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CHAPTER 1

Reconstruction

In these lecture notes we want to present an introduction to (some of)
the analytical aspects of regularity structures, with an emphasis on how to
construct (some of) the most relevant objects.

1.1. Distributions

These lectures will concern the space D 1pRdq of distributions or gen-
eralised functions. We consider the space DpRdq :“ C8

c pRdq of smooth
functions with compact support on Rd .

A distribution on Rd is a linear functional T : C8
c pRdq Ñ R such that for

every compact set K Ă Rd there is r “ rK P N
|T pϕq| À }ϕ}Cr :“ max

|k|ďr
}B

k
ϕ}8, @ϕ P C8

0 pKq (1.1.1)

where throughout these lecture notes f À g means that there exists a constant
C ą 0 such that f ď C g. If one can find a r P N such that (1.1.1) holds for
all compact set K Ă Rd then we say that T has order r.

Every locally integrable (in particular continuous) function f : Rd Ñ R
defines a distribution by integration:

f pϕq :“
ż

Rd
f pxqϕpxqdx, ϕ P DpRd

q.

A famous example of distribution from quantum mechanics is the Dirac
measure δx at x P Rd

δxpϕq “ ϕpxq, ϕ P C8
pRd

q.

One can also differentiate any distribution T P D 1pRdq and obtain a new
distribution: for k P Nd

B
kT pϕq :“ p´1q

k1`¨¨¨`kd T pB
k
ϕq.

Distributions form a linear space. If ϕ P C8pRdq and T P D 1pRdq then it
is possible to define canonically the product ϕ ¨ T “ T ¨ ϕ as

ϕ ¨ T pψq “ T ¨ ϕpψq :“ T pϕψq, @ψ P C8
c pRd

q.

However, if T,T 1 P D 1pRdq, in general there is no canonical way of
defining T ¨ T 1.

3



4 1. RECONSTRUCTION

One may use some form of regularisation of T , T 1 or both. Then, the
result could heavily depend on the regularisation and thus be neither unique
nor canonical. For example, there does not seem to exist a reasonable way
to define the square pδxq2 of the Dirac function.

Regularity structures give a framework to define products of certain
distributions, and to prove well-posedness of some PDEs where such distri-
butions appear.

1.2. The main question of this chapter

For every x P Rd we fix a distribution Fx P D 1pRdq and we call the family
pFxqxPRd a germ if for all ψ P D , the map x ÞÑ Fxpψq is measurable.

Problem: Can we find a distribution f P D 1pRdq which is locally well
approximated by pFxqxPRd ?

1.2.1. Taylor expansions. For example, let us fix f P C8pRdq, and let
us define for a fixed γ ą 0

Fxpyq :“
ÿ

|k|ăγ

B
k f pxq

py ´ xqk

k!
, x,y P Rd . (1.2.1)

Then the classical Taylor theorem says that there exists a function Rpx,yq

such that
f pyq ´ Fxpyq “ Rpx,yq, |Rpx,yq| À |x ´ y|

γ (1.2.2)

uniformly for x,y on compact sets of Rd . By (1.2.2) we say that the distribu-
tion defined by f is locally well approximated by the germ pFxqxPRd formed
by its Taylor polynomials.

1.2.2. Scaling. Let us introduce now the fundamental tool of scaling:
for all ϕ P DpRdq, λ ą 0 and y P Rd we set

ϕ
λ
y pwq :“

1
λ d ϕ

´w ´ y
λ

¯

, w P Rd . (1.2.3)

When y “ 0 we write ϕλ “ ϕλ
0 ,

Then the local approximation property (1.2.2) implies

Proposition 1.2.1. Let f P C8pRdq, γ ą 0 and Fx be defined by (1.2.1). Then
ˇ

ˇ

ˇ
p f ´ Fyqpϕ

λ
y q

ˇ

ˇ

ˇ
À λ

γ , (1.2.4)

uniformly for y in compact sets of Rd , λ Ps0,1s and ϕ P DpBp0,1qq with
ş

|ϕ | ď 1.



1.2. THE MAIN QUESTION OF THIS CHAPTER 5

PROOF. By (1.2.2) we have f ´ Fy “ Rpy, ¨q and |Rpy,wq| À |w ´ y|γ .
Since ϕλ

y is supported by Bpy,λ q with
ş

|ϕλ
y | “

ş

|ϕ |,

ˇ

ˇ

ˇ
p f ´ Fyqpϕ

λ
y q

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ż

Rd
Rpy,wqϕ

λ
y pwqdw

ˇ

ˇ

ˇ

ˇ

À sup
wPBpy,λ q

|w ´ y|
γ

ż

|ϕ
λ
y | ď λ

γ

uniformly for y in compact sets of Rd , λ Ps0,1s and ϕ P DpBp0,1qq with
ş

|ϕ | ď 1. □

In this context we have another simple formula, which does not seem so
well known.

Proposition 1.2.2. Let f P C8pRdq, γ ą 0 and Fx be defined by (1.2.1). Then
ˇ

ˇ

ˇ
pFz ´ Fyqpϕ

λ
y q

ˇ

ˇ

ˇ
À p|y ´ z| ` λ q

γ , (1.2.5)

uniformly for y,z in compact sets of Rd , λ Ps0,1s and ϕ P DpBp0,1qq with
ş

|ϕ | ď 1.

PROOF. Let us note that we can Taylor expand also the derivatives of f
for |k| ă γ

B
k f pyq “

ÿ

|ℓ|ăγ´|k|

B
k`ℓ f pzq

py ´ zqℓ

ℓ!
` Rk

py,zq, |Rk
py,zq| À |y ´ z|

γ´|k|,

uniformly for x,y on compact sets of Rd . Then we can write

Fypwq “
ÿ

|k|ăγ

B
k f pyq

pw ´ yqk

k!

“
ÿ

|k|ăγ

¨

˝

ÿ

|ℓ|ăγ´|k|

B
k`ℓ f pzq

py ´ zqℓ

ℓ!
` Rk

py,zq

˛

‚

pw ´ yqk

k!

“ Fzpwq `
ÿ

|k|ăγ

Rk
py,zq

pw ´ yqk

k!
.

Therefore we obtain the expression

Fzpwq ´ Fypwq “ ´
ÿ

|k|ăγ

Rk
py,zq

pw ´ yqk

k!
. (1.2.6)
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In particular

|Fzpwq ´ Fypwq| ď
ÿ

|k|ăγ

|Rk
py,zq|

|w ´ y|k

k!

À
ÿ

|k|ăγ

|y ´ z|
γ´|k|

|w ´ y|
k

À p|y ´ z| ` |w ´ y|q
γ

since atbs ď pa ` bqtpa ` bqs for a,b, t,s ě 0. Now by (1.2.3), for all ϕ P

DpBp0,1qq with
ş

|ϕ | ď 1
ˇ

ˇ

ˇ

ˇ

ż

Rd
pFzpwq ´ Fypwqq ϕ

λ
y pwqdw

ˇ

ˇ

ˇ

ˇ

À sup
wPBpy,λ q

p|y ´ z| ` |w ´ y|q
γ

ż

|ϕ
λ
y |

ď p|y ´ z| ` λ q
γ .

We have obtained (1.2.5). □

1.3. Reconstruction

We define throughout the paper

εn :“ 2´n, n P N.

We have seen in (1.2.4) that for the germ pFyqyPRd related to a Taylor expan-
sion of order γ ą 0

ˇ

ˇp f ´ Fyqpϕ
εn
y q

ˇ

ˇ À ε
γ
n ,

uniformly for y in compact sets of Rd , n P N and ϕ P DpBp0,1qq with
ş

|ϕ | ď 1. This property does not rely explicitly on the smoothness of f ,
and seems to be a promising way of expressing the fact that pFyqyPRd locally
approximates well (at order γ ą 0) the distribution f .

This motivates the following:

Definition 1.3.1. Let pFyqyPRd Ď D 1pRdq a family of distributions. We say
that f P D 1pRdq is a reconstruction of pFyqyPRd if there exists γ ą 0 such that
for all ϕ P D

ˇ

ˇp f ´ Fyqpϕ
εn
y q

ˇ

ˇ À ε
γ
n , (1.3.1)

uniformly for y in compact sets of Rd and n P N.

We are going to see below sufficient conditions for a family pFyqyPRd Ď

D 1pRdq of distributions to admit a reconstruction. A first important remark
is that, with this definition, there is at most one reconstruction for a given
pFyqyPRd .



1.4. COHERENCE 7

We are going to use a number of times the following formula: for all
T P D 1 and ϕ,g P D

T pϕ ˚ gq “

ż

Rd
T pϕp¨ ´ yqqgpyqdy .

With the notation ϕypxq :“ ϕpx ´ yq “ ϕ1
y pxq, recall (1.2.3), we obtain the

basic formula
T pϕ ˚ gq “

ż

Rd
T pϕyqgpyqdy , (1.3.2)

Lemma 1.3.2 (Uniqueness). Given any pFxqxPRd Ď D 1pRdq and γ ą 0, there
is at most one reconstruction of pFxqxPRd in the sense of Definition 1.3.1.

PROOF. We fix a test function ϕ P D with
ş

ϕ “ 1, and two distributions
f ,g P D 1 which satisfy, uniformly for y in compact sets,

lim
nÑ8

|p f ´ Fyqpϕ
εn
y q| “ lim

nÑ8
|pg ´ Fyqpϕ

εn
y q| “ 0 . (1.3.3)

We set T :“ f ´ g. For any ψ P D we have T pψq “ limnÑ8 T pψ ˚ ϕεnq. If
K is any compact set which contains the support of ψ we have by (1.3.2)

|T pψ ˚ ϕ
εnq| “

ˇ

ˇ

ˇ

ˇ

ż

Rd
T pϕ

εn
y qψpyqdy

ˇ

ˇ

ˇ

ˇ

ď }ψ}L1 sup
yPK

|T pϕ
εn
y q| .

It remains to show that limnÑ8 T pϕεn
y q “ 0 uniformly for y P K, for which it

is enough to observe that

|T pϕ
εn
y q| “ | f pϕ

εn
y q ´ gpϕ

εn
y q| ď |p f ´ Fyqpϕ

εn
y q| ` |pg ´ Fyqpϕ

εn
y q|

and these terms vanish as n Ñ 8 uniformly for y in compact sets, by (1.3.3).
□

1.4. Coherence

We have seen in (1.2.5) that for the germ related to a Taylor expansion
we have for any γ ą 0

ˇ

ˇpFz ´ Fyqpϕ
εN
y q

ˇ

ˇ À p|y ´ z| ` εNq
γ ,

ˇ

ˇp f ´ Fyqpϕ
εN
y q

ˇ

ˇ À ε
γ

N ,

uniformly for y,z in compact sets of Rd , n P N and ϕ P DpBp0,1qq with
ş

|ϕ | ď 1.
However the first estimate implicitly relies on the information that the

distribution Fz ´ Fy is a locally bounded function: suppose indeed that this
is not the case; then we expect that the quantity pFz ´ Fyqpϕ

εN
y q does not

necessarily remain bounded as n Ñ 8; this is the case for example if Fz ´ Fy
is a Dirac mass at y, where

pFz ´ Fyqpϕ
εN
y q “

1
εd

N
ϕp0q. (1.4.1)
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Therefore, if we want to consider more general families pFyqyPRd of genuine
distributions, we expect (1.2.5) to be too strong a requirement.

Formula (1.4.1) suggests that a weaker version of (1.2.5), which could
be convenient in this context, may be obtained by allowing a multiplicative
factor εα

N with α ď 0 in (1.2.5):
ˇ

ˇpFz ´ Fyqpϕ
εN
y q

ˇ

ˇ À ε
α
N p|y ´ z| ` εNq

γ . (1.4.2)

However, it turns out that (1.4.2) may not be strong enough to obtain (1.3.1):
the multiplicative factor εα

N , which explodes as n Ñ 8 if α ă 0, makes a
better control on the factor p|y ´ z| ` εNq necessary, as can be seen from the
proof of Theorem 1.5.1 below. It turns out that a sufficient condition for the
existence of a (unique) reconstruction is

ˇ

ˇpFz ´ Fyqpϕ
εN
y q

ˇ

ˇ À ε
α
N p|y ´ z| ` εNq

γ´α ,

uniformly for z,y in compact sets of Rd , n P N, We call this property coher-
ence, see below.

Definition 1.4.1. We say that a germ pFzqzPRd Ă D 1 is pα,γq-coherent for
γ P R, and α ď γ ^ 0, if there exists ϕ P DpRdq with

ş

ϕ ‰ 0, such that
ˇ

ˇpFz ´ Fyqpϕ
εn
y q

ˇ

ˇ À ε
α
n p|y ´ z| ` εnq

γ´α , (1.4.3)

uniformly for z,y in compact sets of Rd , n P N.
We denote by G α,γ the set of pα,γq-coherent germs.

Remark 1.4.2.
‚ Measurability of the map x ÞÑ Fxpψq is a technical assumption,

which is needed in the definition of suitable approximations to the
reconstruction of pFzqzPRd .

‚ It is a non obvious (but true) fact, see [2, Proposition 13.1], that
relation (3.3.1) actually holds uniformly over ϕ P DpBp0,1qq with
bounded }ϕ}Crα . More precisely:

|pFz ´ Fyqpϕ
εn
y q| À }ϕ}Crα ε

α
n p|y ´ z| ` εnq

γ´α , (1.4.4)

uniformly for x,y,z in compact sets, n P N and ϕ P DpBp0,2qq,
where rα :“ mintk P N : k ą ´αu.

‚ In particular, G α,γ is a vector space.

1.5. Hairer’s Reconstruction Theorem (without regularity structures)

We define the following family of test functions:

Br :“ tψ P DpBp0,1qq : }ψ}Cr ď 1u . (1.5.1)
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THEOREM 1.5.1 (Reconstruction Theorem). Suppose that pFzqzPRd Ă D 1

is a pα,γq-coherent germ in the sense of Definition 1.4.1 with γ ą 0, namely
there exist γ ą 0, α ď γ and a ϕ P DpRdq with

ş

ϕ ‰ 0, such that

|pFy ´ Fxqpϕ
εn
x q| À ε

α
n p|x ´ y| ` εnq

γ´α ,

uniformly for x,y in compact sets of Rd , n P N. Then there exists a unique
RF P D 1pRdq such that

|pRF ´ Fxqpψ
εn
x q| À ε

γ
n (1.5.2)

uniformly for x in compact sets of Rd , n P N, ψ P Br, see (1.5.1), for any
fixed integer r ą ´α .

‚ This result was stated and proved by Martin Hairer in [5, Thm.
3.10] for a subclass of germs related to regularity structures. He
used wavelets.

‚ Later Otto-Weber [7] proposed an approach based on a semigroup.
This corresponds to a special choice of the test functions ϕ,ψ . See
also [6].

‚ The above statement is a slight improvement of [2, Thm. 5.1]. It
is more general and requires no knowledge of regularity structures.
The improvement is due to [8] and concerns the fact that it is not
necessary to impose a homogeneity condition on the germ (see
below).

‚ This result can be seen as a generalisation of the Sewing Lemma in
rough paths [4, 3].

‚ The construction is completely local: constants and even the expo-
nent α can depend on the compact set.

‚ We also cover the case γ ď 0 (see below).
‚ There is clearly an analogy between the Reconstruction Theorem

and the Sewing Lemma: see [1, section 5] for a discussion.

Example 1.5.2. Let A Ă R be a (locally) finite set such that α :“ infA P R.
Let F “ pFxqxPRd be a germ such that, for some γ ě α and a ϕ P DpRdq with
ş

ϕ ‰ 0, we have

|pFz ´ Fyqpϕ
ε
y q| À

ÿ

aPA: aăγ

ε
a

|z ´ y|
γ´a,

uniformly for z,y in compact sets and for ε P p0,1s .

(1.5.3)

Then the germ F is pα,γq-coherent, since

ε
a

|z ´ y|
γ´a

“ ε
α

ε
a´α

|z ´ y|
γ´a

ď ε
α

pε ` |z ´ y|q
γ´α .

