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CHAPTER 1

Introduction

The aim of these lecture notes is to introduce the reader to some of the
main tools in the analytic theory of regularity structures, in particular the
notions of models, modelled distributions, reconstruction and multi-level
Schauder estimates. We try to follow an original approach, giving a new and
mostly self-contained presentation of these concepts, rather than referring to
the existing literature.

Since the founding paper [9] by Martin Hairer there has been a lot of work
in the field, but most of these articles are very hard to read for people outside
a small group of experts. These notes are part of an ongoing project which
aims to rethink these ideas and make them more intuitive and accessible.
With [4] we started this project by rewriting one of the main results of the
theory, the reconstruction theorem, in a more general setting; indeed our
definitions and statements are purely in the domain of distribution theory
and we do not need to define regularity structures. In [4] we introduced new
notions, in particular that of coherent germ, and new results pertaining to
them.

The second step of this project concerns another analytic cornerstone
of the theory, namely the (multi-level) Schauder estimates, which we prove
both in the more general setting of coherent germs and in the more restricted
one of modelled distributions. These notes present several results in this
setting, some of which are new; we are meanwhile writing a more detailed
research paper [1] on the same topic, with a somewhat different approach.

In the process of rewriting the two main results of reconstruction and
Schauder-estimates, we introduce in a simplified setting the fundamental
notions of models and modelled distributions. Again, the aim is to give a
pedagogical introduction with as little technical material as possible. The
necessary structure and technical assumptions are given gradually, only when
they are really needed.

Since we want to be essentially self-contained, we give (almost) complete
proofs, which in some important cases contain new material. As a result,
these notes are not exhaustive and some important topics in the analytic
theory of regularity structures are not treated here. In particular the product
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6 1. INTRODUCTION

of modelled distributions is the next step in our project and it will appear
elsewhere.



CHAPTER 2

Reconstruction

In these lecture notes we want to present an introduction to (some of)
the analytical aspects of regularity structures, with an emphasis on how to
construct (some of) the most relevant objects.

2.1. Distributions

These lectures will concern the space D 1
pRd

q of distributions or gen-

eralised functions. We consider the space DpRd
q :“ C

8
c

pRd
q of smooth

functions with compact support on Rd . The Euclidean ball of radius r

centered at x is denoted by Bpx,rq “ tz P Rd : |z ´ x| § ru.
A distribution on Rd is a linear functional T : C

8
c

pRd
q Ñ R such that for

every compact set K Ä Rd there is r “ rK P N

|T pjq| À }j}Cr :“ max
|k|§r

}B
kj}8, @j P C

8
0 pKq (2.1.1)

where throughout these lecture notes f À g means that there exists a constant
C ° 0 such that f § C g. If one can find a r P N such that (2.1.1) holds for
all compact set K Ä Rd then we say that T has order r.

Every locally integrable (in particular continuous) function f : Rd
Ñ R

defines a distribution by integration:

f pjq :“
ª

Rd

f pxqjpxqdx, j P DpRd
q.

A famous example of distribution from quantum mechanics is the Dirac
measure dx at x P Rd

dxpjq “ jpxq, j P C
8

pRd
q.

One can also differentiate any distribution T P D 1
pRd

q and obtain a new
distribution: for k P Nd

B
k
T pjq :“ p´1q

k1`¨¨¨`kd T pB
kjq.

Distributions form a linear space. If j P C
8

pRd
q and T P D 1

pRd
q then it

is possible to define canonically the product j ¨ T “ T ¨ j as

j ¨ T pyq “ T ¨ jpyq :“ T pjyq, @y P C
8
c

pRd
q.

7



8 2. RECONSTRUCTION

However, if T,T 1
P D 1

pRd
q, in general there is no canonical way of

defining T ¨ T
1.

One may use some form of regularisation of T , T
1 or both. Then, the

result could heavily depend on the regularisation and thus be neither unique
nor canonical. For example, there does not seem to exist a reasonable way
to define the square pdxq

2 of the Dirac function.
Regularity structures give a framework to define products of certain

distributions, and to prove well-posedness of some PDEs where such distri-
butions appear.

2.2. The main question of this chapter

For every x P Rd we assign a distribution Fx P D 1
pRd

q and we call the
family pFxq

xPRd a germ if for all y P D , the map x fiÑ Fxpyq is measurable.
Measurability of the map x fiÑ Fxpyq is a technical assumption, which is
needed in the definition of suitable approximations to the reconstruction of
pFzqzPRd , see (2.3.2) below.

Problem: Can we find a distribution f P D 1
pRd

q which is locally “well
approximated” by pFxq

xPRd ? Before making this notion precise, we explore
the familiar setting of Taylor expansions.

2.2.1. Taylor expansions. For example, let us fix f P C
8

pRd
q, and let

us define for a fixed g ° 0

Fxpyq :“
ÿ

|k|†g
B

k
f pxq

py ´ xq
k

k!
, x,y P Rd . (2.2.1)

Note that for j P Nd , w P Rd , we use the notation

| j| :“
dÿ

k“1
jk, w

j :“
dπ

k“1
w

jk

k
, j! :“

dπ

k“1
jk!

with the convention 00 :“ 1. Then the classical Taylor theorem says that
there exists a function Rpx,yq such that

f pyq ´ Fxpyq “ Rpx,yq, |Rpx,yq| À |x ´ y|
g (2.2.2)

uniformly for x,y on compact sets of Rd . By (2.2.2) we say that the distribu-
tion defined by f is locally well approximated by the germ pFxq

xPRd formed
by its Taylor polynomials.

2.2.2. Scaling. Let us introduce now the fundamental tool of scaling:
for all j P DpRd

q, l ° 0 and y P Rd we set

jl
y

pwq :“
1

l d
j

´
w ´ y

l

¯
, w P Rd . (2.2.3)
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When y “ 0 we write jl
“ jl

0 ,
Then the local approximation property (2.2.2) implies

Proposition 2.2.1. Let f P C
8

pRd
q, g ° 0 and Fx be defined by (2.2.1). Then

ˇ̌
ˇp f ´ Fyqpjl

y
q

ˇ̌
ˇ À l g , (2.2.4)

uniformly for y in compact sets of Rd
, l Ps0,1s and j P DpBp0,1qq with≥

|j | § 1.

PROOF. By (2.2.2) we have f ´ Fy “ Rpy, ¨q and |Rpy,wq| À |w ´ y|
g .

Since jl
y

is supported by Bpy,l q with
≥

|jl
y

| “
≥

|j |,
ˇ̌
ˇp f ´ Fyqpjl

y
q

ˇ̌
ˇ “

ˇ̌
ˇ̌
ª

Rd

Rpy,wqjl
y

pwqdw

ˇ̌
ˇ̌

À sup
wPBpy,l q

|w ´ y|
g
ª

|jl
y

| § l g

uniformly for y in compact sets of Rd , l Ps0,1s and j P DpBp0,1qq with≥
|j | § 1. ⇤

In this context we have another simple formula, which does not seem so
well known.
Proposition 2.2.2. Let f P C

8
pRd

q, g ° 0 and Fx be defined by (2.2.1). Then
ˇ̌
ˇpFz ´ Fyqpjl

y
q

ˇ̌
ˇ À p|y ´ z| ` l q

g , (2.2.5)

uniformly for y,z in compact sets of Rd
, l Ps0,1s and j P DpBp0,1qq with≥

|j | § 1.

PROOF. Let us note that we can Taylor expand also the derivatives of f

for |k| † g

B
k

f pyq “

ÿ

|`|†g´|k|
B

k``
f pzq

py ´ zq
`

`!
` R

k
py,zq, |R

k
py,zq| À |y ´ z|

g´|k|,

uniformly for x,y on compact sets of Rd . Then we can write

Fypwq “

ÿ

|k|†g
B

k
f pyq

pw ´ yq
k

k!

“

ÿ

|k|†g

¨

˝
ÿ

|`|†g´|k|
B

k``
f pzq

py ´ zq
`

`!
` R

k
py,zq

˛

‚pw ´ yq
k

k!

“ Fzpwq `

ÿ

|k|†g
R

k
py,zq

pw ´ yq
k

k!
,
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having applied Newton’s binomial. Therefore we obtain the expression

Fzpwq ´ Fypwq “ ´

ÿ

|k|†g
R

k
py,zq

pw ´ yq
k

k!
. (2.2.6)

In particular

|Fzpwq ´ Fypwq| §

ÿ

|k|†g
|R

k
py,zq|

|w ´ y|
k

k!

À

ÿ

|k|†g
|y ´ z|

g´|k|
|w ´ y|

k
À p|y ´ z| ` |w ´ y|q

g

since a
t
b

s
§ pa ` bq

t
pa ` bq

s for a,b, t,s • 0. Now by (2.2.3), for all j P

DpBp0,1qq with
≥

|j | § 1
ˇ̌
ˇ̌
ª

Rd

pFzpwq ´ Fypwqq jl
y

pwqdw

ˇ̌
ˇ̌ À sup

wPBpy,l q
p|y ´ z| ` |w ´ y|q

g
ª

|jl
y

|

§ p|y ´ z| ` l q
g .

We have obtained (2.2.5). ⇤

2.3. Reconstruction

We define throughout the paper

en :“ 2´n, n P N.

We have seen in (2.2.4) that for the germ pFyq
yPRd related to a Taylor expan-

sion of order g ° 0 ˇ̌
p f ´ Fyqpjen

y
q

ˇ̌
À eg

n
,

uniformly for y in compact sets of Rd , n P N and j P DpBp0,1qq with≥
|j | § 1. This property does not rely explicitly on the smoothness of f ,

and seems to be a promising way of expressing the fact that pFyq
yPRd locally

approximates well (at order g ° 0) the distribution f .
This motivates the following:

Definition 2.3.1. Let pFyq
yPRd Ñ D 1

pRd
q a family of distributions. We say

that f P D 1
pRd

q is a reconstruction of pFyq
yPRd if there exists g ° 0 such that

for all j P D ˇ̌
p f ´ Fyqpjen

y
q

ˇ̌
À eg

n
, (2.3.1)

uniformly for y in compact sets of Rd
and n P N.
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We are going to see below sufficient conditions for a family pFyq
yPRd Ñ

D 1
pRd

q of distributions to admit a reconstruction. A first important remark
is that, with this definition, there is at most one reconstruction for a given
pFyq

yPRd .
We are going to use a number of times the following formula: for all

T P D 1 and j,g P D

T pj ˚ gq “

ª

Rd

T pjp¨ ´ yqqgpyqdy .

With the notation jypxq :“ jpx ´ yq “ j1
y
pxq, recall (2.2.3), we obtain the

basic formula
T pj ˚ gq “

ª

Rd

T pjyqgpyqdy , (2.3.2)

Lemma 2.3.2 (Uniqueness). Given any pFxq
xPRd Ñ D 1

pRd
q and g ° 0, there

is at most one reconstruction of pFxq
xPRd in the sense of Definition 2.3.1.

PROOF. We fix a test function j P D with
≥

j “ 1, and two distributions
f ,g P D 1 which satisfy, uniformly for y in compact sets,

lim
nÑ8 |p f ´ Fyqpjen

y
q| “ lim

nÑ8 |pg ´ Fyqpjen

y
q| “ 0 . (2.3.3)

We set T :“ f ´ g. Since pjenqnPN is a family of mollifiers, for any y P D
we have T pyq “ limnÑ8 T py ˚jenq. If K is any compact set which contains
the support of y we have by (2.3.2)

|T py ˚ jenq| “

ˇ̌
ˇ̌
ª

Rd

T pjen

y
qypyqdy

ˇ̌
ˇ̌ § }y}

L1 sup
yPK

|T pjen

y
q| .

It remains to show that limnÑ8 T pjen

y
q “ 0 uniformly for y P K, for which it

is enough to observe that

|T pjen

y
q| “ | f pjen

y
q ´ gpjen

y
q| § |p f ´ Fyqpjen

y
q| ` |pg ´ Fyqpjen

y
q|

and these terms vanish as n Ñ 8 uniformly for y in compact sets, by (2.3.3).
⇤

2.4. Coherence

We have seen in (2.2.5) that for the germ related to a Taylor expansion
we have for any g ° 0

ˇ̌
pFz ´ Fyqpjen

y
q

ˇ̌
À p|y ´ z| ` enq

g ,
ˇ̌
p f ´ Fyqpjen

y
q

ˇ̌
À eg

n
,

uniformly for y,z in compact sets of Rd , n P N and j P DpBp0,1qq with≥
|j | § 1.

However the first estimate implicitly relies on the information that the
distribution Fz ´ Fy is a locally bounded function: suppose indeed that this
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is not the case; then we expect that the quantity pFz ´ Fyqpjen

y
q does not

necessarily remain bounded as n Ñ 8; this is the case for example if Fz ´ Fy

is a Dirac mass at y, where

pFz ´ Fyqpjen

y
q “

1
ed

n

jp0q. (2.4.1)

Therefore, if we want to consider more general families pFyq
yPRd of genuine

distributions, we expect (2.2.5) to be too strong a requirement.
Formula (2.4.1) suggests that a weaker version of (2.2.5), which could

be convenient in this context, may be obtained by allowing a multiplicative
factor ea

n
with a § 0 in (2.2.5):

ˇ̌
pFz ´ Fyqpjen

y
q

ˇ̌
À ea

n
p|y ´ z| ` enq

g . (2.4.2)

However, it turns out that (2.4.2) may not be strong enough to obtain (2.3.1):
the multiplicative factor ea

n
, which explodes as n Ñ 8 if a † 0, makes a

better control on the factor p|y ´ z| ` enq necessary, as can be seen from the
proof of Theorem 2.5.1 below. It turns out that a sufficient condition for the
existence of a (unique) reconstruction is

ˇ̌
pFz ´ Fyqpjen

y
q

ˇ̌
À ea

n
p|y ´ z| ` enq

g´a ,

uniformly for z,y in compact sets of Rd , n P N. We call this property
coherence, see below.

