wit). We write

WO < e (W) + 1(Fx = freo) (W)
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First by (L.6.3)
Fv) = [ | (=)@ 6% 0= v vz,

so that
e (WE < 9% o1 Wil sup |(F, — F) (@57)]
z€B(x,&),|y—z|<€&
Now we write |(F, — F) (¢)")| < [(F, — Fo) (¢5°)| + | (F, — F) (¢y")| and
sup (B —F) (¢ <efel “<¢gf,
z€B(x,8),[y—z|<&
sup  [(F— Fo) (@) < & (e +28)" " < €/
7€B(x,&),[y—z|<¢&
so that we obtain
[fee(wi)| < g, (1.6.17)
and this argument holds for any y € R. Now by (1.6.14)
o8]
(fe— feo)(WE) = > [gha(w) + gl (w)]
k=

and by (1.6.10)-(1.6.16),
|(Fe= Fe) (W] < D [lgr (W) + [gd (w)]

>0
Y—a—r OH—r
< Z [ez + sk]
k=/
Y—0—r atr Y
c& & i et

SN o TTog v NE

since ¥ > 0 and @ + r > 0. The proof is complete.

1.7. The Reconstruction Theorem for y < 0.

In Theorem we have proved the existence and the uniqueness of
the reconstruction of a (@, y)-coherent germ in the case of y> 0. If y <0
then we have a weaker result.

THEOREM 1.7.1. Suppose that for a given F : RY — @'(R?) there exist
y<0and o <, such that for all ¢ € 2(R?)

|(Fy = E) (@) < & (Jx—y[ + )",
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uniformly for x,y in compact sets of R, ne N. Then there exists a (non-
unique) ZF € 9'(R?) such that

g ify<o0

. 1.7.1
l+n ify=0 (1.7.1)

K%F—EWWNS{

uniformly for x in compact sets of R, neN, {we 2(B(0,1)) : |y|c < 1}
with a fixed r > —a.

PROOF. If one checks the proof of the case ¥ > 0, one sees that the
convergence of the different terms depends either on y > 0 or on o +r > 0.
More precisely, the estimate (I.6.10) on g} is useful if y > 0, while the
estimate (I.6.12) on g’ , is useful if a 4+ r > 0. If y < 0, the estimate on g}
is simply not good eno{lgh.

On the other hand, for ¥y < 0 the reconstruction bound 1s weaker,
since & or n diverge as n — oo, and we do not state that there is a unique
choice for ZF .

In fact, in order to prove the statement we can modify the approximating
sequence f, defined in (I.6.7), by eliminating the term g} whose convergence
is based on v > 0. However, g;, .» given by ([.6.TT) above, depends on x € RY,

while we want the approximating sequence f, € 2’ to be independent of any
base point.

We define, recalling (1.6.7) and (1.6.9),

n—1

"

= fn - ngv
k=0

fx,n(W) = fu(y) — Fx(p gn*‘lf fxn Zg

Then, by (1.6.13)), for all n > ¢,

fx.,n( fxé +ngx Zg fxﬁ +ngx

(1.7.2)
By the estimate (I.6.12) on g/ ,, we obtain that f, ,, and therefore f,, con-

verge in 2’ and we can write for all y € 2, xe R and £ € N

ZF (y) =1im fu(y) = F(y) + fee(y +ngx (1.7.3)
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For the reconstruction bound (T.7.1)), we want to estimate f, := ZF — F,,
and in particular f,(y;’). We write

AW < [Fee (W) + [ (fre = Free) (W)
Now, bymand1l.7.3) if’y<0

|(fx fxﬁ Z |gxk
k=t
<X e e e
k=t
since @ +r > 0. By (1.6.17) and by (1.6.16)), if y <0

l—1

Foewi) < ooy + 3 8t (we)
k=0

-1
<el+ Z 2k < olnit,

k=0
In the case ¥ = 0 we have rather
‘sz,é(ll/)fé)’ ‘fxé l//x |+Z ‘g < 1+4.
k=0
The proof is complete. U

1.8. Homogeneity

Definition 1.8.1. Let F be a germ. We say that F satisfies a homogeneity
bound with exponent & € R if

E(ye)| < &)
uniformly for x in compact sets, n € N and y € %, with r = min{n € N :
n> —a}, see (1.5.1).

We recall the following result, which is proved in [2, Lemma 4.12].

Lemma 1.8.2 (Homogeneity). Let F = (Fy),.pa be a (¢, y)-coherent germ.
For any compact set K < RY, there is a real number ag < 7y such that

\F(0%)| < €% uniformly forxe K andne N, (1.8.1)
with @ as in Definition

Therefore coherence of a germ implies a local form of homogeneity of
the same germ. However in Definition |1.8.1| we require the coefficient & to
be uniform over the compact set K.
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If a germ satisfies a homogeneity bound with exponent & € R, then it
satisfies a homogeneity bound with exponent &’ for all &’ < @&. Therefore
the set of & € R such that a fixed germ satisfies a homogeneity bound with
exponent & takes the form | — 00, b] or | — o0, b[; in particular the exponent
which appears in the proof of Lemma|[I.8.2]is not necessarily optimal.

Definition 1.8.3. We denote by 9%* the set of («t, y)-coherent germs which
satisfy a homogeneity bound with exponent Q.

1.9. Negative Holder (Besov) spaces

Given « € | — 0, 0[, we define €% = €% (R¥) as the space of distributions
T € 2’ such that .
Tlw)l e, (1.9.1)
lvlcra
uniformly for x in compact sets, y € %,,\{0} and n € N, where we define rg
as the smallest integer r € N such that r > —qa. For any distribution T € 2’
and & < 0, we define | T'||a k) as the best constant in (T.9.1):

T(ye)
ITlgagy = sup L)l

. (1.9.2)
zeK,neN, ye B, gr?H‘I/HC’a

Then T € 4% if and only if || T4« ) < o0, for all compact sets K < RY,
We want now to show that a coherent germ which satisfies a homogeneity

bound with exponent & < 0 has a reconstruction (unique or not) which

belongs to the Besov space €%, and the map F +— ZF is linear continuous.
We introduce the semi-norms

F.—F,) (@&
T p— Ol( :—F)(g) )Ia,
OETT ) ek nen EX (|2 + &)Y

hom |, ’Fx( )fn)’

- 1= sup =
K,p,a a
¢ xeK, neN &

(1.9.3)

I : (1.9.4)

where @ is as in Definition We can now state the following result.

THEOREM 1.9.1 (Reconstruction Theorem and Holder spaces). Let o <
yandy # 0. Let (Fy),cpa be a (0, y)-coherent germ with local homogeneity
bound & < v, namely F € 4%%Y. If & > 0, then ZF = 0. If & < 0, then
RF belongs to €% and for every compact set K < R?

|12F gy < € (WFIES g oy + IFIEG) . (19:5)

where @ is the test function in the coherence condition (1.4.3) and € =
Co,y,a.d,9 < 0 is a constant which depends neither on F nor on K.
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PROOF. We fix a compact set K — R and y € K. When & > 0 then > 0

and ZF = ( satisfies i
< g%

~ Cpn

}Jy(‘P;’")
and we have uniqueness of the reconstruction by Lemma Henceforth
we fix & < 0. Let ¢ be the test function in the coherence condition (1.4.3).
Let f = ZF be areconstruction of F. Fix a compact set K: we want to show
that

|f(¢)§N)| < (IF coh F hom 1.9.6
_sup a X |H |HK4,(p,oc,y+ ||| H|K2,(p,& (1.9.6)
xekKy, NeN N

for some ¢’ = Qlotméhdxp .
Then we have, uniformly for x € K; and N € N,

(f = F) (@) = ¢ |(f — R (wf ')

’}/ .
€ f 0
< |Fh {N A

< oo. Set 7:=min{r e N: r > max{—o,—0a}}.

KoY ) (14 |logey]) ify=0

for a suitable ¢/ = c’a’%a’w. Since @ < v # 0, we bound 8]7\; < ef, for all

n € N. Recalling (1.9.4), by the triangle inequality we obtain
PO I =B+ Rle™)

sup 2 <

h a : 7
xeky, NeN €N xeK,, NeN Y
h h
< (I +ea) CIFIZ, g oy + NFIIR 9a
which completes the proof of (1.9.6). O

Also in this setting, we can show that (1.9.1)) holds for one v if and only
if it holds for all y: see [2, Theorem 12.4].

1.10. Singular product

Let fe@* with o > 0 and F(w) = X, & f() (W;!y)k. Let also
g€ €P with B < 0. We define the germ P = (P, := g- F) epd a8

P(p)= (g F)(9):=g(0oF), ¢e2.

Note that this makes sense and defines a distribution in &’ since Q F, € 9
forall p € 9.

