An introduction to the analytic theory of
Regularity Structures

Lucas Broux, Francesco Caravenna,
Lorenzo Zambotti

(Lucas Broux) SORBONNE UNIVERSITE, LABORATOIRE DE PROBA-
BILITES, STATISTIQUE ET MODELISATION, 4 PL. JUSSIEU, 75005 PARIS,
FRANCE

Email address: 1ucas.broux@upmc.fr

(Francesco Caravenna) DIPARTIMENTO DI MATEMATICA E APPLI-
CAZIONI, UNIVERSITA DEGLI STUDI DI MILANO-BICOCCA, VIA COZZI
55, 20125 MILANO, ITALY

Email address: francesco.caravenna@unimib.it

(Lorenzo Zambotti) SORBONNE UNIVERSITE, LABORATOIRE DE PROB-
ABILITES, STATISTIQUE ET MODELISATION, 4 PL. JUSSIEU, 75005
PARIS, FRANCE

Email address: zambotti@lpsm.paris






Contents

Chapter 1. Introduction

Chapter 2. Reconstruction

2.1.
2.2.
2.3.
24.
2.5.
2.6.
2.7.
2.8.
2.9.
2.10.
2.11.
2.12.

Distributions
The main question of this chapter
Reconstruction
Coherence
Hairer’s Reconstruction Theorem (without regularity structures)
Sketch of the proof
The Reconstruction Theorem for y < 0.
Homogeneity
Negative Holder (Besov) spaces
Singular product
A special case
Recent developments

Chapter 3. Models and modelled distributions

3.1.
3.2
3.3.
3.4.
3.5.

Pre-models and modelled distributions

A special case

Models

Holder functions as modelled distributions
Semi-norms

Chapter 4. Schauder estimates for coherent germs

4.1.
4.2.
4.3.
4.4.

Integration kernels

Convolution with distributions

Schauder estimate for coherent germs

Proof of Schauder estimates for coherent germs

Chapter 5. Multi-level Schauder estimates for modelled distributions

5.1.  The pre-model

5.2.  The modelled distribution

5.3. Recursive properties
Bibliography






CHAPTER 1

Introduction

The aim of these lecture notes is to introduce the reader to some of the
main tools in the analytic theory of regularity structures, in particular the
notions of models, modelled distributions, reconstruction and multi-level
Schauder estimates. We try to follow an original approach, giving a new and
mostly self-contained presentation of these concepts, rather than referring to
the existing literature.

Since the founding paper [9] by Martin Hairer there has been a lot of work
in the field, but most of these articles are very hard to read for people outside
a small group of experts. These notes are part of an ongoing project which
aims to rethink these ideas and make them more intuitive and accessible.
With [4] we started this project by rewriting one of the main results of the
theory, the reconstruction theorem, in a more general setting; indeed our
definitions and statements are purely in the domain of distribution theory
and we do not need to define regularity structures. In [4] we introduced new
notions, in particular that of coherent germ, and new results pertaining to
them.

The second step of this project concerns another analytic cornerstone
of the theory, namely the (multi-level) Schauder estimates, which we prove
both in the more general setting of coherent germs and in the more restricted
one of modelled distributions. These notes present several results in this
setting, some of which are new; we are meanwhile writing a more detailed
research paper [1] on the same topic, with a somewhat different approach.

In the process of rewriting the two main results of reconstruction and
Schauder-estimates, we introduce in a simplified setting the fundamental
notions of models and modelled distributions. Again, the aim is to give a
pedagogical introduction with as little technical material as possible. The
necessary structure and technical assumptions are given gradually, only when
they are really needed.

Since we want to be essentially self-contained, we give (almost) complete
proofs, which in some important cases contain new material. As a result,
these notes are not exhaustive and some important topics in the analytic
theory of regularity structures are not treated here. In particular the product
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of modelled distributions is the next step in our project and it will appear
elsewhere.



CHAPTER 2

Reconstruction

In these lecture notes we want to present an introduction to (some of)
the analytical aspects of regularity structures, with an emphasis on how to
construct (some of) the most relevant objects.

2.1. Distributions

These lectures will concern the space 2 (RY) of distributions or gen-
eralised functions. We consider the space Z(R9) := C*(R?) of smooth
functions with compact support on R?. The Euclidean ball of radius r
centered at x is denoted by B(x,r) = {ze R?: |z—x| < r}.

A distribution on R is a linear functional 7 : C*°(R¢) — R such that for
every compact set K  R¥ there is r = rg € N

T(@)| < |9l :=max|*@lec, Vo eCF(K) 2.1.D)

|k|<r

where throughout these lecture notes f < g means that there exists a constant
C > O such that f < Cg. If one can find a r € N such that (2.1.1) holds for
all compact set K = R? then we say that T has order r.

Every locally integrable (in particular continuous) function f:R¢ — R
defines a distribution by integration:

fl) = Rdf(x)rp(x)dx, pe2(RY).

A famous example of distribution from quantum mechanics is the Dirac
measure J, at x € R?

S(@)=0(x), @eC”RY).

One can also differentiate any distribution 7 € 2'(R¢) and obtain a new
distribution: for k € N¥

T () = (~1)1 T ().

Distributions form a linear space. If ¢ € C*(R?) and T € 2'(R?) then it
is possible to define canonically the product ¢ -7 =T - @ as

Q- T(y)=T-9(y):=T(py), VyeCI(R?)
7
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However, if T,7’ € 2'(R%), in general there is no canonical way of
defining T - T'.

One may use some form of regularisation of 7', T’ or both. Then, the
result could heavily depend on the regularisation and thus be neither unique
nor canonical. For example, there does not seem to exist a reasonable way
to define the square (8,)? of the Dirac function.

Regularity structures give a framework to define products of certain
distributions, and to prove well-posedness of some PDEs where such distri-
butions appear.

2.2. The main question of this chapter

For every x € R? we assign a distribution F, € 2'(R¢) and we call the
family (Fy),.ge @ germ if for all y € &, the map x — F,(y) is measurable.
Measurability of the map x — F,(y) is a technical assumption, which is
needed in the definition of suitable approximations to the reconstruction of
(F.) ,era> see (2.3.2) below.

Problem: Can we find a distribution f € 2'(R?) which is locally “well
approximated” by (Fy),.r«? Before making this notion precise, we explore
the familiar setting of Taylor expansions.

2.2.1. Taylor expansions. For example, let us fix f € COO(Rd ), and let
us define for a fixed y > 0
k
—X
E(y):= Y &f) b = L yer’. 2.2.1)
k| <y '

Note that for j € N4, w e R4, we use the notation

d d d
N\ . oo T
=D wi=Twlk, =T L

k=1 k=1 k=1

with the convention 0° := 1. Then the classical Taylor theorem says that
there exists a function R(x,y) such that

f)—F(y) =R(x,y),  |Rxy)|<|x—y|" (2.2.2)

uniformly for x,y on compact sets of R?. By (2.2.2) we say that the distribu-
tion defined by f is locally well approximated by the germ (F) s formed
by its Taylor polynomials.

2.2.2. Scaling. Let us introduce now the fundamental tool of scaling:
forall @ € Z2(RY), A > 0 and y € R we set

1 _
ol (w) := 7a® (%) weRY. (2.2.3)
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When y = 0 we write ¢ = (pé‘,
Then the local approximation property (2.2.2) implies
Proposition 2.2.1. Let f € C*(R?), y> 0 and Fy be defined by (2.2.1). Then

(f=F)(el)] <47, (22.4)

uniformly for y in compact sets of R%, A €]0,1] and ¢ € 2(B(0,1)) with
flol <t

PROOF. By (2.2.2) we have f — F, = R(y,-) and |R(y,w)| < |w —y|".
Since @}" is supported by B(y, ) with {|o}| = {|¢

’

uniformly for y in compact sets of R, A €]0,1] and ¢ € 2(B(0,1)) with
flol <1. O

In this context we have another simple formula, which does not seem so
well known.

Proposition 2.2.2. Let f € C*(R?), y> 0 and Fy be defined by (2.2.1). Then
(F=F)(eH)| < (Iy =2l +4), (2.2.5)

uniformly for y,z in compact sets of R%, A €]0,1] and ¢ € 2(B(0, 1)) with
flol<1.

PROOF. Let us note that we can Taylor expand also the derivatives of f
for [k| <y

_ 2\
Fro = 2 @) (yTZ) +R (32), R (pa) s =2,
€] <y—Ik| ’

uniformly for x,y on compact sets of R?. Then we can write

W)k
Rw) = 3 ) 2

k| <y

z)
!

— Z 2 HHE(2) b—2)"

14
K<y \lel<y—IK|

—Ew)+ Y R(n2)

k|<y

+R (y,2)

)k

(w—y
Kkl
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having applied Newton’s binomial. Therefore we obtain the expression

k
F.(w) — Eij% ). (2.2.6)
[k|<y '
In particular
M ﬂ
|[Fz(w) < D IR (39)]
lkl<y
< Z]w—d%“uw—yﬁﬁ(w—d+ﬂw—ﬂV
[K[<y

since a'b® < (a+b)'(a+ b)* for a,b,t,s > 0. Now by (2.2.3), for all ¢ €
2(B(0,1)) with (|| < 1

f (Fu(w) — Fy(w)) @f: (w) dw
Rd

< sup <|y—z|+w—y|>7f|<pf
weB(y,A)

<(ly—zl+2)".
We have obtained (2.2.5). O

2.3. Reconstruction

We define throughout the paper
£ :=2"", neN.

We have seen in (2.2.4) that for the germ (F}),cga related to a Taylor expan-
sion of order Y > 0

(f=F) (o)

uniformly for y in compact sets of R, n e N and ¢ € 2(B(0,1)) with
{|@| < 1. This property does not rely explicitly on the smoothness of f,
and seems to be a promising way of expressing the fact that (F), g« locally
approximates well (at order y > 0) the distribution f.

This motivates the following:

<el

Y/yeR

Definition 2.3.1. Let (Fy),cge € 7' (RY) a family of distributions. We say

that f € 2'(R?) is a reconstruction of (Fy)yeRd if there exists Yy > 0 such that
forall e 9

((f=F)(ef")] <

uniformly for y in compact sets of R? and n € N.

(2.3.1)
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We are going to see below sufficient conditions for a family (Fy)cgs <
2'(R?) of distributions to admit a reconstruction. A first important remark
is that, with this definition, there is at most one reconstruction for a given

(F y ) yeR4 -
We are going to use a number of times the following formula: for all
TeP and ¢, g€ 2

T(p=xg)= fRdT(fp(- —y))g(y)dy.