Definition 2.4.1. We say that a germ pFzqzPRd Ä D 1
is pa,gq-coherent for

g P R, and a § g , if there exists j P DpRd
q with

≥
j ‰ 0, such that

ˇ̌
pFz ´ Fyqpjen

y
q

ˇ̌
À ea

n
p|y ´ z| ` enq

g´a , (2.4.3)

uniformly for z,y in compact sets of Rd
, n P N.

We denote by G a,g
the set of pa,gq-coherent germs.

Remark 2.4.2. It is a non obvious (but true) fact, see [4, Proposition
13.1], that relation (2.4.3) actually holds uniformly over j P DpBp0,1qq

with bounded }j}Cra , where ra :“ mintk P N : k ° ´au. More precisely:

|pFz ´ Fyqpjen

y
q| À }j}Cra ea

n
p|y ´ z| ` enq

g´a , (2.4.4)

uniformly for x,y,z in compact sets, n P N and j P DpBp0,2qq. This property
is called enhanced coherence. In particular, G a,g is a vector space.

2.5. Hairer’s Reconstruction Theorem (without regularity structures)

We define the following family of test functions:

Br :“ ty P DpBp0,1qq : }y}Cr § 1u . (2.5.1)
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THEOREM 2.5.1 (Reconstruction Theorem). Suppose that pFzqzPRd Ä D 1
is a pa,gq-coherent germ in the sense of Definition 2.4.1 with g ° 0, namely

there exist g ° 0, a § g and a j P DpRd
q with

≥
j ‰ 0, such that

|pFy ´ Fxqpjen

x
q| À ea

n
p|x ´ y| ` enq

g´a ,

uniformly for x,y in compact sets of Rd
, n P N. Then there exists a unique

distribution RF P D 1
pRd

q such that

|pRF ´ Fxqpyen

x
q| À eg

n
(2.5.2)

uniformly for x in compact sets of Rd
, n P N, y P Br, see (2.5.1), for any

fixed integer r ° ´a .

‚ This result was stated and proved by Martin Hairer in [9, Thm.
3.10] for a subclass of germs related to regularity structures. He
used wavelets.

‚ Later Otto-Weber [13] proposed an approach based on a semigroup.
This corresponds to a special choice of the test functions j,y . See
also [12].

‚ The above statement is a slight improvement of [4, Thm. 5.1]. It
is more general and requires no knowledge of regularity structures.
The improvement is due to [15] and concerns the fact that it is not
necessary to impose a homogeneity condition on the germ (see
below).

‚ This result can be seen as a generalisation of the Sewing Lemma
in rough paths [8, 7]. See [3, section 5] for a discussion of the
analogies between the Reconstruction Theorem and the Sewing
Lemma.

‚ The construction is completely local: constants and even the expo-
nent a may be allowed to depend on the compact set.

‚ We also cover the case g § 0 (see below).

Example 2.5.2. Let A Ä R be a (locally) finite set such that a :“ infA P R.

Let F “ pFxq
xPRd be a germ such that, for some g • a and j P DpRd

q with≥
j ‰ 0, we have

|pFz ´ Fyqpjen

y
q| À

ÿ

aPA: a†g
ea

n
|z ´ y|

g´a,

uniformly for z,y in compact sets and for n P N .
(2.5.3)

Then the germ F is pa,gq-coherent, since for e P p0,1s

ea
|z ´ y|

g´a
“ ea ea´a

|z ´ y|
g´a

§ ea
pe ` |z ´ y|q

g´a .

For example we saw in (2.2.5) that the Taylor expansions (2.2.1) satisfy

(2.5.3) with A “ N and a “ 0.
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Remark 2.5.3. If pFzqzPRd Ä D 1 is a pa,gq-coherent germ and a ° 0, then
the map z fiÑ Fz is constant, so that we implicitly assume from now on that
a § 0. In order to prove the claim, we apply the triangular inequality

|pFy ´ Fxqpjen

z
q| § |pFy ´ Fzqpjen

z
q| ` |pFz ´ Fxqpjen

z
q| Ñ 0

as n Ñ `8 (uniformly for x,y,z in compact sets) by the coherence assump-
tion. Then we obtain for all y P D by (2.3.2)

pFy ´ Fxqpyq “ lim
nÑ`8pFy ´ Fxqpy ˚ jenq

“ lim
nÑ`8

ª

Rd

pFy ´ Fxqpjen

z
qypzqdz “ 0.

2.6. Sketch of the proof

In this section we give a detailed sketch of the proof of Theorem 2.5.1.
We use also in the following the notation

K̄r :“ tx P Rd : distpx,Kq § ru (2.6.1)

for K Ä Rd and r ° 0.
We fix a pa,gq-coherent germ pFzqzPRd Ä D 1, i.e. we suppose that there

exist g ° 0,a § 0 and j P DpRd
q with

≥
j ‰ 0, such that

ˇ̌
pFz ´ Fyqpjen

y
q

ˇ̌
À ea

n
p|y ´ z| ` enq

g´a , (2.6.2)

uniformly for z,y in compact sets of Rd , n P N. We fix an integer r ° ´a
and we find in an elementary way a related ĵ P DpBp0,1qq such that

ª

Rd

ĵpyq dy “ 1 ,
ª

Rd

y
k ĵpyq dy “ 0 , @k P Nd : 1 § |k| § r ´ 1 ,

(2.6.3)
and (2.6.2) holds with j replaced by ĵ , see [4, Lemma 8.3]. Then we define

r :“ ĵ2
˚ ĵ and en :“ 2´n, n P N , (2.6.4)

where we recall that yeN “ yeN

0 is a scaling of y as in (2.2.3). Note that≥
r “

≥
ĵ2 ≥ ĵ “ 1. This peculiar choice of r ensures that the difference

r 1
2 ´ r is a convolution:

r
1
2 ´ r “ ĵ ˚ ǰ , where we define ǰ :“ ĵ

1
2 ´ ĵ2 . (2.6.5)

By (2.6.3),
ª

Rd

y
k ǰpyq dy “ 0 , @k P Nd : 0 § |k| § r ´ 1 . (2.6.6)

This will be used below to subtract suitable Taylor polynomials. Moreover it
follows that

ren`1 ´ ren “ pr
1
2 ´ rq

en “ ĵen ˚ ǰen . (2.6.7)
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With these definitions, we can define the function

fnpzq :“ Fzpren

z
q

that we may look at as a distribution, so that we write

fnpyq :“
ª

Rd

Fzpren

z
qy pzq dz , y P D . (2.6.8)

The definition of fn is inspired by (2.3.2): we show that fn converges to a
limiting distribution, which is the reconstruction RF we are looking for.

We study the function

fx,npzq :“ fnpzq ´ Fxpren

z
q “ pFz ´ Fxqpren

z
q, x,z P Rd. (2.6.9)

We write fx,n as a telescoping sum:

fx,k`1pzq ´ fx,kpzq “ pFz ´ Fxqprek`1
z ´ rek

z
q

“ pFz ´ Fxqpĵen ˚ ǰen

z
q “

ª

Rd

pFz ´ Fxqpĵek

y
q ǰekpy ´ zqdy

“

ª

Rd

pFy ´ Fxqpĵek

y
q ǰekpy ´ zqdy

loooooooooooooooooomoooooooooooooooooon
g

1
x,kpzq

`

ª

Rd

pFz ´ Fyqpĵek

y
q ǰekpy ´ zqdy

loooooooooooooooooomoooooooooooooooooon
g

2
k

pzq

,

(2.6.10)

where again we use (2.3.2). We have first by (2.6.2), for all z P Rd ,

|g
2
k
pzq| § }ǰek}

L1 sup
|y´z|§ek

|pFz ´ Fyqpĵek

y
q| À ea

k
eg´a

k
“ eg

k
,

since }ǰek}
L1 “ }ǰ}

L1 . Then we obtain for all y P D
ˇ̌
ˇ̌
ª

Rd

g
2
k
pzqypzqdz

ˇ̌
ˇ̌ À eg

k
}y}

L1 . (2.6.11)

Now we want to estimateª

Rd

g
1
x,kpzqypzqdz “

ª

Rd

pFy ´ Fxqpĵek

y
q pǰek ˚ yqpyqdy . (2.6.12)

If K is the support of y and K̄1 is the subset of Rd which has distance § 1
from K, we obtain that ǰe

˚ y has support in K̄1 for e §
1
2 . Then by the

coherence conditionˇ̌
ˇ̌
ª

Rd

g
1
x,kpzqypzqdz

ˇ̌
ˇ̌ § sup

yPK̄1

|pFy ´ Fxqpĵek

y
q| }ǰek ˚ y}

L1 À ea
k

}ǰek ˚ y}
L1 .

Note now that by (2.6.6)

pǰe
˚ yqpyq “

ª

Rd

ǰe
py ´ zq

 
ypzq ´ pypzq

(
dz ,
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where pyp¨q :“
∞

|k|§r´1
Bkypyq

k! p¨ ´ yq
k the Taylor polynomial of y of order

r ´ 1 based at y; since |ypzq ´ pypzq| À }y}Cr |z ´ y|
r, we obtain

|pǰe
˚ yqpyq| § }y}Cr

ª

Rd

|ǰe
py ´ zq| |z ´ y|

r dz § }y}Cr }ǰ}
L1 er , y P Rd.

We obtain ˇ̌
ˇ̌
ª

Rd

g
1
x,kpzqypzqdz

ˇ̌
ˇ̌ À ea`r

k
}y}Cr . (2.6.13)

In particular we obtain by (2.6.11)-(2.6.13), since g ° 0 and a `r ° 0 (recall
that we fixed r ° ´a)

fx,npyq “ fx,0pyq `

n´1ÿ

k“0

“
g

1
x,kpyq ` g

2
k
pyq

‰

converges as n Ñ `8 to a distribution of order r. Note now that Fxpren¨ q

converges to Fx in D 1, since by (2.3.2)
ª

Rd

Fxpren

z
qypzqdz “ Fxpren ˚ yq Ñ Fxpyq , @y P D .

We obtain by (2.6.9) that fn converges to a distribution RF in D 1. Moreover,
since for all n • ` we have

fx,npyq “ fx,`pyq `

n´1ÿ

k“`

“
g

1
x,kpyq ` g

2
k
pyq

‰
, (2.6.14)

letting n Ñ `8 we obtain that for all x P Rd , y P D and ` P N

RFpyq “ Fxpyq ` fx,`pyq `

8ÿ

k“`

“
g

1
x,kpyq ` g

2
k
pyq

‰
. (2.6.15)

Formula (2.6.15) is due to [15].
We want now to prove the reconstruction bound (2.5.2). We recall the

following result, proved in [4, Lemma 9.3]: let k,N P N and G : Rd
Ñ R a

measurable function; then for all x P Rd and y P Br, see (2.5.1),
ˇ̌
ˇ̌
ª

Rd

Gpyqpǰek ˚ yeN

x
qpyqdy

ˇ̌
ˇ̌ § 4d

}ǰ}
L1 min

 
ek{eN ,1

(
r sup

Bpx,eN`ekq
|G| .

(2.6.16)

By (2.6.12) and (2.6.16), for any k,N P N,
ˇ̌
ˇ̌
ª

Rd

g
1
x,kpzqyeN

x
pzqdz

ˇ̌
ˇ̌ § 4d

}ǰ}
L1 min

 
ek{eN ,1

(
r sup

yPBpx,eN`ekq
|pFy ´Fxqpĵek

y
q| .
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For y P Bpx,eN ` ekq, by (2.6.2) with j replaced by ĵ , we have

|pFx ´ Fyqpĵek

y
q| À ea

k
p|x ´ y| ` ekq

g´a
À ea

k
maxtek,eNu

g´a .

We have obtained
ˇ̌
ˇ̌
ª

Rd

g
1
x,kpzqyeN

x
pzqdz

ˇ̌
ˇ̌ À

#
eg´a´r

N
ea`r

k
if k ° N

eg
k

if k § N
. (2.6.17)

We want now to estimate Jx :“ Fx ´RF , and in particular JxpyeN

x q. We write

|JxpyeN

x
q| § | fx,NpyeN

x
q| ` |pJx ´ fx,NqpyeN

x
q|.

First by (2.6.9) and (2.6.4)

fx,NpyeN

x
q “

ª

Rd

ª

Rd

pFz ´ FxqpĵeN

y
q ĵ2eN py ´ zqyeN

x
pzqdydz ,

so that, since y is supported in Bp0,1q and ĵ is supported in Bp0, 1
2q,

| fx,NpyeN

x
q| § }ĵ2eN }

L1 }yeN

x
}

L1 sup
zPBpx,eNq,|y´z|§eN

|pFz ´ FxqpĵeN

y
q|.

Now we write |pFz ´ FxqpĵeN

y q| § |pFy ´ FxqpĵeN

y q| ` |pFz ´ FyqpĵeN

y q| and

sup
zPBpx,eNq,|y´z|§eN

|pFz ´ FyqpĵeN

y
q| À ea

N
eg´a

N
§ eg

N
,

sup
zPBpx,eNq,|y´z|§eN

|pFy ´ FxqpĵeN

y
q| À ea

N
peN ` 2eNq

g´a
À eg

N
,

so that we obtain
| fx,NpyeN

x
q| À eg

N
, (2.6.18)

and this argument holds for any g P R. Now by (2.6.15)

pJx ´ fx,NqpyeN

x
q “ ´

8ÿ

k“N

“
g

1
x,kpyq ` g

2
k
pyq

‰
,

and by (2.6.11) and (2.6.17),

|pJx ´ fx,NqpyeN

x
q| §

ÿ

k•N

“
|g

1
x,kpyeN

x
q| ` |g

2
k
pyeN

x
q|

‰

À

ÿ

k•N

”
eg´a´r

N
ea`r

k
` eg

k

ı

§
eg´a´r

N
ea`r

N

1 ´ 2´pa`rq `
eg

N

1 ´ 2´g À eg
N
,

since g ° 0 and a ` r ° 0. The proof is complete.
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2.7. The Reconstruction Theorem for g § 0.

