ON DAVIE’S NON-EXISTENCE AND NON-UNIQUENESS
EXAMPLES FOR EQUATIONS DRIVEN BY ROUGH PATHS

FRANCESCO CARAVENNA, MATTEO TRABATTONI, AND LORENZO ZAMBOTTI

ABSTRACT. We consider differential equations driven by rough paths, focusing
on examples of non-existence and non-uniqueness of solutions, as provided by
Davie under optimal regularity assumptions. We provide in this note
complete proofs and explanations, together with some extensions and improve-
ments, with the goal of making these examples better-known.
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1. Introduction

Rough Paths were introduced by Terry Lyons [Lyo98| as a mean to give a path-
wise theory of differential equations driven by irreqular paths, such as the sample
paths of Brownian motion. This theory was then enriched by Massimiliano Gu-
binelli with the notion of Controlled Paths [Gub04] and the crucial Sewing Lemma,
see also [FLP06|. We refer to [FH20| for a comprehensive introduction to the sub-
ject. It is worth stressing that the ideas at the basis of rough paths play a crucial
role in the theory of Regularity Structures by Martin Hairer [Hail4], which allows
to make sense of a large class of singular stochastic partial differential equations.

We focus here on the finite-difference formulation of differential equations driven
by rough paths, proposed by Alexander M. Davie |[Dav08|, which leads to results
of well-posedness (existence and uniqueness of solutions) with sharp reqularity
assumptions. See |[CGZ24] for a recent pedagogical introduction to this approach.

In the same paper, Davie gave also examples of non-uniqueness and non-existence
of solutions when the aforementioned assumptions fail, thus proving their optimal-
ity, see [Dav08, §5, examples 1-4]. These examples appear to be less well-known
than they deserve, possibly because many details of the arguments involved are
left to the reader. The purpose of this note is to discuss these examples in depth,
working out their construction in detail, and presenting novel generalisations.

1.1. Main results. We recall the definition of an a-rough path for o € H, 1}:
For n > 1 we define the simplex

[0,T]% = {(t1,...,tn) : 0<t < ... < t, < T} (1.1)
Some recurrent notation is recalled in Section
Definition 1.1 (Rough path). Let a € ]%, 1} and let X : [0,T] — R® be a path of
class C*. We call a-rough path over X a pair X = (X, X?) such that:

o X1:[0,T)2 — R is simply X}, = Xy — X, for all0 < s <t <T;
e X2 [O,T]QS — RY®@ R? satisfies, for all0 <s<u<t<T,

e the following analytic bounds hold, uniformly over 0 < s <t <T':
Kol Slt—s XSS [t — s

We recall that for a > % the second level X2 is uniquely determined and it is
given explicitly by the Young integral

t
Xit:/(XT—XS)@@dXT.

On the other hand, for o < % the choice of X? is non-unique (but any two choices
differ by the increment of a 2a-Hélder function).
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Given a path X of class C* with a €]3,1] and a function o : R* — RF @ (R%)*
we study the following controlled difference equation for an unknown path Z :
0, 7] — R*:

Zy—Zs=0(Zs)( Xy — Xs) +o(t — 5), 0<s<t<T. (1.2)

The difference equation (|1.2)) is a natural generalised formulation of the controlled
differential equation
Zt == O'(Zt)Xt, 0 S t S T. (13)
Whenever we write o(t — s), we always mean uniformly for 0 < s <t < T, i.e.
Ve>030>0: 0<s<t<T,t—s<¢implies |o(t —s)| <e(t—s).

It can be easily proven that is equivalent to when X is in C! and o is
continuous, however is also meaningful when X is not differentiable.

We recall the results [Dav08] regarding local and global existence and uniqueness
of solutions for the difference equation ((1.2)) (see also [CGZ24, Chapter 2]).

Theorem 1.2 (Well-posedness, Young case). Let X : [0,T] — R? of class C* with
o €]3,1] and let o : RF — RF @ (RY)*. Then we have:
e local existence: if o is locally v-Holder with ~v > é — 1, then for every
20 € R¥ there is a possibly shorter time horizon T' = T,y (z0) €]0,T]
and a path Z : [0,T'] — R* starting from Zy = zy which solves for
0<s<t<T;
e global existence: if o is globally v-Holder with ~v > é — 1, then we can
take T}, x ,(z0) = T for any z € R¥;
e uniqueness: if o is y-Holder with v > é (i.e. o is differentiable with Vo
of class CY~1), then for every zy € R* there is exactly one solution of
with ZO = 20-

When a < %, in general ([1.2)) does not admit any solution. If « E]%, %], we can

enrich and consider the rough difference equation
Zy — Zy = 0(Z)XE, + 09(Z) X2, + ot — s), 0<s<t<T, (1.4)
where X = (X!, X?) is an a-rough path over X and we define
oa9(z) == Vo(z)o(z). (1.5)

When X is of class C!, we can consider the canonical rough path
t
X;:i/(xu—zg)®Xde

With this choice is equivalent to , however is meaningful also for
X non differentiable. The construction of X? is in general non canonical, as there
are multiple choices of X? for a given X. In section we will see an example of
non canonical rough path.
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We now recall the results [Dav0§| regarding local and global existence and
uniqueness of solutions for the rough difference equation (1.4) (see also [CGZ24,
Chapter 3)).

Theorem 1.3 (Well-posedness, rough case). Let X : [0,T] — R? of class C* with
o €l3,3], 0 : R 5 RF @ (RY)* and let X = (X', X?) be an a-rough path over X.
Then we have:
e local existence: if o is locally v-Holder with ~v > i — 1, then for every
20 € R¥ there is a possibly shorter time horizon T' = T/, y (z0) €]0,T]
and a path Z : [0,T'] — R¥ starting from Zy = zy which solves for
0<s<t<T';
e global existence: if o is globally v-Holder with v > é — 1, then we can
take T}, y ,(20) =T for any z € R¥;
e uniqueness: if o is y-Holder with v > é, then for every z € R¥ there is
exactly one solution of with Zy = 2.

We now discuss the possibly less known part of Davie’s paper, see [Dav08| §5,
examples 1-4], which shows that the assumptions of Theorems and are

indeed sharp. We start with non-uniqueness.

Theorem 1.4 (Davie’s non-uniqueness examples). The following holds.

e (Young case) Let o €]3,1[ and v < L. There exist a path X : [0,T] — R?
of class C* and a non-linearity o : R*> — R* ® (R?)* of class C7 such that
for any T > 0 the equation (1.2), with the initial condition Zy = 0, admits
two different solutions on an arbitrary time interval.

e (rough case) Let a €]3, 5[ and v < L. There exist an o-rough path X =

(XY, X?) and a non-linearity o : R*> — R* @ (R*)* of class C7 such that
the equation , with the initial condition Zy = 0, admits two different
solutions on an arbitrary time interval.

Besides proving this theorem in full detail, we present in this paper two gener-
alisations: we extend Davie’s example to a rough path of arbitrary low reqularity
a €]0, 1] (excluding for simplicity the boundary cases o = % for some n € N), see
Definition and we show that the rough path can be taken geometric. Let us
extend the definition of g9 by setting recursively, for any k£ € N,

o1(z) :==0(2), ok(2) = Vor_1(z) o(z). (1.6)

Theorem 1.5 (Improved non-uniqueness examples). Let « 6]#_1, %[ for somen €

N and let v < . There ezist an a-rough path X = (X', ..., X") (see Deﬁm’tion
and a non-linearity o : R?> — R? @ (R?)* of class C7 such that the generalised
difference equation

Zy—Zy =Y on(Z)XE + ot — ),
k=1
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with the initial condition Zy = 0 admits two different solutions on an arbitrary
time interval.

Moreover, for n = 2, that is « E]%, %[, the rough path X can be taken geometric,
i.e. there exists a sequence X,, of paths of class C' such that the associated canonical
rough path X,, converges to X in the a-rough path topology.

Remark 1.6. The fact that the rough path X in Theorem[I1.5 can be taken geomet-

ric should work for anyn > 2 and « E]n%l, %[ with a similar construction, however
11

we limit ourselves for simplicity only to the “rough case” n =2, i.e. a €]z, 5].
We next turn to non-existence.

Theorem 1.7 (Davie’s non-existence examples). The following holds.

o Leta €]3,1] and v = L —1. There exist a path X : [0,T] — R? of class C*
and a non-linearity o : R® — R3 @ (R3)* such that the difference equation
does not admit any solution Z such that Zy = 0.

o Leta €], 5[ and v = £ —1. There exist a path X : [0,T] — R? of class C*
and a non-linearity o : R* — R*® (RY)* such that, for any a-rough path X
over X, the difference equation does not admit any solution Z such
that Zy = 0.

We will prove Theorem in detail and present a generalisation to rough paths
of arbitrary low regularity « €]0, 1[.