With the notation @y(x) := @(x —y) = (py1 (x), recall (2.2.3), we obtain the
basic formula

T(pxg)= fw T(py)g(y)dy, (23.2)

Lemma 2.3.2 (Uniqueness). Given any (Fy),cgd € 2'(R?) and 'y > 0, there
is at most one reconstruction of (Fy) cga in the sense of Definition 2.3.1.

PROOF. We fix a test function ¢ € 2 with { @ = 1, and two distributions
f,g € 2" which satisfy, uniformly for y in compact sets,

lim |(f =F)(g")| = lim [(g—F)(e")] =0, (2.3.3)

n—0o0

We set T := f —g. Since (¢ ),cn is a family of mollifiers, for any y € &
we have T (y) = lim,,_,o, T (y = @%). If K is any compact set which contains
the support of ¥ we have by (2.3.2)

f T (") w(y)dy
Rd

It remains to show that lim,—,«; T (@§") = 0 uniformly for y € K, for which it
is enough to observe that

T (o;m)| = |f(o5m) —g(oy)| < |(f = F) (o) + (g — F) (o)

and these terms vanish as n — oo uniformly for y in compact sets, by (2.3.3).
g

T (y=@™)| =

< | Wl sup|T(g5)]-
yeK

2.4. Coherence

We have seen in (2.2.5) that for the germ related to a Taylor expansion
we have for any y > 0

(F.=F)(of")| < (ly—z+&)",  |(f—F)(¢)

uniformly for y,z in compact sets of R?, n e N and ¢ € 2(B(0,1)) with
flol <1.

However the first estimate implicitly relies on the information that the
distribution F; — F,, is a locally bounded function: suppose indeed that this

<el,
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is not the case; then we expect that the quantity (F; — Fy)(¢y") does not
necessarily remain bounded as n — o0; this is the case for example if F; — F,
is a Dirac mass at y, where

1
(F: = B)(95") = 25 9(0)- 24.1)
Therefore, if we want to consider more general families (Fy)yeRd of genuine
distributions, we expect (2.2.5) to be too strong a requirement.

Formula (2.4.1) suggests that a weaker version of (2.2.5), which could
be convenient in this context, may be obtained by allowing a multiplicative
factor ¢ with o < 0 in (2.2.5):

|(F- = Fy)(¢57")

However, it turns out that (2.4.2) may not be strong enough to obtain (2.3.1):
the multiplicative factor €%, which explodes as n — 0 if o < 0, makes a
better control on the factor (|y —z| + &,) necessary, as can be seen from the
proof of Theorem 2.5.1 below. It turns out that a sufficient condition for the
existence of a (unique) reconstruction is

|(Fz _Fy)((P;?")

uniformly for z,y in compact sets of R?, n € N. We call this property
coherence, see below.

<e¥(ly—z+&)7 (2.4.2)

<ed(ly—zl+&)" %

Definition 2.4.1. We say that a germ (F;) cpa © 2" is (a1, )-coherent for
yeR, and o <, if there exists ¢ € 2(RY) with § ¢ # 0, such that

(F:—F)(of")| < eX(ly—z| + &) % (2.4.3)

uniformly for z,y in compact sets of R¢, n e N.
We denote by 9% the set of (., y)-coherent germs.

Remark 2.4.2. It is a non obvious (but true) fact, see [4, Proposition
13.1], that relation (2.4.3) actually holds uniformly over ¢ € 2(B(0,1))
with bounded | ¢ | cra, where ro := min{k € N : k > —ot}. More precisely:

(= F)(of")] < [@]cra &) (ly—2 + €)%, (2.4.4)
uniformly for x,y,z in compact sets, n € N and ¢ € Z(B(0,2)). This property
is called enhanced coherence. In particular, %7 is a vector space.

2.5. Hairer’s Reconstruction Theorem (without regularity structures)

We define the following family of test functions:

Br={ye Z2(B(0,1): |y|cr <1} (2.5.1)
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THEOREM 2.5.1 (Reconstruction Theorem). Suppose that (F.) cpa < 2
is a (a,y)-coherent germ in the sense of Definition 2.4.1 with y > 0, namely
there exist y >0, a < yand a ¢ € .@(Rd) with S(p # 0, such that

((Fy = Fo)(@r)] < &7 (|x =yl + &) %

uniformly for x,y in compact sets of R, n e N. Then there exists a unique
distribution ZF € 9'(RY) such that

(ZF —F)(w")| < & (2.5.2)

uniformly for x in compact sets of R%, ne N, y € B,, see (2.5.1), for any
fixed integer r > —QL.

e This result was stated and proved by Martin Hairer in [9, Thm.
3.10] for a subclass of germs related to regularity structures. He
used wavelets.

e Later Otto-Weber [13] proposed an approach based on a semigroup.
This corresponds to a special choice of the test functions @, y. See
also [12].

e The above statement is a slight improvement of [4, Thm. 5.1]. It
is more general and requires no knowledge of regularity structures.
The improvement is due to [15] and concerns the fact that it is not
necessary to impose a homogeneity condition on the germ (see
below).

e This result can be seen as a generalisation of the Sewing Lemma
in rough paths [8, 7]. See [3, section 5] for a discussion of the
analogies between the Reconstruction Theorem and the Sewing
Lemma.

e The construction is completely local: constants and even the expo-
nent o may be allowed to depend on the compact set.

e We also cover the case ¥ < 0 (see below).

Example 2.5.2. Let A < R be a (locally) finite set such that o ;= infA € R.
Let F = (F,) ga be a germ such that, for some y = o and ¢ € (RY) with
§o # 0, we have

(F=R)(emls D, ellz—y",
acA: a<y (2.5.3)
uniformly for z,y in compact sets and for n € N.

Then the germ F is (&, y)-coherent, since for € € (0, 1]
elz—y[" =% e M ey <e¥(e+ [z —-y))T

For example we saw in (2.2.5) that the Taylor expansions (2.2.1) satisfy
(2.5.3) with A =Nand o0 = 0.
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Remark 2.5.3. If (F,) g © 2’ is a (@, y)-coherent germ and & > 0, then
the map z — F; is constant, so that we implicitly assume from now on that
a < 0. In order to prove the claim, we apply the triangular inequality

|(Fy = F) (92| < [(Fy — Fo) (@2")| + [(F; — Fo) (@) — 0
as n — 400 (uniformly for x,y,z in compact sets) by the coherence assump-
tion. Then we obtain for all v € Z by (2.3.2)

(Fy—F)(y) = HETOO(Fy_Fx)(‘l/*‘PS")

- lim [ (- E)(0f) vz —0,
R

n——+0o0

2.6. Sketch of the proof

In this section we give a detailed sketch of the proof of Theorem 2.5.1.
We use also in the following the notation

K, := {xe R?: dist(x,K) < r} (2.6.1)

for K < R? and r > 0.
We fix a (o, y)-coherent germ (F) cpa © 2, i.e. we suppose that there
exist y > 0, < 0 and ¢ € Z(R?) with ¢ # 0, such that

(F.—F)(of")| < & (ly—z| + &) % (2.6.2)

uniformly for z,y in compact sets of R?, n e N. We fix an integer r > —a
and we find in an elementary way a related ¢ € Z(B(0, 1)) such that

o) dy =1, fykri)(y)dy:o, VkeN': 1<k <r—1,
R4 R4

(2.6.3)
and (2.6.2) holds with ¢ replaced by @, see [4, Lemma 8.3]. Then we define
p:=0>+p and &:=2"", neN, (2.6.4)

where we recall that y& = l[/gN is a scaling of y as in (2.2.3). Note that
{p =§@*§® = 1. This peculiar choice of p ensures that the difference
1

p? — p is a convolution:

p% —Pp=0=0, where we define Q= (f)% . (2.6.5)
By (2.6.3),
k _ d .
J Yy @(y)dy=0, VkeN':0<kl<r—1. (2.6.6)
R4

This will be used below to subtract suitable Taylor polynomials. Moreover it

follows that 1

pSnJrl _pgn — (pi _p)sn = (pEn * (psﬂ . (26.7)
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With these definitions, we can define the function

fu(z) = Fz(ngn)

that we may look at as a distribution, so that we write

A= | EevE e ver. 268

The definition of f;, is inspired by (2.3.2): we show that f,, converges to a
limiting distribution, which is the reconstruction ZF we are looking for.
We study the function

fen(@) == fal2) = Fe(p?) = (F. = F)(pf),  xzeR% (269

We write fy, as a telescoping sum:
fekr1(2) = fer(z) = (F: = Fo)(p*+" — p&)
= (F, — F)(¢ ¢z£n) = JRd(FZ - Fx)(@;k> ¢ (y—z)dy

f (Fy— F)(08) 9% (y— ) dy+ f (F.— F)(98) 0% (y—2)dy.
R4 R4

" J N

g '
8.4 8 (2)

(2.6.10)
where again we use (2.3.2). We have first by (2.6.2), for all z € R,

@ <|9%[ sup [(F—F)(@)| sgfel “=¢,
ly—zl<é&

since ||@%|;1 = | @], 1. Then we obtain for all y € ¥

f ¢ W) dz
Rd

Now we want to estimate

f ¢ (@2 ds = f (F— F)(@%) (¢%-y) (0)dy.  (26.12)
Rd ]Rd

If K is the support of y and K is the subset of R¢ which has distance < 1

from K, we obtain that ¢¢ = y has support in K; for € < % Then by the
coherence condition

| duvioe
]Rd
Note now that by (2.6.6)

@00 = [ 6 0= {wi) - po)} .

<&l |y (2.6.11)

< sup |(Fy — Fo) (@) 9% = wl|n < 9% =y 1.
yek;
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where py(-) 1= Z‘ K<r—1 *v k( ) (- —y)¥ the Taylor polynomial of y of order
r— 1 based at y; since |y(z) — py(2)| < |¥|cr|z—y|", we obtain

(@« w) )| < [ Wllcr JRI ‘-2z dz<|wlcr @€, yeR”

We obtain
g otr lylcr- (2.6.13)

J k(2 w(z)dz
Rd

In particular we obtain by (2.6.11)-(2.6.13), since ¥ > 0 and & + r > 0 (recall
that we fixed r > — Q)

n—1
fx,n(l//) = fx,O(W) + Z [g;c,k(IV) + g;cl(‘l/)]
k=0

converges as n — +00 to a distribution of order r. Note now that F,(p®")
converges to Fy in 2, since by (2.3.2)

fRd F(p") y(z)dz = F(p™ »y) — F(y),  Vye2.