In Theorem 2.5.1 we have proved the existence and the uniqueness of
the reconstruction of a pa,gq-coherent germ in the case of g ° 0. If g § 0
then we have a weaker result.

THEOREM 2.7.1. Suppose that for a given F : Rd
Ñ D 1

pRd
q there exist

g § 0 and a § g , such that for all j P DpRd
q

|pFy ´ Fxqpjen

x
q| À ea

n
p|x ´ y| ` enq

g´a ,

uniformly for x,y in compact sets of Rd
, n P N, namely F is pa,gq-coherent.

Then there exists a (non-unique) RF P D 1
pRd

q such that

|pRF ´ Fxqpyen

x
q| À

#
eg

n if g † 0
1 ` n if g “ 0

. (2.7.1)

uniformly for x in compact sets of Rd
, n P N, ty P DpBp0,1qq : }y}Cr § 1u

with a fixed r ° ´a .

PROOF. If one checks the proof of the case g ° 0, one sees that the
convergence of the different terms depends either on g ° 0 or on a ` r ° 0.
More precisely, the estimate (2.6.11) on g

2
k

is useful if g ° 0, while the
estimate (2.6.13) on g

1
x,k is useful if a ` r ° 0. If g § 0, the estimate on g

2
k

is simply not good enough.
On the other hand, for g § 0 the reconstruction bound (2.7.1) is weaker,

since eg
n or n diverge as n Ñ 8, and we do not state that there is a unique

choice for RF .
In fact, in order to prove the statement we can modify the approximating

sequence fn defined in (2.6.8), by eliminating the term g
2
k

whose convergence
is based on g ° 0. However, g

1
x,k, given by (2.6.12) above, depends on x P Rd ,

while we want the approximating sequence f̄n P D 1 to be independent of any
base point.

Recalling the definition of fn and g
2
k

from (2.6.8) and (2.6.10), we define
(also recall (2.6.9))

f̄n :“ fn ´

n´1ÿ

k“0
g

2
k
,

f̄x,npyq :“ f̄npyq ´ Fxpren ˚ yq “ fx,npyq ´

n´1ÿ

k“0
g

2
k
pyq.
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Then, by (2.6.14), for all n • `,

f̄x,npyq “ fx,`pyq `

n´1ÿ

k“`

g
1
k,xpyq ´

`´1ÿ

k“0
g

2
k
pyq “ f̄x,`pyq `

n´1ÿ

k“`

g
1
k,xpyq .

(2.7.2)
By the estimate (2.6.13) on g

1
x,k, we obtain that f̄x,n, and therefore f̄n, con-

verge in D 1 and we can write for all y P D , x P Rd and ` P N
RFpyq :“ lim

n
f̄npyq “ Fxpyq ` lim

n
f̄x,npyq

“ Fxpyq ` f̄x,`pyq `

8ÿ

k“`

g
1
k,xpyq.

(2.7.3)

For the reconstruction bound (2.7.1), we want to estimate f̃x :“ RF ´Fx,
and in particular f̃xpye`

x q. We write

| f̃xpye`
x

q| § | f̃x,`pye`
x

q| ` |p f̃x ´ f̃x,`qpye`
x

q|.

Now, by (2.6.17) and (2.7.3), if g § 0

|p f̃x ´ f̃x,`qpye`
x

q| §

ÿ

k•`

|g
1
x,kpye`

x
q|

À

ÿ

k•`

eg´a´r

` ea`r

k
À eg´a´r

` ea`r

` “ eg
` ,

since a ` r ° 0. By (2.6.18) and by (2.6.17), if g † 0

| f̃x,`pye`
x

q| § | fx,`pye`
x

q| `

`´1ÿ

k“0

ˇ̌
g

2
k
pye`

x
q

ˇ̌

À eg
` `

`´1ÿ

k“0
2|g|k

À 2|g|`
“ eg

` .

In the case g “ 0 we have rather

| f̃x,`pye`
x

q| § | fx,`pye`
x

q| `

`´1ÿ

k“0

ˇ̌
g

2
k
pye`

x
q

ˇ̌
À 1 ` ` .

The proof is complete. ⇤

2.8. Homogeneity

Definition 2.8.1. Let F be a germ. We say that F satisfies a homogeneity

bound with exponent ā P R if there exists r ° ´ā such that

|Fxpyen

x
q| À eā

n
,

uniformly for x in compact sets, n P N and y P Br, see (2.5.1).
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We recall the following result, which is proved in [4, Lemma 4.12].

Lemma 2.8.2 (Homogeneity). Let F “ pFxq
xPRd be a pa,gq-coherent germ.

For any compact set K Ñ Rd
, there is a real number āK † g such that

|Fxpjen

x
q| À eāK

n
uniformly for x P K and n P N , (2.8.1)

with j as in Definition 2.4.1.

Therefore coherence of a germ implies a local form of homogeneity of
the same germ. However in Definition 2.8.1 we require the coefficient ā to
be uniform over the compact set K.

If a germ satisfies a homogeneity bound with exponent ā P R, then it
satisfies a homogeneity bound with exponent ā 1 for all ā 1

§ ā . Therefore
the set of ā P R such that a fixed germ satisfies a homogeneity bound with
exponent ā takes the form s ´ 8,bs or s ´ 8,br.

Definition 2.8.3. We denote by G ā;a,g
the set of pa,gq-coherent germs which

satisfy a homogeneity bound with exponent ā .

Remark 2.8.4. Let F be a pa,gq-coherent germ with respect to a test func-
tion j P D such that

≥
j ‰ 0. If there is ā P R such that for all compact set

K Ä Rd

|Fxpjen

x
q| À eā

n
uniformly for x P K and n P N ,

then F satisfies a homogeneity bound with exponent ā P R and with r “

ra^ā “ mintn P N : n ° ´pa ^ āqu as in Definition 2.8.1. This property is
called enhanced homogeneity, see [4, Theorem 12.4], and is the analog of
the enhanced coherence of Remark 2.4.2.

2.9. Negative Hölder (Besov) spaces

Given a Ps´8,0r, we define C a
“ C a

pRd
q as the space of distributions

T P D 1 such that
|T pyen

x
q|

}y}Cra
À ea

n
, (2.9.1)

uniformly for x in compact sets, y P Bra zt0u and n P N, where we define ra
as the smallest integer r P N such that r ° ´a . For any distribution T P D 1
and a † 0, we define }T }C a pKq as the best constant in (2.9.1):

}T }C a pKq :“ sup
zPK,nPN,yPBra

|T pyen

x
q|

ea
n

}y}Cra
. (2.9.2)

Then T P C a if and only if }T }C a pKq † 8, for all compact sets K Ñ Rd .
We want now to show that a coherent germ which satisfies a homogeneity

bound with exponent ā † 0 has a reconstruction (unique or not) which
belongs to the Besov space C ā , and the map F fiÑ RF is linear continuous.
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We introduce the semi-norms

|||F |||
coh
K,j,a,g :“ sup

y,zPK, nPN

|pFz ´ Fyqpjen

y
q|

ea
n

p|z ´ y| ` enqg´a , (2.9.3)

|||F |||
hom
K,j,ā :“ sup

xPK, nPN

|Fxpjen

x
q|

eā
n

, (2.9.4)

where j is as in Definition 2.4.1. We can now state the following result.

THEOREM 2.9.1 (Reconstruction Theorem and Hölder spaces). Let a §

g and g ‰ 0. Let pFxq
xPRd be a pa,gq-coherent germ with local homogeneity

bound ā § g , namely F P G ā;a,g
. If ā ° 0, then RF “ 0. If ā † 0, then

RF belongs to C ā
and for every compact set K Ñ Rd

}RF}C ā pKq § Ca,g,ā,d,j

´
|||F |||

coh
K̄4,j,a,g ` |||F |||

hom
K̄2,j,ā

¯
, (2.9.5)

where j is the test function in the coherence condition (2.4.3), Ca,g,ā,d,j † 8

is a constant which depends neither on F nor on K and we use the notation

(2.6.1).

PROOF. We fix a compact set K Ä Rd and y P K. By the reconstruction
bounds (2.5.2) for g ° 0 and (2.7.1) for g † 0, RF satisfies

ˇ̌
pRF ´ Fyqpjen

y
q

ˇ̌
À eg

n
.

It follows by the homogeneity bound (2.8.1) and the triangle inequality that
ˇ̌
RFpjen

y
q

ˇ̌
À eā

n
` eg

n
.

When ā ° 0 then also g ° 0 and the r.h.s. vanishes as n Ñ 8, which yields
RF ” 0, because RFpyq “ limn RFpy ˚ jenq “ limn

≥
RFpjen

y
qypyqdy.

Henceforth we fix ā † 0. Let j be the test function in the coherence
condition (2.4.3). Let f “ RF be a reconstruction of F . Fix a compact set
K: we want to show that

sup
xPK̄2,NPN,yPBra^ā

| f pyeN

x q|

eā
N

§ C1
´

|||F |||
coh
K̄4,j,a,g ` |||F |||

hom
K̄2,j,ā

¯
(2.9.6)

for some C1
“ C1

a,g,ā,d,j † 8, where ra^ā “ mintn P N : n ° ´pa ^ āqu.
Note that in (2.9.6) we have a supremum over y P Bra^ā , while in (2.9.2)
we had a supremum over y P Bra , so that it seems that (2.9.6) does not
imply that f P C ā

pKq. However, the definition (2.9.2) gives the same space
if ra is replaced by any r ° ´a , see e.g. [4, Theorem 12.4].

Now we have, uniformly for x P K̄2, y P Bra^ā and N P N,

|p f ´ FxqpyeN

x
q| § c |||F |||

coh
K̄4,j,a,g eg

N

for a suitable c “ ca,g,ā,d,j , where the constant |||F |||
coh
K̄4,j,a,g arises by track-

ing carefully the constants in the estimates in proof of the Reconstruction



22 2. RECONSTRUCTION

Theorem, see Section 2.6. Since ā § g ‰ 0, we bound eg
N

§ eā
N

, for all n P N.
Recalling (2.9.4), by the triangle inequality we obtain

sup
xPK̄2, NPN

| f pyeN

x q|

eā
N

§ sup
xPK̄2, NPN

|p f ´ FxqpyeN

x q| ` |FxpyeN

x q|

eā
N

§ p1 ` cāqc1
|||F |||

coh
K̄4,j,a,g ` cā,j |||F |||

hom
K̄2,j,ā ,

by the enhanced homogeneity of Remark 2.8.4. This completes the proof of
(2.9.6). ⇤

2.10. Singular product

Let f P C a with a ° 0 and Fypwq “
∞

|k|†a B
k

f pyq
pw´yqk

k! . Let also
g P C b with b § 0. We define the germ P “ pPx :“ g ¨ Fxq

xPRd as

Pxpjq “ pg ¨ Fxqpjq :“ gpj Fxq, j P D .

Note that this makes sense and defines a distribution in D 1 since j Fx P D
for all j P D .

THEOREM 2.10.1. If f P C a
and g P C b

, with a ° 0 and b § 0, then

the germ P “ pPxq
xPRd is pb ,a ` b q-coherent and satisfies a homogeneity

bound with exponent b ,

ˇ̌
pPz ´ Pyqpjen

y
q

ˇ̌
À eb

n
p|y ´ z| ` enq

a ,
ˇ̌
Pypjen

y
q

ˇ̌
À eb

n
,

uniformly over z,y in compact sets, n P N and j P Br, with r ° ´b .

PROOF. Since g P C b we have for all e P p0,1s, y P DpBp0,1qq and
y P K ˇ̌

gpye
y

q

ˇ̌
§ }g}C b pKq }y}Cr eb . (2.10.1)

Fix now any j P DpBp0,1qq with
≥

j ‰ 0 and }j}Cr § 1. By (2.2.6), for any
y,z P K (and g replaced by a)

pPz ´ Pyqpje
y

q “ ´

ÿ

0§|k|†a
g

´
p¨ ´ yq

k je
y

¯
R

k
py,zq

k!

where |R
k
py,zq| À } f }C a pKq |z ´ y|

a´|k|. We have for fixed y P Rd , k P Nd

and e ° 0

pw ´ yq
k je

y
pwq “ e |k| ye

y
pwq , where ypwq :“ w

k jpwq .

Then y P DpBp0,1qq and }y}Cr À }j}Cr § 1, hence it follows by (2.10.1)
that

|g

´
p¨ ´ yq

k je
y

¯
| “ e |k|

g

`
ye

y

˘
À }g}C b pKq eb`|k| . (2.10.2)
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We thus obtain, uniformly for z,y P K and e P p0,1s,

|pPz ´ Pyqpje
y

q| À } f }C a pKq }g}C b pKq
ÿ

0§|k|†a
eb`|k|

|z ´ y|
a´|k|

À } f }C a pKq }g}C b pKq eb
p|z ´ y| ` eq

a ,

which completes the proof of coherence. We next prove homogeneity. By
(2.10.2), we obtain

|Pxpje
x

q| §

ÿ

0§|k|†g

ˇ̌
ˇg

´
p¨ ´ xq

k je
x

¯ˇ̌
ˇ
ˇ̌
ˇ̌ B

k
f pxq

k!