For example we saw in (1.2.5) that the Taylor expansions (1.2.1) satisfy
(1.5.3) with A “ N and α “ 0.
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Remark 1.5.3. If pFzqzPRd Ă D 1 is a pα,γq-coherent germ and α ą 0, then
the map z ÞÑ Fz is constant, so that we implicitly assume from now on that
α ď 0. In order to prove the claim, we apply the triangular inequality

|pFy ´ Fxqpϕ
εn
z q| ď |pFy ´ Fzqpϕ

εn
z q| ` |pFz ´ Fxqpϕ

εn
z q| Ñ 0

as n Ñ `8 (uniformly for x,y,z in compact sets) by the coherence assump-
tion. Then we obtain for all ψ P D by (1.3.2)

pFy ´ Fxqpψq “ lim
nÑ`8

pFy ´ Fxqpψ ˚ ϕ
εnq

“ lim
nÑ`8

ż

Rd
pFy ´ Fxqpϕ

εn
z qψpzqdz “ 0.

1.6. Sketch of the proof

In this section we give a sketch of the proof of Theorem 1.5.1.
We fix a pα,γq-coherent germ pFzqzPRd Ă D 1, i.e. we suppose that there

exist γ ą 0,α ď 0 and ϕ P DpRdq with
ş

ϕ ‰ 0, such that
ˇ

ˇpFz ´ Fyqpϕ
εn
y q

ˇ

ˇ À ε
α
n p|y ´ z| ` εnq

γ´α , (1.6.1)

uniformly for z,y in compact sets of Rd , n P N. We find in an elementary
way a related ϕ̂ P DpBp0,1qq such that

ż

Rd
ϕ̂pyq dy “ 1 ,

ż

Rd
yk

ϕ̂pyq dy “ 0 , @k P Nd : 1 ď |k| ď r ´ 1 ,

(1.6.2)
for a given r ą ´α , and (1.6.1) holds with ϕ replaced by ϕ̂ , see [2, Lemma
8.3]. Then we define

ρ :“ ϕ̂
2

˚ ϕ̂ and εn :“ 2´n, n P N , (1.6.3)

where we recall that ψεN “ ψ
εN
0 is a scaling of ψ as in (1.2.3). Note that

ş

ρ “
ş

ϕ̂2 ş ϕ̂ “ 1. This peculiar choice of ρ ensures that the difference
ρ

1
2 ´ ρ is a convolution:

ρ
1
2 ´ ρ “ ϕ̂ ˚ ϕ̌ , where we define ϕ̌ :“ ϕ̂

1
2 ´ ϕ̂

2 . (1.6.4)

By (1.6.2),
ż

Rd
yk

ϕ̌pyq dy “ 0 , @k P Nd : 0 ď |k| ď r ´ 1 . (1.6.5)

This will be used below to subtract suitable Taylor polynomials. Moreover it
follows that

ρ
εn`1 ´ ρ

εn “ pρ
1
2 ´ ρq

εn “ ϕ̂
εn ˚ ϕ̌

εn . (1.6.6)
With these definitions, we can now set

fnpψq :“
ż

Rd
Fzpρ

εn
z qψ pzq dz , ψ P D , (1.6.7)
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recall (1.3.2). We study the function

fx,npzq :“ fn ´ Fxpρ
εn
z q “ pFz ´ Fxqpρ

εn
z q, x,z P Rd. (1.6.8)

We write fx,n as a telescoping sum:

fx,k`1pzq ´ fx,kpzq “ pFz ´ Fxqpρ
εk`1
z ´ ρ

εk
z q

“ pFz ´ Fxqpϕ̂
εn ˚ ϕ̌

εnq “

ż

Rd
pFz ´ Fxqpϕ̂

εk
y q ϕ̌

εkpy ´ zqdy

“

ż

Rd
pFy ´ Fxqpϕ̂

εk
y q ϕ̌

εkpy ´ zqdy
loooooooooooooooooomoooooooooooooooooon

g1
x,kpzq

`

ż

Rd
pFz ´ Fyqpϕ̂

εk
y q ϕ̌

εkpy ´ zqdy
loooooooooooooooooomoooooooooooooooooon

g2
k pzq

,

(1.6.9)

where again we use (1.3.2). We have first, for all z P Rd

|g2
kpzq| ď }ϕ̌

εk}L1 sup
|y´z|ďεk

|pFz ´ Fyqpϕ̂
εk
y q| À ε

α
k ε

γ´α

k “ ε
γ

k ,

since }ϕ̌εk}L1 “ }ϕ̌}L1 . Then we obtain for all ψ P D
ˇ

ˇ

ˇ

ˇ

ż

Rd
g2

kpzqψpzqdz
ˇ

ˇ

ˇ

ˇ

À ε
γ

k }ψ}L1. (1.6.10)

Now we want to estimate
ż

Rd
g1

x,kpzqψpzqdz “

ż

Rd
pFy ´ Fxqpϕ̂

εk
y q pϕ̌

εk ˚ ψqpyqdy . (1.6.11)

If K is the support of ψ and K̄1 is the subset of Rd which has distance ď 1
from K, we obtain that ϕ̌ε ˚ ψ has support in K̄1. Then by the coherence
condition
ˇ

ˇ

ˇ

ˇ

ż

Rd
g1

x,kpzqψpzqdz
ˇ

ˇ

ˇ

ˇ

ď sup
yPK̄1

|pFy ´ Fxqpϕ̂
εk
y q| }ϕ̌

εk ˚ ψ}L1 À ε
α
k }ϕ̌

εk ˚ ψ}L1 .

Note now that by (1.6.5)

pϕ̌
ε

˚ ψqpyq “

ż

Rd
ϕ̌

ε
py ´ zq

␣

ψpzq ´ pypzq
(

dz ,

where pyp¨q :“
ř

|k|ďr´1
Bkψpyq

k! p¨ ´ yqk the Taylor polynomial of ψ of order
r ´ 1 based at y; therefore

|pϕ̌
ε

˚ ψqpyq| ď }ψ}Cr

ż

Rd
|ϕ̌

ε
py ´ zq| |z ´ y|

r dz ď }ψ}Cr }ϕ̌}L1 ε
r , y P Rd.

We obtain
ˇ

ˇ

ˇ

ˇ

ż

Rd
g1

x,kpzqψpzqdz
ˇ

ˇ

ˇ

ˇ

À ε
α`r
k }ψ}Cr . (1.6.12)
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In particular we obtain by (1.6.10)-(1.6.12), since γ ą 0 and α ` r ą 0, that

fx,npψq “ fx,0pψq `

n´1
ÿ

k“0

“

g1
x,kpψq ` g2

kpψq
‰

converges as n Ñ `8 to a distribution of order r. Note now that Fxpρ
εn
¨ q

converges to Fx in D 1, since by (1.3.2)
ż

Rd
Fxpρ

εn
z qψpzqdz “ Fxpρ

εn ˚ ψq Ñ Fxpψq , @ψ P D .

We obtain by (1.6.8) that fn converges to a distribution RF in D 1. Moreover,
since for all n ě ℓ we have

fx,npψq “ fx,ℓpψq `

n´1
ÿ

k“ℓ

“

g1
x,kpψq ` g2

kpψq
‰

, (1.6.13)

letting n Ñ `8 we obtain that for all x P Rd , ψ P D and ℓ P N

RFpψq “ Fxpψq ` fx,ℓpψq `

8
ÿ

k“ℓ

“

g1
x,kpψq ` g2

kpψq
‰

. (1.6.14)

Formula (1.6.14) is due to [8].
We want now to prove the reconstruction bound (1.5.2). We recall the

following result, proved in [2, Lemma 9.3]: let λ ,ε ą 0 and G : Rd Ñ R a
measurable function; then for all x P Rd and ψ P Br, see (1.5.1),

ˇ

ˇ

ˇ

ˇ

ż

Rd
Gpyqpϕ̌

ε
˚ ψ

εN
x qpyqdy

ˇ

ˇ

ˇ

ˇ

ď 4d
}ϕ̌}L1 min

␣

ε{λ ,1
(r sup

Bpx,λ`εq

|G| .

(1.6.15)

By (1.6.11) and (1.6.15)
ˇ

ˇ

ˇ

ˇ

ż

Rd
g1

x,kpzqψ
εN
x pzqdz

ˇ

ˇ

ˇ

ˇ

ď 4d
}ϕ̌}L1 min

␣

εk{λ ,1
(r sup

yPBpx,λ`εkq

|pFy ´Fxqpϕ̂
εk
y q| .

For y P Bpx,λ ` εkq, by (1.6.1) with ϕ replaced by ϕ̂ , we have

|pFx ´ Fyqpϕ̂
εk
y q| À ε

α
k p|x ´ y| ` εkq

γ´α
À maxtεk,λu

γ´α
ε

α
k .

We have obtained
ˇ

ˇ

ˇ

ˇ

ż

Rd
g1

x,kpzqψ
εN
x pzqdz

ˇ

ˇ

ˇ

ˇ

À

#

λ γ´α´r ε
α`r
k if εk ă λ

ε
γ

k if εk ě λ
. (1.6.16)

We now fix λ “ εℓ. We want to estimate f̃x :“ RF ´ Fx, and in particular
f̃xpψ

εℓ
x q. We write

| f̃xpψ
εℓ
x q| ď | fx,ℓpψ

εℓ
x q| ` |p f̃x ´ fx,ℓqpψ

εℓ
x q|.
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First by (1.6.3)

fx,ℓpψ
εℓ
x q “

ż

Rd

ż

Rd
pFz ´ Fxqpϕ̂

εℓ
y q ϕ̂

2εℓpy ´ zqψ
εℓ
x pzqdydz ,

so that

| fx,ℓpψ
εℓ
x q| ď }ϕ̂

2εℓ}L1 }ψ
εℓ
x }L1 sup

zPBpx,εℓq,|y´z|ďεℓ

|pFz ´ Fxqpϕ̂
εℓ
y q|.

Now we write |pFz ´ Fxqpϕ̂
εℓ
y q| ď |pFy ´ Fxqpϕ̂

εℓ
y q| ` |pFz ´ Fyqpϕ̂

εℓ
y q| and

sup
zPBpx,εℓq,|y´z|ďεℓ

|pFz ´ Fyqpϕ̂
εℓ
y q| À ε

α
ℓ ε

γ´α

ℓ ď ε
γ

ℓ ,

sup
zPBpx,εℓq,|y´z|ďεℓ

|pFy ´ Fxqpϕ̂
εℓ
y q| À ε

α
ℓ pεℓ ` 2εℓq

γ´α
À ε

γ

ℓ ,

so that we obtain
| fx,ℓpψ

εℓ
x q| À ε

γ

ℓ , (1.6.17)

and this argument holds for any γ P R. Now by (1.6.14)

p f̃x ´ fx,ℓqpψ
εℓ
x q “

8
ÿ

k“ℓ

“

g1
x,kpψq ` g2

kpψq
‰

,

and by (1.6.10)-(1.6.16),

|p f̃x ´ fx,ℓqpψ
εℓ
x q| ď

ÿ

kěℓ

“

|g1
x,kpψ

εℓ
x q| ` |g2

kpψ
εℓ
x q|

‰

À
ÿ

kěℓ

”

ε
γ´α´r
ℓ ε

α`r
k ` ε

γ

k

ı

ď
ε

γ´α´r
ℓ ε

α`r
ℓ

1 ´ 2´pα`rq
`

ε
γ

ℓ

1 ´ 2´γ
À ε

γ

ℓ ,

since γ ą 0 and α ` r ą 0. The proof is complete.

1.7. The Reconstruction Theorem for γ ď 0.

In Theorem 1.5.1 we have proved the existence and the uniqueness of
the reconstruction of a pα,γq-coherent germ in the case of γ ą 0. If γ ď 0
then we have a weaker result.

THEOREM 1.7.1. Suppose that for a given F : Rd Ñ D 1pRdq there exist
γ ď 0 and α ď γ , such that for all ϕ P DpRdq

|pFy ´ Fxqpϕ
εn
x q| À ε

α
n p|x ´ y| ` εnq

γ´α ,
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uniformly for x,y in compact sets of Rd , n P N. Then there exists a (non-
unique) RF P D 1pRdq such that

|pRF ´ Fxqpψ
εn
x q| À

#

ε
γ
n if γ ă 0

1 ` n if γ “ 0
. (1.7.1)

uniformly for x in compact sets of Rd , n P N, tψ P DpBp0,1qq : }ψ}Cr ď 1u

with a fixed r ą ´α .

PROOF. If one checks the proof of the case γ ą 0, one sees that the
convergence of the different terms depends either on γ ą 0 or on α ` r ą 0.
More precisely, the estimate (1.6.10) on g2

k is useful if γ ą 0, while the
estimate (1.6.12) on g1

x,k is useful if α ` r ą 0. If γ ď 0, the estimate on g2
k

is simply not good enough.
On the other hand, for γ ď 0 the reconstruction bound (1.7.1) is weaker,

since ε
γ
n or n diverge as n Ñ 8, and we do not state that there is a unique

choice for RF .
In fact, in order to prove the statement we can modify the approximating

sequence fn defined in (1.6.7), by eliminating the term g2
k whose convergence

is based on γ ą 0. However, g1
x,k, given by (1.6.11) above, depends on x P Rd ,

while we want the approximating sequence f̄n P D 1 to be independent of any
base point.

We define, recalling (1.6.7) and (1.6.9),

f̄n :“ fn ´

n´1
ÿ

k“0

g2
k ,

f̄x,npψq :“ f̄npψq ´ Fxpρ
εn ˚ ψq “ fx,npψq ´

n´1
ÿ

k“0

g2
kpψq.

Then, by (1.6.13), for all n ě ℓ,

f̄x,npψq “ fx,ℓpψq `

n´1
ÿ

k“ℓ

g1
k,xpψq ´

ℓ´1
ÿ

k“0

g2
kpψq “ f̄x,ℓpψq `

n´1
ÿ

k“ℓ

g1
k,xpψq .

(1.7.2)
By the estimate (1.6.12) on g1

x,k, we obtain that f̄x,n, and therefore f̄n, con-
verge in D 1 and we can write for all ψ P D , x P Rd and ℓ P N

RFpψq “ lim
n

f̄npψq “ Fxpψq ` f̄x,ℓpψq `

8
ÿ

k“ℓ

g1
k,xpψq. (1.7.3)
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For the reconstruction bound (1.7.1), we want to estimate f̄x :“ RF ´Fx,
and in particular f̄xpψ

εℓ
x q. We write

| f̄xpψ
εℓ
x q| ď | f̄x,ℓpψ

εℓ
x q| ` |p f̄x ´ f̄x,ℓqpψ

εℓ
x q|.

Now, by (1.6.16) and (1.7.3), if γ ď 0

|p f̄x ´ f̄x,ℓqpψ
εℓ
x q| ď

ÿ

kěℓ

|g1
x,kpψ

εℓ
x q|

À
ÿ

kěℓ

ε
γ´α´r
ℓ ε

α`r
k À ε

γ´α´r
ℓ ε

α`r
ℓ “ ε

γ

ℓ ,

since α ` r ą 0. By (1.6.17) and by (1.6.16), if γ ă 0

| f̄x,ℓpψ
εℓ
x q| ď | fx,ℓpψ

εℓ
x q| `

ℓ´1
ÿ

k“0

ˇ

ˇg2
kpψ

εℓ
x q

ˇ

ˇ

À ε
γ
n `

ℓ´1
ÿ

k“0

2|γ|k
À 2|γ|ℓ.

In the case γ “ 0 we have rather

| f̄x,ℓpψ
εℓ
x q| ď | fx,ℓpψ

εℓ
x q| `

ℓ´1
ÿ

k“0

ˇ

ˇg2
kpψ

εℓ
x q

ˇ

ˇ À 1 ` ℓ .

The proof is complete. □

1.8. Homogeneity

Definition 1.8.1. Let F be a germ. We say that F satisfies a homogeneity
bound with exponent ᾱ P R if

|Fxpψ
εn
x q| À ε

ᾱ
n ,

uniformly for x in compact sets, n P N and ψ P Brᾱ
with rᾱ “ mintn P N :

n ą ´ᾱu, see (1.5.1).