We obtain by (2.6.9) that f,, converges to a distribution ZF in &’. Moreover,
since for all n > ¢ we have

n—1
Fea(W) = fue(w) + 3 [k (W) + i (W)], (2.6.14)
k=¢
letting n — +00 we obtain that for all xe RY, w e 2 and £ e N

RF (y) = F(W) + feo(y +Z (W) +glw)]. (2.6.15)

Formula (2.6.15) is due to [15].
We want now to prove the reconstruction bound (2.5.2). We recall the

following result, proved in [4, Lemma 9.3]: let k, N e N and G : RY >Ra
measurable function; then for all x € RY and y € %,, see (2.5.1),

| G<y><¢€k*w><y>dy\<4d|¢|umm{sk/em1}’ sp  |Gl.
R4 B(x,en+€)

(2.6.16)

By (2.6.12) and (2.6.16), for any k,N € N,

[, v @] <t fplymin e et} swp [(5-E))

YEB(x,en+€)
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For y € B(x, ey + &), by (2.6.2) with ¢ replaced by @, we have
Ol < &' (x—yl+ &) < & max{g, en}’ .

|(Fx — Fy) (@
We have obtained
Y—o—r a+r
€ € ifk>N
d N k . 2.6.17
[ e < {ky N e

We want now to estimate J, := Fy — ZF, and in particular Jx(l//f’v ). We write

(W) < e (W) + | (e = fen) (W)

First by (2.6.9) and (2.6.4)

Fan(v) = || (F = R0 9 —2) v () dye
so that, since y is supported in B(0, 1) and ¢ is supported in B(0, %)
en (W) < @ [ [y sup |(Fz = ) (@5V)]-
z€B(x.en),[y—zl<en
Fy)(¢y")] and

F) (@) < |(Fy = ) (¢7™)] + I(F
Y

[(F = F)(¢V)] < evey “<el,

Now we write |(F;

sup
2€B(x,en),ly—z|<ewn
sup[(F— F)(9f)] < e (6w +2en)7 “ < €],
ZEB(x,en),[y—z|<en
so that we obtain
14 (2.6.18)

’fx,N(WﬁN” < &y,

and this argument holds for any y € R. Now by (2.6.15)

o0
(Jr = fon) (WV) = Z gex(W) +e (v,
k=N

and by (2.6.11) and (2.6.17),
(o= Fen) (W) < ) (18 ()] + i (wiv)]

k=N

Y—a—r OH—r
<> [eN +£k]

k=N

Y—O0—r o+r Y
A AR Y
=1 2—(atr) 1—=2-v ~ "N

since Y > 0 and o +r > 0. The proof is complete.
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2.7. The Reconstruction Theorem for y < 0.

In Theorem 2.5.1 we have proved the existence and the uniqueness of
the reconstruction of a (o, y)-coherent germ in the case of y > 0. If y <0
then we have a weaker result.

THEOREM 2.7.1. Suppose that for a given F : RY — @'(R?) there exist
y <0 and o <, such that for all p € 2(R?)

((Fy = Fo)(@r)] < &7 (Ix =yl + &) %

uniformly for x,y in compact sets of R, ne N, namely F is (o, )-coherent.
Then there exists a (non-unique) ZF € 2'(R?) such that

& ify<o0

: . 2.7.1)
l1+n ify=0

K%F—EXW?HS{

uniformly for x in compact sets of RY, neN, {ve2(B(0,1)): |y|c <1}
with a fixed r > —Q.

PROOF. If one checks the proof of the case ¥ > 0, one sees that the
convergence of the different terms depends either on ¥ > 0 or on o + r > 0.
More precisely, the estimate (2.6.11) on g is useful if y > 0, while the
estimate (2.6.13) on g/, is useful if  + r > 0. If ¥ < 0, the estimate on g
is simply not good enoﬁgh.

On the other hand, for y < 0 the reconstruction bound (2.7.1) is weaker,
since &) or n diverge as n — o0, and we do not state that there is a unique
choice for ZF .

In fact, in order to prove the statement we can modify the approximating
sequence f, defined in (2.6.8), by eliminating the term g} whose convergence
is based on y > 0. However, g;ﬂ 1> given by (2.6.12) above, depends on x € RY,

while we want the approximating sequence f,, € 2’ to be independent of any
base point.

Recalling the definition of f,, and g " from (2.6.8) and (2.6.10), we define
(also recall (2.6.9))

n—1

"

- 2.8
k=0

Fen(W) = fu(y) = E(p® = y) = fun(y Zg
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Then, by (2.6.14), for all n > ¢,

fx,n( fx( +ngx Zg fxﬂ +ngx

(2.7.2)
By the estimate (2.6.13) on g/ ,, we obtain that f; ,, and therefore f,, con-

verge in 2’ and we can write forall y € 2, xe R and £ e N
RF () :=lim f,(y) = Fe(y) + lim fo.n(y)

] 0 2.7.3)
= (W) + feo(W) + D g ().
k=/

For the reconstruction bound (2.7.1), we want to estimate fx =AF —F,,
and in particular f, (). We write

P (Wi < [ Fee (W) |+ 1(Fe = Fen) (W)
Now, by (2.6.17) and (2 7.3),if y<O0
|(Fe= Fe) (W] < ) &by

k=/(
< Ve e s e e ],
k={
since & + r > 0. By (2.6.18) and by (2.6.17), if y < 0

=1
| Fet(WEO < |fee (W) + ) ek (wi)
k=0

-1
v Mk < olvlt — g7
e+ <o —g
k=0
In the case y = 0 we have rather

(—1
| Fee (W] < [ fee(wi)] + Z g (Wi < 1+¢.
k=0
The proof is complete. 0

2.8. Homogeneity

Definition 2.8.1. Let F' be a germ. We say that F satisfies a homogeneity
bound with exponent . € R if there exists r > — Q. such that

Fe(yin)] < &

~ Cpn

uniformly for x in compact sets, n € N and y € A,, see (2.5.1).
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We recall the following result, which is proved in [4, Lemma 4.12].

Lemma 2.8.2 (Homogeneity). Let F = (Fy),.ga be a (¢, y)-coherent germ.
For any compact set K < R%, there is a real number &y <y such that

|F(0%)| < €% uniformly forxe K andne N, (2.8.1)
with @ as in Definition 2.4.1.

Therefore coherence of a germ implies a local form of homogeneity of
the same germ. However in Definition 2.8.1 we require the coefficient & to
be uniform over the compact set K.

If a germ satisfies a homogeneity bound with exponent & € R, then it
satisfies a homogeneity bound with exponent &’ for all &’ < &. Therefore
the set of & € R such that a fixed germ satisfies a homogeneity bound with
exponent & takes the form | —o0,b] or | — 0, b|.

Definition 2.8.3. We denote by 4% %7 the set of (o, y)-coherent germs which
satisfy a homogeneity bound with exponent Q.

Remark 2.8.4. Let F be a («,y)-coherent germ with respect to a test func-
tion @ € 2 such that { @ # 0. If there is & € R such that for all compact set
K c R4

IF (@) < € uniformly forxe K andne N,

then F satisfies a homogeneity bound with exponent & € R and with r =
rara =min{n e N:n > —(a A &)} as in Definition 2.8.1. This property is
called enhanced homogeneity, see [4, Theorem 12.4], and is the analog of
the enhanced coherence of Remark 2.4.2.

2.9. Negative Holder (Besov) spaces

Given a €| — 0, 0[, we define €% = ©'*(IR?) as the space of distributions
T € 9’ such that .
[Tw)] e, (2.9.1)
|Wlcre
uniformly for x in compact sets, y € %,,\{0} and n € N, where we define rg
as the smallest integer r € N such that r > —q. For any distribution 7' € 2’
and & < 0, we define ||T||e k) as the best constant in (2.9.1):

T (yén
IT lge k) := sup Tyl (2.9.2)

z€K,neN, ye By, &yl cra ‘
Then T € €% if and only if |T |4«(x) < 00, for all compact sets K = RY,
We want now to show that a coherent germ which satisfies a homogeneity
bound with exponent & < 0 has a reconstruction (unique or not) which
belongs to the Besov space €%, and the map F — ZF is linear continuous.
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We introduce the semi-norms

[(F; — F)(gy")]
IF[IE = sup Yy (2.9.3)
K.y y,2€K, neN 6,?(|z—y| +8n)y o
F. (@&
IFpen = sup AN 2.94)

xeK, neN 8r?
where ¢ is as in Definition 2.4.1. We can now state the following result.

THEOREM 2.9.1 (Reconstruction Theorem and Holder spaces). Let o <
yandy # 0. Let (Fy),cpa be a (0, y)-coherent germ with local homogeneity
bound & < v, namely F € 9%%Y If & > 0, then ZF = 0. If & < 0, then
RF belongs to €% and for every compact set K < RY

h h
1 o) < Caaap (IFIE g ay+ IFIESG) . 295

where @ is the test function in the coherence condition (2.4.3), €y y 5.4, < ©
is a constant which depends neither on F nor on K and we use the notation
(2.6.1).

PROOF. We fix a compact set K — R¢ and y € K. By the reconstruction
bounds (2.5.2) for y > 0 and (2.7.1) for y < 0, ZF satisfies

|(#F —F,)(¢}")
It follows by the homogeneity bound (2.8.1) and the triangle inequality that
| ZF (}")

When & > 0 then also ¥ > 0 and the r.h.s. vanishes as n — oo, which yields
AF =0, because ZF (y) = lim, ZF (y + p*) = lim, { ZF (¢§")y(y) dy.

Henceforth we fix @ < 0. Let ¢ be the test function in the coherence
condition (2.4.3). Let f = ZF be a reconstruction of F. Fix a compact set
K: we want to show that

EN
s L e (R o IF I G)  296)

= a 134,(p,0m/ KZJP765
xeK,,NeN, ye %, &y

<egl

<e¥+el.

ana

for some ¢’ = Qﬁix’%a’d@ < 0, where rg g = min{ne N:n> —(a A @)}.
Note that in (2.9.6) we have a supremum over ¥ € %, ., while in (2.9.2)
we had a supremum over y € %, , so that it seems that (2.9.6) does not
imply that f € €%*(K). However, the definition (2.9.2) gives the same space

if ro is replaced by any r > —a,, see e.g. [4, Theorem 12.4].