ˇ̌
ˇ̌

À }g}C b pKq
ÿ

0§|k|†g
eb`|k|

ˇ̌
ˇ̌ B

k
f pxq

k!

ˇ̌
ˇ̌

À } f }C a pKq }g}C b pKq
ÿ

0§|k|†g
eb`|k|

À } f }C a pKq }g}C b pKq eb ,

uniformly for x in compact sets and e P p0,1s. This completes the proof. ⇤

If a ` b ° 0 the (unique) distribution RP can be used to construct a
canonical product of f and g. Moreover RP P C b .

If a ` b § 0, the (non-unique) distribution RP can be used to construct
a non-canonical product of f and g. Moreover RP P C b .

2.11. A special case

Let us assume that Fx P CpRd
q for all x P Rd and moreover that the map

Rd
ˆRd

Q px,yq fiÑ Fxpyq is continuous. We recall that in Section 2.6 we
proved that for all y P D

RpFqpyq “ lim
nÑ`8

ª

Rd

Fzpren

z
qy pzq dz .

Now if px,yq fiÑ Fxpyq is continuous, we obtain by dominated convergence
that

RpFqpyq “

ª

Rd

Fzpzqy pzq dz ,

namely RpFq is also a continuous function and coincides with z fiÑ Fzpzq.
For an example one can consider the germ F defined by the Taylor

expansion of a smooth function f , see Section 2.2.1. In this case it is clear
that RpFq “ f is a function and f pxq “ Fxpxq, x P Rd .
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2.12. Recent developments

We mention that the approach to the Reconstruction Theorem of [4] has
been recently developed in further directions:

‚ on smooth manifolds [14]
‚ in the direction of Besov Reconstruction [2], [15]
‚ as a stochastic reconstruction theorem [10], akin to the stochastic

sewing lemma [11].
‚ in a microlocal setting [5, 6]



CHAPTER 3

Models and modelled distributions

In the previous chapter we have introduced the notion of coherent germs
and the operation of reconstruction. In this chapter we define a special class
of germs which arise in regularity structures.

3.1. Pre-models and modelled distributions

We are going to study germs which can be written as suitable linear
combinations of a fixed finite family of germs. First we introduce the notion
of pre-models:

Definition 3.1.1. A pre-model is a pair pP,Gq where

(1) P “ pPi
qiPI is a family of germs Pi

“ pPi
x
q

xPRd labelled by a finite

index set I,

(2) Rd
ˆRd

Q px,yq fiÑ pGi j

xyqi, jPI is a matrix-valued function such that

P j

y
“

ÿ

iPI

Pi

x
Gi j

xy
, j P I, x,y P Rd, (3.1.1)

and we suppose that

(3) there exist paiqiPI Ä R and a j P DpRd
q with

≥
j ‰ 0 such that

|Pi

x
pjen

x
q| À eai

n
,

uniformly over x in compact sets of Rd
, n P N.

We denote ā :“ minpai, i P Iq.

Example 3.1.2. For a fixed g ° 0, the family of classical monomials

P j

y
pwq “

pw ´ yq
j

j!
, j P Nd, y,w P Rd, j P I :“ ti P Nd : |i| § gu,

with ai “ |i|, any j P D and

Gi j

xy
“ pi§ jq

px ´ yq
j´i

p j ´ iq!
, i P Nd,

forms a pre-model.

Now we can define the notion of modelled distribution.
25



26 3. MODELS AND MODELLED DISTRIBUTIONS

Definition 3.1.3. Let pP,Gq be a pre-model, and let g ° maxpai, i P Iq. If

f : Rd
Ñ RI

satisfies for all i P I

ˇ̌
f

i

x

ˇ̌
À 1,

ˇ̌
ˇ̌
ˇ f

i

x
´

ÿ

jPI

Gi j

xy
f

j

y

ˇ̌
ˇ̌
ˇ À |x ´ y|

g´ai ,

uniformly for x,y in compact subsets of Rd
, then we call f a distribution

modelled by pP,Gq, or simply a modelled distribution, and we write f P

D g
pP,Gq.

Given a pre-model pP,Gq and a modelled distribution f P D g
pP,Gq, we

define the germ

xP, f yx :“
ÿ

iPI

Pi

x
f

i

x
, x P Rd. (3.1.2)

We want to show that xP, f y is pā,gq-coherent, where ā :“ minpai, i P Iq.
Using the reexpansion property (3.1.1) we have

xP, f yz ´ xP, f yy “

ÿ

jPI

Pi

z
f

i

z
´

ÿ

iPI

Pi

y
f

i

y
“ ´

ÿ

iPI

Pi

y

˜
f

i

y
´

ÿ

jPI

Gi j

yz
f

j

z

¸
.

Therefore

pxP, f yz ´ xP, f yyqpje
y

q “ ´

ÿ

iPI

Pi

y
pje

y
q

˜
f

i

y
´

ÿ

jPI

Gi j

yz
f

j

z

¸
,

namely
ˇ̌
pxP, f yz ´ xP, f yyqpje

y
q

ˇ̌
À

ÿ

iPI

eai |z ´ y|
g´ai À eā

pe ` |z ´ y|q
g´ā ,

uniformly for y,z in compact sets. Moreover
ˇ̌
xP, f yypje

y
q

ˇ̌
§

ÿ

iPI

f
i

y
|Pi

y
pje

y
q| À

ÿ

iPI

eai À eā ,

uniformly over y in compact subsets of Rd . In other words we have proved
that

Proposition 3.1.4. If pP,Gq is a pre-model and f P D g
pP,Gq, then xP, f y is a

pā,gq-coherent germs with uniform homogeneity bound with exponent ā . In

other words, xP, f y belongs to G ā;ā,g
.
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3.2. A special case

We have seen in Section 2.11 that under certain sufficient conditions on
the coherent germ pFxq

xPRd , the reconstruction RF is a function and has an
explicit form. An important example of this setting, where moreover RF is
a (locally) Hölder-continuous function, is the following:

Example 3.2.1. Suppose we have a pre-model pP,Gq and a modelled distri-
bution f P D g

pP,Gq as in Definition 3.1.3. We suppose that each germ Pi
x

is
(locally) Hölder-continuous, for some exponent bi Ps0,1r, uniformly for x

in compact sets: more explicitly, we assume that

|Pxpyq ´ Pxpy
1
q| À |y ´ y

1
|
bi

uniformly for x,y,y1 in compact sets. Then we can write unambiguously
y fiÑ Pi

x
pyq and

y fiÑ Fxpyq :“
ÿ

iPI

f
i

x
Pi

x
pyq.

Now by the reexpansion property (3.1.1)

Fx1pyq ´ Fxpyq “ ´

ÿ

iPI

Pi

x
pyq

˜
f

i

x
´

ÿ

jPI

Gi j

xx1 f
j

x1

¸
.

Then
|Fxpyq ´ Fx1py

1
q| § |Fxpyq ´ Fx1pyq| ` |Fx1pyq ´ Fx1py

1
q|

À

ÿ

iPI

`
|Pi

x
pyq|

ˇ̌
x ´ x

1 ˇ̌g´ai
` | f

i

x
| |y ´ y

1
|
bi

˘

which shows that px,yq fiÑ Fxpyq is continuous. Therefore, in this case the
reconstruction of F is equal to x fiÑ Fxpxq. Moreover setting y “ x and y

1
“ x

1
we obtain

|Fxpxq ´ Fx1px
1
q| À

ÿ

iPI

`
|Pi

x
pxq|

ˇ̌
x ´ x

1 ˇ̌g´ai
` | f

i

x
| |x ´ x

1
|
bi

˘
,

namely the reconstruction of F “ xP, f y is even locally Hölder-continuous.

3.3. Models

We now define the notion of a model.

Definition 3.3.1. A model is a pre-model pP,Gq as in Definition 3.1.1, such

that moreover

(1) Gii
xy

“ 1 for all i P I,

(2) Gi j

xy “ 0 if ai • a j and i ‰ j,

(3) |Gi j

xy| À |x ´ y|
a j´ai if ai † a j.
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If pP,Gq is a model, then spaces D g
pP,Gq of modelled distributions satisfy

the following properties.

Lemma 3.3.2. Let pP,Gq be a model as in Definition 3.3.1. Fix an exponent

g ° maxpai : i P Iq and set ā :“ minpai : i P Iq. Then

(1) The space D g
pP,Gq is not reduced to the null vector.

(2) For any g 1
° ā , the restricted family pP1,G1

q :“ pPi,Gi j
qi, jPI1 la-

belled by I
1 :“ ti P I : ai † g 1

u is a model. If g ° g 1
, the projection

f “ p f
i
qiPI fiÑ f

1
“ p f

i
qiPI1

maps D g
pP,Gq to D g 1

pP1,G1q.

PROOF. For the first assertion, we consider an element Pi
x

of minimal
homogeneity ā “ minIa . In this case by the properties (1)-(2) in Defini-
tion 3.3.1 we see that Gi j

xy “ di j for all j P I, where d is the Kronecker symbol,
and the function f

j

x “ di j is a modelled distribution.
Let us prove now the second assertion. Assume that g 1

§ maxpai : i P

Iq, hence I
1

à I, otherwise there is nothing to prove. By property (2) in
Definition 3.3.1, relation (3.1.1) holds for the restricted family pP1,G1

q,
because for j P I

1 we can restrict the sum in (3.1.1) to i P I
1 (otherwise

Gi j
“ 0). The other properties of a model are easily checked, hence pP1,G1

q

is a model. Given a modelled distribution f “ p f
i
qiPI P D g

pP,Gq, we need to

check that f
1
“ p f

i
qiPI1 P D g 1

pP1,G1q. We write for i P I

ˇ̌
ˇ̌
ˇ f

i

x
´

ÿ

iPI1
Gi j

xy
f

j

y

ˇ̌
ˇ̌
ˇ §

ˇ̌
ˇ̌
ˇ f

i

x
´

ÿ

iPI

Gi j

xy
f

j

y

ˇ̌
ˇ̌
ˇ `

ÿ

iPIzI1

ˇ̌
Gi j

xy
f

j

y

ˇ̌

À |x ´ y|
g´ai `

ÿ

g 1§a j†g
|x ´ y|

a j´ai

À |x ´ y|
g´ai ` |x ´ y|

g 1´ai À |x ´ y|
g 1´ai ,

uniformly for x,y in compact sets, by the property (3) in Definition 3.3.1. ⇤

We also have another instructive remark. Suppose that pP,Gq is a model.
Then for every j P I, the germ P j

“ pP j

xq
xPRd is pā,a jq-coherent. Indeed

P j

y
´ P j

x
“

ÿ

iPI

Pi

x
Gi j

xy
´ P j

x
“

ÿ

i‰ j

Pi

x
Gi j

xy
,
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so that

|pP j

y
´ P j

x
qpjen

x
q| §

ÿ

ai†a j

|Pi

x
pjen

x
q||x ´ y|

a j´ai

À

ÿ

ai†a j

eai

n
|x ´ y|

a j´ai

À eā
n

p|x ´ y| ` enq
a j´ā .

Moreover, by property (3) in Definition 3.1.1, this germ satisfies a homo-
geneity bound with exponent a j. The same property can in fact be viewed
as a reconstruction bound for this germ, with RpP j

q “ 0. If a j ° 0 then the
reconstruction is unique.

Note that we can write, as in notation (3.1.2), P j
“ xP, f y with f

i
x

:“ di j,
with d the Kronecker symbol. However in this setting f does not belong to
D

a j

pP,Gq; indeed, if it did, by Definition 3.1.3 we should have a j ° maxpai, i P

Iq, which is clearly false.

3.4. Hölder functions as modelled distributions

We have see in Example 3.1.2 that the classical polynomial family

Pi

y
pwq “

pw ´ yq
i

i!
, i P Nd, ai “ |i| † g,

Gi j

xy
“ pi§ jq

px ´ yq
j´i

p j ´ iq!
, i, j P Nd ,

forms a pre-model and actually a model. It is an interesting exercise to check
that modelled distributions with respect to this model are actually classical
Hölder functions.

This model belongs to the class that we have considered in Section 3.2,
namely the function px,yq fiÑ Pi

x
pyq is continuous for all i and each Pi

x

is locally b -Hölder continuous, uniformly for x in compact sets, for any
b Ps0,1r. Therefore by the discussion in Section 3.2 we know that any
modelled distribution f P D g

pP,Gq gives rise to a p0,gq-coherent germ xP, f y

and that the reconstruction of xP, f y is a locally Hölder-continuous function.
Let us consider for simplicity the case g R N. Now, a modelled distribu-

tion f P D g
pP,Gq satisfies

ˇ̌
ˇ̌
ˇ̌ f

i

x
´

ÿ

j•i, | j|†g

px ´ yq
j´i

p j ´ iq!
f

j

y

ˇ̌
ˇ̌
ˇ̌ À |x ´ y|

g´|i|, @ |i| † g .
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This is in fact a Taylor expansion of f
i at order tg ´ |i|u with a remainder of

order g ´ |i|, and this implies that f
i is of class C

g´|i| and

f
j
“ B j´i f

i, @ j • i.

In particular, for i “ 0 we see that f
0 is of class C

g and satisfies (2.2.2); in
particular by Proposition 2.2.1 we have that f

0 is a reconstruction of xP, f y,
and since g ° 0 it is the unique reconstruction. In other words we have seen
that

f
0

“ RxP, f y P C
g , f

i
“ Bi f

0, @|i| † g.
The fact that f

0 is the reconstruction of xP, f y also follows by Section 3.2,
because we must have RxP, f y “ tx fiÑ xP, f yxpxqu “ tx fiÑ f

0
x

u.