THEOREM 1.10.1. If f € € and g € €P, with o > 0 and B <0, then
the germ P = (Py),cpa is (B, 0+ B)-coherent and satisfies a homogeneity
bound with exponent 3,

(P =P (@) < el (ly—2l+&)  [B(g)

uniformly over z,y in compact sets, n € N and ¢ € B,, with r > —J.

<P,
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PROOF. Since g € € we have for all £ € (0,1], w € 2(B(0,1)) and
yekK
e (W) < lglgs k) Wl eP . (1.10.1)
Fix now any ¢ € 2(B(0,1)) with { @ # 0 and || < 1. By (1.2.6)), for any
v,z € K (and 7y replaced by )

k
EEOEICEOE =

0<k|<a

where [R*(y,z)| < I fllze ) |z —y|*~ K. We have for fixed y € R?, k e N
and € >0
(w=y) 5 (w) =My (w), where w(w):=who(w).

Then y € 2(B(0,1)) and |y|cr < |@llcr < 1, hence it follows by (I.10.1])
that

8 (=9 ) 1 = ellg (y5) < lglgn g &P, (1.102)
We thus obtain, uniformly for z,y € K and € € (0, 1],
(P = PO < Iflgeiy l8lgny Y, €M z—y[*
0<|k|<e
B (K) P (lz—y|+¢)%,

which completes the proof of coherence. We next prove homogeneity. By

(1.10.2), we obtain
ol < Y Je(C-ef)

0<|k|<y

k
< l8llgs k) Z ePrlK
0<k|<y

<l el S €M
0<|k|<y
SB,

S | flge lg

S (x)
k!

*f(x)

k!

< I lgexy lgles k)
uniformly for x in compact sets and € € (0, 1]. This completes the proof. []

If o + B > 0 the (unique) distribution ZP can be used to construct a
canonical product of f and g. Moreover ZP € €P.

If o + B < 0, the (non-unique) distribution %P can be used to construct
a non-canonical product of f and g. Moreover ZP € €P.
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1.11. A special case

Let us assume that F, € C(R?) for all x € R? and moreover that the map
RY x R? 5 (x,y) — Fi(y) is continuous. We recall that in Section (1.6 we
proved that for all y € &

Z(F)(y)= lim | F(pf)y(z)dz.

n—+0o0 R4

Now if (x,y) — Fy(y) is continuous, we obtain by dominated convergence
that

#F)W) - | FOvE

namely Z(F) is also a continuous function and coincides with z — F(z).

For an example one can consider the germ F' defined by the Taylor
expansion of a smooth function f, see Sectionm In this case it is clear
that Z(F) = f is a function and f(x) = Fy(x), x € RY,

1.12. Recent developments

e Reconstruction Theorem for Germs of Distributions on Smooth
Manifolds
by Paolo Rinaldi and Federico Sclavi
e On a Microlocal Version of Young’s Product Theorem
by Claudio Dappiaggi, Paolo Rinaldi and Federico Sclavi
e Besov Reconstruction
by Lucas Broux and David Lee
e Reconstruction theorem in quasinormed spaces
by Pavel Zorin-Kranich
e A stochastic reconstruction theorem
by Hannes Kern


https://arxiv.org/abs/2012.01261
https://arxiv.org/abs/2012.01261
https://arxiv.org/abs/2104.12423 
https://arxiv.org/abs/2106.12528
https://arxiv.org/abs/2107.08666
https://arxiv.org/abs/:2107.03867




CHAPTER 2

Models and modelled distributions

In the previous chapter we have introduced the notion of coherent germs
and the operation of reconstruction. In this chapter we define a special class
of germs which arise in regularity structures.

2.1. Pre-models and modelled distributions

We are going to study germs which can be written as suitable linear
combinations of a fixed finite family of germs. First we introduce the notion
of pre-models:

Definition 2.1.1. A pre-model is a pair (IL,T") where
(1) (TI) icl xerd IS a family of germs, with I a finite index set
(2) RY xR 5 (x,y) — (T¥))i jer is a matrix-valued function such that

=Y ILTY,  jel xyeR’ 2.1.1)
i€l
and we suppose that

(3) there exist (0;)ic; = R and a @ € 2(RY) with § ¢ # 0 such that
T (@] < &,
uniformly over x in compact sets of R¢, n e N.
We denote O, := min;cj @;.

Example 2.1.2. For a fixed y > 0, the family of classical monomials

. — )/

() = .,y), JeENY yweR? jel:={ieN’:|i <y},
J:

with o; = |i|, any ¢ € 9 and

(x—y)™"
(=i’

orms a pre-model. Note that for j € N, w e R4, we use the notation
p J

d d d
T : j . Ji T :
=Yg whe=T]wl =] ]!
k=1 k=1 k=1

21

F;jy = :ﬂ'(lél) S Nd,
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with the convention 0° := 1.

Now we can define the notion of modelled distribution.
Definition 2.1.3. Let (I1,T) be a pre-model, and let ye R. If f: R? — R/
is measurable locally bounded and satisfies

(1) f' =0 whenever o; > 7,
(2) foralliclwith o; <7,

S le—y[T,

fi=> T A

jel

£l <1,

uniformly for x,y in compact subsets of R?,
then we call f a distribution modelled by (I1,T"), or simply a modelled
distribution, and we write f € @(yn.r)'

Given a pre-model (IL,I") and a modelled distribution f € .@(YH r)> we
define the germ
L fo, =Y TLfl,  xeRY (2.1.2)
i€l
We want to show that (I1, /) is (min; &, y)-coherent (note that if ¥ < min;&
then f and (I1, f) are null). Using the reexpansion property (2.1.1)) we have

ST f) = = Y T (fy YTif )

iel iel jel
Therefore
(TL, . =L Fy)(9F) = = > T () (fy s )
i€l Jjel
namely
(L, o =T ),)(95)] < D % e =y < e¥(e +|z—y)" %,

iel
uniformly for y,z in compact sets. Moreover
KIL, £y (%) < Y AT (F)| < > 6% < €%,
i€l i€l
uniformly over y in compact subsets of R“. In other words we have proved
that
Proposition 2.1.4. If (IL,T") is a pre-model and f € @(YH,F)’ then (IL, f) is a

(@, y)-coherent germs with uniform homogeneity bound with exponent Q.. In
other words, (I1, f) belongs to %%,
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2.2. A special case

We have seen in Section [L.11] that under certain sufficient conditions on
the coherent germ (Fy ), ga, the reconstruction ZF is a function and has an
explicit form. An important example of this setting, where moreover ZF is
a (locally) Holder-continuous function, is the following:

Example 2.2.1. Suppose we have a pre-model (IT,I") and a modelled distri-
bution f e 9(7/111") as in Section We suppose that for all i e /

HHiHcﬁ(Rd) <+

uniformly for x in compact subsets of R, where 8 €]0, 1], namely IT. is
Holder-continuous (locally uniformly in x). Then we can write unambigu-
ously y — IT.(y) and

Y Fe(y) o= ) AT ().
iel

Now by the reexpansion property (2.1.1)

Fiy)— Fuly) — — SILy) (f;— Fi@fj) |

iel jel
Then
B (y) = B )] < [Fx(y) = Fe (9)] + [Fe () = Fu ()]
< U)o )% [y =[P
i€l
which shows that (x,y) — Fy(y) is continuous. Therefore, in this case the

reconstruction of F is equal to x — Fy(x). Moreover setting y = x and y’ = x’
we obtain

[Fe(x) = Fo (¥)] £ Do) o= 7% + [x— )P,
iel

namely the reconstruction of F = (II, f) is even locally Holder-continuous.

2.3. Models
We now define the notion of a model.

Definition 2.3.1. A model is a pre-model (I1,I") as in Definition such
that moreover

(1) T, = 1foralli€l,
2) T =0ifo; > ojand i # j,
(3) IT4| < [x—y|% % if o < ;.
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If (IT,T’) is a model, then spaces ‘@(yn,r) of modelled distributions satisfy
the following properties.
Lemma 2.3.2. Let (I1,T') be a model as in Definition Then
(1) If y > @ = minjQ, the space .@(YH’F) is not reduced to the null vector.
(2) For Y > ¥ the natural projection

9();1 ) 3 (fi)iEI = (]l(a[<y) fi)iel
maps o 10 Py

PROOF. For the first assertion, we consider an element IT. of minimal
homogeneity & = min;a. In this case by the properties (1)-(2) in Definition
2.3.1| we see that ny = §;; for all j € I, where 6 is the Kronecker symbol,
and the function f{ = §;; is a modelled distribution for any ¥ > & = min;Q.