Theorem 1.8 (Improved non-existence examples). Let o G]%H, %[ for somen € N

and let v = L — 1. There exist a path X : [0,T] — R™? of class C* and a
function o : R — R"™2? @ (R"2)* of class C7 such that, for any a-rough path
X = (X!,...,X") (see Definition[4.4) the generalised difference equation

Zy—Zy =Y on(Z)XE + ot — ),
k=1

does not admit any solution Z such that Zy = 0.

In conclusion, we provide in this note a detailed proof of Theorems [1.4H1.8|
After introducing some notation in Section [2] in Sections [Bl{4] we give examples of
difference equations that admit multiple solutions with ¢ in C7 and v < é; then
in Sections we show that existence can fail for ¢ in C? with v = é — 1.

2. Preliminaries and notation

Given a time horizon T" > 0 and two dimensions k,d € N, we use “path” as a
synonym of “function defined on [0,7]” with values in R?. We denote by | - | the
Euclidean norm. Linear maps from R? to R*, identified by k x d real matrices, are
denoted by R¥ @ (R?)* and equipped with the Hilbert-Schmidt norm | - |.
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Recall the definition (L.1)) of the simplex [0, T]%. We write C,, = C([0, T]%, RF)
as a shorthand for the space of continuous functions from [0, TT% to R*:
C, == C([0,T]%,R") = {F : [0,T]* — R": F is continuous} .

We will work with continuous functions of one (f), two (Fy) or three (Ggut)

ordered variables in [0, T], hence we focus on the spaces Cy, Co, Cs. In particular

e On the spaces Cy and C3 we introduce a norm which controls the behaviour
close to the diagonal: given n €10, oo, we define for F' € Cy and G € Cj

|Fst| |Gsut|
Fll, = su : Gllp = _swp o= 21
H HTI 0§s<t1<)ST (t _ 3)"7 H H77 ogsgugtST (t - 5)77 ( )
s<t

and we denote by CJ and CY the corresponding function spaces:
Cl:={FeCy:|F|, < oo}, C]={G e C5: |G|, < oo}

e On the space C) of continuous functions f : [0,7] — R* we consider the
usual Holder structure. We first introduce the increment 6 f by

(5f)st::ft_f57 OSSStST,

and note that §f is in Cy for any f € C;. Then, for a €]0, 1], we define the
classical space C* = C%([0, T], R¥) of a-Holder functions

C*:= {f 0, 7] = R”: |6f]la = sup Lo = fol < oo}

o<s<t<T (t —5)*
(for a = 1 it is the space of Lipschitz functions). Observe that f +— [|df]«
is a semi-norm on C%. The standard norm on C® is

[fllee = [1.floo + 10 £l

where we define the standard sup norm

[flloe == sup |fi.

te[0,7

Definition 2.1. Let v > 0. We say that a function F : R¥ — R is (globally)
~-Hélder, or (globally) of class C7, if

o for vy €]0,1], we have

[Flev := sup [E(@) = Fly)| < +o00.
z,yCRk xty ’x - yh
o fory €|n,n+1] andn = {1,2,...}, Fisn times continuously differentiable
and
(D™ F)ey :=  sup [DWE(z) — DWE(y) < +00
z,yERF zy |I’ - y|’y—n

where D™ is the n-fold differential of F.
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Given a function o : R* — R* ® (R%)* of class C?, that we represent by o%(z) with
i€{l,....,k}and j € {1,...,d}, we denote by Vo : R¥ — RF @ (RY)* ® (R¥)* its
gradient, represented for i,a € {1,...,k} and j € {1,...,d} by

(Voo = 52(2),
Given a two-variable function R = (Rg)s<t € Ca, we define the three-variable
function 6 R = (6 Rsut)u<s<t € C5 by
ORg := Ryt — Ry, — Rus -
The next Sewing Bound will be used in a sequel (recall the norm || - ||, from (2.1))).

Theorem 2.2 (Sewing Bound). Given any R € Cy with Ry = o(t — s), the
following estimate holds for any n €]1, 00]:

[Blly < K [[0R]], - (2:2)
where K, = (1 —21)71,

The proof follows as a corollary of the celebrated Sewing Lemma (but it can
also be obtained in a more elementary way, see [CGZ24, Theorem 1.9]). Indeed,
assume that ||[0R][,, < oo for some 1 > 1 (otherwise there is nothing to prove).
Then the Sewing Lemma ensures the existence of a one-variable function f € C}
such that |R — 0 f]|, < K,||0R]|,, hence Ry — (fi — fs) = O((t — $)") = o(t — s).
Since Ry = o(t — s) by assumption, it follows that f; — fs = o(t — s), which implies
6f =0 (i.e. f must be constant). Then R — 6 f = R which yields (2.2).

3. Preparation for non-uniqueness

3.1. Whitney’s Extension Theorem. In the following we will introduce func-
tions defined on closed subsets of R” and we will need to extend them to the whole
space. In particular, we will want the extensions to be y-Hélder functions, with ~
possibly greater than 1 (recall Definition . To do so we will use the version of
Whitney’s Extension Theorem in Theorem 4 of section VI.2 of [Ste70], which we
report in Theorem [3.2] Before stating this Theorem, we need to define the space
CY(F) for FF C R™ closed, that is the space of y-Holder functions on F'.

Definition 3.1. Given k <y < k+ 1 with k € N, F' a closed subset of R" and a
function f: F — R, we say that f is in C?(F) if there exists M > 0 and functions
{fD . F — R}o<iji<k such that fO = f and if

@ =3 100 Ry

lj+l<k

then f9(z) < M and |R;(x,y)| < M|z —y[?=V! for every x,y € F and |j| < k.
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Theorem 3.2. Let F' be a closed subset of R" and f : F' — R a function in C7(F)
with k <y < k+1 for some k € N. Then there exists h : R" — R such that

(1) h(x) = f(x) for every x € F

(2) his in C”

(3) %(m) = fU(x) for every x € F.

3.2. A key oscillatory integral. All our proofs concerning the non-uniqueness
of solutions rely on an elementary (yet non-trivial) result involving a one-dimensional
integral, which we now present. Let us fix 5,7,7 > 1 such that

n _n+l1
T< =< ——<v+1. 3.1
53 (3.1)
Define X := 0, X2 := 0 and for ¢ > 0:
1 B =N 2 B N th
X; =tPcost™, X;:=t"(2+sint™"), Xi=1{ 2] (3.2)
¢

The main result of this section is the following.

Theorem 3.3. Let X be as in (3.2)) for some B,v,n > 1 satisfying (3.1)).
(1) The function X : [0,1] — R? is %—Hdlder.
(2) The function [0,1] 3t — (X?)? € R is %—H&lder.
(3) The function

t
'Ry =R, ::/(XS)’YXidu, (3.3)
0

18 well-defined.
(4) There exist C,c, T > 0 such that

B+ <I < C’tﬁ(’ﬁ‘l)—ﬂ’ Yt € [O,T].

Moreover I, > X? for every t € [0,T].
(5) We have uniformly for 0 < s <t <T

6l — (X6 XL = ot — s).

Before proving Theorem let us make some important remarks:

e Observe that, for every e > 0, X is C* on |e, +oo[. Near the origin the fast
oscillations of the sine and cosine give rise to the function’s irregularity.

e In general, composing a Holder function with a more regular one, does not
improve its regularity. However, [0,7] 3 t — (X?)” € R is indeed more
regular than X?, since by the previous theorem the former is %—Hélder

while the latter is %—Hélder and v > 1. As we will see, this fact becomes

very important in the proof of point 5 of Theorem [3.3]
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e It might be surprising that I, > X2 as in general the integral of a positive
continuous function over [0,¢] (even if raised to the ), for ¢ sufficiently
small, is not greater than the function itself valued at point t, see for
more details. This does not apply to our case because X! is not a function
of bounded variation and we cannot define I, as the Lebesgue integral

[7(X2)7dX}. However, we could define I, as a Young integral, see [7.1] for
further details.

e For our non uniqueness examples to work, it will be fundamental that
I, > X?. If the sine and cosine in X2 and X' did not resonate, or if y > “t1,

we could not prove that I; > X? and the non-uniqueness phenomenon
would not occur in our setting. We refer the interested reader to[7.3|to see
what could happen without resonance.

Proof of Theorem[3.3. We prove the five points of the Theorem one by one.

Proof of 1. Let us study the regularity of X defined above. First we prove that
8
X1 is of class C7+T on [0,1]. We want to show that there exists C' > 0 such that

s
|Xt1+h - Xt1| S Ch‘m
for every ¢, h > 0 such that ¢t + h < 1. Observe that
X} = Bt cost™ + P 1 L sint .