3.5. Semi-norms

Back to the general case, for a fixed pre-model pP,Gq we can interpret,
by analogy with the case of Hölder functions of the previous section, the
space D g

pP,Gq of all distributions modelled by pP,Gq as the collection of
generalised derivatives of u :“ RxP, f y with respect to the model pP,Gq.

We can define a system of seminorms for f P D g
pP,Gq

r f sDg
pP,Gq,K

“ sup
iPI

sup
x,yPK,x‰y

ˇ̌
ˇ f

i
x

´
∞

jPI
Gi j

xy f
j

y

ˇ̌
ˇ

|x ´ y|g´ai

,

where K is a compact subset of Rd .
This is rather original with respect to the standard situation in ODEs or

PDEs, where one sets an equation in a fixed Banach space. Here the Banach
(Fréchet) space depends on an external parameter, the model pP,Gq. For
SDEs and SPDEs, the model pP,Gq is actually random.



CHAPTER 4

Schauder estimates for coherent germs

In this chapter we discuss one of the most important operations on
coherent germs: the convolution with a regularising integration kernel.

4.1. Integration kernels

Definition 4.1.1 (Regularising kernel). Fix a dimension d P N and an ex-

ponent b P p0,dq. A measurable function K : Rd
Ñ RY t˘8u is called a

b -regularizing kernel up to degree m P N if the following conditions hold:

‚ the function x fiÑ Kpxq is of class C
m

on Rd
zt0u;

‚ the following upper bound holds:

@ k P Nd
with |k| § m : |B

kKpxq| À
1

|x|d´b`|k| 1t|x|§1u

uniformly for x in compact sets .
(4.1.1)

In particular, note that for k “ 0 equation (4.1.1) reduces to

|Kpxq| À
1

|x|d´b 1t|x|§1u . (4.1.2)

This shows that a b -regularizing kernel is locally integrable on Rd .

4.1.1. Singular convolution. We want to consider the convolution K ˚

f P D 1 between a kernel K and a distribution f P D 1. This is formally defined
by

pK ˚ f qpxq :“ f pKpx ´ ¨qq “

ª

Rd

Kpx ´ yq f pdyq , (4.1.3)

but we stress that in general K ˚ f is ill-defined. Under suitable conditions,
K ˚ f can be defined as a distribution by duality: for a test function y P D
we set

pK ˚ f qpyq :“ f pK˚yq where pK˚yqpyq :“
ª

Rd

ypxqKpx ´ yqdx ,

(4.1.4)
provided f pK˚yq makes sense, of course. We are going to study the convolu-
tion K˚y between the kernel K and a test function y , to ensure that f pK˚yq

is well-defined.
31
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We start with an elementary observation: if Kp¨q is b -regularizing up
to some degree m, then pK˚yqp¨q is a well-defined compactly supported

measurable function, because Kpx ´ yq is jointly measurable, locally inte-
grable and compactly supported in the difference |x ´ y|. The delicate point
is that K˚y needs not be smooth, hence we cannot hope to define f pK˚yq

for arbitrary p f ,yq P D 1
ˆD .

4.1.2. Partition of unity. Let us introduce the usual dyadic sequence

en :“ 2´n , n P Z .

We call dyadic partition of unity a family of functions prnqnPZ such that:
‚ rnpzq is supported in the annulus t

1
2en § |z| § 2enu and

@z P Rd
zt0u :

ÿ

nPZ
rnpzq “ 1;

‚ for any given k P Nd , one has

}B
krn}8 À e´|k|

n uniformly in n P N .

It is easy to build a dyadic partition of unity. Given any smooth function
c : Rd

Ñ r0,1s such that

cpzq

$
’&

’%

“ 1 if |z| § 1
P r0,1s if 1 § |z| § 2
“ 0 if |z| • 2

,

we obtain a dyadic partition of unity prnqnPZ by setting

rnpzq :“ cpe´1
n

zq ´ cpe´1
n`1zq .

Such a partition of unity is scale invariant, since rnpzq “ r0pe´1
n

zq. We set

Kn : Rd
Ñ R, Knpxq :“ rnpxqKpxq ,

so that Kpxq “

8ÿ

n“0
Knpxq @ x P Rd

zt0u.
(4.1.5)

We stress that Knpxq is supported in the annulus t
1
2en § |x| § 2enu. Moreover

@k P Nd with |k| § m :

|B
kKnpxq| À

1
|x|d´b´|k| 1t 1

2 en§|x|§2enu

À eb´d´|k|
n 1t 1

2 en§|x|§2enu
uniformly for n P N .

(4.1.6)
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Finally we have for all y P Rd and |`| † |k|
ª

Rd

x
`
B

kKnpx ´ yq dx “ p´1q
|k|
ª

Rd

pB
k
x
`
qKnpx ´ yq dx “ 0 , (4.1.7)

because B
k
x
`

“ 0 for |`| † |k|.

4.2. Convolution with distributions

We show now that K˚y in (4.1.4) is well-defined and differentiable.

Proposition 4.2.1. Given a kernel K which is b -regularizing up to degree

m P N and a test function y P D , the convolution K˚y defined in (4.1.4)
belongs to C

m
.

More precisely, recalling Kn defined in (4.1.5), we have the following

bound:

@r P t0,1, . . . ,mu : }K˚
n
y}Cr À }y}Cr eb

n

uniformly for n P N and y P DpBp0,1qq ,
(4.2.1)

hence the series K˚y “
∞8

n“0Kn̊
y converges in C

m
(recall that b ° 0).

PROOF. We recall that Kpx ´ yq “
∞8

n“0Knpx ´ yq for all x,y P Rd with
x ‰ y, by (4.1.5). Then by dominated convergence, thanks to (4.1.2), for any
y P Rd we can write

pK˚yqpyq “

8ÿ

n“0
pK˚

n
yqpyq where pK˚

n
yqpyq :“

ª

Rd

ypxqKnpx ´ yq dx .

To prove (4.2.1), it is sufficient to show that

@k P Nd with |k| § m : }B
k
pK˚

n
yq}8 À }y}

C|k| eb
n

uniformly for n P N and y P DpBp0,1qq .
(4.2.2)

By Definition 4.1.1, for any n P N the function y fiÑ Knpx ´ yq is of
class C

m
on the whole Rd (including y “ x, because Knpx ´ yq vanishes for

|y´x| §
1
2en, see (4.1.5)). Exchanging derivatives and integral by dominated

convergence, thanks to (4.1.1), we see that K
n̊
y P C

m and

@k P Nd with |k| § m : B
k
pK˚

n
yqpyq “ p´1q

|k|
ª

Rd

ypxqB
kKnpx ´ yq dx .

(4.2.3)
We now estimate B

k
pK

n̊
yqpyq for fixed n P N and y P Rd , k P Nd with |k| § m.

Denote by Q
ry,ks

p¨q the Taylor polynomial of y of degree |k| ´ 1 based at y,
that is

Q
ry,ks

pxq :“
ÿ

|`|§|k|´1

B
`ypyq

`!
px ´ yq

` ,
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where we agree that for k “ 0 we set Q
ry,0s

pxq ” 0. Then we can bound

|ypxq ´ Q
ry,ks

pxq| À }y}
C|k| |y ´ x|

|k| . (4.2.4)

Starting from (4.2.3), we decompose

B
k
pK˚

n
yqpyq “p´1q

|k|
ª

Rd

py ´ Q
ry,ks

qpxqB
kKnpx ´ yqdx

looooooooooooooooooomooooooooooooooooooon
An,kpyq

` p´1q
|k|
ª

Rd

Q
ry,ks

pxqB
kKnpx ´ yqdx

looooooooooooooomooooooooooooooon
Bn,kpyq

.

By (4.1.7) we have that Bn,kpyq “ 0. By (4.2.4) and (4.1.6), for |k| § m, the
first term is bounded by

|An,kpyq| À }y}
C|k|

ª

|y´x|§en

|y ´ x|
|k|

|y ´ x|
b´|k|´d dx À }y}

C|k| eb
n
,

uniformly for y in compact sets and n P N. This completes the proof of
(4.2.2). ⇤

We obtain the following useful

Proposition 4.2.2. Given a kernel K which is b -regularizing up to degree

m P N and a distribution T P D 1
of order r § m, the distribution

D Q y fiÑ K ˚ T pyq :“ T pK˚yq,

where K˚y P C
m

is as in Proposition 4.2.1, is well-defined in D 1
and has

order r.

4.3. Schauder estimate for coherent germs

4.3.1. Coherent germs. Fix two real numbers a,g such that

a § g, g ‰ 0.

Let F “ pFxq
xPRd be a pa,gq-coherent germ, i.e. we have

|pFz ´ Fyqpjen

y
q| À ea

n
p|y ´ z| ` enq

g´a

uniformly for y,z in compact sets and n P N ,
(4.3.1)

for some test function j P D with
≥

j ‰ 0. We define ra as the smallest
integer larger than ´a , namely

ra :“ mintk P N : k ° ´au . (4.3.2)
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By the Reconstruction Theorem 2.5.1-2.7.1 there is a distribution RF P D 1
such that

|pRF ´ Fxqpyen

x
q| À }y}Cra eg

n

uniformly for x in compact sets, n P N and y P DpBp0,1qq .
(4.3.3)

If g ° 0 then RF is unique.

4.3.2. Singular convolution. Fix a kernel K which is b -regularizing
up to degree m for some b P p0,dq, see Definition 4.1.1. We now want to
“lift the convolution with K on the space of coherent germs”, i.e. to find a
coherent germ H “ pHxq

xPRd with the property that

RH “ K ˚RF . (4.3.4)

A simple solution of (4.3.4) is the constant germ Hx ” K ˚ RF , which is
trivially coherent, but this does not allow to construct a fixed-point theory for
PDEs. The naive guess Hx “ K˚Fx needs not give a coherent germ, therefore
we need to enrich it. To this purpose, we look for Hx of the following special
form:

@x P Rd : Hx “ K ˚ Fx ` Rx where Rxp¨q is a polynomial . (4.3.5)

Remarkably, this is possible with the following explicit solution:

Hx :“ K ˚ Fx `

ÿ

|`|†g`b
pRF ´ Fxq

´
B
`Kpx ´ ¨q

¯
X`

x

loooooooooooooooooooomoooooooooooooooooooon
Rxp¨q

, (4.3.6)

where we denote for x P Rd , ` P Nd the classical monomials

X`
x

: Rd
Ñ R, X`

x
pwq :“

pw ´ xq
`

`!
(4.3.7)

and where we agree that

Rxp¨q ” 0 if g ` b § 0.

Note that Rxp¨q is a family of polynomials labelled by x, whose coefficients
depend on Fx, on RF and on the derivatives B

kK for |k| † g ` b . Then we
also assume that g ` b R N and we suppose that the integer m which appears
in Definition 4.1.1 satisfies

m ° g ` b ` ra . (4.3.8)

THEOREM 4.3.1 (Schauder estimate for coherent germs). Fix a dimen-

sion d P N and real numbers a,g,b P R such that

a § g, g ‰ 0, b ° 0 ,
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where we further assume for simplicity that

ta ` b , g ` bu XN “ H .

Consider the following ingredients:

‚ F “ pFxq
xPRd P G a,g

is a pa,gq-coherent germ;

‚ K is a b -regularizing kernel (see Definition 4.1.1) up to degree m

given in (4.3.8).
Then

(1) the germ H “ pHxq
xPRd in (4.3.6) is locally well-defined, i.e. Hxpjq

is well-defined for all j P DpBpx,1qq.

(2) H is ppa ` b q ^ 0,g ` b q-coherent, namely H P G pa`b q^0,g`b
.

(3) H satisfies RH “ K ˚RF.

In other words, setting K F :“ H, we have a linear operator satisfying

K : G a,g
Ñ G pa`b q^0,g`b , R ˝K “ K ˚R.

Let us define the new germ

Jx :“ Fx ´RF ,

which allows to rewrite (4.3.6) as

Hx “ K ˚RF ` Lx, where Lx :“ K ˚ Jx ` Rx . (4.3.9)

From (4.3.6), observe that

Lx “ K ˚ Jx ´

ÿ

|`|†g`b
JxpB

`Kpx ´ ¨qqX`
x
. (4.3.10)

We are going to prove that Lx is ppa `b q^0,g `b q-coherent, more precisely

|pLz ´ Lyqpyen

y
q| À }y}Cra epa`b q^0

n p|y ´ z| ` enq
g`b´pa`b q^0 ,

uniformly for y,z in compact sets, n P N and y P DpBp0,1qq .
(4.3.11)

More explicitly:

|pLz ´ Lyqpyen

y
q| À }y}Cra ˆ

#
ea`b

n p|y ´ z| ` enq
g´a if a ` b † 0 ,

p|y ´ z| ` enq
g`b if a ` b ° 0 .

Then we are going to prove that L has homogeneity bound with exponent
g ` b , that is,

|Lxpyen

x
q| À }y}Cra eg`b

n

uniformly for x in compact sets,
n P N and y P DpBp0,1qq.

Recalling (4.3.9), this implies that RH “ K ˚ RF; indeed we recall that
h “ RH means precisely |ph ´ Hxqpyen

x
q| À }y}Cra eg`b

n , as the coherence
exponent of Hx is g ` b .
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One of the tools in the proof of Theorem 4.3.1 is the following simple
result.