Let us prove now the second assertion. We write for i such that o < ¥

fx 2 FU fj _ fi Z Flj fj Z }FU fj‘

o<y o<y y<o;<y
Sh=y""% 4+ Y ey
y<o<y
S|'x_y’y70‘[7

uniformly for x,y in compact subsets of R?, by the property (3) in Definition
231 O

We also have another instructive remark. Suppose that (IT,T") is a model.
Then for every j € 1, the germ (I1{) ,cga is (& = min;@, oj)-coherent. Indeed

—I1 = ) TUrY, -1 = Y TTTY

xy»
i€l i#]
so that
(T — T < D) ()|l —y| %
;<0
< D glix—y|%®
;<0

&, (lx—yl+&)9"%
Moreover, by property (3) in Definition[2.1.1] this germ satisfies a homogene-
ity bound with exponent «;. The same property is in fact a reconstruction

bound for this germ, with Z(I1/) = 0. If « i > 0 then the reconstruction is
unique.
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Note that we can write, as in notation (2.1.2), II/ = (I1, f) with fi:= §&;,
with & the Kronecker symbol. However in this setting f does not belong to
‘@(O;Ji,r)’ because it has a non-zero coordinate corresponding to an element of
the basis with homogeneity equal to ¢¢;, which is not allowed by property
(1) of Definition[2.1.3]

Proposition 2.3.3. Let (IL,T") be a model and y > & = min; &. The family
(T, TY) o, ;< s again a model.

PROOF. The re-expansion property (2.1.1) for o; < yis

I = Y T, x,yeR%.
i€l
By the property (2) in Definition [2.3.1] this can be rewritten as
= > TIry, x,ye R
iel,a;<o;
It is therefore easy to show that (IT', "/ )oy,a;<y is @ model. O

2.4. Holder functions as modelled distributions

We have see in Example [2.1.2] that the classical polynomial family

) Y

mw) = O e o= <,
ij (=)
F;cjy:]]-(i<j)w, i,j €N,

forms a pre-model and actually a model. It is an interesting exercise to check
that modelled distributions with respect to this model are actually classical
Holder functions.

This model belongs to the class that we have considered in Section [2.2]
namely the function (x,y) — IT%(y) is continuous for all i and |TT|| (RY) <
+co uniformly for x in compact subsets of R for any 8 €]0, 1. Therefore
by the discussion in Section [2.2] we know that any modelled distribution f €
ggln,r) gives rise to a (0, y)-coherent germ (I1, ) and that the reconstruction
of (I, f) is a locally Holder-continuous function.

Let us consider for simplicity the case ¥ ¢ N. Now, a modelled distribu-
tion f € ‘@(YH.F) satisfies

. i .

fie ¥ —“E.y).), fil <=y, i<y,
J—1):
jZl,‘j|<’)/
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This is in fact a Taylor expansion of f' at order |y — |i|| with a remainder of
order ¥ — |i|, and this implies that f* is of class C?~ll and

fl=0-if, Vj=i
In particular, for i = 0 we see that f is of class C? and satisfies (1.2.2); in
particular by Proposition we have that f? is a reconstruction of (IT, f,
and since ¥ > 0 it is the unique reconstruction. In other words we have seen

that .
f=2xa1fyec?, f=af, Vi<y

2.5. Semi-norms

Back to the general case, for a fixed pre-model (IT,I") we can interpret,
by analogy with the case of Holder functions of the previous section, the
space .@(YH ry of all distributions modelled by (IT,T) as the collection of

generalised derivatives of u := Z(I1, f) with respect to the model (I1,T").
We can define a system of seminorms for f € .@gln r)

fi=2 Ty
[flyr g =sup sup

ry iel x,yeK, x#y |X _y‘}’—ai

where K is a compact subset of RY.

This is rather original with respect to the standard situation in ODEs or
PDEs, where one sets an equation in a fixed Banach space. Here the Banach
(Fréchet) space depends on an external parameter, the model (I1,I"). For
SDEs and SPDEs, the model (IT,T") is actually random.



CHAPTER 3

Schauder estimates for coherent germs

In this chapter we discuss one of the most important operations on
coherent germs: the convolution with a regularising integration kernel.

3.1. Integration kernels

Definition 3.1.1 (Regularising kernel). Fix a dimension d € N, an exponent
B € (0,d) and an integer r € N. A measurable function K : R — R U {0}
is called B-regularizing kernel up to degree m € N if the following conditions
hold:

o the function x — K(x) is of class C™ on R?\{0};
e the following upper bound holds:
1
d : k <
Vk e N* with |k‘ <m: ’axK(x)| < ‘x‘d*ﬁ+|k| ]l{|x|<1} G.1.1)

uniformly for x in compact sets .

In particular, note that for k = 0 equation (3.1.1) reduces to

1
K[ < Wﬂ{mgu- (3.1.2)

This shows that a B-regularizing kernel is locally integrable on R¢,

3.1.1. Singular convolution. We want to consider the convolution K
f € 2’ between a kernel K(x —y) and a distribution f € 2. This is formally
defined by

(K@ = fKe=) = [ K= s, G13)
but we stress that in general K = f is ill-defined. Under suitable conditions,

K« f can be defined as a distribution by duality: for any test function y € &
we set

(K« f)(y) := f(K*y)  where (K*y)(y):= Rd‘l/(X)K(x—y)dx,
(3.1.4)
27
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provided f(K* ) makes sense, of course. We are going to study the convolu-
tion K*y between the kernel K and a test function y, to ensure that f(K*y)
is well-defined.

We start with an elementary observation: if K(-) is B-regularizing up to
some degree r, then (K*y)(+) is a well-defined compactly supported measur-
able function, because K(x —y) is jointly measurable, locally integrable and
compactly supported in the difference |x — y|. The delicate point is that K*y
needs not be smooth, hence we cannot hope to define f(K*y) for arbitrary

(f,w)e D' x 2.
3.1.2. Partition of unity. Let us introduce the usual dyadic sequence
& :=2"", nez.
We call dyadic partition of unity a family of functions (p,),cz such that:
o pu(z) is supported in the annulus {}&, < |z| < 2¢,} and
veRAD}: Y pa(a) = I
nez

e for any given k € N%, one has

—|k
|0*Pn]lo0 < £ ¥

It is easy to build a dyadic partition of unity. Given any smooth function
x : R4 —[0,1] such that

uniformly inn e N.

=1 if |z] <1
x()4e0,1] ifl<|f<2,
—0  ifle=2

we obtain a dyadic partition of unity (p,),cz by setting
pu(z) = 2(e7 ') — x (g} 2).

Such a partition of unity is scale invariant, since p,(z) = po(g, 'z). We set
o0

K(x) = > Ku(x)  where  Ky(x) := pa(x) K(x). (3.1.5)
n=0

We stress that K, (x) is supported in the annulus {3€, < [x| < 2¢,}.

Vk e N with |k| <m

k
0" K ()| < Tejd—BTa L (den<hi<2e,)

s 8£_d_‘k| ]]_

(3.1.6)

{zen<lr|<2en}

uniformly for n e N.
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Moreover we have for all y e R? and |¢| < |k|
f A OKy(x—y)de = (—DH | K, (x—y)dx=0,  (3.1.7)
R R4
because o*x’ = 0 for || < ||

3.2. Convolution with distributions
We show now that K*y in (3.1.4)) is well-defined and differentiable.

Proposition 3.2.1. Given a kernel K which is B-regularizing up to degree
m € N and a test function Yy € 9, the convolution K*y defined in (3.1.4)
belongs to C".

More precisely, recalling K, defined in (3.1.5)), we have the following
bound.:

vref0dm): [Kivle < vl ef .
uniformly forne N and w € 2(B(0,1)),
[e¢]

hence the series K*y = >~ K¥y converges in C" (recall that 3 > 0).

PROOF. We recall that K(x —y) = Y.° K, (x —y) for all x,y € R? with
x #y, by (3.1.5). Then by dominated convergence, thanks to (3.1.2)), for any
y € R? we can write

0

(KW)0) = LK) where (Kip)) = | wla)Kolr—) .
n=0

To prove (3.2.1)), it is sufficient to show that
ke N with [kl <m: | (Kiy) oo < [ Wlom €l
uniformly for ne N and y e Z(B(0,1)).
By Definition [3.1.1] for any n € N the function y — K, (x —y) is of
class C" on the whole R¢ (including y = x, because K, (x —y) vanishes for

ly—x| < %En, see (3.1.5)). Exchanging derivatives and integral by dominated
convergence, thanks to (3.1.1)), we see that K}y € C" and

(3.2.2)

Ve N? with [k| <r: FKiw)(y)=—| wx)*K,(x—y)dx. (3.2.3)
R4

We now estimate 0% (K y)(y) for fixed n e N and y € R?, k € N%, Denote by
QW41 (.) the Taylor polynomial of y of degree |k| — 1 based at y, that is

Y4
oy Y YDy

0
<kl -1
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where we agree that for k = 0 we set Q%! (x) = 0. Then we can bound

W) = "M@ < [yl by —". (3.2.4)
Starting from (3.2.3)), we decompose

FK(KEW)(y) = — f (yr— 0H) (x) K, (x — y) di

-7

R

An,k (y)

-1, QA (x) 0K,y (x — y) dx

J/

v

Bn.k(y)

By (3.1.7) we have that B, x(y) = 0. By (3.2.4) and (3.1.6), for |k| < m, the
first term is bounded by

Ans) < Wl [ byl =oK< g ef

|y_x|<8n

uniformly for y in compact sets and n € N. This completes the proof of
(3.2.2). 0

We obtain the following useful

Proposition 3.2.2. Given a kernel K which is B-regularizing up to degree
m e N and a distribution T € 9’ of order r < m, the distribution

73y —K«T(y):=T(K"y),
where K*y € C™ is as in Proposition is well-defined in 9' and has

order r.