Now we have, uniformly for x € K>, y € %, , and N € N,
h
|(f = E) ()| < clIF IR, .0y €N
for a suitable ¢ = ¢4 y 54,9, Where the constant ||F |||Eh¢ o,y arises by track-

ing carefully the constants in the estimates in proof of the Reconstruction
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Theorem, see Section 2.6. Since & < Y # 0, we bound 817\; < 8]‘\7,‘, forallneN.
Recalling (2.9.4), by the triangle inequality we obtain

EN EN EN
—F F
wp MO U= B A
xeky, NeN &N xeK,, NeN Y
h h
< (I +ca) NIFIIE g0y +caollFlIRg.a

by the enhanced homogeneity of Remark 2.8.4. This completes the proof of
(2.9.6). U

2.10. Singular product

Let fe €% with a > 0 and F,(w) = Z|k‘<a&kf( ) y . Let also
g € €P with B < 0. We define the germ P = (P, := g - F; )xeRd as

PX((p):<g'Fx)((P> ::g((PFx)7 (Peg-

Note that this makes sense and defines a distribution in 2’ since @ F, € 2
forall p € 2.

THEOREM 2.10.1. If f € €* and g€ €P, with o > 0 and B <0, then
the germ P = (Py) cpa is (B, 0 + B)-coherent and satisfies a homogeneity
bound with exponent J3,

|(P.—R)(9y")] <

uniformly over z,y in compact sets, n € N and ¢ € AB,, with r > —J.

<gB

~ “n

n(y—zl+e)®  |P(ef)

PROOF. Since g € € we have for all £ € (0,1], w € 2(B(0,1)) and
yekK

HUSIES o lWlcreP (2.10.1)

Fix now any ¢ € 2(B(0,1)) with S(p # O and |@|cr < 1. By (2.2.6), for any
v,z € K (and y replaced by o)

k
L

0<[k|<a

where [R*(y,2)| < | flgex) |z — y|®~ kI, We have for fixed y € R?, k € N¢
and € >0
(w=y) @f (w) =Ty (w),  where y(w) == w p(w).

Then y € 2(B(0,1)) and |y|cr < | @llcr < 1, hence it follows by (2.10.1)
that

g ((~ —y)"q)f) | = Mg (W) < lglg i P TH. (2.10.2)
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We thus obtain, uniformly for z,y € K and € € (0, 1],

((Pe=P) (@) < | el Tz —y* K

vo) lglesy D,

0<|k|<a
< | flek) lglgs k) €° (12— 3l + €)%,

which completes the proof of coherence. We next prove homogeneity. By
(2.10.2), we obtain

Pledl < Y Je (- ef)

0<|k|<y

k
S H8H<gﬁ(1() 2 Pl
0<k|<y

v (k) 18ll8 k) >
0<[k|<y

el

‘ S (x)
k!

*f(x)

k!

eB+IK

s |If

< | flze) Igles )

uniformly for x in compact sets and € € (0, 1]. This completes the proof. [J

If o + B > 0 the (unique) distribution ZP can be used to construct a
canonical product of f and g. Moreover ZP € €P.

If o + B < 0, the (non-unique) distribution ZP can be used to construct
a non-canonical product of f and g. Moreover ZP € €B.

2.11. A special case

Let us assume that F, € C(R?) for all x € RY and moreover that the map
RY x R? 5 (x,y) — Fx(y) is continuous. We recall that in Section 2.6 we
proved that for all y € &

n——+00

RF)(w) = lim, | Fpf)v(3)dz.

Now if (x,y) — F(y) is continuous, we obtain by dominated convergence
that

(F)(y) = f F()) v (2) dz,

R4
namely Z(F) is also a continuous function and coincides with z — F(z).
For an example one can consider the germ F' defined by the Taylor

expansion of a smooth function f, see Section 2.2.1. In this case it is clear
that Z(F) = f is a function and f(x) = Fy(x), x € R,
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2.12. Recent developments

We mention that the approach to the Reconstruction Theorem of [4] has
been recently developed in further directions:
e on smooth manifolds [14]
¢ in the direction of Besov Reconstruction [2], [15]
e as a stochastic reconstruction theorem [10], akin to the stochastic
sewing lemma [11].
¢ in a microlocal setting [5, 6]



CHAPTER 3

Models and modelled distributions

In the previous chapter we have introduced the notion of coherent germs
and the operation of reconstruction. In this chapter we define a special class
of germs which arise in regularity structures.

3.1. Pre-models and modelled distributions

We are going to study germs which can be written as suitable linear
combinations of a fixed finite family of germs. First we introduce the notion
of pre-models:

Definition 3.1.1. A pre-model is a pair (IL,I") where
(1) T1 = (1) is a family of germs T = (I1)  _pa labelled by a finite

index set 1, Ny
(2) RTxRY 3 (x,y) — (F}Jy) i,jel is a matrix-valued function such that
I =YIITY,  jel xyeR? (3.1.1)

i€l
and we suppose that
(3) there exist (0;)ier = R and a @ € 2(RY) with § ¢ # 0 such that

(o] < &7,
uniformly over x in compact sets of R¢, n e N.
We denote @ := min(o;,i€ ).
Example 3.1.2. For a fixed y > 0, the family of classical monomials

, —v)J
H§(w):(w .‘y), jeNt yweRY jel:={ieN!:|i <y},
J:

with o; = |i|, any ¢ € 9 and

(=)~

. nd
(=

% =1ag))
forms a pre-model.

Now we can define the notion of modelled distribution.

25
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Definition 3.1.3. Let (IL,T) be a pre-model, and let v > max(oy,i€1I). If
f: R4 > R satisfies foralli eI

fi=> T f

jel

< =y %,

il <1

uniformly for x,y in compact subsets of R, then we call f a distribution
modelled by (I1,T"), or simply a modelled distribution, and we write f €

Dy

Given a pre-model (ILT") and a modelled distribution f € .@(YH r)> we
define the germ

AL frei= YT fl, xeR% (3.1.2)

i€l
We want to show that (I, f) is (&, y)-coherent, where & := min(¢;,i € I).
Using the reexpansion property (3.1.1) we have

(T, .= (I, fy = Y ML fL= Y ML ff = = > Ty (f;' - ZF;éfJ) :
jel iel iel jel
Therefore
(TLf)e = AL Fy)(9F) = = > TL,(9f) ( ZF@QfJ) :
iel jel
namely
(L £ =T f)) (9)] < D &%z =y % < e%(e+ [z =)™,
i€l
uniformly for y, z in compact sets. Moreover

KIL, £)y(05)] < D AT (0f)] < D&% < €,

i€l iel

uniformly over y in compact subsets of R¢. In other words we have proved
that

Proposition 3.1.4. If (ILT") is a pre-model and f € ‘@(yn,r)’ then (IL, f) is a
(@, y)-coherent germs with uniform homogeneity bound with exponent Q.. In
other words, {I1, f) belongs to 4*%?7.
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3.2. A special case

We have seen in Section 2.11 that under certain sufficient conditions on
the coherent germ (F ), ga, the reconstruction ZF is a function and has an
explicit form. An important example of this setting, where moreover ZF is
a (locally) Holder-continuous function, is the following:

Example 3.2.1. Suppose we have a pre-model (I1,I") and a modelled distri-
bution f € ‘@(YH.F) as in Definition 3.1.3. We suppose that each germ IT: is

(locally) Holder-continuous, for some exponent f3; € |0, 1{, uniformly for x
in compact sets: more explicitly, we assume that

M(y) ~ LG < [y =y [P
uniformly for x,y,y" in compact sets. Then we can write unambiguously
y—II(y) and

Y= Fe(y) i= ) ATL().

iel

Now by the reexpansion property (3.1.1)

Fo(y) = Fe(y) = = ) TIL(y) (f)i -1, fj) -
iel jel
Then
[Fx(y) = F ()] < [Fe(y) = Fe (9)] + [Fe () = Fo ()]
< D) e =%+ [y =)
i€l
which shows that (x,y) — Fy(y) is continuous. Therefore, in this case the

reconstruction of F is equal to x — Fy(x). Moreover setting y = x and y = x’
we obtain

|Fe(x) = Fo ()] < ) (TG00 e =2 | + £l e = 21P7),
iel

namely the reconstruction of F = (I1, f) is even locally Holder-continuous.

3.3. Models
We now define the notion of a model.

Definition 3.3.1. A model is a pre-model (I1,T") as in Definition 3.1.1, such
that moreover

(1) T, =1foralli€l,
2) T =0ifa; > ojand i # |,
(3) ITH] S x—y% % if o < ;.
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If (IT,T’) is a model, then spaces .@(YH r) of modelled distributions satisfy
the following properties.

Lemma 3.3.2. Let (I1,T") be a model as in Definition 3.3.1. Fix an exponent
y>max(e;: i€l) and set & := min(0;: i €I). Then

(1) The space .@(YH.F) is not reduced to the null vector.

(2) For any Y > @, the restricted family (I, I") := (II',TY); ;cp la-
belled by I' :== {iel: a; <Y} is amodel. If y > Y, the projection

f=(Nier—f = (fier

maps '@(YH,F) to '@();IQF’)'

PROOF. For the first assertion, we consider an element IT. of minimal
homogeneity & = min;o. In this case by the properties (1)-(2) in Defini-
tion 3.3.1 we see that F;Jy = j forall jel, where 0 is the Kronecker symbol,
and the function f){ =6 ;j 1s a modelled distribution.

Let us prove now the second assertion. Assume that ¢ < max(o;: i€
I), hence I < I, otherwise there is nothing to prove. By property (2) in
Definition 3.3.1, relation (3.1.1) holds for the restricted family (IT',I"),
because for j € I’ we can restrict the sum in (3.1.1) to i € I’ (otherwise
[ = 0). The other properties of a model are easily checked, hence (IT',I”)
is a model. Given a modelled distribution f = (f)ic; € 27 we need to

(ILI)
check that f' = (f');cp € 7

() We write forie [
fi= TR < (=208 + 2 0]
iel’ iel eI’
Sh—y"%+ D |x—y%*
Y<aj<y

S by % T S ey,
uniformly for x, y in compact sets, by the property (3) in Definition 3.3.1. [

We also have another instructive remark. Suppose that (IL,T) is a model.
Then for every j € I, the germ II/ = (T1{) ga is (@, a;)-coherent. Indeed

I —T1) =  TLIY 11 = > TETY,
icl i#j
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so that

o;<;

SN

o<
< (lx—yl +e) ¥

Moreover, by property (3) in Definition 3.1.1, this germ satisfies a homo-
geneity bound with exponent ;. The same property can in fact be viewed
as a reconstruction bound for this germ, with Z(I1/) = 0. If o i > 0 then the
reconstruction is unique.