We recall the following result, which is proved in [2, Lemma 4.12].

Lemma 1.8.2 (Homogeneity). Let F “ pFxqxPRd be a pα,γq-coherent germ.
For any compact set K Ď Rd , there is a real number ᾱK ă γ such that

|Fxpϕ
εn
x q| À ε

ᾱK
n uniformly for x P K and n P N , (1.8.1)

with ϕ as in Definition 1.4.1.

Therefore coherence of a germ implies a local form of homogeneity of
the same germ. However in Definition 1.8.1 we require the coefficient ᾱ to
be uniform over the compact set K.
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If a germ satisfies a homogeneity bound with exponent ᾱ P R, then it
satisfies a homogeneity bound with exponent ᾱ 1 for all ᾱ 1 ď ᾱ . Therefore
the set of ᾱ P R such that a fixed germ satisfies a homogeneity bound with
exponent ᾱ takes the form s ´ 8,bs or s ´ 8,br; in particular the exponent
which appears in the proof of Lemma 1.8.2 is not necessarily optimal.

Definition 1.8.3. We denote by G ᾱ;α,γ the set of pα,γq-coherent germs which
satisfy a homogeneity bound with exponent ᾱ .

1.9. Negative Hölder (Besov) spaces

Given α Ps´8,0r, we define C α “ C αpRdq as the space of distributions
T P D 1 such that

|T pψεn
x q|

}ψ}Crα

À ε
α
n , (1.9.1)

uniformly for x in compact sets, ψ P Brα
zt0u and n P N, where we define rα

as the smallest integer r P N such that r ą ´α . For any distribution T P D 1

and α ă 0, we define }T }C α pKq as the best constant in (1.9.1):

}T }C α pKq :“ sup
zPK,nPN,ψPBrα

|T pψεn
x q|

εα
n }ψ}Crα

. (1.9.2)

Then T P C α if and only if }T }C α pKq ă 8, for all compact sets K Ď Rd .
We want now to show that a coherent germ which satisfies a homogeneity

bound with exponent ᾱ ă 0 has a reconstruction (unique or not) which
belongs to the Besov space C ᾱ , and the map F ÞÑ RF is linear continuous.

We introduce the semi-norms

|||F |||
coh
K,ϕ,α,γ :“ sup

y,zPK, nPN

|pFz ´ Fyqpϕεn
y q|

εα
n p|z ´ y| ` εnqγ´α

, (1.9.3)

|||F |||
hom
K,ϕ,ᾱ :“ sup

xPK, nPN

|Fxpϕεn
x q|

ε ᾱ
n

, (1.9.4)

where ϕ is as in Definition 1.4.1. We can now state the following result.

THEOREM 1.9.1 (Reconstruction Theorem and Hölder spaces). Let α ď

γ and γ ‰ 0. Let pFxqxPRd be a pα,γq-coherent germ with local homogeneity
bound ᾱ ď γ , namely F P G ᾱ;α,γ . If ᾱ ą 0, then RF “ 0. If ᾱ ă 0, then
RF belongs to C ᾱ and for every compact set K Ď Rd

}RF}C ᾱ pKq ď C
´

|||F |||
coh
K̄4,ϕ,α,γ ` |||F |||

hom
K̄2,ϕ,ᾱ

¯

, (1.9.5)

where ϕ is the test function in the coherence condition (1.4.3) and C “

Cα,γ,ᾱ,d,ϕ ă 8 is a constant which depends neither on F nor on K.
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PROOF. We fix a compact set K Ă Rd and y P K. When ᾱ ą 0 then γ ą 0
and RF “ 0 satisfies

ˇ

ˇJypϕ
εn
y q

ˇ

ˇ À ε
ᾱ
n ,

and we have uniqueness of the reconstruction by Lemma 1.3.2. Henceforth
we fix ᾱ ă 0. Let ϕ be the test function in the coherence condition (1.4.3).
Let f “ RF be a reconstruction of F . Fix a compact set K: we want to show
that

sup
xPK̄2, NPN

| f pϕ
εN
x q|

ε ᾱ
N

ď C1
´

|||F |||
coh
K̄4,ϕ,α,γ ` |||F |||

hom
K̄2,ϕ,ᾱ

¯

(1.9.6)

for some C1 “ C1
α,γ,ᾱ,d,ϕ ă 8. Set r̄ :“ mintr P N : r ą maxt´α,´ᾱuu.

Then we have, uniformly for x P K̄2 and N P N,

|p f ´ Fxqpϕ
εN
x q| “ c´1

|p f ´ Fxqpψ
β ´1εN
x q|

ď c1
|||F |||

coh
K̄4,ϕ,α,γ ¨

#

ε
γ

N if γ ‰ 0
p1 ` | logεN |q if γ “ 0

for a suitable c1 “ c1
α,γ,ᾱ,d,ϕ . Since ᾱ ď γ ‰ 0, we bound ε

γ

N ď ε ᾱ
N , for all

n P N. Recalling (1.9.4), by the triangle inequality we obtain

sup
xPK̄2, NPN

| f pϕ
εN
x q|

ε ᾱ
N

ď sup
xPK̄2, NPN

|p f ´ Fxqpϕ
εN
x q| ` |Fxpϕ

εN
x q|

ε ᾱ
N

ď p1 ` cᾱqc1
|||F |||

coh
K̄4,ϕ,α,γ ` |||F |||

hom
K̄2,ϕ,ᾱ

,

which completes the proof of (1.9.6). □

Also in this setting, we can show that (1.9.1) holds for one ψ if and only
if it holds for all ψ: see [2, Theorem 12.4].

1.10. Singular product

Let f P C α with α ą 0 and Fypwq “
ř

|k|ăα
Bk f pyq

pw´yqk

k! . Let also
g P C β with β ď 0. We define the germ P “ pPx :“ g ¨ FxqxPRd as

Pxpϕq “ pg ¨ Fxqpϕq :“ gpϕ Fxq, ϕ P D .

Note that this makes sense and defines a distribution in D 1 since ϕ Fx P D
for all ϕ P D .

THEOREM 1.10.1. If f P C α and g P C β , with α ą 0 and β ď 0, then
the germ P “ pPxqxPRd is pβ ,α ` β q-coherent and satisfies a homogeneity
bound with exponent β ,

ˇ

ˇpPz ´ Pyqpϕ
εn
y q

ˇ

ˇ À ε
β
n p|y ´ z| ` εnq

α ,
ˇ

ˇPypϕ
εn
y q

ˇ

ˇ À ε
β
n ,

uniformly over z,y in compact sets, n P N and ϕ P Br, with r ą ´β .
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PROOF. Since g P C β we have for all ε P p0,1s, ψ P DpBp0,1qq and
y P K

ˇ

ˇgpψ
ε
y q
ˇ

ˇ ď }g}C β pKq }ψ}Cr ε
β . (1.10.1)

Fix now any ϕ P DpBp0,1qq with
ş

ϕ ‰ 0 and }ϕ}Cr ď 1. By (1.2.6), for any
y,z P K (and γ replaced by α)

pPz ´ Pyqpϕ
ε
y q “ ´

ÿ

0ď|k|ăα

g
´

p¨ ´ yq
k
ϕ

ε
y

¯ Rkpy,zq

k!

where |Rkpy,zq| À } f }C α pKq |z ´ y|α´|k|. We have for fixed y P Rd , k P Nd

and ε ą 0

pw ´ yq
k
ϕ

ε
y pwq “ ε

|k|
ψ

ε
y pwq , where ψpwq :“ wk

ϕpwq .

Then ψ P DpBp0,1qq and }ψ}Cr À }ϕ}Cr ď 1, hence it follows by (1.10.1)
that

|g
´

p¨ ´ yq
k
ϕ

ε
y

¯

| “ ε
|k| g

`

ψ
ε
y
˘

À }g}C β pKq ε
β`|k| . (1.10.2)

We thus obtain, uniformly for z,y P K and ε P p0,1s,

|pPz ´ Pyqpϕ
ε
y q| À } f }C α pKq }g}C β pKq

ÿ

0ď|k|ăα

ε
β`|k|

|z ´ y|
α´|k|

À } f }C α pKq }g}C β pKq ε
β

p|z ´ y| ` εq
α ,

which completes the proof of coherence. We next prove homogeneity. By
(1.10.2), we obtain

|Pxpϕ
ε
x q| ď

ÿ

0ď|k|ăγ

ˇ

ˇ

ˇ
g
´

p¨ ´ xq
k
ϕ

ε
x

¯ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bk f pxq

k!

ˇ

ˇ

ˇ

ˇ

À }g}C β pKq

ÿ

0ď|k|ăγ

ε
β`|k|

ˇ

ˇ

ˇ

ˇ

Bk f pxq

k!

ˇ

ˇ

ˇ

ˇ

À } f }C α pKq }g}C β pKq

ÿ

0ď|k|ăγ

ε
β`|k|

À } f }C α pKq }g}C β pKq ε
β ,

uniformly for x in compact sets and ε P p0,1s. This completes the proof. □

If α ` β ą 0 the (unique) distribution RP can be used to construct a
canonical product of f and g. Moreover RP P C β .

If α ` β ď 0, the (non-unique) distribution RP can be used to construct
a non-canonical product of f and g. Moreover RP P C β .
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1.11. A special case

Let us assume that Fx P CpRdq for all x P Rd and moreover that the map
Rd ˆRd Q px,yq ÞÑ Fxpyq is continuous. We recall that in Section 1.6 we
proved that for all ψ P D

RpFqpψq “ lim
nÑ`8

ż

Rd
Fzpρ

εn
z qψ pzq dz .

Now if px,yq ÞÑ Fxpyq is continuous, we obtain by dominated convergence
that

RpFqpψq “

ż

Rd
Fzpzqψ pzq dz ,

namely RpFq is also a continuous function and coincides with z ÞÑ Fzpzq.
For an example one can consider the germ F defined by the Taylor

expansion of a smooth function f , see Section 1.2.1. In this case it is clear
that RpFq “ f is a function and f pxq “ Fxpxq, x P Rd .

1.12. Recent developments

‚ Reconstruction Theorem for Germs of Distributions on Smooth
Manifolds
by Paolo Rinaldi and Federico Sclavi

‚ On a Microlocal Version of Young’s Product Theorem
by Claudio Dappiaggi, Paolo Rinaldi and Federico Sclavi

‚ Besov Reconstruction
by Lucas Broux and David Lee

‚ Reconstruction theorem in quasinormed spaces
by Pavel Zorin-Kranich

‚ A stochastic reconstruction theorem
by Hannes Kern

https://arxiv.org/abs/2012.01261
https://arxiv.org/abs/2012.01261
https://arxiv.org/abs/2104.12423 
https://arxiv.org/abs/2106.12528
https://arxiv.org/abs/2107.08666
https://arxiv.org/abs/:2107.03867




CHAPTER 2

Models and modelled distributions

In the previous chapter we have introduced the notion of coherent germs
and the operation of reconstruction. In this chapter we define a special class
of germs which arise in regularity structures.

2.1. Pre-models and modelled distributions

We are going to study germs which can be written as suitable linear
combinations of a fixed finite family of germs. First we introduce the notion
of pre-models:

Definition 2.1.1. A pre-model is a pair pΠ,Γq where
(1) pΠi

xqiPI,xPRd is a family of germs, with I a finite index set
(2) Rd ˆRd Q px,yq ÞÑ pΓ

i j
xyqi, jPI is a matrix-valued function such that

Π
j
y “

ÿ

iPI

Π
i
x Γ

i j
xy , j P I, x,y P Rd, (2.1.1)

and we suppose that
(3) there exist pαiqiPI Ă R and a ϕ P DpRdq with

ş

ϕ ‰ 0 such that

|Π
i
xpϕ

εn
x q| À ε

αi
n ,

uniformly over x in compact sets of Rd , n P N.
We denote ᾱ :“ miniPI αi.

Example 2.1.2. For a fixed γ ą 0, the family of classical monomials

Π
j
ypwq “

pw ´ yq j

j!
, j P Nd, y,w P Rd, j P I :“ ti P Nd : |i| ď γu,

with αi “ |i|, any ϕ P D and

Γ
i j
xy “ 1piď jq

px ´ yq j´i

p j ´ iq!
, i P Nd,

forms a pre-model. Note that for j P Nd , w P Rd , we use the notation

| j| :“
d
ÿ

k“1

jk, w j :“
d
ź

k“1

w jk
k , j! :“

d
ź

k“1

jk!

21
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with the convention 00 :“ 1.

Now we can define the notion of modelled distribution.

Definition 2.1.3. Let pΠ,Γq be a pre-model, and let γ P R. If f : Rd Ñ RI

is measurable locally bounded and satisfies
(1) f i ” 0 whenever αi ě γ ,
(2) for all i P I with αi ă γ ,

ˇ

ˇ f i
x
ˇ

ˇ À 1,

ˇ

ˇ

ˇ

ˇ

ˇ

f i
x ´

ÿ

jPI

Γ
i j
xy f j

y

ˇ

ˇ

ˇ

ˇ

ˇ

À |x ´ y|
γ´αi ,

uniformly for x,y in compact subsets of Rd ,
then we call f a distribution modelled by pΠ,Γq, or simply a modelled
distribution, and we write f P D γ

pΠ,Γq
.

Given a pre-model pΠ,Γq and a modelled distribution f P D γ

pΠ,Γq
, we

define the germ
xΠ, f yx :“

ÿ

iPI

Π
i
x f i

x, x P Rd. (2.1.2)

We want to show that xΠ, f y is pminIᾱ,γq-coherent (note that if γ ď minIᾱ

then f and xΠ, f y are null). Using the reexpansion property (2.1.1) we have

ÿ

iPI

`

Π
i
z f i

z ´ Π
i
y f i

y
˘

“ ´
ÿ

iPI

Π
i
y

˜

f i
y ´

ÿ

jPI

Γ
i j
yz f j

z

¸

.

Therefore

pxΠ, f yz ´ xΠ, f yyqpϕ
ε
y q “ ´

ÿ

iPI

Π
i
ypϕ

ε
y q

˜

f i
y ´

ÿ

jPI

Γ
i j
yz f j

z

¸

,

namely
ˇ

ˇpxΠ, f yz ´ xΠ, f yyqpϕ
ε
y q
ˇ

ˇ À
ÿ

iPI

ε
αi |z ´ y|

γ´αi À ε
ᾱ

pε ` |z ´ y|q
γ´ᾱ ,

uniformly for y,z in compact sets. Moreover
ˇ

ˇxΠ, f yypϕ
ε
y q
ˇ

ˇ ď
ÿ

iPI

f i
y |Π

i
ypϕ

ε
y q| À

ÿ

iPI

ε
αi À ε

ᾱ ,

uniformly over y in compact subsets of Rd . In other words we have proved
that

Proposition 2.1.4. If pΠ,Γq is a pre-model and f P D γ

pΠ,Γq
, then xΠ, f y is a

pᾱ,γq-coherent germs with uniform homogeneity bound with exponent ᾱ . In
other words, xΠ, f y belongs to G ᾱ;ᾱ,γ .
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2.2. A special case

We have seen in Section 1.11 that under certain sufficient conditions on
the coherent germ pFxqxPRd , the reconstruction RF is a function and has an
explicit form. An important example of this setting, where moreover RF is
a (locally) Hölder-continuous function, is the following:

Example 2.2.1. Suppose we have a pre-model pΠ,Γq and a modelled distri-
bution f P D γ

pΠ,Γq
as in Section 2.1. We suppose that for all i P I

}Π
i
x}Cβ pRdq ă `8

uniformly for x in compact subsets of Rd , where β Ps0,1r, namely Πi
x is

Hölder-continuous (locally uniformly in x). Then we can write unambigu-
ously y ÞÑ Πi

xpyq and

y ÞÑ Fxpyq :“
ÿ

iPI

f i
x Π

i
xpyq.

Now by the reexpansion property (2.1.1)

Fxpyq ´ Fx1pyq “ ´
ÿ

iPI

Π
i
xpyq

˜

f i
x ´

ÿ

jPI

Γ
i j
xx1 f j

x1

¸

.