We consider two cases:
(1) If h > ¢"1 then

X2 = X <|XE + X < (t+h)P +1°
< 2t 4+ h)? < 2(h7 + h)?
< 2(2h71)P < 22Ppr
(2) If b < 7! then * < h™71 and
X — X < sup [XE A <2807
s€[t,t+h]

1 n+1-08 8
:Q&m(;) < 2

8
This proves that X! is in C7#7; it can be proven analogously that also X2 is in
Catr,

Proof of 2. We now study the regularity of ¢ — (X?)7, in particular we are going

B : -
to show that this function is of class C771. The proof is very similar to the one of
point 1 of Theorem [3.3] We want to show that there exists C' > 0 such that

B
|(Xin) = (X)) < Chr
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for every t, h > 0 such that ¢t + h < 1. Observe that for ¢ > 0

d
E(Xf)7 = BytP N2 4 sint ™) — pyt? N2 4 sint ") cost T,
so, there exists C' > 0 such that
d
‘(Xf)w‘ < Ctﬁ’y, ‘%(XE)V < Cpr—n-1

for every t € [0,1]. We consider two cases:
(1) If h > ¢ then

[(XZ00)" = (X2 < [(XE)7] -+ 1(XE)
< C(t+h) +Ct™
< 20(t + h)» < 2C(hwt + b)Y
< 20(2h )Y < 2PHLC R,
(2) If h < ¢ then 1 < b~ and

d
(XE)” = (X< sup | —(X7)
se[t,t+h] | A4S

n+1—B~
— Ch (1) < Chiit,

h < CtPr—-1p

7 <
This proves that (X?) is in C.
Proof of 3. Recall that by ({3.3])

t
I, = / (X2)7 X1 du.
0

A priori it is not obvious that ]0,1] 3 u ~ (X2)YX] is integrable, nor that I # 0.
We will prove in the following that I # 0, now we focus on the integrability.
Observe that for u €10, 1]

(XS)VX}L = u57(2 -+ sin u’”)”(ﬁuﬁf1 cosu”" 4+ nuP " Lsin u™ )
= BuPOD=(2 4 sinu™) cosu™" + nuP OV (2 fsinu ") sinu " (3.4)

and both functions are integrable over ]0, 1] since B(y+1)—1 > S(y+1)—n—1> —1
by (3.1]), because f(v+ 1) >n > 0.

Proof of 4. We now prove that there exists C' > 0 such that
I, < CtPO+)=m (3.5)
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for all ¢t € [0,1]. Recalling (3.4), we find

t t
|It| < 37/ |Buﬂ(v+1)—1| du—}-?ﬂ/ |nuﬁ(7+1)—n—1 du
0 0

< 537t6(7+1) + ngvtﬁ(vﬂ)—n
< 53%/3(%1)777 + ngvtﬁ(“ﬂrl)*n.

Defining C' = 37(8 + 1) we conclude the proof of (3.5)).
In order to conclude the proof of point 4 of Theorem we are going to prove

that there exists ¢ > 0 and T" €]0, 1] such that
I, > POt (3.6)

for all t € [0, T|. The strategy is the following: by an integration by parts we obtain
the integral of cos? s~ multiplied for a power function with exponent B(y+1)—n—
1. All the other terms will be negligible respect to this integral for ¢ small enough.
The fact that (X?)” and X} resonate is fundamental to obtain a significant lower
bound on I;. Observe that

t
I; =lim [ (X2)"X!ds

e—0 c

| La(xy
— i (- e - [ 20 )

t

= PO+ cos t7(2 + sint ™) — / Bys?0FTD=H(2 4 sins™")7 cos s ds+

0

t
+ / rysPOD=1=12 4 gin s cos® s ds
0
t
> —237P0+D 4 777/ sPOFD=1=1 og? 57 ds
0

Intuitively cos? s~ is a quickly oscillating function with mean %, hence the previous

integral is morally equal to % f(f s80+D=n=1ds. We now prove that this intuition
is precise; note that

t t
n’y/ sP0F==1 05?57 ds = 777/ sP0H==1 (1 — gin® s77) ds
0 0

t 1 1
= 777/ Pl —n-1 (1 — =+ —cos 23_’7) ds
. 22

: ¢
_m / $BOrD—n-1 g TV / §POFD=1=1 652577 ds.
2 0 2 0
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Now,

t B(y+1) t
t 1
/ nsPOFD=1"1 05957 ds = — 5 sin 25" + %/ sP0HD)"1gin 257" ds
0 0

> B+

This implies that

Y 1 nmy By+1)—
I, > _(2 37+ _)tﬁ(v-i- ) + eyl 7
' 2 2B(v+1) —n)

%, this yields that

and if t < (qprr-pessg)

m Bly+1)—
I > B+ =1
"TABG+1D )
. . NP 1
This proves (3.6]) choosing T < min{7 " 7, (4(5(7+1)fg)(23w+%))"} and ¢ = 15
Finally, the fact that I; > X? follows from (3.6)) by possibly choosing a smaller

T since f(y+ 1) —n =B+ (By—n) < B by the first inequality in (3.1 and since
X7 < 3t° by (B.2).

Proof of 5. Finally we show that
5T — (X6, = oft — 5) (37)
uniformly. Fix e €]0,7] and observe that, for s,¢ € [¢, T,
61y — I,(t — s) = o(t — s).

Moreover,
It - 8) = (X2 X1t - 5)
and
XNt —5)=6XL +o(t—s).
Putting everything together we find that
R5, = ((Hst (XQ)W(SXslt) Le<s<i<r) = o(t — s)
uniformly for ¢ < s <t < T. Since 57+1) > 1 by the last inequality in (3.1)), we
can apply the Sewing Bound, see Theorem [2.2] obtaining
1R | s < Ksan 16(X*)7 ]| oo 10X s < +o0,
n+1 n+1 n+1

EICESY!
where K6(7+1) = (1-2" Ria )~!. Observing that the right hand side does not

depend on 5 and by taking the limit for € — 0 we find that
1076 — (X3)76X, oy < Kagin 0(X ok ||Lv||5X o, <+o0

for every 0 < s <t <T. Since 6(7“ > 1 by ., we have proved . O
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4. Non uniqueness of solutions

4.1. Introduction. The aim of this section is to present examples of non-uniqueness
of solutions a la Davie for rough differential equations driven by a path X in C*
with « G]%H, %[ for n € N. In each case we will define an appropriate function o
of class C7 with v < i

We have three selected regimes for o €]0,1[\{+ : n € N}:

e for E]%, 1[, that we call the Young case, we assume 1 <y < = < 2
e for a E]%, %[, that we call the Rough case, we assume 2 < v < = < 3
e for @ < 1 and * ¢ N, that we call the general case, we assume |1| <y <
LT
In every regime we can find 5 and 7 large positive numbers such that

n n+1 1
YL I A <~ 4.1
555 “a (4.1)
4.2. Non-uniqueness in the Young case. Suppose a €]3,1[ and v €]1,1].
We want to construct, for some 7" > 0, functions
e X :[0,7] — R? of class C?,
e 0:R* — L(R%R?) of class C7,
e 7,7 :[0,T] — R?
such that
Zy = Zp, 0 g —0(Zs)0Xg = o(t — s), 67y —0(Z)6 X = ot — s),

and Z is not identically equal to Z.

Q [—=R [

Since 1 < v < é < 2 we can find g and 7 large positive numbers that satisfy
(4.1). Define X asin (3.2) and [ as in (3.3). The main result of this section is the

following.

Theorem 4.1. There exists f : R? — R of class C? such that

' d
o

Let us see why Theorem [4.1]implies the non-uniqueness phenomenon. We define
0 = 1
Zt - (XE) and Zt - ()(ttQ)

and o : R? — L(R? R?) as
o(z.y) = (f(:g, y) (D .

Consider the equation
5Zst = U(Zs>(5XSt -+ O(t — 5), (43)
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1
which is equivalent, if Z, = (g@) , to
t
5Zslt = 0—1’1(2517 Zs2)5Xslt + O(t - 8)7
672, =06X%4+o(t— s).

Then Z,Z are two (different) solutions of (4.3) with the initial condition Z, =
8

Zy = 0. Recall that X is in C7+1; since a < %, X is also an a-Holder function.
Moreover o is in C7, i.e. it is continuous and its gradient is (y — 1)-Hélder. Recall
that v < é We are in the situation in which the regularity of the driving path X
and the regularity of o are such that we cannot guarantee the uniqueness of the
solution of . It is easy to show that Z is a solution; to prove that also Z is a

solution we need to prove that there exists 7" €]0, 1] and C' > 0 such that
I, > X? (4.4)
for all t € [0,7] (so that o™ (I;, X?) = (X?)?) and
61— (XH6XE = o(t — s) (4.5)

uniformly for 0 < s < ¢ < T. Observe that (4.4 implies that I # 0 and Z # Z.
Recall that both (4.5) and (4.4)) have been proven in Theorem hence Z is a

solution of (4.3)).