Note that we can write, as in notation (3.1.2), I/ = (I1, f) with fi := §; s
with & the Kronecker symbol. However in this setting f does not belong to
@(‘x-" oY indeed, if it did, by Definition 3.1.3 we should have o; > max(o,i€

I), which is clearly false.

3.4. Holder functions as modelled distributions

We have see in Example 3.1.2 that the classical polynomial family

_ Y
mw) = 2 e =i <y
ij (=)
ch]y:]l(igj)W7 i,j€NT,

forms a pre-model and actually a model. It is an interesting exercise to check
that modelled distributions with respect to this model are actually classical
Holder functions.

This model belongs to the class that we have considered in Section 3.2,
namely the function (x,y) — IT.(y) is continuous for all i and each IT;
is locally B-Holder continuous, uniformly for x in compact sets, for any
B €]0,1[. Therefore by the discussion in Section 3.2 we know that any
modelled distribution f € 9(}/111") gives rise to a (0, y)-coherent germ (IT, f)

and that the reconstruction of (II, f) is a locally Holder-continuous function.
Let us consider for simplicity the case ¥ ¢ N. Now, a modelled distribu-
tion f € .@(YH r satisfies

' =il jl<y (=9
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This is in fact a Taylor expansion of f' at order |y — |i|| with a remainder of
order ¥ — |i|, and this implies that f' is of class C?~ll and
fl=0-if, Vj=i

In particular, for i = 0 we see that £ is of class C? and satisfies (2.2.2); in
particular by Proposition 2.2.1 we have that f? is a reconstruction of (I1, ),
and since y > 0 it is the unique reconstruction. In other words we have seen
that

=201, fyec’,  fl=af, V<.
The fact that £ is the reconstruction of (II, f) also follows by Section 3.2,
because we must have Z(I1, ) = {x — (I1, f)(x)} = {x > fO}.

3.5. Semi-norms

Back to the general case, for a fixed pre-model (I1,I") we can interpret,
by analogy with the case of Holder functions of the previous section, the
space @(}/H r) of all distributions modelled by (I1,I") as the collection of

generalised derivatives of u := Z{I1, f) with respect to the model (IT,T").
We can define a system of seminorms for f e .@(YH r)

[f] f)é_ZjeIF;jy yj
% = Sup sup —
-@(H,r) K iel x,yeK, x#y |x _y’y %

Y

where K is a compact subset of RY.

This is rather original with respect to the standard situation in ODEs or
PDEs, where one sets an equation in a fixed Banach space. Here the Banach
(Fréchet) space depends on an external parameter, the model (IL,I"). For
SDEs and SPDEs, the model (IT,I") is actually random.



CHAPTER 4

Schauder estimates for coherent germs

In this chapter we discuss one of the most important operations on
coherent germs: the convolution with a regularising integration kernel.

4.1. Integration kernels

Definition 4.1.1 (Regularising kernel). Fix a dimension d € N and an ex-
ponent B € (0,d). A measurable function K : R — R U {£0} is called a
B-regularizing kernel up to degree m € N if the following conditions hold:

o the function x — K(x) is of class C™ on RY\{0};
o the following upper bound holds:

1
VkeN? with |kl <m: FKX)| < ——— 1
with [k| <m |0"K(x)] =B k<) @1

uniformly for x in compact sets .

In particular, note that for kK = 0 equation (4.1.1) reduces to
1
<
|K(X>| ~ |x|d_ﬁ 1{|x‘<1}- (412)

This shows that a B-regularizing kernel is locally integrable on R¢,

4.1.1. Singular convolution. We want to consider the convolution K
f € 9’ between a kernel K and a distribution f € &', This is formally defined
by

(Kef)o)i= fKGe=) = | Ky fd), @13)

but we stress that in general K« f is ill-defined. Under suitable conditions,
K« f can be defined as a distribution by duality: for a test function y € ¥
we set

(K« f)(w) == f(K*y) where (K*y)(y):= y y(x)K(x—y)dx,
(4.1.4)
provided f(K*y) makes sense, of course. We are going to study the convolu-

tion K*y between the kernel K and a test function y, to ensure that f(K*y)
is well-defined.

31
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We start with an elementary observation: if K(-) is B-regularizing up
to some degree m, then (K*y)(-) is a well-defined compactly supported
measurable function, because K(x — y) is jointly measurable, locally inte-
grable and compactly supported in the difference |x — y|. The delicate point
is that K*y needs not be smooth, hence we cannot hope to define f(K*y)
for arbitrary (f,y) € 2’ x 9.

4.1.2. Partition of unity. Let us introduce the usual dyadic sequence
& :=2"", nez.
We call dyadic partition of unity a family of functions (p,),cz such that:
o pu(z) is supported in the annulus {1&, < |z| < 2¢,} and
vzeRN(O}: Y () =1
nez

e for any given k € N%, one has

K]

1% pnlloo < & ' uniformly inneN.

It is easy to build a dyadic partition of unity. Given any smooth function
% : R — [0,1] such that

=1 if z] <1
x(2)yel01] ifl<fz]<2,
—0 il =2

we obtain a dyadic partition of unity (p,),cz by setting
pu(2) == 1(67'2) — 2(e52)
Such a partition of unity is scale invariant, since p,(z) = po(g, 'z). We set
K,:R! >R, K (x) := pn(x) K(x),

sothat  K(x) = Y K,(x) VxeRN\{0}. *-1.3)
n=0

We stress that K, (x) is supported in the annulus {}&, < |x| < 2€,}. Moreover
Vk e N with |k| < m:

K () < — 1,
" e|d=B— Ikl " {aEns<lel<2en) (4.1.6)
B—d—|k
S 8}’[ ]l{%gn<|x|<2£n}

uniformly for n e N.
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Finally we have for all y e R? and |¢| < ||
f X OKy(x—y) de = (=D | (K Ku(x—y)dx =0,  (4.1.7)
R R
because *x’ = 0 for || < |k].

4.2. Convolution with distributions
We show now that K*y in (4.1.4) is well-defined and differentiable.

Proposition 4.2.1. Given a kernel K which is B-regularizing up to degree
m € N and a test function Y € 9, the convolution K*y defined in (4.1.4)
belongs to C™.

More precisely, recalling K,, defined in (4.1.5), we have the following
bound:

Vre{071,...,m}: HK:WHC’ b3 HW|’C"‘(3rlz3 (4.2.1)
uniformly forne N and w e 2(B(0,1)),
[e¢]

hence the series K*y = > "~ Kiy converges in C" (recall that B > 0).

PROOF. We recall that K(x —y) = Y.°° (K, (x — ) for all x,y € R? with
x #y, by (4.1.5). Then by dominated convergence, thanks to (4.1.2), for any
y e R? we can write
o0
(K)0) = D (KIWI0) where (3p)0) = | w(Ka(x—y) dr.
n=0
To prove (4.2.1), it is sufficient to show that

Vke N with [k <m: (K)o < [l o €

, 4.2.2)
uniformly for n e N and y € Z(B(0,1)).

By Definition 4.1.1, for any n € N the function y — K,(x —y) is of
class C™ on the whole R? (including y = x, because K, (x — y) vanishes for
ly—x| < %8,1, see (4.1.5)). Exchanging derivatives and integral by dominated
convergence, thanks to (4.1.1), we see that K}y € C" and

Vke N with k| <m:  FK*y)(y) = (=D¥ [ w(x)*K,(x—y) dx.
R4

(4.2.3)
We now estimate 0% (K y)(y) for fixed n e N and y e R?, k e N with |k| < m.
Denote by QlrA] (+) the Taylor polynomial of y of degree |k| — 1 based at y,

that is ,
0
o= 3 S ey,
<kl
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where we agree that for k = 0 we set Q%! (x) = 0. Then we can bound

w(x) — ORI < W] e [y — x| 4.2.4)

Starting from (4.2.3), we decompose

HKWO) =DM | (=M@ Kalx—y)dx

J

An;:(y)

+ (=D ol (x) OFK,, (x — y) dx .
R4

/

v

Bn,k (y)

By (4.1.7) we have that B, x(y) = 0. By (4.2.4) and (4.1.6), for |k| < m, the
first term is bounded by

Ak ()] < \llf|c|k|J =y =P dr <y e €f

‘y_-x|<£n

uniformly for y in compact sets and n € N. This completes the proof of
(4.2.2). i

We obtain the following useful

Proposition 4.2.2. Given a kernel K which is B-regularizing up to degree
m e N and a distribution T € 9’ of order r < m, the distribution

73y —K«T(y):=T(K"y),

where K*y € C™ is as in Proposition 4.2.1, is well-defined in 9' and has
orderr.

4.3. Schauder estimate for coherent germs
4.3.1. Coherent germs. Fix two real numbers ¢, ¥ such that
a<vy, y#0.
Let F = (Fy), g« be a (o, y)-coherent germ, i.e. we have

(Fz = F)(of)| < & (Iy — 2l + &)

. . (4.3.1)
uniformly for y,z in compact sets and n € N,

for some test function @ € Z with {¢@ 0. We define ry as the smallest
integer larger than — o, namely

rg :=min{ke N: k> —a}. (4.3.2)
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By the Reconstruction Theorem 2.5.1-2.7.1 there is a distribution ZF € &'
such that

(ZF = E)(yi")| < |[Wlere &

433
uniformly for x in compact sets, n € N and w € Z(B(0,1)). ( )

If y > 0 then ZF is unique.