3.3. Schauder estimate for coherent germs
3.3.1. Coherent germs. Fix two real numbers &,y such that
a<vy, y#0.
Let F = (Fy) ga be a (¢, y)-coherent germ, i.e. we have

(F = F) (o) < & (ly—z + &)

. . (3.3.1)
uniformly for y,z in compact sets and n e N,

for some test function ¢ € 2 with ¢ # 0.
We define r as the smallest integer larger than — o

ro :=min{ke N: k> —a}. (3.3.2)
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Since F is y-coherent, by the Reconstruction Theorem there
is a distribution ZF € %' such that

(ZF —F)(w)] < |Wlera &

333
uniformly for x in compact sets, n € N and y € 2(B(0,1)). ( )

If ¥y > 0 then ZF is unique.

3.3.2. Singular convolution. Fix a kernel K which is -regularizing
up to degree r for some B € (0,d), see Definition We now want to
“lift the convolution with K on the space of coherent germs”, i.e. to find a
coherent germ H = (H,), s With the property that

HH =K« ZF . (3.3.4)

A simple solution of (3.3.4) is the constant germ H, = K = ZF, which is
trivially coherent, but typically it does not satisfy (3.3.5). The naive guess
H, = K+ F; needs not give a coherent germ, therefore we need to enrich it.
To this purpose, we look for H, of the following special form:

VxeR?: H,=K«F.+ R, where R, (+) is a polynomial. (3.3.5)

Remarkably, this is possible with the following explicit solution:

He=KeFot ) (BF—F) (') X, (3.3.6)
tl<r+p ,
R()

where we denote ( )z
C—X
X{() =

to be the monomial germs, and where we eigree that
R(-)=0 if Y+ B <0.

Note that R,(+) is a family of polynomials labelled by x, whose coefficients
depend on Fy, on ZF and on the derivatives 0*K for |k| < ¥+ f3. Then we
also assume that Y+ f8 ¢ N and we suppose that the integer m which appears
in Definition satisfies

(3.3.7)

m>7y+p +rq. (3.3.8)

THEOREM 3.3.1 (Schauder estimate for coherent germs). Fix a dimen-
sion d € N and real numbers o, 7,3 € R such that

a<y, y#0, p>0,
where we further assume for simplicity that
{o+B, y+BIN=0.

Consider the following ingredients:
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o F = (F),pe €9%Visa (a,y)-coherent germ;
e K is a B-regularizing kernel (see Definition up to degree

r=rq given in (3.3.2).

Then

(1) the germ H = (Hy),cpa in is locally well-defined, i.e. Hy(®)
is well-defined for all ¢ € 9(B(x,1)).

(2) His ((0t+ B) A 0,7+ B)-coherent, namely H € 4(@+B)~0.y+B

(3) H satisfies #H = K« ZF.

In other words, setting # F := H, we have a linear operator satisfying
H g% GBI o — K.

Let us define the new germ

Jy:=F,— RF,
which lets us rewrite (3.3.6) as
H,=K+«ZF + L,, where Ly:=Kx«J,—R,. (3.3.9)
From (3.3.6)), observe that
Le=Kslo— Y J(0"K(x—-)) XL (3.3.10)
[¢|<v+B

We are going to prove that L, is ((a + ) A 0,y + 3)-coherent, that is

(L = Ly) (wy")| < [ Wllcre e\ “TPIN Iy — 2| 4+ &,) TP (@tp)n0

(3.3.11)
uniformly for y,z in compact sets, n € N and y € Z2(B(0,1)).

More explicitly:

e P (ly—z+e)% ifa+p <0,

L,— L) ()| < o
|( z y)(‘/’y )| HWHC X {(b]_zh_gn)?/*‘ﬁ ifoa+p>0.

Then we are going to prove that L has homogeneity bound with exponent
Y+ B, that is,

e, 7tB uniformly for x in compact sets,
Lyl [Wlere & neNand ye 2(B(0,1)).

Recalling (3.3.9), this implies that ZH = K« ZF; indeed we recall that
h = ZH means precisely |(h— H,)(yZ)| < |y cre &P as the coherence
exponent of H, is Y+ 3.

One of the tools in the proof of Theorem [3.3.1|1s the following simple
result.
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Lemma 3.3.2. Fix ye R, B > 0 such that Y+ B > 0 and a point x € R%. Let
T € 9’ have order rq and homogeneity bound 'y at the point x, i.e. for some
reNand C, < o

()] < Cel@lcra €7

uniformly for € € (0,1] and ¢ € 2(B(0,1)). (3.3.12)

Let K be a B-regularizing kernel up to degree m > y+ B + r,.. Then for all
¢ e Nd with |¢] < y+ B,

T(3'K(x—)) := > T(Kn(x—))
is well-defined and, writing 'K = 3 0°K,, as in (3.1.5), we have
Q0
YNeN: ‘T( 3 oK (x— )>‘ < Cegl P (3.3.13)
n=N

Before proving Lemma we need the following simple

Lemma 3.3.3. We introduce the function

olE (w) = (26,)! K, (—2,m), (3.3.14)
so that
KKy (x—) = (q)["vn])jg" . (3.3.15)
Then
supp ((p["’"]) cB(0,1), Ykl < y+B, (3.3.16)
loterl] el M vk < v+, (33.17)

PROOF. Observe that (3.3.15)) is straightforward from the definition
of @k, One has supp (*Ka(-)) = B(0,2¢,) and thus one has as an-

nounced supp ((p[’“"]) < B(0,1). Now, if 1 < |I| < rq then o'l =
(26,411 GFHIK,, (—2€,w). Thus from (3.1.6), one obtains (3.3.17). O

PROOF OF LEMMA [3.3.2] By (3.3.15)) and by the homogeneity bound

at x (3.3.12), using the properties (3.3.16) and (3.3.17) of @l we can
bound

IT(0"Ka(x = )| < Ce @l cre €] < Cel P71

Thus 7(0'K(x —-)) := 32 o T(0°K(x — -)) is well-defined in 2’ and more-
over we obtain (3.3.13)). O
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3.4. Proof
In this section we prove Theorem [3.3.1]

Lemma 3.4.1. L, in (3.3.10)) is a well-defined distribution.

PROOF. By the discussion of the Reconstruction Theorem in section
3.3.1) we know that J, = F, — ZF is a distribution of order ry. Then by
Proposition [3.2.2]the distribution K = J; is well defined and has order r.

If we apply Lemma 3.3.2]to the distribution 7 = J, then we know that
T(0'K(x—-)) € R is well-defined for all £ € N? such that |¢| < y+ B. Then
L, is a well-defined distribution. ]

Remark 3.4.2. We will write (L, —Ly) (l//y)“) for A €]0, 1] as a sum of various
terms and show that

each termis <A%(Jy—z|+A)"™™ forasuitablea > (@ +n) A 0.

This implies (3.3.11)) because a — A%(|y —z| + A)"T1 % is decreasing (note
that we can write A%(|ly —z| + A)Y*17% = AB with A = M <.

We take a compact set K < R? and fix y,z € K as well as N € N. We set
My n:=min{neN: g, <|y—z|+&n},

and note that 0 < My, y < N < 0. Then we decompose

My n—1 N—1 o
Z Kn(:,-) + Ka() + . Kl
= n=My ;N n=N

%r—‘ —_— —
K[O,M)(?) K[MN)(7) K[N‘OO)(7)

where we stress that in this decomposition the sum is split at the points My, , y
and N, for the fixed values of y, z, N, irrespective of the arguments of K(-).
We also define forAc N, xeRY, w e

- ¥ e [ ev@en 64D

neA |l <y+p

so that in particular

L(y) = J; (K*W—P?‘(w)) pN = ploM) | pMN) | pIN®) (3 4.9)
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Then we bound for y € Z(B(0,1))
(L= L) (v < [ = ) (K ws) = o (PR (w) ) -+

<
<[ ()] + |5 (K ),

X ¥
(R0 )| + o (R0
g !
+ |0 5) (Kioan ()~ B ()
g |
e (A (g — PO () )
g J

35

(A

We are going to need the following technical result, which can be proved as

Lemma[3.3.2

Lemma 3.4.3. Ler ("N RY S R forn > N and y € R?
N () = Gen)? (Krws™) (v -+ (3ew) w) -

Then "N is supported in B(0,1), and

H C[mN V]

Cro

uniformly over y in compacts. Let (p[’“] ‘R SR
" (w) 1= (36,) K, (z—3&,w).
Then @3 is supported in B(0,1) for all |z| < &, and

< 8,?, uniformly over |z| < &,.

o,

Let é:[k,n.,z,t] 'R - Rfork,neN, zeR? te [0,1],
J Alv+B1=lk|
dtlv+B1—lk]

Then Ekn2t) s supported in B(0,1) and

H g [k,n,2,1]

uniformly over z in compacts,

glenatl (w) 1= (3e,)

e S 12| [7+BI=lkl gf=Tr+P]

[0,1], ne N,

gHWH%ng’ I’ZZN, II/E‘@(B(O71))7

MK, (1 —1)z—3e,w).