Proof of Theorem [/1. Finally we show that f : R? — R as in Theorem exists.
We will use the version of Whitney’s Extension Theorem in Theorem 4 of section
VI.2 of [Ste70], which we have reported in Theorem for convenience. To apply
this result we have to show that f is in C7(F') where F := {(z,y) € R? : |[z| > y >
0,y <3}U{(r,y) € R?: 2 =0} and C?(F) is as in Definition [3.1] We define

Y ja|2y>0 if j = (0,0)
FON2,y) = 979" sz if 5 = (0,1)
0 otherwise

for every (z,y) € F. Recall that we need to prove that there exists M > 0 such
that if

VAY/
fO(z) = Z f(j+l)<2/)(zl—'z) + Rj(2,7)
lj+I<1 '
then

for every z,2’ € F and |j| < 1. Since the function (z,y) — 3 is in C7(R?), it is
clear that we only need to check that (4.6) holds for z € F} := {(x,y) € F : |z| >
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2 0,y <3} and 2’ € Fy :={(x,y) € F': x = 0}, or vice versa. In particular, for
=(0,1),
O () — O — FUD (NN (2 — 2V %
wp VO IO SO il
2€F 2/ €F> |Z —Zz ”y z=(z,y)EF1,2’=(0,y’')EF> |Z ”y
_ 1yl
= sup

z=(z,y)€F1,2'=(0y) ‘-’Bh

1271
= sup
z=(z,x)EF1,2/=(0,y) |x|’y

Analogously
wp  HOE = 1O = 1O - 2P|
zEFy,z'€F ’Z - Z/|7
_ Y+ Yy — )
= sup /
2=(0,y)EFs,2'=(a' ¥ )EF |Z -z |'y
S /. s
 e=(0y)ER=(' y)ER |z =2
=1+ sup hyw—l‘
z=(0,y")eF2,z'=(y"y') |y/|’yil
=1+

Finally in a similar way we can prove that

PG = O =]

zEF,2'€Fy |Z - Z/|7_1 N

and

1) — O = 2]

sup
z€Fs,2’ € |Z - Z/|’Y_l

To conclude the proof observe that f(©(z,y) < 37 and, for j = (0,1), fO(z,y) <
y37 1L,
U

4.3. Non-uniqueness in the Rough case. Suppose 2 < v < i < 3. Let

and n be large positive numbers such that they satisfy . Let X be as in .
Moreover let o : R? — R? x (R?)* and define oy : R? — R? x (R?)* x (R?)* as
o3(2) = Vo(z)o(2).
Consider the equation
874 = 0(Z)XL + 02(Z)XE, +o(t — s) (4.7)
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where X! : [0,7]2 — R? is
<

XL =X, - X,
and X?: [0,T]2 — R* ® R? satisfies
X2 < Clt— . (19)

We will show that for a suitable choice of X? the problem (4.7)) with initial condition
Zy = 0 admits two different solutions. The main result of this section is the
following

Theorem 4.2. Let X be as in (3.2)) and define X? as
X2 = —X, ®0Xy. (4.10)

(1) The function X?: [0,T)? — R? @ R? satisfies (4.8) and (4.9).
(2) There exists f : R? — R of class C7 such that

Yy’ ifle] >y >0andy <3
flz,y) = L
0 ifx=0.

The definition (4.10)) of X? is rather unusual, and actually in general it would
give a pair X = (X!, X?) satisfying (4.8)) but possibly not (#.9). For 0 < s <t it
would be possible to use the canonical rough path over X given by

t
/ (X, — X,) ® X, du

but this would satisfy the analytical property only for 0 < ¢ < s < t, and
not for 0 < s < t, see section low for further details. The proof of for
(4.10]) is given in Step 1 on page (1§ below.

We note that the definition corresponds to the choice f(f X, ®dX, =0 as
a generalised integral, in the sense of [CGZ24] Definition 7.1].

Before giving its proof, let us see why Theorem implies the non-uniqueness
phenomenon. Let I; be as in (3.3) and define

0 = 1—9)1
Zt = (XE) and Zt = (( Xg) t)

and o : R? — R? x (R?)*
o(z,y) = (f(f)’ y) (1)) . (4.11)

Then Z,Z are two (different) solutions of (4.7) with the path (X',X?) and the
initial condition Zy = Zy = 0. Observe that Theorem [4.2 implies that (X', X?) is
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a rough path. Recall that

. ’ o (z
sy =3 22 a2

and for B € R? @ R?
2

[02(2)B]' = ) [o2(2)];,, B™.

I,m=1

Then for z = (z,y) € {(x,y) € R*: |z| >y > 0,y < 3} we have

- moifi=1,=1,1=2
[0_2(2,)]1 {WZU 12 »J ’

l pr— .
J 0 otherwise.

The fact that we are in R? with d > 2 here plays an important role: it is the reason
why [02(2)]i, = 7y?~!. If o was simply the one dimensional function y — y?,
then oy would have been equal to yy??~!. Having y raised to the power v — 1 is
fundamental, as it will be clear from the following. The product o(2)X? is equal
to

, vy THXZ)2 = X2 0X]L ifi=1
XQ i s s s
(2%l {0 if i =2,
If z is such that z = (0, y) for some y € R, then
[‘72(2)};1 =0
for every i, 7,1 € {1,2} because

doi(2)
(922
To prove that Z is a solution observe that by Theorem there exists 7' > 0 such
that |(1 —v)I;| > X? for every t € [0, T] which implies that o'!(Z,) = (X?)7 and
(4.7)) is equivalent to

0Z4 = (X2 (X)) + (X)) + ot — s)
672 = 0X2 + ot — s).

=0 and o;(2) = 0.

or, more explicitly

074 = (1 = 7)(X2)0X 5 + o(t — s)
§7% = 6X2% + ot — s).

The second equation is obviously satisfied for Z? = X?; the first equation admits
(1 —v)I; as a solution, as it follows from Theorem [3.3] On the other hand Z; =
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()?2> trivially satisfies (4.7). In fact, noting that o*(Z,) = 0 for every s € [0, T]
t
and recalling the computations above, equation (4.7)) is equivalent to

6ZL = o(t — s)
672 = 6X% + o(t — s).

Proof of Theorem[[.3 Step 1. We prove that the function X? defined as in (4.10))
satisfies (4.9). We want to show that there exists C' > 0 such that

|XE| X2, — XI| < Chet

for every s,h > 0 such that s +h < 1 and 7,5 € {1,2}. We state a more general
lemma, which will be useful also below.

Lemma 4.3. Let n > 2, j1,...,75, € {1,2} and n,5 > 0 such that n + 1 > np.
Define X1, X? as in (3.2), then

n—1
(T ) e - 0

k=1

uniformly over s, h > 0 such that s+ h < 1.
Proof. Recall that
X! =5Pcoss™, X%2=57(2+sins")
and
XS1 = Bs"tcoss T4+ nsP T Lsins T, st = BsP (24 sins™) —ns? 1 cos 57
Hence, there exists C' > 0 such that
X7 <O, XD < o8’

for every s € [0, 1], j € {1,2}. We consider two cases:
(1) Suppose that h > s""1 then

n—1
(H \xz‘w) X0, — X| < D9 X0| + X)
k=1

sVB((s + )P + 57

(s + h)" < (hwit + )8
(2R < hatr,

AR ZANRZA
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(2) Suppose that h < s7!, then 1 < h™7 T and

S

n—1
<H |X§’“’) }Xﬁjrh — X§”| < VB sup \Xt]"| h < s(=DBgA—=1p

P te[s,s+h]

n+1—-np
:h<1> < hat,

S

This proves the Lemma. U

Step 2. Finally we show that f : R? — R as in Theorem exists. We will
use the version of Whitney’s Extension Theorem in Theorem 4 of section VI.2 of
[Ste70], which we have reported in Theorem for convenience. To apply this
result we have to show that f is in C?(F) where F = {(x,y) € R?: |z| > and y <
3y} U{(z,y) € R? : = 0} and C?(F) is as in Definition [3.1] The proof is very
similar to the one of Theorem [4.1] O

4.4. Non-uniqueness in the general case. Suppose N < v < é < N +1 for
some N € N, N > 3. Let 8 and n be large positive numbers such that they satisfy
(4.1). Let X be as in (3.2). Moreover let o : R? — L(R?* R?) and define 0y := o
and for n > 2 g, : R? = R? x ((R?)*)" as

on(2) = Vo,_1(z)o(2).
We can define a generalised a-rough path over X as follows.

Definition 4.4. Let « E]ﬁ7 ~] and X : [0,T] — R? of class C*. We say that

X=(X!...,XN) is a generalised a-rough path over X if X' : [0, T)2 — R? is
X=X — X,
and for everyn > 2, X" : [0,T)2 — (R*)®" satisfies Chen’s relation, that is

n—1
=1

and the analytical relation
Xal < Clt = s|™.