4.3.2. Singular convolution. Fix a kernel K which is -regularizing
up to degree m for some 3 € (0,d), see Definition 4.1.1. We now want to
“lift the convolution with K on the space of coherent germs”, i.e. to find a
coherent germ H = (H,),.ra With the property that

FH =K« ZF . 4.3.4)

A simple solution of (4.3.4) is the constant germ H, = K « ZF, which is
trivially coherent, but this does not allow to construct a fixed-point theory for
PDEs. The naive guess H, = K * Fy needs not give a coherent germ, therefore
we need to enrich it. To this purpose, we look for Hy of the following special
form:

VxeRY:  H,=Ks+F,+R,  whereR(-)is apolynomial. (4.3.5)

Remarkably, this is possible with the following explicit solution:

Ho=K«F+ Y (%F-F) (afK(x— -)) X, (4.3.6)
|f|<7+13' }
Ri(")

where we denote for x € R?, ¢ € N¥ the classical monomials

(w—x)

XERI SR, XE(w) = 7

4.3.7)

and where we agree that
R(-)=0 if Y+ <O0.

Note that R,(-) is a family of polynomials labelled by x, whose coefficients
depend on F;, on ZF and on the derivatives o*K for |k| < y+ B. Then we
also assume that Y+ 8 ¢ N and we suppose that the integer m which appears
in Definition 4.1.1 satisfies

m>7y+p+rq. (4.3.8)

THEOREM 4.3.1 (Schauder estimate for coherent germs). Fix a dimen-
sion d € N and real numbers o, 7,3 € R such that

a<y, y#0, p=>0,
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where we further assume for simplicity that

{a+B, v+B}nN=¢.
Consider the following ingredients:
o F = (F),pa €9%Vis a (a,y)-coherent germ;
o Kis a B-regularizing kernel (see Definition 4.1.1) up to degree m
given in (4.3.8).
Then
(1) the germ H = (Hy) cpa in (4.3.6) is locally well-defined, i.e. H,()
is well-defined for all ¢ € 2(B(x,1)).
(2) His ((+ B) A0,y + B)-coherent, namely H € 4(@+B)~0.v+B
(3) H satisfies Z#H = K« ZF.

In other words, setting # F := H, we have a linear operator satisfying
H GO Gg@PINOYE o = K R

Let us define the new germ

Jy:=F.—ZF,
which allows to rewrite (4.3.6) as
H,=K+«ZF + L,, where L,:=Kx+J,+R,. (4.3.9)
From (4.3.6), observe that
Li=Kslo— Y J(0'K(x—-))XL. (4.3.10)
[¢]<v+B

We are going to prove that Ly is ((a + ) A 0, v+ B)-coherent, more precisely

(Lo~ L) (W] < [Wlora €% P20 |y — 2] + &)V HB—(0B) 0.

(4.3.11)
uniformly for y, z in compact sets, n € N and y € 2(B(0,1)).

More explicitly:

a+p

€ (ly—zl+&)"™% ifa+B <0,
L,—L)(yi)| < o X "
|( Z y)(ll/y )| HWHC {(|y—Z|+8n)Y+B if(x—{—ﬁ >0.

Then we are going to prove that L has homogeneity bound with exponent
Y+ B, that is,

e, 7B uniformly for x in compact sets,
L(W)] = [Wlee & neNand ye 2(B(0,1)).

Recalling (4.3.9), this implies that ZH = K « ZF; indeed we recall that

h = ZH means precisely |(h— Hy) ()| < || cra &!"P as the coherence

exponent of H, is Y+ 3.
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One of the tools in the proof of Theorem 4.3.1 is the following simple
result.

Lemma 4.3.2. Fix ye R, B > 0 such that y+ B > 0 and a point x € R%. Let
T € 9' have order ro and homogeneity bound y at a given point x, i.e. for
some C, < o0

IT(9f)| < Cill@llcra €7

4.3.12
uniformly for € € (0,1] and ¢ € Z(B(0,1)). (43.12)

Let K be a B-regularizing kernel up to degree m > v+ B + rq. Then for all
(e N4 with |0 < y+ B,

IT(K(x— )| < Cegl P (4.3.13)

In particular, writing 0'K = thozo 'K, as in (4.1.5), we see that
T(0'K(x—)) := > T(0Ku(x—))
n
is well-defined, and we have the tail estimate

[e¢]
WNeN: Y |T(0%Ka(x—)| < Cegl P (4.3.14)
n=N

Before proving Lemma 4.3.2 we need the following simple

Lemma 4.3.3. Let K be a B-regularizing kernel up to degree m > y+ 3 + r.
We introduce the function

ol (w) := (2€,) FK,, (—2€,w) , (4.3.15)
so that
HMKp(x—-) = («p[kvn]x‘o’". (4.3.16)
Then
supp ((p[k’”]> cB(0,1), VK <y+pB, 4.3.17)
e I e S (43.18)

PROOF. Observe that (4.3.16) is straightforward from the definition
of @l*”]. One has supp (*Ka(+)) = B(0,2¢,) and thus one has as an-

nounced supp (@1*1) < B(0,1). Now, if 1 < [I| < rg then Pllkn] —

(=D (2g,)?* 1 Gk +IK,, (—2€,w). Thus from (4.1.6), one obtains (4.3.18).
O
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PROOF OF LEMMA 4.3.2. By (4.3.16) and by the homogeneity bound
at x (4.3.12), using the properties (4.3.17) and (4.3.18) of (p[&”] we can
bound

IT(0"Ka(x = )| < Ce @ cra €] < Coel P71
Thus T(0°K(x—-)) := X% , T(0*K,(x —-)) is well-defined in 2’ and more-
over we obtain (4.3.14). O

4.4. Proof of Schauder estimates for coherent germs

In this section we prove Theorem 4.3.1.
Lemma 4.4.1. L, in (4.3.10) is a well-defined distribution.

PROOF. We want first to show that the distribution J, = F, — ZF has
order ry. By the reconstruction theorem, J, is homogeneous with exponent
¥; moreover (Jy), is also coherent because J, —J, = F;, — Fy, i.e. J € 91%7,
Moreover (Jy), satisfies the enhanced coherence of Remark 2.4.2. By the
triangle inequality, J thus satisfies the estimate

W] < ek ol WleeA®(ly —x| +2)7¢,
uniformly over x,y € K, A € (0, 1), whence the order r¢ after plugging x = 0,
A=1.

Then by Proposition 4.2.2 the distribution K = J, is well defined and has
order ry. If we apply Lemma 4.3.2 to the distribution 7 = J, then we know
that T(0°K(x —-)) € R is well-defined for all £ € N¢ such that |¢| < 7+ [3
Then L, is a well-defined distribution.

Remark 4.4.2. We will write (L, —Ly) (l//y ) for A €10, 1] as a sum of various
terms and show that

each termis <A%([y—z|+24)""""* for a suitable a > (a+ 1) A 0.
This implies (4.3.11) because a — A%(|y —z| + A)"T17% s decreasmg (note
that we can write A%(|y —z| + 4)¥*"179 = A“B with A = M <1).

We take a compact set K < R? and fix y,z € K as well as N € N. We set
My n:=min{neN: g, <|y—z|+&n},

and note that 0 < M, ,; y < N < 00. Then we decompose

yzN_
2 Ky + Z Kn + Z K,
n=My ;N
E/—’ —_ H/—/
Kiom) Ko Kiv,o0)

where we stress that in this decomposition the sum is split at the points My, , y
and N, for the fixed values of y, z, N, irrespective of the argument of K(-).
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We also define for A € {N,[M,0)},ye RY, we @
K(PW) =Y Y b)) Xiw), (44.1)
neA || <y+p

where the sum is well defined by Lemma 4.3.2 and we recall the notation

K= | Kwwin) b

Moreover for finite A © N and z,y € R¢
L(Pw) = 2 L (Ka=) Xy,
neA | <y+p

where the sum is well defined since K,, is smooth for each n. In particular,
recalling (4.3.10), we can write

Lu(w) = L (K ) = 22 (P (w) ). (44.2)
Then, with the decomposition
N=[0,M)U[M,N)uU|[N,)
we bound for y € Z(B(0,1))
(e = Ly) (W) < (=) (K ) = (PR (v )+, (P (ws))|
‘ (K ) + \\(Jz =) (Kiu l/fygN)J

B
- (P )| o (A )
. |
+ |02 5) (Ko () =B ()|
5
(P () P (g )

. J

E
We are going to need the following technical result, which can be proved
as Lemma 4.3.2.

Lemma 4.4.3. Let § [N R R forn > N and y € R? be defined by
I () i= (3en)? (KEwe) (y+ (3en) w) - (4.4.3)
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Then "N is supported in B(0,1), and
H gl
c

uniformly over y in compacts.
Let I : R4 R

" (w) 1= (38,) Ky (z— 3&uw). (4.4.5)
Then @3 is supported in B(0,1) for all |z| < &, and

< Wleagl, =N, we2(B(0,1)), (4.4.4)

Hq)[”’z] o <eb, uniformly over |z| < &,. (4.4.6)

Ify+B >0, let Eknztl . RE LR for k,neN, ze RY, 1 €[0,1], with

k| <v+B
, dlT+BI=IK
A Bk ¢

Then Ekn2t) is supported in B(0,1) and
[k,ﬂ,Z,l]
Jot»=1),

uniformly over z in compacts, |k| <y+ B, t€[0,1], ne N.

glknail () .= (3g,) MK, (1 —1)z—3g,w). 4.4.7)

S [l g (4.4.8)

Estimate of A. We analyse

(=) (K*Noo vy ) D= Ty) (Kryey) (4.4.9)

n=N
Note that we can write by (4.4.3)

K:;ll/gN — (C[n7N7y])
Y y
Then, by coherence (2.4.4) and by (4.4.4), we can bound

|z =) (o) | = | (=) ((C ["’N’y]im)‘

chNy H 38]\/ \y Z’+38N)

3eny

< |Wlcwer e (Iy — 2| +en)’
Plugging this bound into (4.4.9) we finally obtain since f > 0 and n > N

Kinvoo) * (=) (W) | < |Wllore g™ (ly— 2] + en)" %,

which coincides with (4.3.11) for a + 8 < 0, while for ot + 8 > 0 it is even
better than (4.3.11), by Remark 4.4.2.
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Estimate of B. Then we analyse

N—1
Ue=d) (Kiu ¥ ) = 2 (= 4) (K
n=M v,2,N

N (4.4.10)
-y j V4 (0) (2~ ) (Kol ) .
n=M,,

3g,

Note now that one can write K, (x—-) = ((p[”*x_y]> where "4 is defined
y

in (4.4.5). Then, by coherence (2.4.4), and using the property (4.4.6) of

(p[”’x_Y] we can bound
3g,
J.—J [n,x—y] ) '
(o= 4y) ((qo ),

’ [n.x—y]

|(Je = Jy) (Knlx—-))| =

o (38 (y—2]+ 38,7

0
<ef(3e)* (ly—2+3€)" ¢
<P (3e,)% (4ly — 2| + 3en)" %,

where in the last inequality we used the fact that &, < |y — z| + &y for n >
M, , y. We plug this bound into (4.4.10). Note that

N Ze‘)‘+ﬁ<s°‘+‘3 ifo+pB <0,
DI R
n=Myon Yoe P < (y—z+en)*P ifa+p>0.
L nzMy,z.N

Moreover {pq |y (w)| dw = {pa |[W(w)| dw < || < |W]cra for any ye
2(B(0,1)), hence

Uz =) (K W5 (e3P (|y—2 +en)7@ if o+ B <0
|y cra (ly—z| +&n)"*P ifa+p>0"

which coincides with (4.3.11).