Lemma 4.3.2. Fix g P R, b ° 0 such that g ` b ° 0 and a point x P Rd
. Let

T P D 1
have order ra and homogeneity bound g at a given point x, i.e. for

some Cx † 8

|T pje
x

q| § Cx }j}Cra eg

uniformly for e P p0,1s and j P DpBp0,1qq .
(4.3.12)

Let K be a b -regularizing kernel up to degree m ° g ` b ` ra . Then for all

` P Nd
with |`| † g ` b ,

|T pB
`Knpx ´ ¨qq| À Cx eg`b´|`|

n . (4.3.13)

In particular, writing B
`K “

∞8
n“0 B

`Kn as in (4.1.5), we see that

T pB
`Kpx ´ ¨qq :“

ÿ

n

T pB
`Knpx ´ ¨qq

is well-defined, and we have the tail estimate

@N P N :
8ÿ

n“N

ˇ̌
T

`
B
`Knpx ´ ¨q

˘ˇ̌
À Cx eg`b´|`|

N
. (4.3.14)

Before proving Lemma 4.3.2 we need the following simple

Lemma 4.3.3. Let K be a b -regularizing kernel up to degree m ° g `b `ra .

We introduce the function

j rk,ns
pwq :“ p2enq

d
B

kKn p´2enwq , (4.3.15)

so that

B
kKnpx ´ ¨q “

´
j rk,ns

¯2en

x

. (4.3.16)

Then

supp
´

j rk,ns
¯

Ä Bp0,1q, @ |k| † g ` b , (4.3.17)
›››j rk,ns

›››
Cra

À eb´|k|
n , @ |k| † g ` b , (4.3.18)

PROOF. Observe that (4.3.16) is straightforward from the definition
of j rk,ns. One has supp

`
B

kKnp¨q
˘

Ä Bp0,2enq and thus one has as an-
nounced supp

´
j rk,ns

¯
Ä Bp0,1q. Now, if 1 § |l| § ra then B

lj rk,ns
“

p´1q
|l|

p2enq
d`|l|

B
k`lKn p´2enwq. Thus from (4.1.6), one obtains (4.3.18).

⇤
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PROOF OF LEMMA 4.3.2. By (4.3.16) and by the homogeneity bound
at x (4.3.12), using the properties (4.3.17) and (4.3.18) of j r`,ns we can
bound

|T pB
`Knpx ´ ¨qq| § Cx }j r`,ns

}Cra eg
n

À Cx eg`b´|`|
n .

Thus T pB
`Kpx ´ ¨qq :“

∞8
n“0 T pB

`Knpx ´ ¨qq is well-defined in D 1 and more-
over we obtain (4.3.14). ⇤

4.4. Proof of Schauder estimates for coherent germs

In this section we prove Theorem 4.3.1.

Lemma 4.4.1. Lx in (4.3.10) is a well-defined distribution.

PROOF. We want first to show that the distribution Jx “ Fx ´ RF has
order ra . By the reconstruction theorem, Jx is homogeneous with exponent
g; moreover pJxqx is also coherent because Jy ´ Jx “ Fy ´ Fx, i.e. J P G g;a,g .
Moreover pJxqx satisfies the enhanced coherence of Remark 2.4.2. By the
triangle inequality, J thus satisfies the estimate

|Jypyl
x

q| § cK,a,g}y}Cra l a
p|y ´ x| ` l q

g´a ,

uniformly over x,y P K, l P p0,1q, whence the order ra after plugging x “ 0,
l “ 1.

Then by Proposition 4.2.2 the distribution K ˚ Jx is well defined and has
order ra . If we apply Lemma 4.3.2 to the distribution T “ Jx then we know
that T pB

`Kpx ´ ¨qq P R is well-defined for all ` P Nd such that |`| † g ` b .
Then Lx is a well-defined distribution. ⇤
Remark 4.4.2. We will write pLz ´Lyqpyl

y
q for l Ps0,1s as a sum of various

terms and show that
each term is À l a

p|y ´ z| ` l q
g`h´a for a suitable a • pa ` hq ^ 0 .

This implies (4.3.11) because a fiÑ l a
p|y ´ z| ` l q

g`h´a is decreasing (note
that we can write l a

p|y ´ z| ` l q
g`h´a

“ A
a
B with A “

l
l`|y´z| § 1).

We take a compact set K Ñ Rd and fix y,z P K as well as N P N. We set
My,z,N :“ mintn P N : en § |y ´ z| ` eNu ,

and note that 0 § My,z,N § N † 8. Then we decompose

K “

My,z,N´1ÿ

n“0
Kn

loooomoooon
Kr0,Mq

`

N´1ÿ

n“My,z,N

Kn

loooomoooon
KrM,Nq

`

8ÿ

n“N

Kn

loomoon
KrN,8q

,

where we stress that in this decomposition the sum is split at the points My,z,N

and N, for the fixed values of y,z,N, irrespective of the argument of Kp¨q.
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We also define for A P tN, rM,8qu, y P Rd , y P D

Jy

´
P

A

y
pyq

¯
:“

ÿ

nPA

ÿ

|`|†g`b
Jy

´
B
`Kn py ´ ¨q

¯
X`

y
pyq, (4.4.1)

where the sum is well defined by Lemma 4.3.2 and we recall the notation

X`
y
pyq :“

ª

Rd

X`
y
pwqypwqdw .

Moreover for finite A Ä N and z,y P Rd

Jz

´
P

A

y
pyq

¯
:“

ÿ

nPA

ÿ

|`|†g`b
Jz

´
B
`Kn py ´ ¨q

¯
X`

y
pyq ,

where the sum is well defined since Kn is smooth for each n. In particular,
recalling (4.3.10), we can write

Lxpyq “ Jx pK˚yq ´ Jx

´
P
N
x

pyq

¯
. (4.4.2)

Then, with the decomposition

N “ r0,Mq Y rM,Nq Y rN,8q

we bound for y P DpBp0,1qq

ˇ̌
pLz ´ LyqpyeN

y
q

ˇ̌
§

ˇ̌
ˇpJz ´ Jyq

`
K˚yeN

y

˘
´ Jz

´
P
N
z

pyeN

y
q

¯
` Jy

´
P
N
y

pyeN

y
q

¯ˇ̌
ˇ

§

ˇ̌
ˇpJz ´ Jyq

´
K˚

rN,8qy
eN

y

¯ˇ̌
ˇlooooooooooooomooooooooooooon

A

`

ˇ̌
ˇpJz ´ Jyq

´
K˚

rM,Nqy
eN

y

¯ˇ̌
ˇlooooooooooooomooooooooooooon

B

`

ˇ̌
ˇJz

´
P

rM,8q
z pyeN

y
q

¯ˇ̌
ˇ `

ˇ̌
ˇJy

´
P

rM,8q
y pyeN

y
q

¯ˇ̌
ˇlooooooooooooooooooooooooomooooooooooooooooooooooooon

C

`

ˇ̌
ˇpJz ´ Jyq

´
Kr0,MqpyeN

y
q ´ P

r0,Mq
y pyeN

y
q

¯ˇ̌
ˇloooooooooooooooooooooooomoooooooooooooooooooooooon

D

`

ˇ̌
ˇJz

´
P

r0,Mq
y pyeN

y
q ´ P

r0,Mq
z pyeN

y
q

¯ˇ̌
ˇlooooooooooooooooooomooooooooooooooooooon

E

.

We are going to need the following technical result, which can be proved
as Lemma 4.3.2.

Lemma 4.4.3. Let z rn,N,ys : Rd
Ñ R for n • N and y P Rd

be defined by

z rn,N,ys
pwq :“ p3eNq

d
`
K˚

n
yeN

y

˘
py ` p3eNqwq . (4.4.3)
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Then z rn,N,ys
is supported in Bp0,1q, and

›››z rn,N,ys
›››

Cra
À }y}

Cra eb
n
, n • N, y P DpBp0,1qq, (4.4.4)

uniformly over y in compacts.

Let j rn,zs : Rd
Ñ R

j rn,zs
pwq :“ p3enq

d Kn pz ´ 3enwq . (4.4.5)

Then j rn,zs
is supported in Bp0,1q for all |z| § en and

›››j rn,zs
›››

Cra
À eb

n
, uniformly over |z| § en. (4.4.6)

If g ` b ° 0, let x rk,n,z,ts : Rd
Ñ R for k,n P N, z P Rd

, t P r0,1s, with

|k| † g ` b

x rk,n,z,ts
pwq :“ p3enq

d d
rg`b s´|k|

dtrg`b s´|k| B
kKn pp1 ´ tqz ´ 3enwq . (4.4.7)

Then x rk,n,z,ts
is supported in Bp0,1q and

›››x rk,n,z,ts
›››

Cra
À |z|

rg`b s´|k|eb´rg`b s
n (4.4.8)

uniformly over z in compacts, |k| † g ` b , t P r0,1s, n P N.

Estimate of A. We analyse

pJz ´ Jyq

´
K˚

rN,8qy
eN

y

¯
“

8ÿ

n“N

pJz ´ Jyq
`
K˚

n
yeN

y

˘
. (4.4.9)

Note that we can write by (4.4.3)

K˚
n
yeN

y
“

´
z rn,N,ys

¯3eN

y

.

Then, by coherence (2.4.4) and by (4.4.4), we can bound
ˇ̌
pJz ´ Jyq

`
K˚

n
yeN

y

˘ˇ̌
“

ˇ̌
ˇ̌pJz ´ Jyq

ˆ´
z rn,N,ys

¯3eN

y

˙ˇ̌
ˇ̌

À

›››z rn,N,ys
›››

Cra
p3eNq

a
p|y ´ z| ` 3eNq

g´a

À }y}Cra eb
n

ea
N

p|y ´ z| ` eNq
g´a .

Plugging this bound into (4.4.9) we finally obtain since b ° 0 and n • N

ˇ̌
KrN,8q ˚ pJz ´ Jyq

`
yeN

y

˘ˇ̌
À }y}Cra ea`b

N
p|y ´ z| ` eNq

g´a ,

which coincides with (4.3.11) for a ` b § 0, while for a ` b ° 0 it is even
better than (4.3.11), by Remark 4.4.2.
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Estimate of B. Then we analyse

pJz ´ Jyq

´
K˚

rM,Nqy
eN

y

¯
“

N´1ÿ

n“My,z,N

pJz ´ Jyq
`
K˚

n
yeN

y

˘

“

N´1ÿ

n“My,z,N

ª

Rd

yeN

y
pxqpJz ´ JyqpKnpx ´ ¨qq dx .

(4.4.10)

Note now that one can write Knpx´¨q “

´
j rn,x´ys

¯3en

y

where j rn,zs is defined

in (4.4.5). Then, by coherence (2.4.4), and using the property (4.4.6) of
j rn,x´ys we can bound

|pJz ´ JyqpKnpx ´ ¨qq| “

ˇ̌
ˇ̌pJz ´ Jyq

ˆ´
j rn,x´ys

¯3en

y

˙ˇ̌
ˇ̌

À

›››j rn,x´ys
›››

Cra
p3enq

a
p|y ´ z| ` 3enq

g´a

À eb
n

p3enq
a

p|y ´ z| ` 3enq
g´a

§ eb
n

p3enq
a

p4|y ´ z| ` 3eNq
g´a ,

where in the last inequality we used the fact that en § |y ´ z| ` eN for n •

My,z,N . We plug this bound into (4.4.10). Note that

Nÿ

n“My,z,N

ea`b
n

À

$
’’’’’&

’’’’’%

Nÿ

n“0
ea`b

n
À ea`b

N
if a ` b † 0 ,

8ÿ

n“My,z,N

ea`b
n

À p|y ´ z| ` eNq
a`b if a ` b ° 0 .

Moreover
≥
Rd |yeN

y pwq| dw “
≥
Rd |ypwq| dw À }y}8 § }y}Cra for any y P

DpBp0,1qq, hence

|pJz ´ JyqpK˚
rM,Nqy

eN

y q|

}y}Cra
À

#
ea`b

N
p|y ´ z| ` eNq

g´a if a ` b † 0
p|y ´ z| ` eNq

g`b if a ` b ° 0
,

which coincides with (4.3.11).

Estimate of C. If g ` b § 0 then C “ 0. Let us consider the case g ` b ° 0.
By (4.3.3) and Lemma 4.3.2, see in particular (4.3.14), we have

8ÿ

n“My,z,N

ˇ̌
ˇJy

´
B
`Knpy ´ ¨q

¯ˇ̌
ˇ À eg`b´|`|

My,z,N
,
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while ˇ̌
ˇX`

y

`
yeN

y

˘ˇ̌
ˇ “

ª

Rd

ˇ̌
ˇX`

y
pwqyeN

y
pwq

ˇ̌
ˇ dw À e |`|

N
.

Then, recalling (4.4.1) and bounding eMy,z,N § |y ´ z| ` eN ,
ˇ̌
ˇJy

´
P

rM,8q
y pyeN

y
q

¯ˇ̌
ˇ À

ÿ

|`|†g`b
eg`b´|`|

My,z,N
e |`|

N
À p|y ´ z| ` eNq

g`b . (4.4.11)

Similarly
8ÿ

n“My,z,N

ˇ̌
ˇJz

´
B
`Knpz ´ ¨q

¯ˇ̌
ˇ À eg`b´|`|

My,z,N
,

ˇ̌
ˇX`

z

`
yeN

y

˘ˇ̌
ˇ “

ª

Rd

ˇ̌
ˇX`

z
pwqyeN

y
pwq

ˇ̌
ˇ dw À p|y ´ z| ` eNq

|`|,

so that ˇ̌
ˇJz

´
P

rM,8q
z pyeN

y
q

¯ˇ̌
ˇ À p|y ´ z| ` eNq

g`b . (4.4.12)

Note that both (4.4.11) and (4.4.12) are better than (4.3.11), by Remark 4.4.2.
Estimate of D. We now focus now on

pJz ´ Jyq

´
K˚

r0,Mqy
eN

y
´ P

r0,Mq
y pyeN

y
q

¯
. (4.4.13)

We first assume that g ` b ° 0. Observe that one can write

Kn pw ´ ¨q´

ÿ

|`|†g`b
B
`Kn py ´ ¨q

pw ´ yq
`

`!
“

ª 1

0

p1 ´ tq
m

m!