Consider the generalised difference equation
N
024 =Y 0i(Z)XL, + oft — ) (4.13)
i=1
where X = (X!, ..., X") is a generalised a-rough path over X. We will show that
for a suitable choice of X2, ..., X" the problem ({.13]) with initial condition Z, = 0
admits two different solutions. We will need the following analogue of Theorem
4.2k
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Theorem 4.5. Let X be as in (3.2)) and for everyn € {1,...,N} let X" : [0, T]* —

(R2)®n be
X2 o= (=)' X" @ 5 X, (4.14)
(1) Letn > 2, then the function X" : [0, T)? — (R*)®" satisfies ([#.12)) for every
0<s<t<1.

(2) For everyn € {1,..., N} there exists C' > 0 such that
XL < CJt — s|n+1

for every 0 < s <t <1.
(3) There exists f : R? — R of class C7 such that

Yy’ ifle| >y >0andy <3
flx,y) = L
0 ifx=0.

(4) Define o : R? — R? x (R?)* as

cay) = (1Y) 0} (4.15)
0 1
Then for every n € {1,...,N}, if z = (z,y) € {(z,y) € R* : |z| > y >
0,y <3},
' 07y7+1—n ifi=ji=1and jo=j3=...=Jp, =2
VI [ 4.16
o (Z)}h n {0 otherwise ( )

where C.,, == [/ (v — ).

Let us see why Theorem implies the non-uniqueness phenomenon. Let I; be

as in (3.3) and define
0 - C It)
Zy = and Z; = |
= () e (5
where
N
Cy=1+> (-1)7'C,,.
i=2

Let o : R*? — L(R? R?) be defined as in (4.17), then Z,Z are two (different)
solutlons of - with the initial condition Z, = Z; = 0 and the path X :=
(X', X2,...,XY), where, for every i = 1,..., N, X" is defined as in (4.14)). Observe
that Theorem ﬂ 1mphes that X is a rough path. Recall that for B € (R?)®"

]n ]1
Z CACIR
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Then for z = (z,y) € {(z,y) € R? : [z| > y > 0,y < 3} the product o,(2)X? is
equal to

[0 (Z)Xn]l _ (—1)71710%y’Hlfn(Xg)nfl(SXslt fi=1
B U if i = 2,

If z is such that z = (0,y) for some y € R, then
[ ()]0 = 0
for every i,71,...,5, € {1,2}. To prove that Z is a solution observe that by
Theorem [3.3] there exists 7' > 0 such that |C,[;| > X? for every ¢ € [0,T] which
implies that o''(Z,) = (X?)” and ([&.13) is equivalent to
07y = (X2)" (X)) + Z?:Q C, (X)X 22 + ot — s)
6072% = 6X2 + ot — s).
or, more explicitly
074y = C’Y(XSQ),Y(SXSlt +o(t — s)
672 = 6X%4 + o(t — s).
The second equation is obviously satisfied for Z2 = X?; the first equation admits

C,01 as asolution, as it follows from Theorem . On the other hand Z; = ( 0 )

X7
trivially satisfies (4.13]). In fact, noticing that o' (Zs) = 0 for every s € [0,7] and

recalling the computations above, equation (4.13) is equivalent to
6ZL =o(t — s)
622, = 6X%4 + o(t — s).

Let us now prove Theorem [4.5]

Proof of Theorem[].5. Step 1. We prove (4.12]) by induction. Let n = 2, then
Xl =—-X,®0Xq4

and (4.12)) becomes
0X2

sut

Simply observe that
X2 X, ®0Xg+ X ®0Xeu + Xy @ 6 Xt

sut

=X, ® 5Xut +Xu® 5Xut
= 0Xe ® 06Xy = XE, @ XL,
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Assume that (4.12) holds for n and let us prove it for n + 1.
5xn+t1 — Xn;rl . Xn+1 o Xn:rl
=(-D)"(XP"®6Xy — X" 06X — X @ X" T @ 6 X+
+ X, @ XE" T @6 Xy — X" @ 0 X o)

= (X, ®@6X2 )+ (D" X, @ XT" ' @6 Xy — XZ"0X )

sut

n—1
=X, ®) X, @X\ 7+ (—1)"(0Xu @ X" @ 0X,)
=1
=2

- SR, ex
i=1
This proves that X" satisfies (4.12)) for every n > 2.

Step 2. This follows from Lemma 4.3|

Step 3. Finally we show that f : R? — R as in Theorem exists. We will
use the version of Whitney’s Extension Theorem in Theorem 4 of section VI.2 of
[Ste70], which we have reported in Theorem for convenience. To apply this
result we have to show that f is in C?(F) where F = {(z,y) € R? : |z| > y >
0 or z = 0} and C?(F) is as in Definition [3.1] The proof is very similar to the one
of Theorem (4.1

Step 4. Recall that

. 2 Olon_1(2)% .
[O-n<z>];'1...jn _ Z [ (a)]]l In—1 O';Ln(Z).

Za

Let z = (z,y) € {(z,y) € R* : |z] > y > 0,y < 3}. We already proved in the
previous section that (4.16) holds for o9(z). Assume that o,(z) satisfies
and let us prove it for oy,41(2). Observe that [0,(2)]% . is not null if and only
if 5,7, = 1 and j5,...,J, = 2, in which case it is a function only of y. Moreover
0? =0 and 02 = 1, hence

Olon(Ni, .

: —— 2 ity =100, Jp1 = 2
On+1\Z) |5 s = 0z
[7n+1( )]]1 Jnt1 {0 otherwise

_JO 2=+ )OO i =1 g e = 2
0 otherwise

and (4.16]) is proved. O
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4.5. Geometric Rough Path. In Section [4.3|we presented an example of rough
difference equation that admitted two different solutions starting at the origin. In
particular we defined a function ¢ in C? and an a-rough path X = (X!, X?) over

1
X = (§2> where

X} =tPcost™ X} =1°(3+sint™), X% = X, ® (X, — X,)

and
n n+1 1
2<y< s < ——< =<3
g g o
The definition (4.10)), namely X2, := — X, ® § X, is easily seen not to produce
a weakly geometric rough path, namely it does not satisfy X2 + (X2)T = X! @ X'
It is however possible to define X? so that X = (X', X?) is weakly geometric.
Observe that to show the non uniqueness phenomenon for the Rough case, the
only component of X? that played a role is (X?)*!. Hence using the shuffle relation
we can define
X - XD XH(X X))
X? = : (4.17)
XX - X)) (X - X3)?

S

Observe that X = (X!, X?) is weakly geometric. Classical results guarantee that
given a weakly geometric d dimensional a-rough path X over X there exists a
succession of canonical rough paths over smooth paths converging to X in R, 4 (the
set of d dimensional a/-rough paths) for every % < o' < a. In our case we defined

a %—Weakly geometric rough path over X, see Theorem and Lemma , SO
there exists a succession of canonical rough paths over smooth paths converging
to X in R,2 (the set of 2 dimensional a-rough paths).

We want to build a sequence of canonical rough paths (X,,) = (X!, X2) over

1
smooth paths X,, = (§3> such that
lim [|X! — X [lo + [IX* — X7 [l20 = 0. (4.18)
n—oo

(This result is not present in [Dav08|, it is an original contribution of our paper.)
We would like to find functions X!, X2 of class C' such that

t
X}l’t — X}, X;jt — X2, lim Xfw X}W du = 0. (4.19)

n—o0 0

In fact (4.19) would imply that

t

lim [ (X7, —X2,) X}, du=— lim X} 60X} , =—X2X] (4.20)

n,s,t
n—oo J n—o00 e
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and
: t i i\ v 1o P2 Loy i\2
lim (Xnu _an) Xnu = lim _(Xnt _Xn s) = _(Xt _Xs) (421)
n—oo fo ’ ’ ’ n—oo 2 ’ ’ 2
for © = 1,2, which means that X,, converges to X at least pointwise. The first
idea is to shift X', X2 by n~? for some p > 0, in order to obtain two sequences of
C! functions that converge (at least pointwise) respectively to X' and X?. This

would be enough to satisfy (4.21)), but (4.20) would not hold as, for ¢ > 0,

Xl

u+n—P

lim X 2

n—-+o0o 0 utn=?

du > lim (np("*%) —5(n""+ t>25*77) — +o0.

n—-+00

To overcome this problem, the idea is to add to X tlJrn_p and to Xt2+n_p respectively
some functions C,,, S,, such that

Cht —0, Spt—0, /SnuCnudU— / u+n,, qunpdu—i—o()

We will see that we can actually take o(1) = O (). Finding such functions might
seem complicated, but there are two classical candidates. In general, if we want

t t
/ S Cnu du = —/ G, du+ o(1)

for some G : R — R, we can take

1 t 1 t
Sh.t NG sin ( n/o G, du) , Cht NG cos < n/o G du)

In fact, with this choice,

t t
S . C = —2G, sin® <2n/ G du) = —-2G, (1 - 1cos(4n/ G du)) ,
7 7 0 2 2 0
and
t
t t sin <4n fg G du) 1
/ G, cos (4n/ Gudu> = = O( ) o(1).
s 0 4dn n