Then
|Fxpyq ´ Fx1py1

q| ď |Fxpyq ´ Fx1pyq| ` |Fx1py1
q ´ Fx1py1

q|

À
ÿ

iPI

|Π
i
xpyq|

ˇ

ˇx ´ x1
ˇ

ˇ

γ´αi
` |y ´ y1

|
β

which shows that px,yq ÞÑ Fxpyq is continuous. Therefore, in this case the
reconstruction of F is equal to x ÞÑ Fxpxq. Moreover setting y “ x and y1 “ x1

we obtain

|Fxpxq ´ Fx1px1
q| À

ÿ

iPI

|Π
i
xpxq|

ˇ

ˇx ´ x1
ˇ

ˇ

γ´αi
` |x ´ x1

|
β ,

namely the reconstruction of F “ xΠ, f y is even locally Hölder-continuous.

2.3. Models

We now define the notion of a model.

Definition 2.3.1. A model is a pre-model pΠ,Γq as in Definition 2.1.1, such
that moreover

(1) Γii
xy “ 1 for all i P I,

(2) Γ
i j
xy “ 0 if αi ě α j and i ‰ j,

(3) |Γ
i j
xy| À |x ´ y|α j´αi if αi ă α j.
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If pΠ,Γq is a model, then spaces D γ

pΠ,Γq
of modelled distributions satisfy

the following properties.

Lemma 2.3.2. Let pΠ,Γq be a model as in Definition 2.3.1. Then
(1) If γ ą ᾱ “ minIα , the space D γ

pΠ,Γq
is not reduced to the null vector.

(2) For γ 1 ą γ the natural projection

D γ 1

pΠ,Γq
Q p f i

qiPI ÞÑ p1pαiăγq f i
qiPI

maps D γ 1

pΠ,Γq
to D γ

pΠ,Γq
.

PROOF. For the first assertion, we consider an element Πi
x of minimal

homogeneity ᾱ “ minIα . In this case by the properties (1)-(2) in Definition
2.3.1 we see that Γ

i j
xy “ δi j for all j P I, where δ is the Kronecker symbol,

and the function f j
x “ δi j is a modelled distribution for any γ ą ᾱ “ minIα .

Let us prove now the second assertion. We write for i such that αi ă γ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f i
x ´

ÿ

α jăγ

Γ
i j
xy f j

y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f i
x ´

ÿ

α jăγ 1

Γ
i j
xy f j

y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`
ÿ

γďα jăγ 1

ˇ

ˇΓ
i j
xy f j

y
ˇ

ˇ

À |x ´ y|
γ 1´αi `

ÿ

γďα jăγ 1

|x ´ y|
α j´αi

À |x ´ y|
γ´αi,

uniformly for x,y in compact subsets of Rd , by the property (3) in Definition
2.3.1. □

We also have another instructive remark. Suppose that pΠ,Γq is a model.
Then for every j P I, the germ pΠ

j
xqxPRd is pᾱ “ minIα,α jq-coherent. Indeed

Π
j
y ´ Π

j
x “

ÿ

iPI

Π
i
xΓ

i j
xy ´ Π

j
x “

ÿ

i‰ j

Π
i
xΓ

i j
xy,

so that
|pΠ

j
y ´ Π

j
xqpϕ

εn
x q| ď

ÿ

αiăα j

|Π
i
xpϕ

εn
x q||x ´ y|

α j´αi

À
ÿ

αiăα j

ε
αi
n |x ´ y|

α j´αi

À ε
ᾱ
n p|x ´ y| ` εnq

α j´ᾱ .

Moreover, by property (3) in Definition 2.1.1, this germ satisfies a homogene-
ity bound with exponent α j. The same property is in fact a reconstruction
bound for this germ, with RpΠ jq “ 0. If α j ą 0 then the reconstruction is
unique.



2.4. HÖLDER FUNCTIONS AS MODELLED DISTRIBUTIONS 25

Note that we can write, as in notation (2.1.2), Π j “ xΠ, f y with f i
x :“ δi j,

with δ the Kronecker symbol. However in this setting f does not belong to
D

α j
pΠ,Γq

, because it has a non-zero coordinate corresponding to an element of
the basis with homogeneity equal to α j, which is not allowed by property
(1) of Definition 2.1.3.

Proposition 2.3.3. Let pΠ,Γq be a model and γ ą ᾱ “ minI α . The family
pΠi,Γi jqαi,α jďγ is again a model.

PROOF. The re-expansion property (2.1.1) for α j ď γ is

Π
j
y “

ÿ

iPI

Π
i
x Γ

i j
xy , x,y P Rd.

By the property (2) in Definition 2.3.1, this can be rewritten as

Π
j
y “

ÿ

iPI,α jďαi

Π
i
x Γ

i j
xy , x,y P Rd.

It is therefore easy to show that pΠi,Γi jqαi,α jďγ is a model. □

2.4. Hölder functions as modelled distributions

We have see in Example 2.1.2 that the classical polynomial family

Π
i
ypwq “

pw ´ yqi

i!
, i P Nd, αi “ |i| ă γ,

Γ
i j
xy “ 1piď jq

px ´ yq j´i

p j ´ iq!
, i, j P Nd ,

forms a pre-model and actually a model. It is an interesting exercise to check
that modelled distributions with respect to this model are actually classical
Hölder functions.

This model belongs to the class that we have considered in Section 2.2,
namely the function px,yq ÞÑ Πi

xpyq is continuous for all i and }Πi
x}Cβ pRdq ă

`8 uniformly for x in compact subsets of Rd for any β Ps0,1r. Therefore
by the discussion in Section 2.2 we know that any modelled distribution f P

D γ

pΠ,Γq
gives rise to a p0,γq-coherent germ xΠ, f y and that the reconstruction

of xΠ, f y is a locally Hölder-continuous function.
Let us consider for simplicity the case γ R N. Now, a modelled distribu-

tion f P D γ

pΠ,Γq
satisfies

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f i
x ´

ÿ

jěi, | j|ăγ

px ´ yq j´i

p j ´ iq!
f j
y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À |x ´ y|
γ´|i|, @ |i| ă γ .
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This is in fact a Taylor expansion of f i at order tγ ´ |i|u with a remainder of
order γ ´ |i|, and this implies that f i is of class Cγ´|i| and

f j
“ B j´i f i, @ j ě i.

In particular, for i “ 0 we see that f 0 is of class Cγ and satisfies (1.2.2); in
particular by Proposition 1.2.1 we have that f 0 is a reconstruction of xΠ, f y,
and since γ ą 0 it is the unique reconstruction. In other words we have seen
that

f 0
“ RxΠ, f y P Cγ , f i

“ Bi f 0, @|i| ă γ.

2.5. Semi-norms

Back to the general case, for a fixed pre-model pΠ,Γq we can interpret,
by analogy with the case of Hölder functions of the previous section, the
space D γ

pΠ,Γq
of all distributions modelled by pΠ,Γq as the collection of

generalised derivatives of u :“ RxΠ, f y with respect to the model pΠ,Γq.
We can define a system of seminorms for f P D γ

pΠ,Γq

r f sDγ

pΠ,Γq
,K “ sup

iPI
sup

x,yPK,x‰y

ˇ

ˇ

ˇ
f i
x ´

ř

jPI Γ
i j
xy f j

y

ˇ

ˇ

ˇ

|x ´ y|γ´αi
,

where K is a compact subset of Rd .
This is rather original with respect to the standard situation in ODEs or

PDEs, where one sets an equation in a fixed Banach space. Here the Banach
(Fréchet) space depends on an external parameter, the model pΠ,Γq. For
SDEs and SPDEs, the model pΠ,Γq is actually random.



CHAPTER 3

Schauder estimates for coherent germs

In this chapter we discuss one of the most important operations on
coherent germs: the convolution with a regularising integration kernel.

3.1. Integration kernels

Definition 3.1.1 (Regularising kernel). Fix a dimension d P N, an exponent
β P p0,dq and an integer r P N. A measurable function K : Rd Ñ RY t˘8u

is called β -regularizing kernel up to degree m P N if the following conditions
hold:

‚ the function x ÞÑ Kpxq is of class Cm on Rdzt0u;
‚ the following upper bound holds:

@k P Nd with |k| ď m : |B
k
xKpxq| À

1
|x|d´β`|k|

1t|x|ď1u

uniformly for x in compact sets .
(3.1.1)

In particular, note that for k “ 0 equation (3.1.1) reduces to

|Kpxq| À
1

|x|d´β
1t|x|ď1u . (3.1.2)

This shows that a β -regularizing kernel is locally integrable on Rd .

3.1.1. Singular convolution. We want to consider the convolution K ˚

f P D 1 between a kernel Kpx ´ yq and a distribution f P D 1. This is formally
defined by

pK ˚ f qpxq :“ f pKpx ´ ¨qq “

ż

Rd
Kpx ´ yq f pdyq , (3.1.3)

but we stress that in general K ˚ f is ill-defined. Under suitable conditions,
K ˚ f can be defined as a distribution by duality: for any test function ψ P D
we set

pK ˚ f qpψq :“ f pK˚
ψq where pK˚

ψqpyq :“
ż

Rd
ψpxqKpx ´ yqdx ,

(3.1.4)
27
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provided f pK˚ψq makes sense, of course. We are going to study the convolu-
tion K˚ψ between the kernel K and a test function ψ , to ensure that f pK˚ψq

is well-defined.
We start with an elementary observation: if Kp¨q is β -regularizing up to

some degree r, then pK˚ψqp¨q is a well-defined compactly supported measur-
able function, because Kpx ´ yq is jointly measurable, locally integrable and
compactly supported in the difference |x ´ y|. The delicate point is that K˚ψ

needs not be smooth, hence we cannot hope to define f pK˚ψq for arbitrary
p f ,ψq P D 1 ˆD .

3.1.2. Partition of unity. Let us introduce the usual dyadic sequence

εn :“ 2´n , n P Z .

We call dyadic partition of unity a family of functions pρnqnPZ such that:
‚ ρnpzq is supported in the annulus t1

2εn ď |z| ď 2εnu and

@z P Rd
zt0u :

ÿ

nPZ
ρnpzq “ 1;

‚ for any given k P Nd , one has

}B
k
ρn}8 À ε

´|k|
n uniformly in n P N .

It is easy to build a dyadic partition of unity. Given any smooth function
χ : Rd Ñ r0,1s such that

χpzq

$

’

&

’

%

“ 1 if |z| ď 1
P r0,1s if 1 ď |z| ď 2
“ 0 if |z| ě 2

,

we obtain a dyadic partition of unity pρnqnPZ by setting

ρnpzq :“ χpε
´1
n zq ´ χpε

´1
n`1zq .

Such a partition of unity is scale invariant, since ρnpzq “ ρ0pε´1
n zq. We set

Kpxq “

8
ÿ

n“0

Knpxq where Knpxq :“ ρnpxqKpxq . (3.1.5)

We stress that Knpxq is supported in the annulus t1
2εn ď |x| ď 2εnu.

@k P Nd with |k| ď m :

|B
kKnpxq| À

1
|x|d´β´|k|

1
t 1

2 εnď|x|ď2εnu

À ε
β´d´|k|
n 1

t 1
2 εnď|x|ď2εnu

uniformly for n P N .

(3.1.6)
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Moreover we have for all y P Rd and |ℓ| ă |k|
ż

Rd
xℓ B

kKnpx ´ yq dx “ p´1q
|k|

ż

Rd
B

kxℓKnpx ´ yq dx “ 0 , (3.1.7)

because Bkxℓ “ 0 for |ℓ| ă |k|.

3.2. Convolution with distributions

We show now that K˚ψ in (3.1.4) is well-defined and differentiable.

Proposition 3.2.1. Given a kernel K which is β -regularizing up to degree
m P N and a test function ψ P D , the convolution K˚ψ defined in (3.1.4)
belongs to Cm.

More precisely, recalling Kn defined in (3.1.5), we have the following
bound:

@r P t0,1, . . . ,mu : }K˚
nψ}Cr À }ψ}Cr ε

β
n

uniformly for n P N and ψ P DpBp0,1qq ,
(3.2.1)

hence the series K˚ψ “
ř8

n“0K
˚
nψ converges in Cm (recall that β ą 0).

PROOF. We recall that Kpx ´ yq “
ř8

n“0Knpx ´ yq for all x,y P Rd with
x ‰ y, by (3.1.5). Then by dominated convergence, thanks to (3.1.2), for any
y P Rd we can write

pK˚
ψqpyq “

8
ÿ

n“0

pK˚
nψqpyq where pK˚

nψqpyq :“
ż

Rd
ψpxqKnpx ´ yq dx .

To prove (3.2.1), it is sufficient to show that

@k P Nd with |k| ď m : }B
k
pK˚

nψq}8 À }ψ}C|k| ε
β
n

uniformly for n P N and ψ P DpBp0,1qq .
(3.2.2)

By Definition 3.1.1, for any n P N the function y ÞÑ Knpx ´ yq is of
class Cr on the whole Rd (including y “ x, because Knpx ´ yq vanishes for
|y´x| ď 1

2εn, see (3.1.5)). Exchanging derivatives and integral by dominated
convergence, thanks to (3.1.1), we see that K˚

nψ P Cm and

@k P Nd with |k| ď r : B
k
pK˚

nψqpyq “ ´

ż

Rd
ψpxqB

kKnpx´yq dx . (3.2.3)

We now estimate BkpK˚
nψqpyq for fixed n P N and y P Rd , k P Nd . Denote by

Qry,ksp¨q the Taylor polynomial of ψ of degree |k| ´ 1 based at y, that is

Qry,ks
pxq :“

ÿ

|ℓ|ď|k|´1

Bℓψpyq

ℓ!
px ´ yq

ℓ ,
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where we agree that for k “ 0 we set Qry,0spxq ” 0. Then we can bound

|ψpxq ´ Qry,ks
pxq| À }ψ}C|k| |y ´ x|

|k| . (3.2.4)

Starting from (3.2.3), we decompose

B
k
pK˚

nψqpyq “ ´

ż

Rd
pψ ´ Qry,ks

qpxqB
kKnpx ´ yqdx

looooooooooooooooooomooooooooooooooooooon

An,kpyq

´

ż

Rd
Qry,ks

pxqB
kKnpx ´ yqdx

looooooooooooooomooooooooooooooon

Bn,kpyq

.

By (3.1.7) we have that Bn,kpyq “ 0. By (3.2.4) and (3.1.6), for |k| ď m, the
first term is bounded by

|An,kpyq| À }ψ}C|k|

ż

|y´x|ďεn

|y ´ x|
|k|

|y ´ x|
β´|k|´d dx À }ψ}C|k| ε

β
n ,

uniformly for y in compact sets and n P N. This completes the proof of
(3.2.2). □

We obtain the following useful

Proposition 3.2.2. Given a kernel K which is β -regularizing up to degree
m P N and a distribution T P D 1 of order r ď m, the distribution

D Q ψ ÞÑ K ˚ T pψq :“ T pK˚
ψq,

where K˚ψ P Cm is as in Proposition 3.2.1, is well-defined in D 1 and has
order r.

3.3. Schauder estimate for coherent germs

3.3.1. Coherent germs. Fix two real numbers α,γ such that

α ď γ, γ ‰ 0.

Let F “ pFxqxPRd be a pα,γq-coherent germ, i.e. we have

|pFz ´ Fyqpϕ
εn
y q| À ε

α
n p|y ´ z| ` εnq

γ´α

uniformly for y,z in compact sets and n P N ,
(3.3.1)

for some test function ϕ P D with
ş

ϕ ‰ 0.
We define rα as the smallest integer larger than ´α

rα :“ mintk P N : k ą ´αu . (3.3.2)
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Since F is γ-coherent, by the Reconstruction Theorem 1.5.1-1.7.1 there
is a distribution RF P D 1 such that

|pRF ´ Fxqpψ
εn
x q| À }ψ}Crα ε

γ
n

uniformly for x in compact sets, n P N and ψ P DpBp0,1qq .
(3.3.3)

If γ ą 0 then RF is unique.