´
x r0,n,w´y,ts

¯3en

y

p¨q dt,

(4.4.14)
where x rk,n,z,ts is defined as in (4.4.7). Therefore:

pJz ´ Jyq

´
K˚

r0,Mqy
eN

y
´ P

r0,Mq
y pyeN

y
q

¯
“

“

ª

Rd

yeN

y
pwq

My,z,N´1ÿ

n“0

ª 1

0

p1 ´ tq
m

m!
pJz ´ Jyq

ˆ´
x r0,n,w´y,ts

¯3en

y

˙
dt dw .

Applying the coherence bound (2.4.4), we can estimate
ˇ̌
ˇ̌pJz ´ Jyq

ˆ´
x r0,n,w´y,ts

¯3en

y

˙ˇ̌
ˇ̌ À

›››x r0,n,w´y,ts
›››

Cra
p3enq

a
p|z ´ y| ` enq

g´a

À

›››x r0,n,w´y,ts
›››

Cra
eg

n
,

because for n § My,z,N we have p|z´y|`enq
g´a

§ p2enq
g´a . If |w´y| ° eN

then yeN

y pwq “ 0, so that we can assume |w´y| § eN § en. From the property
(4.4.8) of x r0,n,w´y,ts one obtains

›››x r0,n,w´y,ts
›››

Cra
À |y ´ w|

rg`b seb´rg`b s
n § e rg`b s

N
eb´rg`b s

n ,
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uniformly for n § N and t P r0,1s. Collecting all those estimates,

|pJz ´ Jyq

´
K˚

r0,Mqy
eN

y
´ P

r0,Mq
y pyeN

y
q

¯ ˇ̌
À em`1

N

My,z,N´1ÿ

n“0
eg`b´m´1

n

À em`1
N

p|z ´ y| ` eNq
g`b´m´1

§ p|z ´ y| ` eNq
g`b ,

which, recalling (4.4.13), is better than (4.3.11) by Remark 4.4.2.
We next assume that g ` b † 0. In this case we have P

r0,Mq
y ” 0 in

(4.4.13). Then, recall from (4.4.5) that one can write

Kn pw ´ ¨q “

´
j rn,w´ys

¯3en

y

p¨q.

Thus, from the coherence bound (2.4.4), and the property (4.4.6) of j rn,w´ys
one can estimate (recall that eN § en and b ° 0)

ˇ̌
pJz ´ Jyq

`
K˚

n
yeN

y

˘ˇ̌
À sup

|w´y|§eN

ˇ̌
ˇ̌pJz ´ Jyq

ˆ´
j rn,w´ys

¯3en

y

˙ˇ̌
ˇ̌

À sup
|w´y|§eN

›››j rn,w,ys
›››

Cra
p3enq

a
p|z ´ y| ` enq

g´a

À eb
n

p3enq
a

p|z ´ y| ` enq
g´a .

For n § My,z,N we have p|z ´ y| ` enq
g´a

§ p2enq
g´a , hence

ˇ̌
ˇpJz ´ Jyq

´
K˚

r0,Mqy
eN

y

¯ˇ̌
ˇ À

My,z,N´1ÿ

n“0
eg`b

n
À p|z ´ y| ` eNq

g`b

which, recalling (4.4.13), is better than (4.3.11) by Remark 4.4.2.

Estimate of E. We have

P
tnu
z pyeN

y
q ´ P

tnu
y pyeN

y
q “ ´

ÿ

|k|†g`b
R

k
py,z, ¨qX`

y

`
yeN

y

˘
,

see [4, formula (4.7)], where

R
k
py,z,z q :“ B

kKnpy ´ z q ´

ÿ

|`|†g`b´|k|
B

k``Knpz ´ z q
py ´ zq

`

`!

“

ª 1

0

p1 ´ tq
m´|k|

pm ´ |k|q!

´
x rk,n,y´z,ts

¯3en

z

pz q dt,
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where x rk,n,z,ts is the function defined in (4.4.7). Then

Jz

´
P

r0,Mq
y

`
yeN

y

˘
´ P

r0,Mq
z

`
yeN

y

˘¯
“

“ ´

ÿ

|k|†g`b

My,z,N´1ÿ

n“0

ª 1

0

p1 ´ tq
m´|k|

pm ´ |k|q!
Jz

ˆ´
x rk,n,y´z,ts

¯3en

z

˙
dtXk

y
pyeN

y
q.

Applying the coherence bound (2.4.4), and the property (4.4.8) of x rk,n,y´z,ts,
since for n § My,z,N we have |y ´ z| § en, we can estimate
ˇ̌
ˇ̌Jz

ˆ´
x rk,n,y´z,ts

¯3en

z

˙ˇ̌
ˇ̌ À }x rk,n,y´z,ts

}Cra p3enq
a

p|z ´ y| ` enq
g´a

À |y ´ z|
rg`b s´|k|eb´rg`b s

n p3enq
a

p|z ´ y| ` enq
g´a .

Recalling that
ˇ̌
X`

y

`
yeN

y

˘ˇ̌
À e |k|

N
and that p|z ´ y| ` enq

g´a
§ p2enq

g´a , we
bound

ˇ̌
ˇJz

´
P

r0,Mq
y

`
yeN

y

˘
´ P

r0,Mq
z

`
yeN

y

˘¯ˇ̌
ˇ À e |k|

N
|y ´ z|

rg`b s´|k|
My,z,N´1ÿ

n“0
eg`b´rg`b s

n

À p|y ´ z| ` eNq
rg`b s

My,z,N´1ÿ

n“0
eg`b´rg`b s

n

À p|y ´ z| ` eNq
g`b .

which, recalling (4.4.13), is better than (4.3.11) by Remark 4.4.2.

L has homogeneity g ` b . Finally we prove that

|LxpyeN

x
q| À eg`b

N

uniformly for x P K and n P N. This is a consequence of the following

Lemma 4.4.4. Fix g P R, b ° 0 and a point x P Rd
. Let T P D 1

have order

ra and homogeneity bound g at the point x, i.e. for some r P N and Cx † 8

|T pje
x

q| § Cx }j}Cra eg

uniformly for e P p0,1s and j P DpBp0,1qq .
(4.4.15)

Let K be a b -regularizing kernel up to degree m ° g ` b ` ra . Then

ˇ̌
ˇT

´
K˚yeN

x
´ P

N
x

pyeN

x
q

¯ˇ̌
ˇ À Cxeg`b

N
,

recall (4.4.1) and (4.4.2).
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PROOF. We consider the decomposition

T

´
K˚yeN

x
´ P

N
x

pyeN

x
q

¯
“ T

´
K˚

rN,`8qy
eN

x

¯

looooooooomooooooooon
F

´T

´
P

rN,`8q
x pyeN

x
q

¯

loooooooooomoooooooooon
G

` T

´
K˚

r0,Nqy
eN

x
´ P

r0,Nq
x pyeN

x
q

¯

looooooooooooooooomooooooooooooooooon
H

.

We shall estimate F , G, H separately. We analyse first

F “

8ÿ

n“N

T pK˚
n
yeN

x
q . (4.4.16)

Recall from (4.4.3) that one can write K
n̊
yeN

x “ pz rn,N,xs
q

3eN

x . Then, by the
homogeneity bound (4.3.3) for J, and using the property (4.4.4) of z rn,N,xs,
we can bound for n • N:

|T pK˚
n
yeN

x
q| “

ˇ̌
ˇ̌T

ˆ´
z rn,N,xs

¯3eN

x

˙ˇ̌
ˇ̌

À

›››z rn,N,xs
›››

Cra
p3eNq

g

À }y}
Cra eb

n
p3eNq

g .

Plugging this bound into (4.4.16) we finally obtain

|F | À }y}Cra eg`b
N

,

as required. The quantity G is treated in the same way as (4.4.11), so that:

|G| À eg`b
N

.

We are ready to control the contribution of H. As in the estimate of D
above, we distinguish two cases. First assume that g ` b ° 0, then we use
(4.4.14) again. Therefore:

H “

N´1ÿ

n“0

ª

Rd

ª 1

0

p1 ´ tq
m

m!
T

ˆ´
x r0,n,w´x,ts

¯3en

x

˙
dt yeN

x
pwqdw .

By the homogeneity bound (4.3.3) for J, and using the property (4.4.8) of
x r0,n,w´x,ts (note that here |x ´ w| § eN § en), we can bound

ˇ̌
ˇ̌T

ˆ´
x r0,n,w´x,ts

¯3en

x

˙ˇ̌
ˇ̌ À

›››x r0,n,w´x,ts
›››

Cra
p3enq

g
À em`1

N
eg`b´m´1

n
.

And thus after summing the geometric series one obtains since g `b † m`1

|H| À eg`b
N

.
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Finally, we bound H in the case when g ` b † 0. In this case, P
r0,Nq
x ” 0.

Then, recall from (4.4.5) that one can write Kn pw ´ ¨q “

´
j rn,w´xs

¯3en

x

, so
that

H “

ª

Rd

T

ˆ´
j rn,w´xs

¯3en

x

˙
yeN

x
pwq dw.

Thus, from the homogeneity bound (4.3.3) for J, and the property (4.4.6) of
j rn,w´xs one can estimate (note that here |w ´ x| § eN § en)

ˇ̌
ˇ̌T

ˆ´
j rn,w´xs

¯3en

x

˙ˇ̌
ˇ̌ À

›››j rn,w´xs
›››

Cra
p3enq

g
À eb`g

n
.

And thus after summing the geometric series one obtains as announced
|H| À eg`b

N
. The proof of Lemma 4.4.4 is complete. ⇤

Conclusion. We have shown that L is ppa `b q^0,g `b q-coherent and that it
has homogeneity bound with exponent g `b . Then its pg `b q-reconstruction
is 0, and therefore the pg ` b q-reconstruction of H is K ˚RF .



CHAPTER 5

Multi-level Schauder estimates for modelled distributions

In this chapter we discuss one of the most important operations on
modelled distributions: the convolution with a regularising integration kernel.

We fix a pre-model pP,Gq as in Definition 3.1.1 and we consider f P

D g
pP,Gq as in Definition 3.1.3. We have seen in Theorem 4.3.1 how we can

build a linear operator

K : G a,g
Ñ G pa`b q^0,g`b , R ˝K “ K ˚R.

Now we want to address an analogous question for F “ xP, f y. In other
words, we want to show that it is possible to construct

(1) another pre-model pP̂, Ĝq, such that
(2) for every f P D g

pP,Gq there is a modelled distribution f̂ P D g`b
pP̂,Ĝq

such that
K xP, f y “ xP̂, f̂ y.

5.1. The pre-model

We need an additional property for a pre-model (see Definition 3.1.1).

Definition 5.1.1. A pre-model is good if there exists r P N such that

|Pi

x
pjen

x
q| À eai

n
,

uniformly over x in compact subsets of Rd
, n P N and j P Br.

Remark 5.1.2. A model (Definition 3.1.3) is a fortiori a good pre-model.
Indeed, any germ Pi in a model is coherent, as we discussed in Section 3.3,
and for a coherent and homogeneous germ on can replace the single j P D
by a generic y P Br for any r ° ´pa ^ āq, see Remark 2.4.2.

We fix throughout this chapter an integration kernel K, which is supposed
to be b -regularising up to order m where m P N satisfies

m ° g ` b ` r, (5.1.1)
where r is as in Definition 5.1.1.

We work from now on with a good pre-model pP,Gq, and we want to
construct a pre-model pP̂, Ĝq with the property discussed at the beginning of
this chapter. We suppose, as in Definition 3.1.3, that g ° maxpai, i P Iq.

47
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We start discussing the family pP̂i
x
q

iPÎ,xPRd . A reasonable guess would
be to set Î “ I and P̂i

x
“ K ˚ Pi

x
, recall (4.1.3). However we expect P̂i

x
pyen

x
q

to be small as n Ñ `8, at least if the homogeneity ai ` b which is expected
for P̂i is positive.

However K ˚ Pi
x
pyen

x
q has no reason to become small for large n. To

this aim we can subtract a Taylor polynomial which can yield the desired
behaviour. We are going to set for i P I

P̂i

x
“ K ˚ Pi

x
´

ÿ

|k|†ai`b
Pi

x

´
B

kKpx ´ ¨q

¯
Xk

x
, (5.1.2)

where we recall that Xk
x
pwq :“ pw´xqk

k! . If Pi
x

is a polynomial, this definition
yields P̂i

x
” 0.