S

By adding these terms (4.21) would continue to hold and we might be able to
prove . In fact, for (4.20) to hold it only remains to control the mixed terms

in the product (X} p + Cnt) (X7, -y + Sny), that is

¢ ¢
/ (Xz-m P u+n ») Cnu du, / (Smu — Sns) Xu+n » du,

and in particular we would like both integrals to converge to 0. This is where the
choice of the power p becomes important. Fix 0 < p < % such that

1

< —.
NS TE )
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Recall that
X} =tPcost™, X2=1%(2+sint™")
and define, for t € [0, T,

- 2/ r+w r+w d’f’,

Cht = %cos(nl n (1)),

Sy = % sin(nl, (1)),

1 2 . y2
= Xt+w + Cn,t? Xn,t i Xtern + Sn,t?

where w,, := n~7:1. To prove (4.18) we need the following

25

(4.22)

(4.23)

(4.24)

(4.25)

Theorem 4.6. Let X, X, be as in (4.22) and [4.27). Let X, = (X},X2) be the
canonical rough path over X, and X = (X', X?) the rough path over X in which

X2 is as in (4.17). Then fori=1,2
(1) X}, ., — X%, uniformly.
(2) There exists C > 0 and € > 0 such that
X eel < Clt — s
for every 0 < s <t <1.

Let us see how we can prove (4.18) using Theorem [1.6]

X0 — X4
X, —XYy= sup — T
1% o 0§s<P§T [t —s|®

Xl

n,s,t

< sup [X} X;Aﬁs sup |"St

_a
a+te

n,s,t
0<s<t<T 0<s<t<T |t — 5|«

Clt — s|*
S ”Xl Xl”a+5 sup | S|
o<s<t<T |t — S|*

< Clx: - x|

which goes to 0 for n — oo. Analogously we prove convergence for X2.

Proof of Theorem[/.6. In the following C'is a positive constant whose value might
chance every line, but does not depend on n, s,t. We will often use the fact that
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X1, X2 are ——Holder and the following inequalities

IX25XL| < Ot — s|t,
|X | < CNF,
X7 frw,| < Cn”,
| Xl + X0, < C,
1L,(t)| < Cn”. (4.26)

The only non trivial inequality is the first one which has been proven in Theorem
4.2

Step 1. Observe that for ¢ = 1,2,

(X — X50)?

t
205 = [ (= X5, X du = 22

and

|<X3Lst> T (X3 < |X7’1L,t - X'rlz,s — X/ + X |Xi,t - X}L,s + X — X
< ClX,, — X/ |+ C1X; —
< C(wpy 4+ |Cril +Cnsl)

1 1
<C|—7F+—=).
= <n ﬁ)
2,2

This proves that (X2)1! converges uniformly to (X?)b!; analogously (X?)%? con-
verges uniformly to (X?)%2. Moreover, for every 0 < s <t < 1,

t
(Xist) t = / (ng,u - X72L,S) X7lz,u du

t
/ (XS—"-'LU X32+w + S — Sn )(Xi-kw + Cn,u) du

/ u+w u+w du—i—/SnuCnudu

t
/ (X5+w s+w ) Cnu du + / (Sn,u - Sn,S) Xzi—f—w du

5X (stwn) (t+wy) Sn,s 5Cn,s,t

S-‘rlUn
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and defining J, ¢, := f 5X
obtain

) Crudut [165,,, X!

U+wn

du—5, 00, s, we

s+wn u-l—w

71
nst

t
/ u+wn u+w du = / In(u) sin2 (nIn(u>> du + J"’s o X§+wn5X(18+wn)(t+w7L)
b 11
— 2] (u) du — S I, (u) 375 cos(2nl,(w)) ) + Jnst — s+w §X (5-Hn) (t-H0m)

I :
-2 / c0s(2n 1, (1)) T (1) dut + Sy — X200 6K s v
I
— E&(sm@n[n(-)))st + Jnst — S+w 5X (5-+10n) (t-H0m)
1
— _5(5ncn)st + Tnst = X2 0X () () (4.27)

1_
= s+w L(SX(s+w7l)(t+w + O( G p))

In fact

/ 5X (stwn)(utwn) Cnudu| < ‘(5X(s+wn ) (utwn) "u | + |/ +wnC”udu|

< Cn~ 2 + COn~( 3 p),
¢
|/ 5Sn,s,u u+w dU| < On %_

and
|Sn,s 6Cn,s,t| S n71~
Finally observe that

|<Xzbst) T (X3P < |Xs+wn5X (s+wp) (t4wy) — X20X5| + Cn~ )
<C|X2., — X2+ 0\5)( — OXL )| + O
<Cn w4 OX = XL |+ OIXL = X!+ Cnate
< Cn~ w41 4+ Cn= 2t
< Cn i,

This shows that (X2)*! converges uniformly to (X*)%!. Observe that since X2
is weakly geometric, by the shuffle relation, we also have that (X2)? converges

uniformly to (X?)12. The uniform convergence of X! to X! is simple to prove; we
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only show it for the first component:
(0K 00 = 0Kl < [Xih, — X |+ XS =

< Cn~ T 4 o3,

| + |5Onst|

n,s,t s—l—wn

Step 2. We have shown the uniform convergence
Xi,s,t — th
To prove convergence in C?? it is sufficient to show that there exists C' > 0 and
€ > 0 such that
X2 | < Ct — s**te (4.28)
for every 0 < s <t < 1. We will use the following
Lemma 4.7. Let Ch, Sn be as in (4.23) and (4.24)), then
(1) C,, is 2(1+ -Hoélder.
(2) S,C, and - T=Cn are o -Holder.

Proof. We will use and the fact that
min{z,y} < 259" (4.29)

n,s,t

for every £ € [0, 1].

(1) Recall that C,; = == cos(nl,(t)) and observe that

Vvn
[Callse < 7%, [|Chlleo < Crz™.
So,
|Crt = Cus| < min{||Cylloo|t = [, 2[| Crlloo }
< min{C’n%+p|t — s, 2n_%}
and applying with £ = 2(1—£rm
|t — Crua| < Ct — 5|70,
(2) Observe that
180Calloe < 07", (ShCh)lloe < CP.
So,
|90t Cnt = SnsCnys| < min{[[(SnC) lloolt = s, 2[19nChnlloc }
< min{C’n”|t —s|,2n7 '}
and applying with § = +p
< C|t— s|ﬁ

Analogously we can prove that \/LECR is ﬁp—H” older.
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Let us go back to our problem. Observe that
(X — Xo)?
2

’ t+w Xsl-s—wn’Q + ‘Cn,t - Cn,8|2

< |t —s|wT 4 |t — 5|7

(Xist) a =

__pP . 5
pp— n+1
where w, ;= n and, since el and 501 +p)

(4.28) holds for (X2)"1. We can proceed analogously for (X2)22. We now focus on
(X?)%!. Recall that, from

1
(Xi S, t) Eé(snon)st + Jn,s,t s+w 5X(s+w ) (tHwn)

> «, we have proved that

where J, .0 = [} 0X? Crudut [16S,, XL, du—S,6C, ;. Now, by

(stwn)(utwn) u+
Lemma A

15(SnCh)st| < Ot — s|T77.
Moreover

‘/ 5X (sHwn) (utwn) Cnudu’ < ‘(SX(S—i-wn t—i—wn)cnt

< |\/—/ u+wn dU,| + / | u+wn

<Cn G Pt —s| < Clt — s

+wn On t dU|

and analogously
t
(5SnstX1 dul <C [ n=GPdu < CJt - s].
UFWn

From Lemma @,

1
|Sn,s 5Cn,s,t = \/ﬁ n,s,t
< C|t— s|ﬁ

Finally,

28
| s+w 5X(ls+wn (t+wn)| < |t - 3|n+1_

> «, we have proved that (4.28)) holds for (X2)*!. Using
12

,3
Since > o and 50 +p)

the shuﬂie relation a similar estimate can be proven for (X2)L2. This concludes
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the proof of (4.28). We are left to prove a Holder like estimate for X.. This is
simple, in fact

|(X711,s,t)1| = |5X711,s,t| < |5X(18+wn)(t+wn)’ + |5Cn,s,t|
< Ot — s|7 + Ot — s|70
< CJt —s|~

A similar estimate holds for (X})2. O

5. Preparation for non-existence

We present here some elementary, but not trivial, results that we will use in
both the Young and Rough case and hold for any choice of a €]0,1[. For ¢ > 0
define

+oo
X} = Z 27 % sin(2%), G, := Z 2~ U=k o5 2k, (5.1)
keT: k=1

where conceptually, T, = {k < %} However, defining T, simply as {k < %}
would result in X! being discontinuous. This issue can be resolved with a slight
modification to the definition of T;.