(3.4.3)

(3.4.4)

(3.4.5)

(3.4.6)

(3.4.7)

(3.4.8)
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Estimate of A. We analyze

(o= Jy) ( ) i y) (Khwev) (3.4.9)

n=N
Note that we can write by (3.4.3))

Ky = <C[H’N’y])y

where "NV is defined in (3.4.3). Then, by coherence (1.4.4) and (3.4.4),
we can bound for n > N:

|(Jz—~’y) (Kz%ezv)‘ — ‘(JZ—J),) ((C[mN,y])jSN)‘

< H C[”-,Nvﬂ

3ey

(3en)® (Iy —z| +3en)"*

Cra

S [ Wloweb el (v —2| + &)’
Plugging this bound into ((3.4.9) we finally obtain since f§ > 0
Kooy * (e =) (‘l’ygN)\ < |wlera gy ™ (ly— 2|+ &n)7,

which coincides with (3.3.11) for o + B < 0, while for ot + 8 > 0 it is even
better than (3.3.T1), by Remark@

Estimate of B. Then we analyze

N—1
(J. = Jy) (K*MN l/’y > Z K*‘V;BN)
=Wl (3.4.10)
Z ) (Jo =) (Kn(x— 1)) dx.
n=M, . N

3¢,
Note now that one can write K, (x—-) = ((p[”’x_Y]> where "% is defined

y
n (3.4.5). Then, by coherence (1.4.4)), and using the property (3.4.6) of

(p[”7x_YJ we can bound

o )

o (38)% (v =2 +38,)7

< el (3e,)% (ly— 2| +3€,) "¢
<P (36,)% (4ly —z| +3en)" "%,

< H(p['hx*y]
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where in the last inequality we used the fact that &, < [y —z| + &y for n >
M, . n. We plug this bound into (3.4.10). Note that

)
N
N N g0 P < gfth ifoo+p<0,
PIRELER
n=My.on Doer P <(y—zl+en)®P ifa+p>0.
L ”:My,z,N

Moreover {pq [y (W) dw = (g [Ww(w)| dw < |W]o < || cre for any ye
2(B(0,1)), hence

[(Kpptn * Uz =) (w5™)] {eyﬁuy—ﬁgw—a ifo+p <0,

1y cra (ly—z| +&n)?*h ifa+p >0,
which coincides with (3.3.1T).
Estimate of C. If y+ B < 0 then C = 0. Let us consider the case Y+ 8 > 0.

By (3.3.3) and Lemma[3.3.2] see in particular (3.3.13), we have

i )Jy ((#Kn(yf )>‘ < e}@fN_'é‘,

n=M N

while
fRd K o) Y2 () v < .
Then
}Jy (Py[M’OO)(‘V;N)N < > e P el < (ly—o+an)*P. G4
lll<y+B
Similarly
N Bt
+ —
Z J (afKn(z_ ))‘ < EAZ)r,z,N ,
n:My,z,N
fRd XE(W) ‘/’yEN(W)‘ dw < (ly—z2 + 8N>£7
so that
T (P g} < (=2l +ew) 7P (34.12)

Note that both (3.4.11)) and (3.4.12)) are better than (3.3.11)), by Remark

Estimate of D. We now focus now on

(- —Jy) (K’[*‘OM) Yo —Py[OM)(ij)) . (3.4.13)
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We first assume that Y+ 8 > 0. Observe that one can write

K (w—") — Z 'Ky (y— ) (w=y)" ) f (1—1)™ <§[o,n,w—y,z]>3£" a

! !
|£|<Y+B f 0 m. y
(3.4.14)
where &[%7:21] is defined as in (3.4.7). Therefore:

(=) (Ko — B () =
]Wy.z,N*1

Y fol R (o)) an

n=0

Applying the coherence bound (1.4.4), we can estimate

’“z -4 ((é[1>)

< Hé [0,n,w—y;]

o (38) (2] )7

e,

< Hé [0,}’1,14/7_)171‘]
~ Cra

where in the last inequality we used the fact that for n < My, y, (|z—y| +
€)% < (26,7 %. If [w — y| < &y < &, then from the property (3.4.8) of
EL0nw=yt] one obtains

- < |y_w|m+18r[l3—m—l < 8;\7]1+18£—m—1
o

Y

H gl0nw—y]

uniformly for n < N and ¢ € [0, 1]. Collecting all those estimates,

]My,z.N_1

|(J.—Jy) <K>[k0,M) yE — K[O,M)(‘//fN)> | < gt Z gl HB-m=1
n=0

<ent (Je—y|+en) P < (|2 y] +en) TP,

which, recalling (3.4.13), is better than (3.3.11)) by Remark
We next assume that Y+ 8 < 0. In this case we have Pyo’

(3.4.13). Then, recall from that one can write

M)

=0in

Kn(w—+) = (go[’leY])jen.
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Thus, from the coherence bound (T-4.4), and the property (3.4.6) of @[]
one can estimate (recall that &y < g, and 8 > 0)

()

(p[nvway]

(.= Jy) (Kiw¥)| < sup

lw—yl<en

< sup
lw—y|<en

< & (3en)* (|l2—yl + &) "

e (3&)* (Je =yl + &)

For n <M,y we have (|z—y|+¢&,)""% < (2€,)""%, hence

My, n—1
=) (Kipan W) £ Y &P < 12—yl +en)"*?
n=0

which, recalling (3.4.13)), is better than (3.3.11) by Remark
Estimate of E. We have

w— )k
Pzn(‘//ysN)—Pyn(llffN)=— Z Rk(y,z,-)f (w=y) l//ygN(w)dw,

R4 k'

see [2, formula (4.7)], where

Ry,2,8) = i Ka(3,0) = DL & Ka(z,0) (y—2z)"

!
€| <y+B—[K] o
11 _ s\m—Ik|
(1 t) | [k,n,y—2z,t] 3
— | =L (glkmre dt
L (m— |k])! (5 )z (6) dr,
where &[624] is the function defined in (3.4.7). Then
I (A () P () ) =
My n—1 1 _ \m—|k| 3g,
= — Z Z J %JZ((g[kvnv)}Z?[]) X ) th§(w;N)
|k|<'}’+ﬁ n=0 0 (m_‘ |) z

Applying the coherence bound (1.4.4)), and the property (3.4.8)) of & [kny—z.1]
(observe that because n < M,, . ; , one has indeed ly—z| < €&,), we can estimate

()
Z

S ”é [k7n7yizvt]

cra (382)% (=Y + )" "

<y el (3,)% (|2 y] + £,) 7,
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Recalling that |w —y| < €y and that (|z—y| +&,)""* < (2¢,)" %, we bound

My n—1

0.M o.M _ o
I (P () = PO () )| < ey 21 7MY gt
n=0
My n—1
S(y—z+en)™t > grthom!
n=0

S (ly—2 +ew)"*P.
which, recalling (3.4.13)), is better than (3.3.11) by Remark
L has homogeneity y+ . Finally we prove that
Loy < P
uniformly for x € K and n € N. This is a consequence of the following

Lemma 3.4.4. Fix Ye R, B > 0 and a point xe R, Let T € 9’ have order
rq and homogeneity bound 7y at the point x, i.e. for some r € N and C, < o0

7 (97)] < Cel@lcra €7

uniformly for € € (0,1] and ¢ € 2(B(0,1)). (3.4.15)

Let K be a B-regularizing kernel up to degree m > y+ B + rq. Then
\T (K*%‘?N - PF(W)) \ <GP,
recall (3.4.1) and (3.4.2).