Estimate of C. If y+ B < 0 then C = 0. Let us consider the case v+ 8 > 0.
By (4.3.3) and Lemma 4.3.2, see in particular (4.3.14), we have

oy (2= )| < e B,

} z,N
n=MyzN
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|- |

Then, recalling (4.4.1) and bounding &y, , < |y —z| + &,

5 (A ) < 3 el el < (v-dlrenrP. @an

while

14 4
X (w) Y (w)| dw < ey .

[ <y+B
Similarly
< ‘ Bl
Z J, <(7 Kn(z— ))‘ < EAZ)%Z’N ,
n:Myyz,N
() = | [on v )] v < (=] o)
so that

B R N
Note that both (4.4.11) and (4.4.12) are better than (4.3.11), by Remark 4.4.2.
Estimate of D. We now focus now on

(=) (Kjo a7 — Ay ). (4.4.13)
We first assume that 7+ 3 > 0. Observe that one can write

l 1 m
w— 1—1¢ - 3&,
Kew=)— > oKaly—) W=y _ =0 (g[Oyn,w y,t]) (-) dr,
14 0 m! y
[fl<v+B

4.4.14)
where &[5721] is defined as in (4.4.7). Therefore:

(=) (Ko i = P () ) =

My . n—1
1—)" 3&,
f A= ) (g[oﬂnﬂw—yﬂ) drdw.
n=0 0 m! Y

Applying the coherence bound (2.4.4), we can estimate

‘ (J.—Jy) ( (5 [O,n,wy7,]>jen)

= ] W)

< Jetonnsa

Cra (3&n)* (lz—y[+ &)

g’

Cra

because for n < M, ; y we have (|[z—y|+&,)7"% < (2&,)" % If [w—y| > &n
then yy™ (w) = 0, so that we can assume |w—y| < &y < &,. From the property
(4.4.8) of EL0mw=y1] one obtains

s ly—w|[ 7Bl TPl 1Bl gh=Tr=Fl

< [gtomn-se

Jetonnsa

C
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uniformly for n < N and 7 € [0, 1]. Collecting all those estimates,

MV.Z.N_I
* o.M m N —m—
=) (Kioan vy = Py ) [ < eyt 3, ert P!
n=0

St (lz—y|+en) Pl < (J—y| +en) TP,

which, recalling (4.4.13), is better than (4.3.11) by Remark 4.4.2.

We next assume that Y+ 8 < 0. In this case we have Py[O’M) =01n

(4.4.13). Then, recall from (4.4.5) that one can write

Ko=) = (9l =1) ™ (),

y

Thus, from the coherence bound (2.4.4), and the property (4.4.6) of q)[’””_y]
one can estimate (recall that &y < €, and 8 > 0)

(J.—Jy) <<¢[n7wy])j8"> ‘

L]

(1) (Ky0) [ < sup

lw—yl<en

(3&n)* (lz =y +&)" "

< sup ra

lw—yl<en
Seh(3e)" (lz—yl+&) %
For n < M,y we have (|z—y|+&,)" % < (2¢,)" %, hence

Zwy.,z,N*1

‘(Jz—Jy) (KFO,M)WyENN < Z e/ P < (lz—y|+en)"P
n—0

which, recalling (4.4.13), is better than (4.3.11) by Remark 4.4.2.

Estimate of E. We have

Pz{n}(l//;N) —P);{n}(II/;N) == Z Rk(y7Z’~)X£ (II/;N> ’

k| <y+B

see [4, formula (4.7)], where

k . ok 2 k-0 . (y—Z)é
Rz 8) = Kaly =)= 3, K= )=
] <y+B—Ik| ’

- Ll —((lm i);d)'!k (gbnr==) ™ (g an,
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where &[5m21] ig the function defined in (4.4.7). Then

2 (P ) (45)) -
2y 1 m=—
- > N J (1—1) 5 l ((g[kmyzvﬂ)%n) th’;(‘V;N)'
|k|<y+ﬁ n=0 = Z

Applying the coherence bound (2.4.4), and the property (4.4.8) of & [kny—z1],
since for n < M, ; y we have |y —z| < &,, we can estimate

[k7n7y—z,t] 38" [k,n,y—z,t] o —_ }/—(X
T\ (& I [crec (382)% (|2 = ] + €1)
< ol My 1Pl ) (2 y 4 )7
Recalling that [X{ (yyV)| < 8]|\],<| and that (|z—y| + &))" % < (2€,)7 %, we

bound

My, N—

1
JZ<[ M) (yev) — P )(W;N)>‘<8|kl|y 7By araatard
n=0
My, n—1
<(y—zl+en)r Bl S grtPolvepl
n=0

< (ly—2 +en)"*P.
which, recalling (4.4.13), is better than (4.3.11) by Remark 4.4.2.
L has homogeneity Y+ 3. Finally we prove that
Ley)] < €
uniformly for x € K and n € N. This is a consequence of the following

Lemma 4.4.4. Fix ye R, B > 0 and a point xe RY. Let T € &' have order
rq and homogeneity bound 7y at the point x, i.e. for some r € N and C, < o0

IT(¢f)] < Cx|@llcra €7

uniformly for € € (0,1] and ¢ € 2(B(0,1)). (4.4.15)

Let K be a B-regularizing kernel up to degree m > y+ 3 + r¢. Then
T (Koue - P (w) )| < el

recall (4.4.1) and (4.4.2).
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PROOF. We consider the decomposition

T (Koye =P ) = T (i ) =7 (B ()

F G
+T <K[o M — P (‘lffN)> :

"

H
We shall estimate F', G, H separately. We analyse first

F = Z (KEyn) (4.4.16)

Recall from (4.4.3) that one can write KXyf¥ = ({[N21)3E Thep, by the
homogeneity bound (4.3.3) for J, and using the property (4.4.4) of "N,
we can bound forn > N:

T (Knwe)| = ’T ((C[n’N7x]>j€N)‘

<Je] ey

< Wl ora P (3en)".
Plugging this bound into (4.4.16) we finally obtain

IF| < |wlcael™,

as required. The quantity G is treated in the same way as (4.4.11), so that:

v+B
G| <ey".

We are ready to control the contribution of H. As in the estimate of D
above, we distinguish two cases. First assume that Y+ 8 > 0, then we use
(4.4.14) again. Therefore:

H == il J J 1 _ t ( 5 [Ovnvwfxvt]> 38”) dt En d
=) o) drv(w)dw
n=0

By the homogeneity bound (4.3.3) for J, and using the property (4.4.8) of
gL0nw=xt] (note that here [x —w| < &y < &,), we can bound

'T ((5 [07n7w—x,t])j€n) ’ < Hg [0,n,w—x,t]

And thus after summing the geometric series one obtains since Y+ 8 <m+ 1

(3gn>7 < 8]rvn-i-l grjl/—i-ﬁ—m—l .

Cra

v+B
H| <&y "
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Finally, we bound H in the case when Y+ 3 < 0. In this case, PX[O’N) =0.

3¢,

Then, recall from (4.4.5) that one can write K, (w —-) = <¢["’W_x]> , SO

that ; )
En
H=| T (((p["’wx]> ) W (w) dw.
R4 X

Thus, from the homogeneity bound (4.3.3) for J, and the property (4.4.6) of
o= one can estimate (note that here |w — x| < &y < &,)

()

And thus after summing the geometric series one obtains as announced
H| < 8]7\;+ﬁ . The proof of Lemma 4.4.4 is complete. 0

o (3g,)" < eP*7.

<Jo

Conclusion. We have shown that Lis ((a+ f8) A0, 7+ 3)-coherent and that it
has homogeneity bound with exponent Y+ 3. Then its (y+ f8)-reconstruction
is 0, and therefore the (y + 3)-reconstruction of H is K« ZF .



CHAPTER 5

Multi-level Schauder estimates for modelled distributions

In this chapter we discuss one of the most important operations on
modelled distributions: the convolution with a regularising integration kernel.
We fix a pre-model (IT,I") as in Definition 3.1.1 and we consider f €
92/H7F) as in Definition 3.1.3. We have seen in Theorem 4.3.1 how we can

build a linear operator
H GO g OtBINTEE o = K« .
Now we want to address an analogous question for F = (I, f). In other
words, we want to show that it is possible to construct
(1) another pre-model (I1,T"), such that

(2) forevery f e Q{HD there is a modelled distribution f € PP

(fL1)
such that

H AL f) = AL f).

5.1. The pre-model

We need an additional property for a pre-model (see Definition 3.1.1).
Definition 5.1.1. A pre-model is good if there exists r € N such that
(o] < &7,

uniformly over x in compact subsets of R%, ne N and ¢ € A,.
Remark 5.1.2. A model (Definition 3.1.3) is a fortiori a good pre-model.
Indeed, any germ IT' in a model is coherent, as we discussed in Section 3.3,

and for a coherent and homogeneous germ on can replace the single ¢ € &
by a generic y € %, for any r > — (o A @), see Remark 2.4.2.

We fix throughout this chapter an integration kernel K, which is supposed
to be -regularising up to order m where m € N satisfies
m>y+pB+r (5.1.1)

where r is as in Definition 5.1.1.

We work from now on with a good pre-model (I1,T"), and we want to
construct a pre-model (ﬁ, f) with the property discussed at the beginning of
this chapter. We suppose, as in Definition 3.1.3, that ¥ > max(oy,i € I).

47
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We start discussing the family (IT}),.; ,cpa- A reasonable guess would

be to set [ = I and IT; = K« IT, recall (4.1.3). However we expect I (y&)
to be small as n — +0o0, at least if the homogeneity ¢; + B which is expected
for I is positive.