Specifically, for k£ € N, we define:

2k—1
ny ::inf{neN:nz—}
km
and
tp == ﬂnk21_k.
Observe that % + w2tk >t > % and define:
Notice that X} is continuous. Indeed,

X} —lim X} = 27" sin(2";,)
[ARAR

and we need 2*t;, € Nr for X! to be continuous. For 0 < s < t define

t
Iy = / G. X} du. (5.2)
The main result of this section is the following

Theorem 5.1. Let X', G and I be as in (5.1]) and (5.2)) for some a €]0,1].

(1) The functions X! and Gy are respectively a-Holder and (1 — «)-Héolder.
(2) The function X} is locally Lipschitz on ]0, ).
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(8) Fiz T >0, then
I > —% log s + O(1)
for s — 0.
Proof. We prove the three points of the Theorem one by one.

Step 1. We begin by proving that G is in C!7*. We Will then use a similar
approach to prove that X' is in C*. We set G, (t) :== >_,_, ¥ cos 2%t. Note
that G,, is in C' and

2 (1—a)(n+1)
—(1-a@)
k=n+1
2a(n+1)
G/ . < 20ck;
16| Z <o —

Then, for s,t € [0, 1]
G(t) = G(s)| < |G(t) = Gu(t)[ +[G(s) = Gnls)| + [Gn(t) — Guls)|
2 2a(n+1)
=2 o9—(1-a)(n+1)
S 1— 2—(1—a) 2 + 0 _

and choosing n so that 271 < |t — 5| < 27", we obtain

g 9 2\ e
S\iooawtaag) s

To prove that X! is in C* we set
g Ry = R 9i(t) == Ly, 27°F sin(2%¢), t >0,

and f, := Y ,_, gx. Notice that g is continuous, but has a corner point in t = t,
hence f,, is Lipschitz but not C!. Denoting f := X!

Tt = sl

0o . i 9—a(n+1)
_ < L Qu—
1f = falloe < ) —
k=n+1
|fn( (1) (lfa)(nJrl)
sup < sup |gp(t)] < 2 _.
5,t€[0,1] ’t - 5| ;te[o tr] ‘ F ‘ Z 217 —1

Then for s,t € [0, 1]
[F(@) = () < 1f () = Fu(O)] + [ (s) = fals)| + [ fn(t) = fuls)]

1—a)(n+1)
2 patnin) L

1 -2« 21l-a
If n is chosen so that 2-("+1) < |t — 5| < 27", then we obtain

[f(t) = f(s)] < CJt = s,

<

|t = sl.
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o 2 2(1704)
where C = <1_2,a + 21,@_1>.

Step 2. To prove that X! is locally Lipschitz on ]0, 7] observe that {t;}xen is in
10, 400 and tends to 0 as kK — 400, more precisely

2k—1 1
te=m2l R[]~
BT [lm-‘ K

Hence, for € > 0 the set
TEI{kENith&T}

is finite and, on [e, 7], X! = > ket 9k is a finite sum of Lipschitz functions. This
implies that X! is locally Lipschitz on |0, 7].

Step 3. Let 0 < s < T, then
T .
I = / G, X} du

/ 2221 D=0 cos(28u) cos(2'u) du

S k€T, I=1

+00 At AT
S Z / 20D (cos((2% 4 2'Yu) + cos((2F — 2Y)u)) du

ke'IFll

2(1 k=D gin((2% + 28 (¢t A T)) — sin((2F + 28)s
s (CF 2t AT v 420

keTs =1

20=e)(k=) gin((2F — 20 (tx A T)) — sin((2F — 20)s
" ZZ (( )( k;\k _))2l (( )s)

+
keT, I#k

+Z(tkAT—S)

keTs

> 1 loa(s) + O(1)

as s — 0. The last inequality follows from the fact that ¢, > %, for s small
{keTs} D{k< L%J} and

Z% = logn + O(1).

k=1
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Moreover,
9(1—a)(k—1) +0°+<>01akZ)
syt e kD J) DL
kETs k=1 1=0 k=0
+oo
2(a 1)l
1 _ 2—a Z
1=0
1
(1 —272)(1 — 2271
and

Foo +o0 o(1-a)(k- l) oo k1 5(1—a)(k-1)

Syl i r_ZZ > S

keTs l#k k=1 l=k+1 k=1 1=0
1 +o00o +00 k—1 2(@—1)l
—ak —ak
31_2,1_122 +22 Zl_Ql—k
k=0 k=1 =0

+oo +oo
1
< 2—ak 9 2(01—1)[
— (1 _2704)(1_20171) +Z Z
k=1 =0
3

SO—2o(i=201)

Lastly, observe that 72'=% + % > ty, 50 T, C {k: w2tk +% >t} {k: % > s}
and

6. Non existence of solutions

The aim of this section is to present examples of non-existence of solutions for

equations driven by a path X € C* with o €]3,1[ or a €]z, 3[. In cach case we

will define an appropriate function o of class C? with v = é — 1.

6.1. Young case. Suppose « 6]%, 1[ and v = i — 1. We want to construct

functions

e X :[0,7] — R3 of class C*
e 0: R — L(R3 R3) of class C?
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such that for every 0 < T' < 7 the system

{mt = 0(Z,)6 Xy + o(t — )

Zo =0 (6.1)

does not admit any solution. The main result of this section is the following

Theorem 6.1. Let G be as in (5.1). Fiz o €]3,1].
(1) There exists X*, X3 :[0,1] — R in C* and C' > 0 such that

(X7, XP) — (X2, X)) = Clt = 5]

forevery0>s>t>T.
(2) There exists f : R* — R in C7 such that

Let us see with Theorem 6.1 implies that (6.1]) does not admit any solution. We
define

where X! is as in (5.1)) and X2, X3 as in Theorem ([6.1]). Moreover define o : R® —
L(R3 R?) as

fly,z) 0 0
o(x,y,z) = 0 10
0 01

Then o is of class C7 and X of class C*. Suppose that we have a solution

on [0, 7] for some T €]0, 7[, then
7P=X? IP=X]
and, for 0 < s < T,
T .
Z3— 7! :/ G, X} du
and recalling (5.2) and Theorem
1
> —3 log(s) + O(1).

as s — 0. This means that Z, /4 0 as s — 0 and the initial condition can not be
satisfied. Let us now prove Theorem [6.1]
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Step 1. We want to prove that there exists X2, X3 :[0,1] — R in C* and C' > 0
such that

(X2, X7) — (X2, X7)| > Ot — 5] (6.2)

for every 0 > s >t > T. The existence of such functions follows from the following

Lemma 6.2. Let o €], 1], then there ezists ¢1,c > 0 and a function u : [0,1] —
R? such that

alt = 5i° < Ju(t) — u(s)] < eoft — 5|7
for all s,t € ]0,1].

Observe that a function with the same property but taking values in R does
not exists, see section for further details. Let X2, X3 be respectively the first
and second component of such u. Before proving the Lemma we give the following
definition.

Definition 6.3. Given a lattice of squares of side |, we define a chain of squares
of side | as a sequence Q1,...,Q, of squares in the lattice, such that for every
i,j € {1,...,n}, Q; and Q;41 have one side in common, @Q; and Q; are disjoint
in |i — j| > 2 and have at most a corner in common if |i — j| = 2.

Proof. Since % < a < 1 we can find two bounded sequences (k;)qen, (7)ren such
that:

n, < m, < k? where n, := 2k, + 1
there exists ¢, C' > 0 such that, defining ¢ := 1, &, := (ning---n,)

8o =1, 6, := (mymg---m,)" Y

)
) m,. is odd
)
) -1

and

Er

c< <C

7|
=0

for every r € N.
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We now construct a sequence (C,.),.en of chains of squares of side ¢,. Let Cj be a
square of side 1. Given C, = (Q1,...,Q,.) a chain of squares of side &, we build
C,41 with the following construction.

e Divide each square ); of C). into a n,,1 X n,y; grid of squares of side €,,;.

o If 1 <1 < [, Q; has one side in common with ();_; and one with ;..
Join the middle points of these two sides with a chain of squares of side
g,41 consisting of m, 1 squares and containing no other edge squares. If
i = 1 or ¢ = [, join respectively the middle point of the bottom edge and
the middle point of the upper edge with the middle points of the edges of
Q)2 and ;1 touching Q;.

e Let ()11 be the chain of squares of side €,,1 obtained by joining all the
chains of squares of each Q;.