PROOF. We consider the decomposition

T (K*y/fN —Pﬁ(wfﬂ) =T (K’["N7+OO) l;ffN> ~T (PX[N’JFOO) (‘lffN))

F G
+T (Kfo,zv) yev — ploN) (‘IffN)> :

[ J
i

H

We shall estimate F', G, H separately. We analyze first
[e¢]
F =Y T(Kiy). (3.4.16)
n=N

Recall from (3.4.3) that one can write Ky = (¢l ’x]))SfN . Then, by the
homogeneity bound (3.3.3) for J, and using the property (3.4.4) of {["N~I,
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we can bound for n > N:

7 (K y)| = \T ((C["’N’”)TN)‘
< ], Gen)”

Cra
< |Wlgra €F (3en)".
Plugging this bound into (3.4.16) we finally obtain

IF| < |W]caelt?,

as required. The quantity G is treated in the same way as (3.4.11)), so that:
v+B
Gl <ey ",

We are ready to control the contribution of H. As in the estimate of D
above, we distinguish two cases. First assume that y+ 8 > 0, then we use
(3.4.14)) again. Therefore:

H—Nz_jlj J 1_t ( g[O,n,w—x,t]>38") dr y& (w)d
= ) v (w)dw
n=0

By the homogeneity bound (3.3.3) for J, and using the property (3.4.8) of
gL0mw=xt] (note that here [x —w| < &y < &,), we can bound

’T (( é[(),n,w—x,t])35n) ‘ < H g10.nw—x]

And thus after summing the geometric series one obtains since Y+ 8 <m+ 1

(38n)7/ < glrvn+1 8’71/+ﬁ—m—1 '

Cra

v+B
H| <&y "

Finally, we bound H in the case when Y+ 3 < 0. In this case, Px[o’N) =0.
3¢,
Then, recall from (3.4.5) that one can write K, (w —-) = <¢[”7W_x]> , SO
X

that
3&,
H = T <<q)[n,w—x]> X > v (w) dw
R4 X

Thus, from the homogeneity bound (3.3.3) for J, and the property (3.4.6) of
@[] one can estimate (note that here |w — x| < &y < &,)

()

And thus after summing the geometric series one obtains as announced
H| < 817\/,+ﬁ . The proof of Lemma 3.4.4|is complete. O

nwx

oo (3e,)" < ef*7.

ol
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Conclusion. We have shown that Lis ((a+ ) A 0,7+ B)-coherent and that it
has homogeneity bound with exponent Y+ 3. Then its (y+ f3)-reconstruction
is 0, and therefore the (y + 3)-reconstruction of H is K+ ZF .



CHAPTER 4

Multi-level Schauder estimates for modelled distributions

In this chapter we discuss one of the most important operations on
modelled distributions: the convolution with a regularising integration kernel.
We fix a pre-model (IL,T") as in Definition and we consider f €
‘@(}/H,F)' We have seen in Theorem [3.3.1{how we can build a linear operator

H GO G @FBINOTEE o — K.
Now we want to address an analogous question for F = (II, f). In other
words, we want to show that it is possible to construct
(1) another pre-model (IT,T"), such that
(2) forevery f e Q(YH there is a modelled distribution f € AN

I (IL1)
such that

H AL f) =1L f).
4.1. The pre-model
We need an additional property for a pre-model (see Definition [2.1.1)).

Definition 4.1.1. A pre-model is good if there exists r € N such that
I (9] < &7,

uniformly over x in compact subsets of R, ne N and ¢ € 9 such that
lpfler < 1.

Remark 4.1.2. A model (Definition [2.1.3)) is a fortiori a good pre-model.
Indeed, one can see that for a coherent and homogeneous germ, on can
replace the single ¢ € Z by a generic y € A, for any r > max{—a,—0}.

We fix throughout this chapter an integration kernel K, which is supposed
to B-regularising up to order m > max{y, max; o} + f + r, where r is as in
Definition

We work from now on with a good pre-model (I1,T"), and we want to
construct a pre-model (ﬁ, f) with the property discussed at the beginning of
this chapter.

We start discussing the family (fI;) il xerd- A reasonable guess would

be to set / = I and TT. = K +TTL, recall (3.1.3). However we expect IT.(y¢")
43
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to be small as n — +o0, at least if the homogeneity ¢; + 3 which is expected
for IT is positive.

However K « ITi(yf) has no reason to become small for large n. To
this aim we can subtract a Taylor polynomial which can yield the desired
behaviour. We are going to set for i € [

M=Kl — Y n;(a"K(x—-)>X’;, (4.1.1)
lk|<oi+p

(w—x)*

k!

where we recall that Xﬁ(w) =

Proposition 4.1.3. The distribution ﬁ; in @.1.1) for i € I is well defined, has
order r and satisfies for all compact set K < R?

fIi &y

: < +00. (4.1.2)
xeK (eN yeP, 8;61+[3

PROOF. Since (IT,T") is a good pre-model, then I is a distribution with
order r. Then by Proposition the distribution K = IT. is well defined and
has order r. By applying Lemma to T :=TIT\ and y = o, we obtain that
I, (*K(x—-)) is well defined for all |k| < 0; + .

Finally, follows from Lemma [3.4.4 O

We can therefore associate to IT' the homogeneity ¢; + 8. Then we
construct a new basis by setting

[:=TUlpoy, Ipoyy:={keN:|k| < max{y,mlaxa} + B},

M=%t kelpoy.

recall (3.3.7); of course the homogeneity of I¥ is |k|.

Once this choice is made, it remains to construct I" and f . It turns out
that there are very natural choices for these objects. Let us set for notational
convenience

so that (4.1.1]) becomes
I = K«IT, - ) A¥XE,
kelpoly

We define now the coefficients (f}jy)l jei- These are straightforward when

i,jelori,jelpyy oriel and j € Ipoy (see (4.1.3) below for the precise
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values). The less simple case is that of i € Ipoy and j € I, to which we turn
now. By the definition of (IT%),_; we find that for j € I

YT = ) <—A§”<X’; +2r;§A;’;kX’;>.

iel kel Poly iel

Since X¥ = 3, XE={(x) XL, the left-hand side of the latter expression is
equal to

5 Sy 3 s ).
ieIPoly kel ¢eNd

namely a linear combination of elements in Ipoly. Therefore we set for j €/
andie IPoly

i kj Ak, { ji+4
[ = THAN - ' X[ (x) AJH

kel eNd
and to summarize
(17, if i,jel,
X7 (), if i, j € Ipoty, i < J,
[ = N (4.1.3)

T A N XA if ie oy, jE,
kel eNd
\O if iel, jelpoy.

Then we have the desired property for the pre-model (IT,I")

LT = jel.

iel

4.2. The modelled distribution

For a modelled distribution f : R? — R’ we define now a new function
f:RI RS

f if iel,

RF— > N |(OK(x—2) if ieN |i] <y+B.

o <l|i|-B
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Remark 4.2.1. Note that we have

Ji/<f,H>=<f,IAI>,

where % is the operator of Theorem [3.3.1] Indeed, observe that from the
definitions and the notation (2.1.2)

G =Y | (Kem) = Y (K1) x4

i€l k| <oy+B

+ > | @F- ) | (0K(x—))XE

lil<y+B 0. <li|—B
k. (zf;n;;) Ly (%F— zf;nz> (K1)
i€l li|<vy+B ael
:‘%/<fvn>x'

In particular, we have already proved in Theorem that Z2(f,IT) =
K+ ZF .

Proposition 4.2.2. Assume that TI¢ (0'K(x—)) = 0 for all x € R? and all
a€{l,...,n} such that oz + € No. L: More precisely: if &, + B € Ny then
we assume T1¢ ((%?”ﬁl(x) =0

Then g is a modelled distribution of order y+ B with respect to T".

PROOF. We want f to be a modelled distribution of order y + B with
respect to [ the condition is obvious for i € I, since it is equivalent to the
condition on f with respect to I". We have to check the correct bound for
ieN? |i| <y+pB:

Introduce the quantity

Nyy:=min{fne N: &, <|y—x|}
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We recall the notation J, = F, — ZF, and we write the decomposition:

jel
Nyy—1
== D A Kl Y KK )
=0 k| <y+B—il 5
A
Nyy—1
- S (K (x— ) (ff—erg ;)
n=0 o,<|i|—B Jel
B
+00 ' 1+ .
= 0 R (@Kalr =)+ 3y Y KOy — ) X()
7i=Nx,y , (l:Nxsy |k|<7+ﬁf‘i‘ B

~
D

F Y ek ) (f;—zrz; )

n=Nxy o> |i|—B JEl
o

A4

J/

v

E
Now, with the multiscale techniques of the proof of Theorem|3.3.1} we
shall prove that each of those terms is bounded by |x — y|Y+B=1l,
Estimate of A. In view of (3.4.14)), we rewrite:
Mol et (g pymelil
1—1) ( o\ 36
A — f —J <é [l7n7-x y:t]> ) dt7
2 ) y

where Eli:21] s the function defined in (3.4.7). Note that because n < Nyy
we are in the regime |y — x| < €, and thus from (3.4.8) and the reconstruction
bound on F, see (3.3.3)), one obtains:

g ((gtne)™)

Thus, summing a geometric series and since y+ 8 < [y+ B]:

3g,)"
(36

< |y —x|[THPI-lilgBmm=1 (3¢ )7

$ H& [i7n7-x_y7t]

[A] < [y =P

Estimate of B. Notice that because of the assumption that IT¢ (0'K(x—-)) =0
when o, + B € N, only the terms with o, < |i| — 8 contribute to the sum. In