However K « IT:(y%) has no reason to become small for large n. To
this aim we can subtract a Taylor polynomial which can yield the desired
behaviour. We are going to set for i € /

M=K« Y I (a"K(x— -)) xk, (5.1.2)
k| <oi+p
where we recall that XX (w) := (W;!x)k. If IT. is a polynomial, this definition

yields I = 0.

Proposition 5.1.3. The distribution ﬁi in (5.1.2) forie I is well defined, has
order r and satisfies for all compact set K < R?
X (y)|

sup sup sup .
xeK (eN ye B, 8;"4_[3

< +00. (5.1.3)

PROOF. Since (IT,T) is a good pre-model, then IT: is a distribution with
order r. Then by Proposition 4.2.2 the distribution K = IT. is well defined and
has order r. By applying Lemma 4.3.2 to T := IT. and v = o, we obtain that
IT (*K(x—-)) is well defined for all |k| < o; + .

Finally, (5.1.3) follows from Lemma 4.4.4. U

We can therefore associate to IT' the homogeneity o; + 8. Then we
construct a new basis by setting

fIZII_IIpoly, Ipolyiz {kENdi |k| <’}’+ﬁ},
f[l)i = X];, ke IPoly-
recall (4.3.7); of course the homogeneity of I1X is |k|.
Once this choice is made, it remains to construct I" and f. It turns out

that there are very natural choices for these objects. Let us set for notational
convenience

A;’E = ]]'(|f|<06i+ﬁ) H; (aEK(X— )) y X e Rd, i€ I, le Nd,
so that (5.1.2) becomes
I = K«IT, - > A¥XE
kEIpOly

and we have already seen in the proof of Proposition 5.1.3 that Afge is well
defined.
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We define now the coefficients (fﬁc]y)

(D ijel
(2) i,j € IPoly
(3) ieland j € Ipyly,

i,jel" These are straightforward when

see (5.1.4) below for the precise values. The less simple case is that of
i € Ipoly and j € 1, to which we turn now. By the definition of (II}),.; we find
that for je I

YT = ) <—A§F’<X’;+ZF;{VA;’<X’<>

iel kelpoly iel

Since X’y‘ =D o<k X’y‘fg (x) X, the .right-hand side of the latter expression is
equal to (after renaming some indices)

>oxi (ngA’;-i— > Xﬁ@)A;’JH’) ,

i€lpoly kel teNd

namely a linear combination of elements in Ipo}y. Therefore we set for j e 1
and i € Ipoly

T = THAN - " X[ (x) A

kel (eNd
To resume we have
e, if i,jel,
IL(igj) X)J,_l(x), if i,j € IPoly ,
[ = - (5.1.4)

T DAk - N XA AP, i i€ by, jeE,

kel eNd
k0 if iel, jelpoy-

Then we have the desired property for I”
DY = jel
ief

and we have proved the following

THEOREM 5.1.4. If (IL,T) is a good pre-model, then (ILY) is also a
good pre-model.
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5.2. The modelled distribution

For a modelled distribution f : R? — R! we define now a new function
f:RISR!

fi if iel,
fli= | (5.2.1)
RF — > Y |(OK(x—2) if i€ lpoy,
ou<li|-p

where F = (I1, f) and we recall that Ipoyy = {k € N : [k| < y+ B}. If I} is
a polynomial, then fIi = 0, hence the value of f; 1s immaterial.

Remark 5.2.1. Note that we have
I = (FTD),

where %" is the operator of Theorem 4.3.1. Indeed, observe that from the
definitions and the notation (3.1.2)

FID =Y f| (Kem) = Y T (*Ker—) ) xk

i€l k| <oi+B

+ Y | @F- Y AT K= XS

li|<y+B au<|i|—p
e (2f;ng;> + ) (%F—foﬂjﬁ) (0K (x—-)) Xt
iel li|<y+B ael
= <}i/<f, H>x-

In particular, if f € 9(7/1_[ r) then we have already proved in Theorem 4.3.1
that Z(f,IT) = K« ZF .

We have seen in Theorem 5.1.4 that (IT,T) is a pre-model. It remains to

show that f defined in (5.2.1) is in .@(Yg I’i)

. For that however, we need the
following additional assumption:

Viel: o;+pB¢N.
More generally, it is enough to impose the following requirement:

Viel, if a+BeN then

. 522
n;(a’;K(x—~))=0 V ke N? with k| = o + B, xe R%. (522)
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One can check that this condition always holds if TT. is a monomial of degree
< oy, hence it effectively applies only to non-polynomial germs IT;.

THEOREM 5.2.2. Let (I1,T") be a pre-model satisfying (5.2.2), y€ R and

PROOF. We want f to be a modelled distribution of order y+ 8 with
respect to I': the condition is obvious for i € I, since it is equivalent to the
condition on f with respect to I'. We have to check the correct bound for
i € Ipoty = {k€ N?: |[k| < y+ B}. Fix x,y € R? and introduce the quantity

Nyy:=min{fneN: g, <|y—x|}.

We recall the notation J, = F, — ZF, and we write the decomposition:

fim > TR =
jef
Nyy—1
== Y LK== D K- X (x)
=0 [kl <y+B—lil
A
Ney—1
- Z >, K (x—)) (ff—ZFﬁéjfy’)
n=0 o,<|i|—p JEl
B
+0 ' 1+ .
IR GLIEEDIED VD SR A Can EEDIRC
7’i=Nx,y , 'i:NX,)' |k|<7+ﬁf|i| ,
c D

+0o0
Y ek ) (f;—zrz; )
n:Nx‘yOCa>|l'|—ﬁ Jjel

J/

v~

E

Now, with the multiscale techniques of the proof of Theorem 4.3.1, we
shall prove that each of those terms is bounded by |x — y|7+B=1il,

Estimate of A. In view of (4.4.14), we rewrite:

NU
l—t Ly+B]-lil . 3¢e,
J [l,}’l,X*yJ] ) dl-,
.f e (),

where E[i:24] s the function defined in (4.4.7). Note that because n < Nyy
we are in the regime |y — x| < €, and thus from (4.4.8) and the reconstruction
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bound on F, see (4.3.3), one obtains:

Jy ((g[iﬁwy’t]ien)‘ < Hg[’}nvxfw] -

< ’y_x‘[y+ﬁ]—|i|8’[j—ﬁ’+m (3e,)".

(3g,)"

Thus, summing a geometric series and since Y+ 8 < [y + B],
Al < [y —"HPH

Estimate of B. Because of the assumption (5.2.2) that IT¢ (0'K(x —-)) = 0
when |i| = o; + B € N, only the terms with @, < |i| — B contribute to the
sum defining B. In view of (4.3.16), we rewrite

(K, (x-) = 112 (o71) )

X

where (p[i7”] is defined in (4.3.15). Thus from the property (4.3.18) of qo[i7”]
and the fact that I1* has homogeneity bound o, we obtain:

T (@K (e )| < 0] | (3en)

<eh M (3g) < el o,

Now since f is a modelled distribution with respect to I" one can bound B
by:
Nyy—1

Bl Y D ety (5.2.3)

n=0 q,<|i|-B
Summing the geometric sums yields as announced

[B] < [y — 7P

Estimate of C. As just above, we rewrite
+00

c= Y 1, <<¢[i,n]>j8n> |

n=Nyy

where (p[iﬂ] satisfies (4.3.17), (4.3.18), and thus from the reconstruction
bound on F, see (4.3.3), one obtains:

I ((qo[”"])jgn)

Hence, summing a geometric series and since Y+ f8 > |i|, we obtain

€] < by =71,

<[

3e,)"
(36

< &Pl (3g,)7 < gl BN
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Estimate of D. Here we use the estimate proved just above:
)Jy(a"*kKn(y _ ))‘ < 821’+ﬁ*|i|*|k‘ )

Thus by summing a geometric series, one obtains:

+00 . j
LT S S A e e k)
n=Nyy |k|<y+B—|i|

Estimate of E. Finally, for the term E, the estimates are the same as for the
term B, but are summed over different indices. Indeed, similarly to (5.2.3),
we get:

400 )
Els 3 et ey,
n=Nxy 0>|i|—p

and summing the geometric series yields as announced:
[E] < |y —x[7+P1,

This concludes the proof. U

5.3. Recursive properties

In this section we consider a good pre-model (IL,I") and the good pre-
model (IT,I°) of Theorem 5.1.4. We want to show that certain properties are
inherited by (I1,1") from (T1,T).

Recall that we have not imposed a group property on the reexpansion
operators I'. The following proposition however establishes that if I" enjoys
such a property, then so does I".

Proposition 5.3.1. The following assertions are equivalent:
(1) Forall x,y,z€ RY, Ty, Ty, =T ..
(2) For all x,y,z € R, f‘xy f‘yz = f‘xz.

(Here the product is understood as the matrix product.)

PROOF. The implication (2) = (1) is straightforward. Now assume (1)
and let us establish (2). We have to prove that for all i, j € I,

YR =14, (5.3.1)

kel
We distinguish the different possible cases for i, j e I. If i, je I, (5.3.1) is
straighforward from the definition of [ and (1). If i, j € Ipoly, then (5.3.1)
is also straighforward from Newton’s binomial formula. In the case when
i€l, j€ Ipoly, the left-hand side and the right-hand side of (5.3.1) vanish.
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It remains to tackle the case when i € Ipoly, j € 1. In this case, we can
calculate explicitly

ik Tk ik Tk j ik ok j
ery Fyz *ery Fyz + Z ny Fyz

kel kel kelpoly
_ a,i 7ak l kji+¢ k j
_Z ZAX Ly — Z Xy(x) 4y Iy
kel \ ael Lelpgly

By . s
+ Z X5 (x) ZA;*F;;— Z XE(y) AIKF

kelpgly ael Lelpgly
Using the fact that I',,I'y, = I'y; in the first term:
fik fkj a,ipaj ¢ kyi+€ ok j
PREAEDI 0 S EDHPPP {CHV e

kel acl kel Lelpyly
k—i kaj k—i k0 <l
+ O Y XAy - Y xE ) Y AR y).
kelpoyy acl kElpoly Lelpgly

Observe that the second and third term cancel out, and from Newton’s
binomial formula in the last term, we obtain

D - SATE - 3 R T
kel ael aglpoly
The proof is complete U

Analogously, one can prove the following:

Proposition 5.3.2. If (IL,T") is a model in the sense of Definition 3.3.1 then
(T1,1") is also a model.
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