3.3.2. Singular convolution. Fix a kernel K which is β -regularizing
up to degree r for some β P p0,dq, see Definition 3.1.1. We now want to
“lift the convolution with K on the space of coherent germs”, i.e. to find a
coherent germ H “ pHxqxPRd with the property that

RH “ K ˚RF . (3.3.4)

A simple solution of (3.3.4) is the constant germ Hx ” K ˚ RF , which is
trivially coherent, but typically it does not satisfy (3.3.5). The naive guess
Hx “ K ˚ Fx needs not give a coherent germ, therefore we need to enrich it.
To this purpose, we look for Hx of the following special form:

@x P Rd : Hx “ K ˚ Fx ` Rx where Rxp¨q is a polynomial . (3.3.5)

Remarkably, this is possible with the following explicit solution:

Hx :“ K ˚ Fx `
ÿ

|ℓ|ăγ`β

pRF ´ Fxq

´

B
ℓKpx ´ ¨q

¯

Xℓ
x

loooooooooooooooooooomoooooooooooooooooooon

Rxp¨q

, (3.3.6)

where we denote

Xℓ
x p¨q :“

p¨ ´ xqℓ

ℓ!
(3.3.7)

to be the monomial germs, and where we agree that

Rxp¨q ” 0 if γ ` β ď 0.

Note that Rxp¨q is a family of polynomials labelled by x, whose coefficients
depend on Fx, on RF and on the derivatives BkK for |k| ă γ ` β . Then we
also assume that γ ` β R N and we suppose that the integer m which appears
in Definition 3.1.1 satisfies

m ą γ ` β ` rα . (3.3.8)

THEOREM 3.3.1 (Schauder estimate for coherent germs). Fix a dimen-
sion d P N and real numbers α,γ,β P R such that

α ď γ, γ ‰ 0, β ą 0 ,

where we further assume for simplicity that

tα ` β , γ ` βu XN “ H .

Consider the following ingredients:
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‚ F “ pFxqxPRd P G α,γ is a pα,γq-coherent germ;
‚ K is a β -regularizing kernel (see Definition 3.1.1) up to degree

r “ rα given in (3.3.2).
Then

(1) the germ H “ pHxqxPRd in (3.3.6) is locally well-defined, i.e. Hxpϕq

is well-defined for all ϕ P DpBpx,1qq.
(2) H is ppα ` β q ^ 0,γ ` β q-coherent, namely H P G pα`β q^0,γ`β .
(3) H satisfies RH “ K ˚RF.

In other words, setting K F :“ H, we have a linear operator satisfying

K : G α,γ
Ñ G pα`β q^0,γ`β , R ˝K “ K ˚R.

Let us define the new germ

Jx :“ Fx ´RF ,

which lets us rewrite (3.3.6) as

Hx “ K ˚RF ` Lx, where Lx :“ K ˚ Jx ´ Rx . (3.3.9)

From (3.3.6), observe that

Lx “ K ˚ Jx ´
ÿ

|ℓ|ăγ`β

JxpB
ℓKpx ´ ¨qqXℓ

x. (3.3.10)

We are going to prove that Lx is ppα ` β q ^ 0,γ ` β q-coherent, that is

|pLz ´ Lyqpψ
εn
y q| À }ψ}Crα ε

pα`β q^0
n p|y ´ z| ` εnq

γ`β´pα`β q^0 ,

uniformly for y,z in compact sets, n P N and ψ P DpBp0,1qq .
(3.3.11)

More explicitly:

|pLz ´ Lyqpψ
εn
y q| À }ψ}Crα ˆ

#

ε
α`β
n p|y ´ z| ` εnqγ´α if α ` β ă 0 ,

p|y ´ z| ` εnqγ`β if α ` β ą 0 .

Then we are going to prove that L has homogeneity bound with exponent
γ ` β , that is,

|Lxpψ
εn
x q| À }ψ}Crα ε

γ`β
n

uniformly for x in compact sets,
n P N and ψ P DpBp0,1qq.

Recalling (3.3.9), this implies that RH “ K ˚ RF; indeed we recall that
h “ RH means precisely |ph ´ Hxqpψεn

x q| À }ψ}Crα ε
γ`β
n , as the coherence

exponent of Hx is γ ` β .
One of the tools in the proof of Theorem 3.3.1 is the following simple

result.
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Lemma 3.3.2. Fix γ P R, β ą 0 such that γ ` β ą 0 and a point x P Rd . Let
T P D 1 have order rα and homogeneity bound γ at the point x, i.e. for some
r P N and Cx ă 8

|T pϕ
ε
x q| ď Cx }ϕ}Crα ε

γ

uniformly for ε P p0,1s and ϕ P DpBp0,1qq .
(3.3.12)

Let K be a β -regularizing kernel up to degree m ą γ ` β ` rα .. Then for all
ℓ P Nd

0 with |ℓ| ă γ ` β ,

T pB
ℓKpx ´ ¨qq :“

ÿ

n
T pB

ℓKnpx ´ ¨qq

is well-defined and, writing BℓK “
ř8

n“0 BℓKn as in (3.1.5), we have

@N P N :
ˇ

ˇ

ˇ

ˇ

T
ˆ 8
ÿ

n“N

B
ℓKnpx ´ ¨q

˙
ˇ

ˇ

ˇ

ˇ

À Cx ε
γ`β´|ℓ|
N . (3.3.13)

Before proving Lemma 3.3.2 we need the following simple

Lemma 3.3.3. We introduce the function

ϕ
rk,ns

pwq :“ p2εnq
d

B
kKn p´2εnwq , (3.3.14)

so that

B
kKnpx ´ ¨q “

´

ϕ
rk,ns

¯2εn

x
. (3.3.15)

Then

supp
´

ϕ
rk,ns

¯

Ă Bp0,1q, @ |k| ă γ ` β , (3.3.16)
›

›

›
ϕ

rk,ns
›

›

›

C rα

À ε
β´|k|
n , @ |k| ă γ ` β , (3.3.17)

PROOF. Observe that (3.3.15) is straightforward from the definition
of ϕ rk,ns. One has supp

`

BkKnp¨q
˘

Ă Bp0,2εnq and thus one has as an-

nounced supp
´

ϕ rk,ns
¯

Ă Bp0,1q. Now, if 1 ď |l| ď rα then Blϕ rk,ns “

p2εnq
d`|l|

Bk`lKn p´2εnwq. Thus from (3.1.6), one obtains (3.3.17). □

PROOF OF LEMMA 3.3.2. By (3.3.15) and by the homogeneity bound
at x (3.3.12), using the properties (3.3.16) and (3.3.17) of ϕ rℓ,ns we can
bound

|T pB
ℓKnpx ´ ¨qq| ď Cx }ϕ

rℓ,ns
}Crα ε

γ
n À Cx ε

γ`β´|ℓ|
n .

Thus T pBℓKpx ´ ¨qq :“
ř8

n“0 T pBℓKnpx ´ ¨qq is well-defined in D 1 and more-
over we obtain (3.3.13). □
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3.4. Proof

In this section we prove Theorem 3.3.1.

Lemma 3.4.1. Lx in (3.3.10) is a well-defined distribution.

PROOF. By the discussion of the Reconstruction Theorem in section
3.3.1 we know that Jx “ Fx ´ RF is a distribution of order rα . Then by
Proposition 3.2.2 the distribution K ˚ Jx is well defined and has order rα .

If we apply Lemma 3.3.2 to the distribution T “ Jx then we know that
T pBℓKpx ´ ¨qq P R is well-defined for all ℓ P Nd such that |ℓ| ă γ ` β . Then
Lx is a well-defined distribution. □

Remark 3.4.2. We will write pLz ´Lyqpψλ
y q for λ Ps0,1s as a sum of various

terms and show that

each term is À λ
a
p|y ´ z| ` λ q

γ`η´a for a suitable a ě pα ` ηq ^ 0 .

This implies (3.3.11) because a ÞÑ λ ap|y ´ z| ` λ qγ`η´a is decreasing (note
that we can write λ ap|y ´ z| ` λ qγ`η´a “ AaB with A “ λ

λ`|y´z|
ď 1).

We take a compact set K Ď Rd and fix y,z P K as well as N P N. We set

My,z,N :“ mintn P N : εn ď |y ´ z| ` εNu ,

and note that 0 ď My,z,N ď N ă 8. Then we decompose

Kp¨, ¨q “

My,z,N´1
ÿ

n“0

Knp¨, ¨q

looooooomooooooon

Kr0,Mqp¨,¨q

`

N´1
ÿ

n“My,z,N

Knp¨, ¨q

looooooomooooooon

KrM,Nqp¨,¨q

`

8
ÿ

n“N

Knp¨, ¨q

loooomoooon

KrN,8qp¨,¨q

,

where we stress that in this decomposition the sum is split at the points My,z,N
and N, for the fixed values of y,z,N, irrespective of the arguments of Kp¨q.
We also define for A Ă N, x P Rd , ψ P D

PA
x pψq :“

ÿ

nPA

ÿ

|ℓ|ăγ`β

B
ℓKn px ´ ¨q

ż

Rd
Xℓ

xpwqψpzqdw, (3.4.1)

so that in particular

Lxpψq “ Jx

´

K˚
ψ ´ PN

x pψq

¯

, PN
x “ Pr0,Mq

x ` PrM,Nq
x ` PrN,8q

x . (3.4.2)
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Then we bound for ψ P DpBp0,1qq

ˇ

ˇpLz ´ Lyqpψ
εN
y q

ˇ

ˇ ď

ˇ

ˇ

ˇ
pJz ´ Jyq

`

K˚
ψ

εN
y
˘

´ Jz

´

PN
z pψ

εN
y q

¯

` Jy

´

PN
y pψ

εN
y q

¯ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
pJz ´ Jyq

´

K˚
rN,8qψ

εN
y

¯
ˇ

ˇ

ˇ

looooooooooooomooooooooooooon

A

`

ˇ

ˇ

ˇ
pJz ´ Jyq

´

K˚
rM,Nqψ

εN
y

¯
ˇ

ˇ

ˇ

looooooooooooomooooooooooooon

B

`

ˇ

ˇ

ˇ
Jz

´

PrM,8q
z pψ

εN
y q

¯
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
Jy

´

PrM,8q
y pψ

εN
y q

¯
ˇ

ˇ

ˇ

looooooooooooooooooooooooomooooooooooooooooooooooooon

C

`

ˇ

ˇ

ˇ
pJz ´ Jyq

´

Kr0,Mqpψ
εN
y q ´ Pr0,Mq

y pψ
εN
y q

¯
ˇ

ˇ

ˇ

loooooooooooooooooooooooomoooooooooooooooooooooooon

D

`

ˇ

ˇ

ˇ
Jz

´

Pr0,Mq
y pψ

εN
y q ´ Pr0,Mq

z pψ
εN
y q

¯
ˇ

ˇ

ˇ

looooooooooooooooooomooooooooooooooooooon

E

.

We are going to need the following technical result, which can be proved as
Lemma 3.3.2.

Lemma 3.4.3. Let ζ rn,N,ys : Rd Ñ R for n ě N and y P Rd

ζ
rn,N,ys

pwq :“ p3εNq
d `K˚

nψ
εN
y
˘

py ` p3εNqwq . (3.4.3)

Then ζ rn,N,ys is supported in Bp0,1q, and
›

›

›
ζ

rn,N,ys
›

›

›

C rα

À }ψ}C rα ε
β
n , n ě N, ψ P DpBp0,1qq, (3.4.4)

uniformly over y in compacts. Let ϕ rn,zs : Rd Ñ R

ϕ
rn,zs

pwq :“ p3εnq
d Kn pz ´ 3εnwq . (3.4.5)

Then ϕ rn,zs is supported in Bp0,1q for all |z| ď εn and
›

›

›
ϕ

rn,zs
›

›

›

C rα

À ε
β
n , uniformly over |z| ď εn. (3.4.6)

Let ξ rk,n,z,ts : Rd Ñ R for k,n P N, z P Rd , t P r0,1s,

ξ
rk,n,z,ts

pwq :“ p3εnq
d drγ`β s´|k|

dtrγ`β s´|k|
B

kKn pp1 ´ tqz ´ 3εnwq . (3.4.7)

Then ξ rk,n,z,ts is supported in Bp0,1q and
›

›

›
ξ

rk,n,z,ts
›

›

›

C rα

À |z|
rγ`β s´|k|

ε
β´rγ`β s
n (3.4.8)

uniformly over z in compacts, |k| ă γ ` β , t P r0,1s, n P N.
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Estimate of A. We analyze

pJz ´ Jyq

´

K˚
rN,8qψ

εN
y

¯

“

8
ÿ

n“N

pJz ´ Jyq
`

K˚
nψ

εN
y
˘

. (3.4.9)

Note that we can write by (3.4.3)

K˚
nψ

εN
y “

´

ζ
rn,N,ys

¯3εN

y

where ζ rn,N,ys is defined in (3.4.3). Then, by coherence (1.4.4) and (3.4.4),
we can bound for n ě N:

ˇ

ˇpJz ´ Jyq
`

K˚
nψ

εN
y
˘
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

pJz ´ Jyq

ˆ

´

ζ
rn,N,ys

¯3εN

y

˙
ˇ

ˇ

ˇ

ˇ

À

›

›

›
ζ

rn,N,ys
›

›

›

Crα

p3εNq
α

p|y ´ z| ` 3εNq
γ´α

À }ψ}Crα ε
β
n ε

α
N p|y ´ z| ` εNq

γ´α .

Plugging this bound into (3.4.9) we finally obtain since β ą 0
ˇ

ˇKrN,8q ˚ pJz ´ Jyq
`

ψ
εN
y
˘
ˇ

ˇ À }ψ}Crα ε
α`β

N p|y ´ z| ` εNq
γ´α ,

which coincides with (3.3.11) for α ` β ď 0, while for α ` β ą 0 it is even
better than (3.3.11), by Remark 3.4.2.

Estimate of B. Then we analyze

pJz ´ Jyq

´

K˚
rM,Nqψ

εN
y

¯

“

N´1
ÿ

n“My,z,N

pJz ´ Jyq
`

K˚
nψ

εN
y
˘

“

N´1
ÿ

n“My,z,N

ż

Rd
ψ

εN
y pxqpJz ´ JyqpKnpx ´ ¨qq dx .

(3.4.10)

Note now that one can write Knpx´¨q “

´

ϕ rn,x´ys
¯3εn

y
where ϕ rn,zs is defined

in (3.4.5). Then, by coherence (1.4.4), and using the property (3.4.6) of
ϕ rn,x´ys we can bound

|pJz ´ JyqpKnpx ´ ¨qq| “

ˇ

ˇ

ˇ

ˇ

pJz ´ Jyq

ˆ

´

ϕ
rn,x´ys

¯3εn

y

˙
ˇ

ˇ

ˇ

ˇ

À

›

›

›
ϕ

rn,x´ys
›

›

›

Crα

p3εnq
α

p|y ´ z| ` 3εnq
γ´α

À ε
β
n p3εnq

α
p|y ´ z| ` 3εnq

γ´α

ď ε
β
n p3εnq

α
p4|y ´ z| ` 3εNq

γ´α ,
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where in the last inequality we used the fact that εn ď |y ´ z| ` εN for n ě

My,z,N . We plug this bound into (3.4.10). Note that

N
ÿ

n“My,z,N

ε
α`β
n À

$

’

’

’

’

’

&

’

’

’

’

’

%

N
ÿ

n“0

ε
α`β
n À ε

α`β

N if α ` β ă 0 ,

8
ÿ

n“My,z,N

ε
α`β
n À p|y ´ z| ` εNq

α`β if α ` β ą 0 .

Moreover
ş

Rd |ψ
εN
y pwq| dw “

ş

Rd |ψpwq| dw À }ψ}8 ď }ψ}Crα for any ψ P

DpBp0,1qq, hence

|pKrM,Nq ˚ pJz ´ Jyqqpψ
εN
y q|

}ψ}Crα

À

#

ε
α`β

N p|y ´ z| ` εNqγ´α if α ` β ă 0 ,
p|y ´ z| ` εNqγ`β if α ` β ą 0 ,

which coincides with (3.3.11).