Proposition 5.1.3. The distribution P̂i
x

in (5.1.2) for i P I is well defined, has

order r and satisfies for all compact set K Ä Rd

sup
xPK

sup
`PN

sup
yPBr

|P̂i
x
pye`

x q|

eai`b
`

† `8. (5.1.3)

PROOF. Since pP,Gq is a good pre-model, then Pi
x

is a distribution with
order r. Then by Proposition 4.2.2 the distribution K ˚ Pi

x
is well defined and

has order r. By applying Lemma 4.3.2 to T :“ Pi
x

and g “ ai, we obtain that
Pi

x

`
B

kKpx ´ ¨q
˘

is well defined for all |k| † ai ` b .
Finally, (5.1.3) follows from Lemma 4.4.4. ⇤
We can therefore associate to P̂i the homogeneity ai ` b . Then we

construct a new basis by setting

Î :“ I \ IPoly, IPoly :“ tk P Nd : |k| † g ` bu,

P̂k

x
:“ Xk

x
, k P IPoly.

recall (4.3.7); of course the homogeneity of P̂k
x

is |k|.
Once this choice is made, it remains to construct Ĝ and f̂ . It turns out

that there are very natural choices for these objects. Let us set for notational
convenience

A
i,`
x

:“ p|`|†ai`b q Pi

x

´
B
`Kpx ´ ¨q

¯
, x P Rd, i P I, ` P Nd,

so that (5.1.2) becomes

P̂i

x
“ K ˚ Pi

x
´

ÿ

kPIPoly

A
i,k
x
Xk

x
,

and we have already seen in the proof of Proposition 5.1.3 that A
i,`
x is well

defined.
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We define now the coefficients pĜi j

xyq
i, jPÎ

. These are straightforward when

(1) i, j P I

(2) i, j P IPoly
(3) i P I and j P IPoly,

see (5.1.4) below for the precise values. The less simple case is that of
i P IPoly and j P I, to which we turn now. By the definition of pP̂i

x
q

iPÎ
we find

that for j P I

P̂ j

y
´

ÿ

iPI

P̂i

x
Gi j

xy
“

ÿ

kPIPoly

˜
´A

j,k
y

Xk

y
`

ÿ

iPI

Gi j

xy
A

i,k
x
Xk

x

¸
.

Since Xk
y

“
∞

`§k
Xk´`

y
pxqX`

x
, the right-hand side of the latter expression is

equal to (after renaming some indices)

ÿ

iPIPoly

Xi

x

˜
ÿ

kPI

Gk j

xy
A

k,i
x

´

ÿ

`PNd

X`
y
pxqA

j,i``
y

¸
,

namely a linear combination of elements in IPoly. Therefore we set for j P I

and i P IPoly

Ĝi j

xy
:“

ÿ

kPI

Gk j

xy
A

k,i
x

´

ÿ

`PNd

X`
y
pxqA

j,i``
y

.

To resume we have

Ĝi j

xy
“

$
’’’’’’’’’’’’&

’’’’’’’’’’’’%

Gi j

xy, if i, j P I ,

pi§ jqX
j´i

y pxq, if i, j P IPoly ,

ÿ

kPI

Gk j

xy
A

k,i
x

´

ÿ

`PNd

X`
y
pxqA

j,i``
y

, if i P IPoly, j P I ,

0 if i P I, j P IPoly .

(5.1.4)

Then we have the desired property for Ĝ
ÿ

iPÎ

P̂i

x
Ĝi j

xy
“ P̂ j

y
, j P Î

and we have proved the following

THEOREM 5.1.4. If pP,Gq is a good pre-model, then pP̂, Ĝq is also a

good pre-model.
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5.2. The modelled distribution

For a modelled distribution f : Rd
Ñ RI we define now a new function

f̂ : Rd
Ñ RÎ

f̂
i

x
:“

$
’’’’&

’’’’%

f
i
x

if i P I ,

¨

˝RF ´

ÿ

aa§|i|´b
f

a

x
Pa

x

˛

‚pB
iKpx ´ ¨qq if i P IPoly ,

(5.2.1)

where F “ xP, f y and we recall that IPoly “ tk P Nd : |k| † g ` bu. If Pi
x

is
a polynomial, then P̂i

x
“ 0, hence the value of f̂

i
x

is immaterial.

Remark 5.2.1. Note that we have

K x f ,Py “ x f̂ ,P̂y,

where K is the operator of Theorem 4.3.1. Indeed, observe that from the
definitions and the notation (3.1.2)

x f̂ ,P̂y “

ÿ

iPI

f
i

x

¨

˝`
K ˚ Pi

x

˘
´

ÿ

|k|†ai`b
Pi

x

´
B

kKpx ´ ¨q

¯
Xk

x

˛

‚

`

ÿ

|i|†g`b

¨

˝RF ´

ÿ

aa§|i|´b
f

a

x
Pa

x

˛

‚pB
iKpx ´ ¨qqXi

x

“ K ˚

˜
ÿ

iPI

f
i

x
Pi

x

¸
`

ÿ

|i|†g`b

˜
RF ´

ÿ

aPI

f
a

x
Pa

x

¸
`
B

iKpx ´ ¨q
˘
Xi

x

“ K x f ,Pyx.

In particular, if f P D g
pP,Gq then we have already proved in Theorem 4.3.1

that Rx f̂ ,P̂y “ K ˚RF .

We have seen in Theorem 5.1.4 that pP̂, Ĝq is a pre-model. It remains to
show that f̂ defined in (5.2.1) is in D g`b

pP̂,Ĝq. For that however, we need the
following additional assumption:

@ i P I : ai ` b R N .

More generally, it is enough to impose the following requirement:
@ i P I, if ai ` b P N then

Pi

x

´
B

k

x
Kpx ´ ¨q

¯
“ 0 @ k P Nd with |k| “ ai ` b , x P Rd.

(5.2.2)
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One can check that this condition always holds if Pi
x

is a monomial of degree
§ ai, hence it effectively applies only to non-polynomial germs Pi

x
.

THEOREM 5.2.2. Let pP,Gq be a pre-model satisfying (5.2.2), g P R and

f P D g
pP,Gq. Then f̂ defined in (5.2.1) is in D g`b

pP̂,Ĝq.

PROOF. We want f̂ to be a modelled distribution of order g ` b with
respect to Ĝ: the condition is obvious for i P I, since it is equivalent to the
condition on f with respect to G. We have to check the correct bound for
i P IPoly “ tk P Nd : |k| † g ` bu. Fix x,y P Rd and introduce the quantity

Nx,y :“ mintn P N : en § |y ´ x|u.

We recall the notation Jx “ Fx ´RF , and we write the decomposition:

f̂
i

x
´

ÿ

jPÎ

Ĝi j

xy
f̂

j

y
“

“ ´

Nx,y´1ÿ

n“0
Jy

¨

˝B
iKnpx ´ ¨q ´

ÿ

|k|†g`b´|i|
B

i`kKnpy ´ ¨qXk

y
pxq

˛

‚

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon
A

´

Nx,y´1ÿ

n“0

ÿ

aa§|i|´b
Pa

x
pB

iKnpx ´ ¨qq

˜
f

a

x
´

ÿ

jPI

Ga j

xy
f

j

y

¸

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
B

´

`8ÿ

n“Nx,y

Jx

`
B

iKnpx ´ ¨q
˘

looooooooooomooooooooooon
C

`

`8ÿ

n“Nx,y

ÿ

|k|†g`b´|i|
JypB

i`kKnpy ´ ¨qqXk

y
pxq

looooooooooooooooooooooomooooooooooooooooooooooon
D

`

`8ÿ

n“Nx,y

ÿ

aa°|i|´b
Pa

x
pB

iKnpx ´ ¨qq

˜
f

a

x
´

ÿ

jPI

Ga j

xy
f

j

y

¸

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
E

.

Now, with the multiscale techniques of the proof of Theorem 4.3.1, we
shall prove that each of those terms is bounded by |x ´ y|

g`b´|i|.
Estimate of A. In view of (4.4.14), we rewrite:

A “

Nx,y´1ÿ

n“0

ª 1

0

p1 ´ tq
tg`b u´|i|

ptg ` b u ´ |i|q!
Jy

ˆ´
x ri,n,x´y,ts

¯3en

y

˙
dt,

where x ri,n,z,ts is the function defined in (4.4.7). Note that because n § Nx,y

we are in the regime |y´x| § en and thus from (4.4.8) and the reconstruction
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bound on F , see (4.3.3), one obtains:
ˇ̌
ˇ̌Jy

ˆ´
x ri,n,x´y,ts

¯3en

y

˙ˇ̌
ˇ̌ À

›››x ri,n,x´y,ts
›››

Cr
p3enq

g

À |y ´ x|
rg`b s´|i|eb´rg`b s

n p3enq
g .

Thus, summing a geometric series and since g ` b † rg ` b s,

|A| À |y ´ x|
g`b´|i|.

Estimate of B. Because of the assumption (5.2.2) that Pa
x

`
B

iKpx ´ ¨q
˘

“ 0
when |i| “ aa ` b P N, only the terms with aa † |i| ´ b contribute to the
sum defining B. In view of (4.3.16), we rewrite

Pa

x
pB

iKnpx ´ ¨qq “ Pa

x

ˆ´
j ri,ns

¯3en

x

˙
,

where j ri,ns is defined in (4.3.15). Thus from the property (4.3.18) of j ri,ns
and the fact that Pa has homogeneity bound aa, we obtain:

ˇ̌
Pa

x
pB

iKnpx ´ ¨qq

›› À

›››j ri,ns
›››

Cr
p3enq

aa

À eb´|i|
n p3enq

aa
À eb`aa´|i|

n .

Now since f is a modelled distribution with respect to G one can bound B

by:

|B| À

Nx,y´1ÿ

n“0

ÿ

aa†|i|´b
eb`aa´|i|

n |x ´ y|
g´aa . (5.2.3)

Summing the geometric sums yields as announced

|B| À |y ´ x|
g`b´|i|.

Estimate of C. As just above, we rewrite

C “

`8ÿ

n“Nx,y

Jx

ˆ´
j ri,ns

¯3en

x

˙
,

where j ri,ns satisfies (4.3.17), (4.3.18), and thus from the reconstruction
bound on F , see (4.3.3), one obtains:

ˇ̌
ˇ̌Jx

ˆ´
j ri,ns

¯3en

x

˙ˇ̌
ˇ̌ À

›››j ri,ns
›››

Cr
p3enq

g

À eb´|i|
n p3enq

g
À eg`b´|i|

n .

Hence, summing a geometric series and since g ` b ° |i|, we obtain

|C| À |y ´ x|
g`b´|i|.
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Estimate of D. Here we use the estimate proved just above:
ˇ̌
ˇJypB

i`kKnpy ´ ¨qq

ˇ̌
ˇ À eg`b´|i|´|k|

n .

Thus by summing a geometric series, one obtains:

|D| À

`8ÿ

n“Nx,y

ÿ

|k|†g`b´|i|
eg`b´|i|´|k|

n |y ´ x|
k

À |y ´ x|
g`b´|i|.

Estimate of E. Finally, for the term E, the estimates are the same as for the
term B, but are summed over different indices. Indeed, similarly to (5.2.3),
we get:

|E| À

`8ÿ

n“Nx,y

ÿ

aa°|i|´b
eb`aa´|i|

n |x ´ y|
g´aa ,

and summing the geometric series yields as announced:

|E| À |y ´ x|
g`b´|i|.

This concludes the proof. ⇤

5.3. Recursive properties

In this section we consider a good pre-model pP,Gq and the good pre-
model pP̂, Ĝq of Theorem 5.1.4. We want to show that certain properties are
inherited by pP̂, Ĝq from pP,Gq.

Recall that we have not imposed a group property on the reexpansion
operators G. The following proposition however establishes that if G enjoys
such a property, then so does Ĝ.

Proposition 5.3.1. The following assertions are equivalent:

(1) For all x,y,z P Rd
, Gx,y Gy,z “ Gx,z.

(2) For all x,y,z P Rd
, Ĝxy Ĝyz “ Ĝxz.

(Here the product is understood as the matrix product.)

PROOF. The implication (2) ñ (1) is straightforward. Now assume (1)
and let us establish (2). We have to prove that for all i, j P Î,

ÿ

kPÎ

Ĝik

xy
Ĝk j

yz
“ Ĝi j

xy
. (5.3.1)

We distinguish the different possible cases for i, j P Î. If i, j P I, (5.3.1) is
straighforward from the definition of Ĝ and (1). If i, j P IPoly, then (5.3.1)
is also straighforward from Newton’s binomial formula. In the case when
i P I, j P IPoly, the left-hand side and the right-hand side of (5.3.1) vanish.
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It remains to tackle the case when i P IPoly, j P I. In this case, we can
calculate explicitly

ÿ

kPÎ

Ĝik

xy
Ĝk j

yz
“

ÿ

kPI

Ĝik

xy
Ĝk j

yz
`

ÿ

kPIPoly

Ĝik

xy
Ĝk j

yz

“

ÿ

kPI

¨

˝
ÿ

aPI

A
a,i
x

Gak

xy
´

ÿ

`PIPoly

X`
y
pxqA

k,i``
y

˛

‚Gk j

yz

`

ÿ

kPIPoly

Xk´i

y
pxq

¨

˝
ÿ

aPI

A
a,k
y

Ga j

yz
´

ÿ

`PIPoly

X`
z
pyqA

j,k``
z

˛

‚.

Using the fact that GxyGyz “ Gxz in the first term:
ÿ

kPÎ

Ĝik

xy
Ĝk j

yz
“

ÿ

aPI

A
a,i
x

Ga j

xz
´

ÿ

kPI

ÿ

`PIPoly

X`
y
pxqA

k,i``
y

Gk j

yz

`

ÿ

kPIPoly

ÿ

aPI

Xk´i

y
pxqA

a,k
y

Ga j

yz
´

ÿ

kPIPoly

Xk´i

y
pxq

ÿ

`PIPoly

A
j,k``
z

X`
z
pyq.

Observe that the second and third term cancel out, and from Newton’s
binomial formula in the last term, we obtainÿ

kPÎ

Ĝik

xy
Ĝk j

yz
“

ÿ

aPI

A
a,i
x

Ga j

xz
´

ÿ

aPIPoly

Xa

z
pyqA

j,i`a

z
“ Ĝi j

xz
.

The proof is complete ⇤
Analogously, one can prove the following:

Proposition 5.3.2. If pP,Gq is a model in the sense of Definition 3.3.1 then

pP̂, Ĝq is also a model.
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