48 4. MULTI-LEVEL SCHAUDER ESTIMATES FOR MODELLED DISTRIBUTIONS

view of (3.3.15)), we rewrite
. . 3g,
(@) = 1t (o)),

X

where @] is defined in (3:3.14). Thus from the property (3.3.17) of @l
and the fact that [I¢ has homogeneity bound «,, we obtain:

3g,)%
3¢

<l M (3e,)% < e TNl

(0" Kn(x— )| < Hq)[i,n]

Now since f is a modelled distribution with respect to I" one can bound B
by:
Nx.y_

1
LD @20

=0 a,<|i—p

Summing the geometric sums yields as announced

[B] < [y — 7P

Estimate of C. As just above, we rewrite

+00

where (p[i7”] satisfies (3.3.16)), (3.3.17), and thus from the reconstruction
bound on F, see (3.3.3)), one obtains:

J (((p[i,n])ig">

Hence, summing a geometric series and since Y+ f8 > |il:

] < [y —x" P,

<Jo

3¢ )Y
Cg,( €n)

< el (36,7 < g7 PN

Estimate of D. Here we use the estimate proved just above:
j +B—li|—|k
‘Jy(al+kKn(y_ ))) < Sny B—li|—| ‘
Thus by summing a geometric series, one obtains:

+00 ) )
’D‘ < Z Z 8r71’+ﬁ*"‘*|k|‘y_x’k < ’y—X‘Y+ﬁ_|l|.
n=Nxy [k|<y+B—|il
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Estimate of E. Finally, for the term E, the estimates are the same than for
the term B, but are summed over different indices. Hence, similarly as for

(@.2.1)), we get:

+0 )
Els 3 X ey,

n=Nxy o> i|—p
and summing the geometric series yields as announced:
E| < |y—x["P7H,
This concludes the proof. U

4.3. Recursive properties

Recall that we have not imposed a group property on the reexpansion
operators I'". The following proposition however establishes that if I" enjoys
such a property, then so does I

Proposition 4.3.1. The following assertions are equivalent:
(1) Forall x,y,z € R, Loy, =10
(2) Forall x,y,z € RY, fxyfyz = fxz.

(Here the product is understood as the matrix product.)

PROOF. The implication (2) = (1) is straightforward. Now assume (1)
and let us establish (2). We have to prove that for all i, j € I,

DR — 1 (4.3.1)

kel
We distinguish the different possible cases for i, je . If i, je I, is
straighforward from the definition of [and (1). If i, j € Ipoly, then (4.3.1)
is also straighforward from Newton’s binomial formula. In the case when
i€l, j€ Ipoly, the left-hand side and the right-hand side of (4.3.1)) vanish.
It remains to tackle the case when i € Ipoyy, j € I. In this case, we can
calculate explicitly

Zf«ikfkj:Zfikfkj+ Z [k £

Xy yz xXy* yz Xy " yz
kel kel kelpoly
_ a,i yak l k,i+{ k j
_Z ZAX Ly — Z Xy(x) 4y Iy
kel \ acl Lelpgly

+ 20 XTI | AV = 3 Xi()alt

kelpoly ael Lelpgly
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Using the fact that I'y,I'y, = I'y; in the first term:
ik fok j i raj ¢ kyi+0 ok j
EF;yryg = ZA?I I _Z Z Xy () Ay

kel ael kel Lelpoy
k—i akaj k—i k0 el
T Z ZXy (X)Ay Fyg_ Z Xy (%) Z AT ().
kelpoly ael kEIpo]y ZEIPoly

Observe that the second and third term cancel out, and from Newton’s
binomial formula in the last term, we obtain

ik fkj a,iyaj a Jita _ fhij
2N =2 AN T = D) Xe0)alt =T
kel acel aglpoly

The proof is complete ]



CHAPTER 5

The Schauder estimates

5.1. A theory, a theorem
This talk is based on work in progress with L. Broux and F. Caravenna.
A temptative title for this work could be
e Hairer’s Schauder estimates without Regularity Structures

In this paper we have extracted a single result (the multilevel Schauder
estimates) from a larger theory (Regularity Structures).

We present the former in a simpler and more general version, without
reference to the latter.

5.2. What we did yesterday
We defined the notion of coherent germs: (Fy), g = 2’ (R?) such that
|(F. = F) (o) < A%y —2[ +4)"7,
where for all ¢ € Z(R%), A > 0 and y € RY

1 w—
(pyeN(w):zﬁ(p<—ly>, weR?.

Here y,a e Rand a < y.
We stated the Reconstruction Theorem: there exists ZF € 2'(R?) such
that

((ZF — E) (w)| < A7
(with a log-correction for ¥ = 0) and ZF is unique if 7 > 0.

5.3. Models

Then we realised that the space of germs is too large.

The idea in regularity structures (and rough paths) is to find a suitable
subspace of germs which can contain the solution to the equation of interest.

The space is defined in the following way: one fixes a finite family
(T1L, ... . TIY) of germs, such that for all x € R¢ IT. has homogeneity ¢; € R,
1.e.

L ()] < A%,
51
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and there exists a matrix-valued function (x,y) — (I )i, jer such that

=Y ILTY,  jel xyeR"
i€l

If the pair (IT,T") satisfies additional properties, then in regularity structures
it is called a model. We also use this terminology.

5.4. Modelled distributions
For a fixed model (I1,T), we call any function f:R¢ — R/ such that

< Jx—y|F 7%, Viel

fi=> T f

jel

with ¥ > max; o; a modelled distribution. We saw yesterday that the germ
Fei=YTI fi
i€l

turns out to be (&, y)-coherent with & = min;e; 0.
Then u := ZF is locally well approximated by F (say y > 0).
We introduce a new notation:

s%f;%ZWﬂ.

5.5. Fixed points

In the space 27 (I1,T") we want to set an equation in the form of a fixed
point

f=ip), 19797

with  a non-linear map.
Then one defines u := %11 f (uniquely defined for y > 0).
The point is that one would like u to be solution to a fixed point problem

u="1(u),
where we would assume the following commutation
Rol=To%.

However 7 is in general ill-defined and the space Z %7 is not a Banach
(Fréchet) space.
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5.6. Operations on Modelled distributions

Therefore it is very important to define several operations on modelled
distributions.
For an equation of the form (as for @2)

u=Gx(P(u)+¢)
where G is the heat kernel and P is a polynomial, we can guess that two

main ingredients are needed:

e an integration of modelled distributions with respect to a kernel
e a product of modelled distributions.

The integration with respect to a kernel is the Schauder estimate that we
want to discuss now.

5.7. The Integration kernel

We fix an even measurable function K : RY — R such that for some 8 > 0

10* K (x)] < V |k| < Ny.min, a5 X € RY.

1
Te|d B k<1

Note the possible singularity at x = 0.
For the intuition, one can think of the special situation

+00 1 X
K:’;)sfm, Le=2L(3) &=

where L e 2(RY).

5.8. Integration

Suppose we have
e amodel (I,
e a modelled distribution f € 2Y(I1,T") with y > 0
e u:=9%n f.
We want to define
e Kxue 7'(RY)
e anew model (I1,I") and a new modelled distribution g e 278 (11,
such that
K+u=%n8

namely K «u = #G where G, = >, Tk g.
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Then g is the family of generalised derivatives of K + u with respect to
the model (IT,T).
In other words, if we set % : 2Y(I1,T") — @V+P(I1,T)

Hf=g
then we have
K K =K+«%n.

Moreover the map % : 27(I1,T") — 2"+B(I1,T) is linear and continu-
ous.

5.9. The model (IL,T")

The new basis (ITX); is supposed to contain at least germs looking like
ﬂ;ﬁ:K*HQ

However the elements of the basis must have a homogeneity property,
which here should read (for ¢; + B # 0)

T (pfv)| < A %P,

This is however a very non-trivial constraint. If o; + 8 > 0, this means
that TT: (@gV) has to be small for A small.

However K « IT: (") has no reason to be small.

We must accept that IT. (¢;") need to be modified.

A natural choice is to allow IT. to be equal to K = IT: up to a polynomial

P(+).

5.10. The basis IT

We want

[T (@) = K+IT.(¢) — P (o), I (@2)| < A0+P where P, is a polynomial.

If K and IT.(-) are smooth, then we have essentially no choice but to
subtract a Taylor polynomial of K «IT,, centered at x:

ot
() =Kem(Q)— Y (ke 2l

k!
k| <+

In the general case, this must be defined as a distribution

() = K«IT () — >, <8kK*H;>(x)fRd(C;!x)k

k| <o+

¢(¢)dg.
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5.11. Local Schauder for distributions

Lemma 5.11.1. Let T € 2'(R?) and x € R? fixed. Let &t € R and r € N with
r>—a.If

’T((p)f)’ < H(pHCrgaa 86(0,1]7 (pE.@(B(O,l)),
then the distribution

Y
Ty~ 3 (Fker)@ [ B o) ac,

|
|k|<a+p ke

is well defined and we have
IT(9f)] < P
Note that for & + § < 0 we have T(@) := K =T ().
5.12. The basis I1

Therefore we have our first elements of the basis IT

M) - kMg~ ¥ (F-m)ew [ EPo0)ac.
k<oi+p e

and T has homogeneity a; + 3.
Is this enough?
We also have to build T, for which we can necessarily start from I'.
We have clearly
K+T1 = (K +TI) T,
i€l
However what about the polynomial terms?