Estimate of C. If γ ` β ď 0 then C “ 0. Let us consider the case γ ` β ą 0.
By (3.3.3) and Lemma 3.3.2, see in particular (3.3.13), we have

8
ÿ

n“My,z,N

ˇ

ˇ

ˇ
Jy

´

B
ℓKnpy ´ ¨q

¯
ˇ

ˇ

ˇ
À ε

γ`β´|ℓ|
My,z,N

,

while
ż

Rd

ˇ

ˇ

ˇ
Xℓ

ypwqψ
εN
y pwq

ˇ

ˇ

ˇ
dw À ε

ℓ
N .

Then
ˇ

ˇ

ˇ
Jy

´

PrM,8q
y pψ

εN
y q

¯
ˇ

ˇ

ˇ
À

ÿ

|ℓ|ăγ`β

ε
γ`β´|ℓ|
My,z,N

ε
|ℓ|
N À p|y ´ z| ` εNq

γ`β . (3.4.11)

Similarly
8
ÿ

n“My,z,N

ˇ

ˇ

ˇ
Jz

´

B
ℓKnpz ´ ¨q

¯
ˇ

ˇ

ˇ
À ε

γ`β´|ℓ|
My,z,N

,

ż

Rd

ˇ

ˇ

ˇ
Xℓ

zpwqψ
εN
y pwq

ˇ

ˇ

ˇ
dw À p|y ´ z| ` εNq

ℓ,

so that
ˇ

ˇ

ˇ
Jz

´

PrM,8q
z pψ

εN
y q

¯ˇ

ˇ

ˇ
À p|y ´ z| ` εNq

γ`β . (3.4.12)

Note that both (3.4.11) and (3.4.12) are better than (3.3.11), by Remark 3.4.2.

Estimate of D. We now focus now on

pJz ´ Jyq

´

K˚
r0,Mqψ

εN
y ´ Pr0,Mq

y pψ
εN
y q

¯

. (3.4.13)
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We first assume that γ ` β ą 0. Observe that one can write

Kn pw ´ ¨q ´
ÿ

|ℓ|ăγ`β

B
ℓKn py ´ ¨q

pw ´ yqℓ

ℓ!
“

ż 1

0

p1 ´ tqm

m!

´

ξ
r0,n,w´y,ts

¯3εn

y
dt,

(3.4.14)
where ξ rk,n,z,ts is defined as in (3.4.7). Therefore:

pJz ´ Jyq

´

K˚
r0,Mqψ

εN
y ´ Pr0,Mq

y pψ
εN
y q

¯

“

“

My,z,N´1
ÿ

n“0

ż 1

0

p1 ´ tqm

m!
pJz ´ Jyq

ˆ

´

ξ
r0,n,w´y,ts

¯3εn

y

˙

dt .

Applying the coherence bound (1.4.4), we can estimate

ˇ

ˇ

ˇ

ˇ

pJz ´ Jyq

ˆ

´

ξ
r0,n,w´y,ts

¯3εn

y

˙
ˇ

ˇ

ˇ

ˇ

À

›

›

›
ξ

r0,n,w´y,ts
›

›

›

Crα

p3εnq
α

p|z ´ y| ` εnq
γ´α

À

›

›

›
ξ

r0,n,w´y,ts
›

›

›

Crα

ε
γ
n ,

where in the last inequality we used the fact that for n ď My,z,N , p|z ´ y| `

εnqγ´α ď p2εnqγ´α . If |w ´ y| ď εN ď εn, then from the property (3.4.8) of
ξ r0,n,w´y,ts one obtains

›

›

›
ξ

r0,n,w´y,ts
›

›

›

Crα

À |y ´ w|
m`1

ε
β´m´1
n ď ε

m`1
N ε

β´m´1
n ,

uniformly for n ď N and t P r0,1s. Collecting all those estimates,

|pJz ´ Jyq

´

K˚
r0,Mqψ

εN
y ´Kr0,Mqpψ

εN
y q

¯

ˇ

ˇ À ε
m`1
N

My,z,N´1
ÿ

n“0

ε
γ`β´m´1
n

À ε
m`1
N p|z ´ y| ` εNq

γ`β´m´1
ď p|z ´ y| ` εNq

γ`β ,

which, recalling (3.4.13), is better than (3.3.11) by Remark 3.4.2.
We next assume that γ ` β ă 0. In this case we have Pr0,Mq

y ” 0 in
(3.4.13). Then, recall from (3.4.5) that one can write

Kn pw ´ ¨q “

´

ϕ
rn,w´ys

¯3εn

y
.
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Thus, from the coherence bound (1.4.4), and the property (3.4.6) of ϕ rn,w´ys

one can estimate (recall that εN ď εn and β ą 0)

ˇ

ˇpJz ´ Jyq
`

K˚
nψ

εN
y
˘ˇ

ˇ À sup
|w´y|ďεN

ˇ

ˇ

ˇ

ˇ

pJz ´ Jyq

ˆ

´

ϕ
rn,w´ys

¯3εn

y

˙ˇ

ˇ

ˇ

ˇ

À sup
|w´y|ďεN

›

›

›
ϕ

rn,w,ys
›

›

›

Crα

p3εnq
α

p|z ´ y| ` εnq
γ´α

À ε
β
n p3εnq

α
p|z ´ y| ` εnq

γ´α .

For n ď My,z,N we have p|z ´ y| ` εnqγ´α ď p2εnqγ´α , hence

ˇ

ˇ

ˇ
pJz ´ Jyq

´

K˚
r0,Mqψ

εN
y

¯
ˇ

ˇ

ˇ
À

My,z,N´1
ÿ

n“0

ε
γ`β
n À p|z ´ y| ` εNq

γ`β

which, recalling (3.4.13), is better than (3.3.11) by Remark 3.4.2.

Estimate of E. We have

Pn
z pψ

εN
y q ´ Pn

y pψ
εN
y q “ ´

ÿ

|k|ăγ`β

Rk
py,z, ¨q

ż

Rd

pw ´ yqk

k!
ψ

εN
y pwqdw,

see [2, formula (4.7)], where

Rk
py,z,ζ q :“ B

k
x Knpy,ζ q ´

ÿ

|ℓ|ăγ`β´|k|

B
k`ℓ
x Knpz,ζ q

py ´ zqℓ

ℓ!

“

ż 1

0

p1 ´ tqm´|k|

pm ´ |k|q!

´

ξ
rk,n,y´z,ts

¯3εn

z
pζ q dt,

where ξ rk,n,z,ts is the function defined in (3.4.7). Then

Jz

´

Pr0,Mq
y

`

ψ
εN
y
˘

´ Pr0,Mq
z

`

ψ
εN
y
˘

¯

“

“ ´
ÿ

|k|ăγ`β

My,z,N´1
ÿ

n“0

ż 1

0

p1 ´ tqm´|k|

pm ´ |k|q!
Jzp

´

ξ
rk,n,y´z,ts

¯3εn

z
q dtXk

ypψ
εN
y q.

Applying the coherence bound (1.4.4), and the property (3.4.8) of ξ rk,n,y´z,ts

(observe that because n ď My,z,λ , one has indeed |y´z| ď εn), we can estimate
ˇ

ˇ

ˇ

ˇ

Jz

ˆ

´

ξ
rk,n,y´z,ts

¯3εn

z

˙
ˇ

ˇ

ˇ

ˇ

À }ξ
rk,n,y´z,ts

}Crα p3εnq
α

p|z ´ y| ` εnq
γ´α

À |y ´ z|
m`1´|k|

ε
β´m´1
n p3εnq

α
p|z ´ y| ` εnq

γ´α ,
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Recalling that |w ´ y| ď εN and that p|z ´ y| ` εnqγ´α ď p2εnqγ´α , we bound

ˇ

ˇ

ˇ
Jz

´

Pr0,Mq
y

`

ψ
εN
y
˘

´ Pr0,Mq
z

`

ψ
εN
y
˘

¯
ˇ

ˇ

ˇ
À ε

k
N |y ´ z|

m`1´|k|

My,z,N´1
ÿ

n“0

ε
γ`β´m´1
n

À p|y ´ z| ` εNq
m`1

My,z,N´1
ÿ

n“0

ε
γ`β´m´1
n

À p|y ´ z| ` εNq
γ`β .

which, recalling (3.4.13), is better than (3.3.11) by Remark 3.4.2.

L has homogeneity γ ` β . Finally we prove that

|Lxpψ
εN
x q| À ε

γ`β

N

uniformly for x P K and n P N. This is a consequence of the following

Lemma 3.4.4. Fix γ P R, β ą 0 and a point x P Rd . Let T P D 1 have order
rα and homogeneity bound γ at the point x, i.e. for some r P N and Cx ă 8

|T pϕ
ε
x q| ď Cx }ϕ}Crα ε

γ

uniformly for ε P p0,1s and ϕ P DpBp0,1qq .
(3.4.15)

Let K be a β -regularizing kernel up to degree m ą γ ` β ` rα . Then
ˇ

ˇ

ˇ
T
´

K˚
ψ

εN
x ´ PN

x pψ
εN
x q

¯
ˇ

ˇ

ˇ
À Cxε

γ`β

N ,

recall (3.4.1) and (3.4.2).

PROOF. We consider the decomposition

T
´

K˚
ψ

εN
x ´ PN

x pψ
εN
x q

¯

“ T
´

K˚
rN,`8qψ

εN
x

¯

looooooooomooooooooon

F

´T
´

PrN,`8q
x pψ

εN
x q

¯

loooooooooomoooooooooon

G

` T
´

K˚
r0,Nqψ

εN
x ´ Pr0,Nq

x pψ
εN
x q

¯

looooooooooooooooomooooooooooooooooon

H

.

We shall estimate F , G, H separately. We analyze first

F “

8
ÿ

n“N

T pK˚
nψ

εN
x q . (3.4.16)

Recall from (3.4.3) that one can write K˚
nψ

εN
x “ pζ rn,N,xsq

3εN
x . Then, by the

homogeneity bound (3.3.3) for J, and using the property (3.4.4) of ζ rn,N,xs,
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we can bound for n ě N:

|T pK˚
nψ

εN
x q| “

ˇ

ˇ

ˇ

ˇ

T
ˆ

´

ζ
rn,N,xs

¯3εN

x

˙
ˇ

ˇ

ˇ

ˇ

À

›

›

›
ζ

rn,N,xs
›

›

›

Crα

p3εNq
γ

À }ψ}C rα ε
β
n p3εNq

γ .

Plugging this bound into (3.4.16) we finally obtain

|F | À }ψ}Crα ε
γ`β

N ,

as required. The quantity G is treated in the same way as (3.4.11), so that:

|G| À ε
γ`β

N .

We are ready to control the contribution of H. As in the estimate of D
above, we distinguish two cases. First assume that γ ` β ą 0, then we use
(3.4.14) again. Therefore:

H “

N´1
ÿ

n“0

ż

Rd

ż 1

0

p1 ´ tqm

m!
T
ˆ

´

ξ
r0,n,w´x,ts

¯3εn

x

˙

dt ψ
εN
x pwqdw .

By the homogeneity bound (3.3.3) for J, and using the property (3.4.8) of
ξ r0,n,w´x,ts (note that here |x ´ w| ď εN ď εn), we can bound

ˇ

ˇ

ˇ

ˇ

T
ˆ

´

ξ
r0,n,w´x,ts

¯3εn

x

˙
ˇ

ˇ

ˇ

ˇ

À

›

›

›
ξ

r0,n,w´x,ts
›

›

›

C rα

p3εnq
γ

À ε
m`1
N ε

γ`β´m´1
n .

And thus after summing the geometric series one obtains since γ `β ă m`1

|H| À ε
γ`β

N .

Finally, we bound H in the case when γ ` β ă 0. In this case, Pr0,Nq
x ” 0.

Then, recall from (3.4.5) that one can write Kn pw ´ ¨q “

´

ϕ rn,w´xs
¯3εn

x
, so

that

H “

ż

Rd
T
ˆ

´

ϕ
rn,w´xs

¯3εn

x

˙

ψ
εN
x pwq dw.

Thus, from the homogeneity bound (3.3.3) for J, and the property (3.4.6) of
ϕ rn,w´xs one can estimate (note that here |w ´ x| ď εN ď εn)

ˇ

ˇ

ˇ

ˇ

T
ˆ

´

ϕ
rn,w´xs

¯3εn

x

˙
ˇ

ˇ

ˇ

ˇ

À

›

›

›
ϕ

rn,w´xs
›

›

›

C rα

p3εnq
γ

À ε
β`γ
n .

And thus after summing the geometric series one obtains as announced
|H| À ε

γ`β

N . The proof of Lemma 3.4.4 is complete. □
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Conclusion. We have shown that L is ppα `β q^0,γ `β q-coherent and that it
has homogeneity bound with exponent γ `β . Then its pγ `β q-reconstruction
is 0, and therefore the pγ ` β q-reconstruction of H is K ˚RF .



CHAPTER 4

Multi-level Schauder estimates for modelled distributions

In this chapter we discuss one of the most important operations on
modelled distributions: the convolution with a regularising integration kernel.

We fix a pre-model pΠ,Γq as in Definition 2.1.1 and we consider f P

D γ

pΠ,Γq
. We have seen in Theorem 3.3.1 how we can build a linear operator

K : G α,γ
Ñ G pα`β q^0,γ`β , R ˝K “ K ˚R.

Now we want to address an analogous question for F “ xΠ, f y. In other
words, we want to show that it is possible to construct

(1) another pre-model pΠ̂, Γ̂q, such that
(2) for every f P D γ

pΠ,Γq
there is a modelled distribution f̂ P D γ`β

pΠ̂,Γ̂q

such that
K xΠ, f y “ xΠ̂, f̂ y.

4.1. The pre-model

We need an additional property for a pre-model (see Definition 2.1.1).

Definition 4.1.1. A pre-model is good if there exists r P N such that

|Π
i
xpϕ

εn
x q| À ε

αi
n ,

uniformly over x in compact subsets of Rd , n P N and ϕ P D such that
}ϕ}Cr ď 1.

Remark 4.1.2. A model (Definition 2.1.3) is a fortiori a good pre-model.
Indeed, one can see that for a coherent and homogeneous germ, on can
replace the single ϕ P D by a generic ψ P Br for any r ą maxt´α,´ᾱu.

We fix throughout this chapter an integration kernel K, which is supposed
to β -regularising up to order m ą maxtγ,maxI αu ` β ` r, where r is as in
Definition 4.1.1.

We work from now on with a good pre-model pΠ,Γq, and we want to
construct a pre-model pΠ̂, Γ̂q with the property discussed at the beginning of
this chapter.

We start discussing the family pΠ̂i
xqiPÎ,xPRd . A reasonable guess would

be to set Î “ I and Π̂i
x “ K ˚ Πi

x, recall (3.1.3). However we expect Π̂i
xpψεn

x q

43
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to be small as n Ñ `8, at least if the homogeneity αi ` β which is expected
for Π̂i is positive.

However K ˚ Πi
xpψεn

x q has no reason to become small for large n. To
this aim we can subtract a Taylor polynomial which can yield the desired
behaviour. We are going to set for i P I

Π̂
i
x “ K ˚ Π

i
x ´

ÿ

|k|ăαi`β

Π
i
x

´

B
kKpx ´ ¨q

¯

Xk
x , (4.1.1)

where we recall that Xk
xpwq :“ pw´xqk

k! .

Proposition 4.1.3. The distribution Π̂i
x in (4.1.1) for i P I is well defined, has

order r and satisfies for all compact set K Ă Rd

sup
xPK

sup
ℓPN

sup
ψPBr

|Π̂i
xpψ

εℓ
x q|

ε
αi`β

ℓ

ă `8. (4.1.2)

PROOF. Since pΠ,Γq is a good pre-model, then Πi
x is a distribution with

order r. Then by Proposition 3.2.2 the distribution K ˚ Πi
x is well defined and

has order r. By applying Lemma 3.3.2 to T :“ Πi
x and γ “ αi, we obtain that

Πi
x
`

BkKpx ´ ¨q
˘

is well defined for all |k| ă αi ` β .
Finally, (4.1.2) follows from Lemma 3.4.4. □

We can therefore associate to Π̂i the homogeneity αi ` β . Then we
construct a new basis by setting

Î :“ I \ IPoly, IPoly :“ tk P Nd : |k| ă maxtγ,max
I

αu ` βu,

Π̂
k
x :“ Xk

x, k P IPoly.

recall (3.3.7); of course the homogeneity of Π̂k
x is |k|.

