Chapitre IV. Semimartingales continues

Exercice 1. (i) Soient M et N deux martingales locales continues. Montrer que si M et N sont indépendantes, alors elles sont orthogonales (c'est-à-dire, $\langle M, N \rangle = 0$). On pourra considérer d'abord le cas de M et N martingales dans L^2 .

(ii) Montrer que la réciproque est fausse. (On pourra, par exemple, considérer M^{τ} et $M-M^{\tau}$.)

Exercice 2. Soit M une martingale locale continue telle que $M_0 = 0$ p.s.

- (i) Montrer que pour tout temps d'arrêt p.s. fini τ , on a $\mathbb{E}(M_{\tau}^2) \leq \mathbb{E}(\langle M \rangle_{\tau})$.
- (ii) Soit a > 0 et soit $\tau_a := \inf\{t \ge 0 : |M_t| \ge a\}$. Montrer que $\mathbb{E}(\langle M \rangle_{\tau_a \wedge t}) \ge a^2 \mathbb{P}(\tau_a \le t)$, $\forall t > 0.$
 - (iii) Montrer que $\mathbb{P}(\sup_{s \in [0, t]} |M_s| \ge a) \le a^{-2} \mathbb{E}(\langle M \rangle_t)$.

Exercice 3. Soit M une martingale locale continue telle que $M_0 = 0$ p.s.

(i) Soit a > 0 et soit $\sigma_a := \inf\{t \ge 0 : \langle M \rangle_t \ge a^2\}$. Montrer que

$$\mathbb{P}\Big(\sup_{s\in[0,\,\sigma_a]}|M_s|>a\Big)\leq \frac{1}{a^2}\mathbb{E}(a^2\wedge\langle M\rangle_\infty).$$

- (ii) Montrer que $\mathbb{P}(\sup_{t\geq 0} |M_t| > a) \leq \mathbb{P}(\langle M \rangle_{\infty} \geq a^2) + a^{-2}\mathbb{E}(a^2 \wedge \langle M \rangle_{\infty}).$
- (iii) Montrer que $\mathbb{E}(\sup_{t>0} |M_t|) \leq 3 \mathbb{E}(\sqrt{\langle M \rangle_{\infty}})$.
- (iv) Montrer que si $\mathbb{E}(\sqrt{\langle M \rangle_{\infty}}) < \infty$, alors M est une (vraie) martingale uniformément intégrable.
 - (v) Montrer que si $\mathbb{E}(\sqrt{\langle M \rangle_t}) < \infty$ pour tout t, alors M est une (vraie) martingale.

Exercice 4. Soit M une martingale locale continue. Montrer qu'il existe une suite de temps d'arrêt $(\tau_n) \uparrow \infty$ telle que pour tout $n, M^{\tau_n} - M_0$ soit une martingale continue bornée.

Exercice 5. Soit M un processus continu et adapté. On suppose qu'il existe une suite de temps d'arrêt $(\tau_n) \uparrow \infty$ telle que pour tout n, M^{τ_n} est une martingale locale. Montrer que M est une martingale locale.

Exercice 6. Soit M une martingale locale continue. Montrer qu'il existe $A \in \mathscr{F}$ avec $\mathbb{P}(A) = 1$ tel que pour tout $\omega \in A$ et tous s < t,

$$\langle M \rangle_s(\omega) = \langle M \rangle_t(\omega) \iff M_u(\omega) = M_s(\omega), \forall u \in [s, t].$$

Exercice 7. Soit M une martingale locale continue. Montrer que M est une martingale uniformément intégrable si et seulement si $(M_{\tau} \mathbf{1}_{\{\tau < \infty\}}, \tau \text{ temps d'arrêt})$ est uniformément intégrable.

Exercice 8. Soit M une martingale locale continue telle que $M_0 = 0$ p.s. Soit (τ_n) une suite de temps d'arrêt finis qui réduit M.

- (i) Soit τ un temps d'arrêt fini. Montrer que pour tout n, $\mathbb{E}(|X_{\tau \wedge \tau_n}|) \leq \mathbb{E}(|X_{\tau_n}|)$.
- (ii) Montrer que $\sup_n \mathbb{E}(|X_{\tau_n}|) = \sup\{\mathbb{E}(|X_{\tau}|), \tau \text{ temps d'arrêt fini}\}.$

Exercice 9. Donner un exemple de martingale locale M continue et bornée telle que $\langle M \rangle$ ne soit pas borné.

Exercice 10. Soit M une martingale locale continue, et soit A un processus à variation finie tel que $M^2 - A$ est une martingale locale. Montrer que A est indistinguable de $\langle M \rangle$.

Exercice 11. Soit M, N des martingales locales continues, et soit τ un temps d'arrêt. Montrer que $\langle M^{\tau} \rangle = \langle M \rangle^{\tau}$, $\langle N, M^{\tau} \rangle = \langle N^{\tau}, M^{\tau} \rangle = \langle N, M \rangle^{\tau}$ et $\langle M - M^{\tau} \rangle = \langle M \rangle - \langle M \rangle^{\tau}$.

Exercice 12. Soient M et N des martingales locales et continues, et soit H un processus mesurable tel que pour tout t, $\int_0^t H_s^2 d\langle M \rangle_s < \infty$ et $\int_0^t H_s^2 d\langle N \rangle_s < \infty$ p.s. Montrer que pour tout t, $\int_0^t H_s^2 d\langle M + N \rangle_s < \infty$ p.s.

Exercice 13. Soit M une martingale locale continue, et soit T un temps d'arrêt fini. Soit $\mathscr{G}_t := \mathscr{F}_{t+T}, \ t \geq 0$.

- (i) Montrer que si τ est un temps d'arrêt, alors $(\tau T)^+$ est un (\mathcal{G}_t) -temps d'arrêt.
- (ii) Montrer que $(M_{t+T}, t \ge 0)$ est une (\mathcal{G}_t) -martingale locale, et calculer sa variation quadratique.