5.13. The matrix '

. . . _xk
Mg) - ketlie) - % (Femm)e [ S0 a

[k| <o+

A computation shows

e | R ()
J= 2 == )] (akK*HyQ(y)Z((k_y?@)! (ez)

iel k| <aj+B <k

1

3N (eKem) i

il |l|<a+B

We must take care of the right hand side, which is a polynomial in () of
degree at most Y+ f3, since o; < 7.



56 5. THE SCHAUDER ESTIMATES
That means that we have to add to our basis IT the monomials of degree

up to y+ .

5.14. The model (I1,T")
We define / =7 {ieN’: |i| < y+ B} and

(komi 3 (a"K*n")(x)<'_x)k if icl
X X k! 9 9
I:Ii .y |k| <o+
-
Y /
( ,‘x), if ieN [ij<y+p.
\ 1!

The homogeneity is of course @; if i € [ and |i] if i € Ne,
Now we have to define the corresponding I'.

5.15. The model (IL,T)

(T, if ijel,
_y)J
% it i jeN, i<, max{)i,| jl} < y+B,
j—i)!
I = { ( Y 4
xy i j i ' x—y)
Y (@K IHTY - > ((9+kK*Hy’)(y)T,
@ o> |i|— B k| <aj+B—|il '
if ieN |il<a;+B, jel,
0 otherwise.

\

5.16. The modelled distribution g

We wanted to define a new model (IT,T") and a new modelled distribution
g€ 2"B(I1,T) such that
K+u=%n8
namely K =u = #G where G, = >, TTk k.

It remains to construct g and show that it has the desider properties. The
definition is
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fi it iel,

g 1=
Faf- ), [T |0K(x) it  ieN |ij<y+B.
o <li|—B
5.17. Multilevel Schauder estimates
THEOREM 5.17.1 (Hairer 14, Broux-Caravenna-Z. 21+). With the above
definitions
e ge 9B T)
o the map # : DV(II,T") — QV*B(IL,T) defined by # f = g is linear
continuous

e we have the commutation relation

Ry H =K+ Ry






CHAPTER 6

Products and equations

6.1. Brief and very incomplete history

In the *60, *70 and *80 a huge activity on constructive quantum field
theory.

In the *90 and "00: rough paths approach to stochastic analysis: T. Lyons,
M. Gubinelli et al.: continuity of the solution map.

In the ’10: application of rough path ideas to SPDEs: M. Hairer,
Gubinelli-Imkeller-Perkowski.

The result is a robust and non-perturbative construction of Euclidean
QFT models via stochastic quantization (Parisi ’80).

6.2. Recap

We consider equations of the form (as for 6132)
u=Gx(P(u)+8&) =T(u)

where G is the heat kernel and P is a polynomial.

This equation is singular because u may be a distribution and P(u) would
be ill-defined. N

Indeed, if & is not smooth then in general the fixed point u =7 (u) lacks
a rigorous treatment.

In other words, we do not have a proper Banach space B which could
contain the solution u, nor a good definition of the maptl.

Indeed 7 should contain the famous renormalised non-linearities like
: u® : which are hard to control analytically.

6.3. Recap

Martin’s idea is to express the solution u in terms of an explicit (random)
family (IT,);; ,cga of distributions.

The idea is to lift the equation to the space 27(I1,I") of modelled distri-
butions, where (IT,T") is a model.

(IT,T) is an enhancement of the noise £. Its construction is the only
probabilistic argument.

59
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Via the Reconstruction Theorem, we represent u = %y f with f €
27(I1,T"), and the fixed point becomes

f=If), I:9" - 9"

The renormalisation procedure (subtraction of infinities) intervenes only
at the level of (IL,T"), which is an explicit object, while the non-linearity / is
essentially standard.

6.4. Modelled distributions

More precisely, I takes the form

I(f)=2(P(f)+E)
for the equation u = G = (P(u) + &), where ¢  is the integration operator we
defined yesterday.

We still have to define the product of modelled distributions which is
needed for P( f).

In any case, let us stress again that P( f) is a standard polynomial in f,
for example f3, rather than : f3 :

6.5. Models

~ Amodel is a finite family (T1L,... TIY) of germs, such that for all x € RY
IT. has homogeneity o; € R, i.e.
L ()] < A%,

and there exists a matrix-valued function (x,y) — (F}Jy), jer such that

=Y ILTY,  jel xyeR%
iel

6.6. Modelled distributions
For a fixed model (I1,T), we call any function f:R¢ — R/ such that

f=)T0f]

jel

< Jx—y[F7 %, Viel

with ¥ > max; ; a modelled distribution in 27 = Z7(I1,T"). We have seen
that the germ
b= 2 IT. /2
i€l
turns out to be (¢, y)-coherent with o0 = min; ;.
Then u := ZF is locally well approximated by F (say ¥ > 0).
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We introduce a new notation:

Fa f=R) IS

6.7. Fixed points

In the space 27(I1,T") we want to set an equation in the form of a fixed
point
f=lan(f), lnn:2"(,T) - 2Y(ILT)

with IA(HD(f) = (P(f)+ E) anon-linear map.
Then one defines u := %11 f (uniquely defined for y > 0).
The fixed point for f replaces the fixed point for u

u=T(u),

which is ill-defined.
Therefore it is very important to define several operations on modelled
distributions. Two main ingredients are needed:

e an integration of modelled distributions with respect to a kernel
e a product of modelled distributions.
6.8. Multilevel Schauder estimates
Let K be a B-regularising integration kernel with § > 0.

THEOREM 6.8.1 (Hairer 14, Broux-Caravenna-Z. 21+). There exist a
suitable model (I1,I") and a linear continuous map

A 9V(ILT) — 2B T
sastisfying the commutation relation
Hn K =K+«%n.
In the setting of Ilya’s lectures, in fact (I1,T") = (I1,T"). We restrict to
this situation from now on.
6.9. Products

Let 2%(I1,T") be the set of modelled distributions in 27 (IT,T") which
have homogeneities bounded below by o.
For fi € 24 (IL,T) and f> € 2 (IL,T), we define

y=n+m)A(p+oao), o= 0y + 0,

(fix fZ);c = Z]l(aj+ak=ai<y)(fl)){ (fz))]?

Jok
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THEOREM 6.9.1 (Hairer 14). With this definition, f1x f> € .@g(H,F)
and the map
Doy (LT) x DL (TLT) 2 (fi, f2) = fix fr€ DL(TLT)

is bilinear and continuous.

6.10. Renormalised Products

As I mentioned before, there is no renormalisation in this product.
However if we reconstruct the product, renormalisation appears. For
example

G (f7) = :(@nf):
This explains why one can give sense to
f=Inr(f), 1:2"ILT) - 27(ILT)

but not to
u="1(u), u=29%nf.

® (continuous)

D'([RY) ¢ & i g M (RY)

6.11. Explanation

® (continuous)

PD'RY) ¢ & ioae 4 9(RY)
Ee =pe=E, X := canonical model associated to &, X¢ = renormalised X,

(A ,d) = Space of models, D M — .@'(Rd) continuous Solution Map,
P(X)=u where u=Ix(u).
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6.12. The space of models and its topology
Models are X = (IL,T") € .4, with
i d i i
IT= (Hx)xe]Rd,ieI - @/(R )7 ‘Hx<(p)fN>’ 3 la?
r=(ry )x,yeRd,i,jel R, ‘Fic]y = &;j| < ) x—y

The (¢)es are fixed.
_ The metric d on ./ is obtained by taking differences between (I1,I") and
(IT,I") and choosing the best constants in the above inequalities.

’ai—aj.

6.13. An example:

(AL, d)
; @ (continuous) 3
! I/lg:q)(Xg), Ue =G= (_ug‘i‘gg) 5

e =P(Xe), e =Gx(—a3 + Celle + &)

DR ¢ & @ a4 (R

The renormalisation group acts on X¢ — X and on the coefficients of
the equation satisfied by ug and ¢, respectively.
On the other hand

fo= s, (—f+E),  fe=tg (-P+E).
The diverging constants C¢ appear only in Xe.

6.14. The crucial result
We recall that @ : .7 — 2'(R?) is given by
(A ,d) = Space of models, P(X)=u where u=Ix(u).

The crucial results are
o M >X— ®(X)e 2'(RY) is continuous

A

e X converges in probability to X in ..
This shows that @i — i converges in probability.
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