Once this choice is made, it remains to construct Γ̂ and f̂ . It turns out
that there are very natural choices for these objects. Let us set for notational
convenience

Ai,ℓ
x :“ 1p|ℓ|ăαi`β q Π

i
x

´

B
ℓKpx ´ ¨q

¯

, x P Rd, i P I, ℓ P Nd,

so that (4.1.1) becomes

Π̂
i
x “ K ˚ Π

i
x ´

ÿ

kPIPoly

Ai,k
x Xk

x .

We define now the coefficients pΓ̂
i j
xyqi, jPÎ . These are straightforward when

i, j P I or i, j P IPoly or i P I and j P IPoly (see (4.1.3) below for the precise
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values). The less simple case is that of i P IPoly and j P I, to which we turn
now. By the definition of pΠ̂i

xqiPÎ we find that for j P I

Π̂
j
y ´

ÿ

iPI

Π̂
i
x Γ

i j
xy “

ÿ

kPIPoly

˜

´A j,k
y Xk

y `
ÿ

iPI

Γ
i j
xy Ai,k

x Xk
x

¸

.

Since Xk
y “

ř

ℓďkXk´ℓ
y pxqXℓ

x, the left-hand side of the latter expression is
equal to

ÿ

iPIPoly

Xi
x

˜

ÿ

kPI

Γ
k j
xy Ak,i

x ´
ÿ

ℓPNd

Xℓ
ypxqA j,i`ℓ

y

¸

,

namely a linear combination of elements in IPoly. Therefore we set for j P I
and i P IPoly

Γ̂
i j
xy :“

ÿ

kPI

Γ
k j
xy Ak,i

x ´
ÿ

ℓPNd

Xℓ
ypxqA j,i`ℓ

y ,

and to summarize

Γ̂
i j
xy “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

Γ
i j
xy, if i, j P I ,

X j´i
y pxq, if i, j P IPoly, i ď j ,

ÿ

kPI

Γ
k j
xy Ak,i

x ´
ÿ

ℓPNd

Xℓ
ypxqA j,i`ℓ

y , if i P IPoly, j P I ,

0 if i P I, j P IPoly .

(4.1.3)

Then we have the desired property for the pre-model pΠ̂, Γ̂q

ÿ

iPÎ

Π̂
i
x Γ̂

i j
xy “ Π̂

j
y, j P Î.

4.2. The modelled distribution

For a modelled distribution f : Rd Ñ RI we define now a new function
f̂ : Rd Ñ RÎ

f̂ i
x :“

$

’

’

’

’

&

’

’

’

’

%

f i
x if i P I ,

¨

˝RF ´
ÿ

αaď|i|´β

f a
x Π

a
x

˛

‚pB
iKpx ´ ¨qq if i P Nd, |i| ă γ ` β .
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Remark 4.2.1. Note that we have

K x f ,Πy “ x f̂ ,Π̂y,

where K is the operator of Theorem 3.3.1. Indeed, observe that from the
definitions and the notation (2.1.2)

x f̂ ,Π̂y “
ÿ

iPI

f i
x

¨

˝

`

K ˚ Π
i
x
˘

´
ÿ

|k|ăαi`β

Π
i
x

´

B
kKpx ´ ¨q

¯

Xk
x

˛

‚

`
ÿ

|i|ăγ`β

¨

˝RF ´
ÿ

αaď|i|´β

f a
x Π

a
x

˛

‚pB
iKpx ´ ¨qqXi

x

“ K ˚

˜

ÿ

iPI

f i
x Π

i
x

¸

`
ÿ

|i|ďγ`β

˜

RF ´
ÿ

aPI

f a
x Π

a
x

¸

`

B
iKpx ´ ¨q

˘

Xi
x

“ K x f ,Πyx.

In particular, we have already proved in Theorem 3.3.1 that Rx f̂ ,Π̂y “

K ˚RF .

Proposition 4.2.2. Assume that Πa
x
`

BiKpx ´ ¨q
˘

“ 0 for all x P Rd and all
a P t1, . . . ,nu such that αa ` β P N0. L: More precisely: if αa ` β P N0 then
we assume Πa

x

´

B
αa`β
x Kx

¯

“ 0

Then g is a modelled distribution of order γ ` β with respect to Γ̂.

PROOF. We want f̂ to be a modelled distribution of order γ ` β with
respect to Γ̂: the condition is obvious for i P I, since it is equivalent to the
condition on f with respect to Γ. We have to check the correct bound for
i P Nd, |i| ă γ ` β :

Introduce the quantity

Nx,y :“ mintn P N : εn ď |y ´ x|u
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We recall the notation Jx “ Fx ´RF , and we write the decomposition:

f̂ i
x ´

ÿ

jPÎ

Γ̂
i j
xy f̂ j

y “

“ ´

Nx,y´1
ÿ

n“0

Jy

¨

˝B
iKnpx ´ ¨q ´

ÿ

|k|ăγ`β´|i|

B
i`kKnpy ´ ¨qXk

ypxq

˛

‚

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

A

´

Nx,y´1
ÿ

n“0

ÿ

αaď|i|´β

Π
a
xpB

iKnpx ´ ¨qq

˜

f a
x ´

ÿ

jPI

Γ
a j
xy f j

y

¸

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

B

´

`8
ÿ

n“Nx,y

Jx
`

B
iKnpx ´ ¨q

˘

looooooooooomooooooooooon

C

`

`8
ÿ

n“Nx,y

ÿ

|k|ăγ`β´|i|

JypB
i`kKnpy ´ ¨qqXk

ypxq

looooooooooooooooooooooomooooooooooooooooooooooon

D

`

`8
ÿ

n“Nx,y

ÿ

αaą|i|´β

Π
a
xpB

iKnpx ´ ¨qq

˜

f a
x ´

ÿ

jPI

Γ
a j
xy f j

y

¸

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

E

.

Now, with the multiscale techniques of the proof of Theorem 3.3.1, we
shall prove that each of those terms is bounded by |x ´ y|γ`β´|i|.

Estimate of A. In view of (3.4.14), we rewrite:

A “

Nx,y´1
ÿ

n“0

ż 1

0

p1 ´ tqm´|i|

pm ´ |i|q!
Jy

ˆ

´

ξ
ri,n,x´y,ts

¯3εn

y

˙

dt,

where ξ ri,n,z,ts is the function defined in (3.4.7). Note that because n ď Nx,y
we are in the regime |y´x| ď εn and thus from (3.4.8) and the reconstruction
bound on F , see (3.3.3), one obtains:

ˇ

ˇ

ˇ

ˇ

Jy

ˆ

´

ξ
ri,n,x´y,ts

¯3εn

y

˙
ˇ

ˇ

ˇ

ˇ

À

›

›

›
ξ

ri,n,x´y,ts
›

›

›

C r
p3εnq

γ

À |y ´ x|
rγ`β s´|i|

ε
β´m´1
n p3εnq

γ .

Thus, summing a geometric series and since γ ` β ă rγ ` β s:

|A| À |y ´ x|
γ`β´|i|.

Estimate of B. Notice that because of the assumption that Πa
x
`

BiKpx ´ ¨q
˘

“ 0
when αa ` β P N, only the terms with αa ă |i| ´ β contribute to the sum. In
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view of (3.3.15), we rewrite

Π
a
xpB

iKnpx ´ ¨qq “ Π
a
x

ˆ

´

ϕ
ri,ns

¯3εn

x

˙

,

where ϕ ri,ns is defined in (3.3.14). Thus from the property (3.3.17) of ϕ ri,ns

and the fact that Πa has homogeneity bound αa, we obtain:
ˇ

ˇΠ
a
xpB

iKnpx ´ ¨qq
›

› À

›

›

›
ϕ

ri,ns
›

›

›

C r
p3εnq

αa

À ε
β´|i|
n p3εnq

αa À ε
β`αa´|i|
n .

Now since f is a modelled distribution with respect to Γ one can bound B
by:

|B| À

Nx,y´1
ÿ

n“0

ÿ

αaă|i|´β

ε
β`αa´|i|
n |x ´ y|

γ´αa . (4.2.1)

Summing the geometric sums yields as announced

|B| À |y ´ x|
γ`β´|i|.

Estimate of C. As just above, we rewrite

C “

`8
ÿ

n“Nx,y

Jx

ˆ

´

ϕ
ri,ns

¯3εn

x

˙

,

where ϕ ri,ns satisfies (3.3.16), (3.3.17), and thus from the reconstruction
bound on F , see (3.3.3), one obtains:

ˇ

ˇ

ˇ

ˇ

Jx

ˆ

´

ϕ
ri,ns

¯3εn

x

˙
ˇ

ˇ

ˇ

ˇ

À

›

›

›
ϕ

ri,ns
›

›

›

C r
p3εnq

γ

À ε
β´|i|
n p3εnq

γ
À ε

γ`β´|i|
n .

Hence, summing a geometric series and since γ ` β ą |i|:

|C| À |y ´ x|
γ`β´|i|.

Estimate of D. Here we use the estimate proved just above:
ˇ

ˇ

ˇ
JypB

i`kKnpy ´ ¨qq

ˇ

ˇ

ˇ
À ε

γ`β´|i|´|k|
n .

Thus by summing a geometric series, one obtains:

|D| À

`8
ÿ

n“Nx,y

ÿ

|k|ăγ`β´|i|

ε
γ`β´|i|´|k|
n |y ´ x|

k
À |y ´ x|

γ`β´|i|.
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Estimate of E. Finally, for the term E, the estimates are the same than for
the term B, but are summed over different indices. Hence, similarly as for
(4.2.1), we get:

|E| À

`8
ÿ

n“Nx,y

ÿ

αaą|i|´β

ε
β`αa´|i|
n |x ´ y|

γ´αa,

and summing the geometric series yields as announced:

|E| À |y ´ x|
γ`β´|i|.

This concludes the proof. □

4.3. Recursive properties

Recall that we have not imposed a group property on the reexpansion
operators Γ. The following proposition however establishes that if Γ enjoys
such a property, then so does Γ̂.

Proposition 4.3.1. The following assertions are equivalent:
(1) For all x,y,z P Rd , Γx,y Γy,z “ Γx,z.
(2) For all x,y,z P Rd , Γ̂xy Γ̂yz “ Γ̂xz.

(Here the product is understood as the matrix product.)

PROOF. The implication (2) ñ (1) is straightforward. Now assume (1)
and let us establish (2). We have to prove that for all i, j P Î,

ÿ

kPÎ

Γ̂
ik
xy Γ̂

k j
yz “ Γ̂

i j
xy. (4.3.1)

We distinguish the different possible cases for i, j P Î. If i, j P I, (4.3.1) is
straighforward from the definition of Γ̂ and (1). If i, j P IPoly, then (4.3.1)
is also straighforward from Newton’s binomial formula. In the case when
i P I, j P IPoly, the left-hand side and the right-hand side of (4.3.1) vanish.

It remains to tackle the case when i P IPoly, j P I. In this case, we can
calculate explicitly

ÿ

kPÎ

Γ̂
ik
xy Γ̂

k j
yz “

ÿ

kPI

Γ̂
ik
xy Γ̂

k j
yz `

ÿ

kPIPoly

Γ̂
ik
xy Γ̂

k j
yz

“
ÿ

kPI

¨

˝

ÿ

aPI

Aa,i
x Γ

ak
xy ´

ÿ

ℓPIPoly

Xℓ
ypxqAk,i`ℓ

y

˛

‚Γ
k j
yz

`
ÿ

kPIPoly

Xk´i
y pxq

¨

˝

ÿ

aPI

Aa,k
y Γ

a j
yz ´

ÿ

ℓPIPoly

Xℓ
zpyqA j,k`ℓ

z

˛

‚.
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Using the fact that ΓxyΓyz “ Γxz in the first term:
ÿ

kPÎ

Γ̂
ik
xyΓ̂

k j
yz “

ÿ

aPI

Aa,i
x Γ

a j
xz ´

ÿ

kPI

ÿ

ℓPIPoly

Xℓ
ypxqAk,i`ℓ

y Γ
k j
yz

`
ÿ

kPIPoly

ÿ

aPI

Xk´i
y pxqAa,k

y Γ
a j
yz ´

ÿ

kPIPoly

Xk´i
y pxq

ÿ

ℓPIPoly

A j,k`ℓ
z Xℓ

zpyq.

Observe that the second and third term cancel out, and from Newton’s
binomial formula in the last term, we obtain

ÿ

kPÎ

Γ̂
ik
xyΓ̂

k j
yz “

ÿ

aPI

Aa,i
x Γ

a j
xz ´

ÿ

aPIPoly

Xa
z pyqA j,i`a

z “ Γ̂
i j
xz.

The proof is complete □



CHAPTER 5

The Schauder estimates

5.1. A theory, a theorem

This talk is based on work in progress with L. Broux and F. Caravenna.
A temptative title for this work could be

‚ Hairer’s Schauder estimates without Regularity Structures
In this paper we have extracted a single result (the multilevel Schauder

estimates) from a larger theory (Regularity Structures).
We present the former in a simpler and more general version, without

reference to the latter.

5.2. What we did yesterday

We defined the notion of coherent germs: pFxqxPRd Ă D 1pRdq such that
ˇ

ˇpFz ´ Fyqpϕ
εN
y q

ˇ

ˇ À λ
α

p|y ´ z| ` λ q
γ´α ,

where for all ϕ P DpRdq, λ ą 0 and y P Rd

ϕ
εN
y pwq :“

1
λ d ϕ

´w ´ y
λ

¯

, w P Rd .

Here γ,α P R and α ď γ .
We stated the Reconstruction Theorem: there exists RF P D 1pRdq such

that
|pRF ´ Fxqpψ

εN
x q| À λ

γ

(with a log-correction for γ “ 0) and RF is unique if γ ą 0.

5.3. Models

Then we realised that the space of germs is too large.
The idea in regularity structures (and rough paths) is to find a suitable

subspace of germs which can contain the solution to the equation of interest.
The space is defined in the following way: one fixes a finite family

pΠ1
x , . . . ,Π

N
x q of germs, such that for all x P Rd Πi

x has homogeneity αi P R,
i.e.

|Π
i
xpϕ

εN
x q| À λ

αi,

51
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and there exists a matrix-valued function px,yq ÞÑ pΓ
i j
xyqi, jPI such that

Π
j
y “

ÿ

iPI

Π
i
x Γ

i j
xy , j P I, x,y P Rd.

If the pair pΠ,Γq satisfies additional properties, then in regularity structures
it is called a model. We also use this terminology.

5.4. Modelled distributions

For a fixed model pΠ,Γq, we call any function f : Rd Ñ RI such that
ˇ

ˇ

ˇ

ˇ

ˇ

f i
x ´

ÿ

jPI

Γ
i j
xy f j

y

ˇ

ˇ

ˇ

ˇ

ˇ

À |x ´ y|
γ´αi, @ i P I

with γ ą maxi αi a modelled distribution. We saw yesterday that the germ

Fx :“
ÿ

iPI

Π
i
x f i

x

turns out to be pᾱ,γq-coherent with ᾱ “ miniPI αi.
Then u :“ RF is locally well approximated by Fx (say γ ą 0).
We introduce a new notation:

RΠ f :“ R
ÿ

i

Π
i f i .

5.5. Fixed points

In the space D γpΠ,Γq we want to set an equation in the form of a fixed
point

f “ Îp f q, Î : D γ
Ñ D γ

with Î a non-linear map.
Then one defines u :“ RΠ f (uniquely defined for γ ą 0).
The point is that one would like u to be solution to a fixed point problem

u “rÎpuq ,

where we would assume the following commutation

R ˝ Î “rÎ ˝R.

HoweverrÎ is in general ill-defined and the space RD γ is not a Banach
(Fréchet) space.
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5.6. Operations on Modelled distributions

Therefore it is very important to define several operations on modelled
distributions.

For an equation of the form (as for Φ4
d)

u “ G ˚ pPpuq ` ξ q

where G is the heat kernel and P is a polynomial, we can guess that two
main ingredients are needed:

‚ an integration of modelled distributions with respect to a kernel
‚ a product of modelled distributions.

The integration with respect to a kernel is the Schauder estimate that we
want to discuss now.

5.7. The Integration kernel

We fix an even measurable function K :Rd ÑR such that for some β ą 0

|B
kKpxq| À

1
|x|d´β`|k|

1t|x|ď1u, @|k| ď Nγ,mini αi, x P Rd.

Note the possible singularity at x “ 0.
For the intuition, one can think of the special situation

K “

`8
ÿ

n“0

ε
β
n Lεn, Lε

pxq “
1
εd L

´ x
ε

¯

, εn :“ εn,

where L P DpRdq.

5.8. Integration

Suppose we have

‚ a model pΠ,Γq

‚ a modelled distribution f P D γpΠ,Γq with γ ą 0
‚ u :“ RΠ f .

We want to define

‚ K ˚ u P D 1pRdq

‚ a new model pΠ̄, Γ̄q and a new modelled distribution g P D γ`β pΠ̄, Γ̄q

such that
K ˚ u “ RΠ̄ g

namely K ˚ u “ RG where Gx “
ř

k Π̄k
x gk

x.
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Then g is the family of generalised derivatives of K ˚ u with respect to
the model pΠ̄, Γ̄q.

In other words, if we set K : D γpΠ,Γq Ñ D γ`β pΠ̄, Γ̄q

K f “ g

then we have
RΠ̄ K “ K ˚RΠ .

Moreover the map K : D γpΠ,Γq Ñ D γ`β pΠ̄, Γ̄q is linear and continu-
ous.

5.9. The model pΠ̄, Γ̄q

The new basis pΠ̄k
xqk is supposed to contain at least germs looking like

Π̄i
x :“ K ˚ Πi

x.
However the elements of the basis must have a homogeneity property,

which here should read (for αi ` β ‰ 0)
ˇ

ˇΠ̄
i
xpϕ

εN
x q

ˇ

ˇ À λ
αi`β .

This is however a very non-trivial constraint. If αi ` β ą 0, this means
that Π̄i

xpϕ
εN
x q has to be small for λ small.

However K ˚ Πi
xpϕ

εN
x q has no reason to be small.

We must accept that Π̄i
xpϕ

εN
x q need to be modified.

A natural choice is to allow Π̄i
x to be equal to K ˚ Πi

x up to a polynomial
Pxp¨q.

5.10. The basis Π̄

We want

Π̄
i
xpϕq “ K ˚Π

i
xpϕq´Pxpϕq,

ˇ

ˇΠ̄
i
xpϕ

εN
x q

ˇ

ˇÀ λ
αi`β where Px is a polynomial.

If K and Πi
xp¨q are smooth, then we have essentially no choice but to

subtract a Taylor polynomial of K ˚ Πi
x centered at x:

Π̄
i
xpζ q “ K ˚ Π

i
xpζ q ´

ÿ

|k|ăαi`β

´

B
kK ˚ Π

i
x

¯

pxq
pζ ´ xqk

k!
.

In the general case, this must be defined as a distribution

Π̄
i
xpϕq “ K ˚ Π

i
xpϕq ´

ÿ

|k|ăαi`β

´

B
kK ˚ Π

i
x

¯

pxq

ż

Rd

pζ ´ xqk

k!
ϕpζ q dζ .
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5.11. Local Schauder for distributions

Lemma 5.11.1. Let T P D 1pRdq and x P Rd fixed. Let ᾱ P R and r P N with
r ą ´ᾱ . If

|T pϕ
ε
x q| À }ϕ}Crε

ᾱ , ε P p0,1s, ϕ P DpBp0,1qq,

then the distribution

T̄ pϕq :“ K ˚ T pϕq ´
ÿ

|k|ăᾱ`β

´

B
kK ˚ T

¯

pxq

ż

Rd

pζ ´ xqk

k!
ϕpζ q dζ ,

is well defined and we have

|T̄ pϕ
ε
x q| À ε

ᾱ`β .

Note that for ᾱ ` β ă 0 we have T̄ pϕq :“ K ˚ T pϕq.

5.12. The basis Π̄

Therefore we have our first elements of the basis Π̄

Π̄
i
xpϕq “ K ˚ Π

i
xpϕq ´

ÿ

|k|ăαi`β

´

B
kK ˚ Π

i
x

¯

pxq

ż

Rd

pζ ´ xqk

k!
ϕpζ q dζ .

and Π̄i
x has homogeneity αi ` β .

Is this enough?
We also have to build Γ̄, for which we can necessarily start from Γ.
We have clearly

K ˚ Π
j

y “
ÿ

iPI

pK ˚ Π
i
xqΓ

i j
xy.

However what about the polynomial terms?

5.13. The matrix Γ̄

Π̄
i
xpϕq “ K ˚ Π

i
xpϕq ´

ÿ

|k|ăαi`β

´

BkK ˚ Π
i
x

¯

pxq

ż

Rd

pζ ´ xqk

k!
ϕpζ q dζ .

A computation shows

Π̄
j

y ´
ÿ

iPI

Π̄
i
x Γ

i j
xy “ ´

ÿ

|k|ăα j`β

´

B
kK ˚ Π

j
y

¯

pyq
ÿ

ℓďk

px ´ yqk´ℓ

pk ´ ℓq!
p¨ ´ xqℓ

ℓ!

`
ÿ

iPI

Γ
i j
xy

ÿ

|ℓ|ăαi`β

´

B
ℓK ˚ Π

i
x

¯

pxq
p¨ ´ xqℓ

ℓ!
.

We must take care of the right hand side, which is a polynomial in p¨q of
degree at most γ ` β , since αi ă γ .
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That means that we have to add to our basis Π̄ the monomials of degree
up to γ ` β .

5.14. The model pΠ̄, Γ̄q

We define Î “ I \ ti P Nd : |i| ă γ ` βu and

Π̄
i
x “

$

’

’

’

’

’

&

’

’

’

’

’

%

K ˚ Π
i
x ´

ÿ

|k|ăαi`β

´

B
kK ˚ Π

i
x

¯

pxq
p¨ ´ xqk

k!
, if i P I ,

p¨ ´ xqi

i!
, if i P Nd, |i| ă γ ` β .

The homogeneity is of course αi if i P I and |i| if i P Nd .
Now we have to define the corresponding Γ̄.

5.15. The model pΠ̄, Γ̄q

Γ̄
i j
xy “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Γ
i j
xy, if i, j P I ,

px ´ yq j´i

p j ´ iq!
, if i, j P Nd, i ď j , maxt|i|, | j|u ă γ ` β ,

ÿ

a:αaą|i|´β

pB
iK ˚ Π

a
xqpxqΓ

a j
xy ´

ÿ

|k|ăα j`β´|i|

pB
i`kK ˚ Π

j
y qpyq

px ´ yqk

k!
,

if i P Nd, |i| ă α j ` β , j P I ,

0 otherwise.

5.16. The modelled distribution g

We wanted to define a new model pΠ̄, Γ̄q and a new modelled distribution
g P D γ`β pΠ̄, Γ̄q such that

K ˚ u “ RΠ̄ g

namely K ˚ u “ RG where Gx “
ř

k Π̄k
x gk

x.
It remains to construct g and show that it has the desider properties. The

definition is
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gi
x :“

$

’

’

’

’

&

’

’

’

’

%

f i
x if i P I ,

¨

˝RΠ f ´
ÿ

αaď|i|´β

f a
x Π

a
x

˛

‚˚ B
iKpxq if i P Nd, |i| ă γ ` β .

5.17. Multilevel Schauder estimates

THEOREM 5.17.1 (Hairer 14, Broux-Caravenna-Z. 21+). With the above
definitions

‚ g P D γ`β pΠ̄, Γ̄q

‚ the map K : D γpΠ,Γq Ñ D γ`β pΠ̄, Γ̄q defined by K f “ g is linear
continuous

‚ we have the commutation relation

RΠ̄ K “ K ˚RΠ .





CHAPTER 6

Products and equations

6.1. Brief and very incomplete history

In the ’60, ’70 and ’80 a huge activity on constructive quantum field
theory.

In the ’90 and ’00: rough paths approach to stochastic analysis: T. Lyons,
M. Gubinelli et al.: continuity of the solution map.

In the ’10: application of rough path ideas to SPDEs: M. Hairer,
Gubinelli-Imkeller-Perkowski.

The result is a robust and non-perturbative construction of Euclidean
QFT models via stochastic quantization (Parisi ’80).

6.2. Recap

We consider equations of the form (as for Φ4
d)

u “ G ˚ pPpuq ` ξ q “rÎpuq

where G is the heat kernel and P is a polynomial.
This equation is singular because u may be a distribution and Ppuq would

be ill-defined.
Indeed, if ξ is not smooth then in general the fixed point u “rÎpuq lacks

a rigorous treatment.
In other words, we do not have a proper Banach space B which could

contain the solution u, nor a good definition of the maprÎ.
IndeedrÎ should contain the famous renormalised non-linearities like

: u3 : which are hard to control analytically.

6.3. Recap

Martin’s idea is to express the solution u in terms of an explicit (random)
family pΠi

xqiPI,xPRd of distributions.
The idea is to lift the equation to the space D γpΠ,Γq of modelled distri-

butions, where pΠ,Γq is a model.
pΠ,Γq is an enhancement of the noise ξ . Its construction is the only

probabilistic argument.
59
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Via the Reconstruction Theorem, we represent u “ RΠ f with f P

D γpΠ,Γq, and the fixed point becomes

f “ Îp f q, Î : D γ
Ñ D γ .

The renormalisation procedure (subtraction of infinities) intervenes only
at the level of pΠ,Γq, which is an explicit object, while the non-linearity Î is
essentially standard.

6.4. Modelled distributions

More precisely, Î takes the form

Îp f q “ K pPp f q ` Ξq

for the equation u “ G ˚ pPpuq ` ξ q, where K is the integration operator we
defined yesterday.

We still have to define the product of modelled distributions which is
needed for Pp f q.

In any case, let us stress again that Pp f q is a standard polynomial in f ,
for example f 3, rather than : f 3 :

6.5. Models

A model is a finite family pΠ1
x , . . . ,Π

N
x q of germs, such that for all x P Rd

Πi
x has homogeneity αi P R, i.e.

|Π
i
xpϕ

εN
x q| À λ

αi,

and there exists a matrix-valued function px,yq ÞÑ pΓ
i j
xyqi, jPI such that

Π
j
y “

ÿ

iPI

Π
i
x Γ

i j
xy , j P I, x,y P Rd.

6.6. Modelled distributions

For a fixed model pΠ,Γq, we call any function f : Rd Ñ RI such that
ˇ

ˇ

ˇ

ˇ

ˇ

f i
x ´

ÿ

jPI

Γ
i j
xy f j

y

ˇ

ˇ

ˇ

ˇ

ˇ

À |x ´ y|
γ´αi, @ i P I

with γ ą maxi αi a modelled distribution in D γ “ D γpΠ,Γq. We have seen
that the germ

Fx :“
ÿ

iPI

Π
i
x f i

x

turns out to be pα,γq-coherent with α “ mini αi.
Then u :“ RF is locally well approximated by Fx (say γ ą 0).
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We introduce a new notation:

RΠ f :“ R
ÿ

i

Π
i f i .

6.7. Fixed points

In the space D γpΠ,Γq we want to set an equation in the form of a fixed
point

f “ ÎpΠ,Γqp f q, ÎpΠ,Γq : D γ
pΠ,Γq Ñ D γ

pΠ,Γq

with ÎpΠ,Γqp f q “ K pPp f q ` Ξq a non-linear map.
Then one defines u :“ RΠ f (uniquely defined for γ ą 0).
The fixed point for f replaces the fixed point for u

u “rÎpuq ,

which is ill-defined.
Therefore it is very important to define several operations on modelled

distributions. Two main ingredients are needed:
‚ an integration of modelled distributions with respect to a kernel
‚ a product of modelled distributions.

6.8. Multilevel Schauder estimates

Let K be a β -regularising integration kernel with β ą 0.

THEOREM 6.8.1 (Hairer 14, Broux-Caravenna-Z. 21+). There exist a
suitable model pΠ̄, Γ̄q and a linear continuous map

K : D γ
pΠ,Γq Ñ D γ`β

pΠ̄, Γ̄q

sastisfying the commutation relation

RΠ̄ K “ K ˚RΠ .

In the setting of Ilya’s lectures, in fact pΠ̄, Γ̄q “ pΠ,Γq. We restrict to
this situation from now on.

6.9. Products

Let D γ

αpΠ,Γq be the set of modelled distributions in D γpΠ,Γq which
have homogeneities bounded below by α .

For f1 P D γ1
α1pΠ,Γq and f2 P D γ2

α2pΠ,Γq, we define

γ “ pγ1 ` α2q ^ pγ2 ` α1q, α “ α1 ` α2,

p f1 ‹ f2q
i
x “

ÿ

j,k

1pα j`αk“αiăγqp f1q
j

x p f2q
k
x.
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THEOREM 6.9.1 (Hairer 14). With this definition, f1 ‹ f2 P D γ

αpΠ,Γq

and the map

D γ1
α1pΠ,Γq ˆD γ2

α2pΠ,Γq Q p f1, f2q ÞÑ f1 ‹ f2 P D γ

αpΠ,Γq

is bilinear and continuous.

6.10. Renormalised Products

As I mentioned before, there is no renormalisation in this product.
However if we reconstruct the product, renormalisation appears. For

example
RΠ

`

f 3˘
“ : pRΠ f q

3 :
This explains why one can give sense to

f “ ÎpΠ,Γqp f q, Î : D γ
pΠ,Γq Ñ D γ

pΠ,Γq

but not to
u “rÎpuq , u “ RΠ f .

ξ ξε

X̂ X̂ε

Xε

û uεûε

Φ (continuous)

D′(Rd) D′(Rd)

(M, d)

6.11. Explanation

ξ ξε

X̂ X̂ε

Xε

û uεûε

Φ (continuous)

D′(Rd) D′(Rd)

(M, d)

ξε “ ρε ˚ξ , Xε :“ canonical model associated to ξε , X̂ε “ renormalised Xε ,

pM ,dq “ Space of models, Φ : M Ñ D 1
pRd

q continuous Solution Map,

ΦpXq “ u where u “ ÎXpuq.
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6.12. The space of models and its topology

Models are X “ pΠ,Γq P M , with

Π “ pΠ
i
xqxPRd ,iPI Ă D 1

pRd
q, |Π

i
xpϕ

εN
x q| À λ

αi,

Γ “ pΓ
i j
xyqx,yPRd ,i, jPI Ă R, |Γ

i j
xy ´ δi j| À 1pαiąα jq |x ´ y|

αi´α j .

The pαiqiPI are fixed.
The metric d on M is obtained by taking differences between pΠ,Γq and

pΠ̄, Γ̄q and choosing the best constants in the above inequalities.

6.13. An example: Φ4
d

ξ ξε

X̂ X̂ε

Xε

û uεûε

Φ (continuous)

D′(Rd) D′(Rd)

(M, d)

uε “ ΦpXεq, uε “ G˚
`

´u3
ε ` ξε

˘

,

ûε “ ΦpX̂εq, ûε “ G˚
`

´û3
ε `Cε ûε ` ξε

˘

.

The renormalisation group acts on Xε ÞÑ X̂ε and on the coefficients of
the equation satisfied by uε and ûε , respectively.

On the other hand

fε “ KXε

`

´ f 3
ε ` Ξ

˘

, f̂ε “ KX̂ε

`

´ f̂ 3
ε ` Ξ

˘

.

The diverging constants Cε appear only in X̂ε .

6.14. The crucial result

We recall that Φ : M Ñ D 1pRdq is given by

pM ,dq “ Space of models, ΦpXq “ u where u “ ÎXpuq.

The crucial results are
‚ M Q X ÞÑ ΦpXq P D 1pRdq is continuous
‚ X̂ε converges in probability to X̂ in M .

This shows that ûε Ñ û converges in probability.
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