—> —>

Cr C?“—l—l CT—I—2

The sequence (C,),en converges to a curve which we parametrise by ¢ — u(t),
with ¢t € [0, 1], so that u(t) spends time §, in each square of C,. Observe that
(0-)ren 18 & sequence starting at 1, strictly decreasing and converging to 0, hence
given s,t € [0,1] there exists r € N such that

5r S ‘t - S| S 57"—1-

This means that u(t) and u(s) belong either to the same square or to adjoining
squares of C._1, so

lu(t) — u(s)| < 3e,—1.
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Moreover, since (k;).en is bounded, there exists M > 0 such that n, < M for
every r € N and
u(t) = u(s)| _ 3,1
[t —sl© = 6 n,
< 3£Tn
= ol

<3CM

for every r € N. On the other hand u(t) and u(s) can not be in the same square
of (). and can not be in adjoining squares of C,.1, so

u(t) —u(s)| = e
To conclude the proof observe that

lu(t) —u(s)| _ ers1 Mg
|t —s|® T 0% neneg

Er—1 1

v

Or1 Myt
C

v
3

O

Step 2. We now prove that there exists f € C? such that Gy = f(X?, X}).
Define the set

A={(X},X})eR*:t€0,1]}.
We will first define a v-Holder function from A — R and then extend it to R%. To
this purpose we could apply Whitney’s Extension Theorem, but since v < 1 we

can use the following more elementary result which gives an explicit definition of
the extension.

Lemma 6.4. Let A CR" and f : A — R a~y-Hélder function with vy €]0,1[. Then
there exists h : R — R such that

(1) h(z) = f(x) for every x € A

(2) h is y-Holder with [hlev = [flev-

We postpone the proof of Lemmal6.4and focus on the construction of f : A — R.
Observe that the function ¢ — (X?, X?) is injective, in fact if (X?, X}) = (X2, X?)
for some s # ¢, then (6.2)) could not hold. We can define

fla,y) = G((X* X%) " (2,y))
for every (z,y) € A, so that
F(XP,XP) = G(t)
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for every t € [0,1]. Let (x,y), (2/,y') € A, then there exists s,t € [0, 1] such that
(X2, X}) = (z,y), (X2, X3) = (2,y), so, recalling that G is (1 — «)-Hélder,

f(z,y) — f(a'y)| = |G(t) — G(s)]
<Ot — s
< O)(X2XP) — (X2, Xx3)[a!
= C|(w,y) — (', )|

for some C' > 0 that does not depend on (x,y) or (z’,y"). We have proved that
f A — R is y-Holder; to conclude the proof we now prove Lemma |6.4

Proof of Lemma[6.4 Set L = [f]c+ and define
h(z) =inf{f(y) + Llz —y|" : y € A}

for every x € R". We start by proving that h is an extension of f. Let yo,y €
A, x € R™ and observe that

f) = f(yo) + Llz —y" = =Lly — yo|" + Lz — y|?
> —L|z — yol|".
So,
h(x) = f(yo) — Llz — yo|”
and if z € A, choosing yy = x, we find
h(z) > f(z).
On the other hand it follows immediately from the definition of h that
hzx) < f(x)

for every x € A. This proves that h is an extension of f. To prove that h is
~v-Holder consider x,y € R™ and € > 0, then there exists yy € A such that

h(z) > f(yo) + Llx — yo|” —&.
Moreover

h(y) < f(yo) + Lly — ol
Putting the inequalities together we find

h(y) — h(z) < Lly — yo|” — Llz — yo|" + ¢
< Lly —z|" +e.
Exchanging the roles of  and y, and letting ¢ — 0, we find
|h(z) = h(y)| < Llz —y[".
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6.2. Rough and general case. Suppose « E]%ﬂv %[, for some n > 2, and v =
1 _ 1. We want to construct functions

e X :[0,7] — R"*2 of class C*
e 0:R"™ — L(R"2 R""?) of class C?

such that for every 0 < T' < 7 the system

0y = ZZ:1 O'k(ZS)X];t +o(t — s) (6.3)
Zo =0 '

does not admit any solution, where
o1(z) :==0(z), ox(z) =Vor_1(2)o(2)

and X = (X!, ... X") is as in Definition . The main result of this section is the
following

Theorem 6.5. Let G be as in . Fix o> 0 and set v = é -1
(1) If o > 5, there exists X, X3, X*:[0,1] = R in C* and C > 0 such that
(X, X7, X)) — (X2 X0, X0 = Ot — s
for every0>s>t>T.

(2) More generally, if a G]n%l, L[ for some n > 3, there ewist X?, ... X"t?

[0,1] = R in C* and C > 0 such that
(XF, . X7 = (X2, X 2 Clt = s

for every0>s>t>T.

(3) If a > %, there exists f : R® — R in C7 such that
Gt :f<X1‘,27X?7X;1)7

where X2, X3, X* are defined as in point (1). Moreover the gradient of f

vanishes along (X2, X3, X*), d.e. V(X2 X2, X)) =0 for all0 <t <T.
(4) If a €]=25, L[ for some n > 3, there exists [ : R"** — R in C7 such that

Gt = f(XtQ,...,XZLJr2),
where X2, ..., X" are defined as in point (2). Moreover for all0 <t <T
and j € {1,...,n — 1} we have DY) f(X2,... X)) = 0.

Let us see with Theorem implies that (6.3) does not admit any solution. We
discuss the rough case in detail, that is o €]3, z[ and then show how to generalise
the result to any o > 0. Define

273

X;
X
X7
X



ON DAVIE’S NON-EXISTENCE AND NON-UNIQUENESS EXAMPLES 40

where X! is as in (5.1) and X2, X3, X* as in Theorem Moreover define o :
R* — L(R* RY) as

fy,z,w) 000

0 100

0@y, zw) = 0 010
0 001

Then o is of class C7 and X of class C®. Let X = (X', X?) be any a-rough path
over X. Then (6.3) is equivalent to

07Y, = f(22, 23, ZR0XY, + V (22, 23,71) - (%2, (X)), ()] + ot — s)
872, = 6X2 + ot — s)
873, = 6X32 + ot — s)
6Z% = 0X2 + ot — s).

(6.4)
Suppose that we have a solution

Zt:

on [0, 7] for some T €]0, 7[, then
Z; =X}, Z}=X}, Z}=X}
and, by Theorem , system (6.4) becomes

025 = [(Z2, 23, )0 X 3 + oft — s)
0Z% = 6X3 +o(t — s)
873, = 6X32 + ot — s)
674 = 6X4 +o(t —s).

Finally, for 0 < s < T,
T .
73 — 7} :/ G. X, du
and recalling (5.2) and Theorem
1
> —3 log(s) + O(1).

as s — 0. This means that Z;, /4 0 as s — 0 and the initial condition can not be
satisfied.
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Let us now discuss how to generalise this example to « e]#l’ L[ for n > 3.

Define

X,

X¢

Xe=1 .

XZH_Z
where X' is as in (5.1) and X?,..., X" as in Theorem Moreover define
o R»+2 - L(Rn+2’Rn+2) as

f(xz,...,:cn+2) lflzl,jzl
[o(21, .. ag2)]; =< 1 ifi>92 =i,

0 otherwise

where f is as in Theorem [6.5] Then o is of class C7 and X of class C*, with
v = é — 1. Let X = (X!, ... ,X") be any a-rough path over X, see Definition .
Then (6.3)) is equivalent to

5Zslt = ZZ:l[ak(Zsla R Z;Z+2)X§t]1 + O(t - 8)
872, = 6X2 + ot — s)

SZ02 = 6XIT2 + ot — s).

Suppose that we have a solution
Z}
Zt -

Z;l+2
on [0, T for some T' €]0, 7|, then

Z2=X2 ..., Z'M?=X]"

and, by Theorem , system (6.5)) becomes

60ZL = f(Z2%,..., 2" )6 XL + o(t — s)
872, = 6X2 + ot — s)

§Z02 = 0XIT 4 ot — s).

Finally, for 0 < s < T,

T
Zy — 7} = / G, X} du
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and recalling ([5.2) and Theorem [5.1
1
> ) log(s) + O(1).

as s — 0. This means that Z, /4 0 as s — 0 and the initial condition can not be
satisfied.

Let us now prove Theorem [6.5] We will prove only the third point of the Theo-
rem, as the proofs of the first and the second are similar to the one of Lemma [6.2]
The proof of the last point is similar to the one of the third, so we omit it.

Proof of Theorem point 3. We prove that there exists f € C7 such that G, =
f(XZ X3, X1). Define the set

A={(X2 X}, X} e R it e (0,1},

We will first define a y-Holder function from A — R and then extend it to R?
using Whitney’s Extension Theorem. Observe that the function ¢ — (X2, X2, X}})
is injective, in fact if (X2, X}, X}) = (X2, X3, X?) for some s # t, then the first
point of the Theorem could not hold. We can define

fl,y,2) = G((X? X3, X1) (2,9, 2))
for every (z,y,2) € A, so that
FXEXP, X)) = G(t)

for every t € [0,1]. Let (x,y, 2), (2/,y/,2") € A, then there exists s,t € [0, 1] such
that (X7, X2, X} = (2,9,2), (X2, X2, X}) = (2,y,7), so, recalling that G is
(1 — «)-Holder,

[f(2,y,2) — f(2", ¢, 2)| = |G(t) — G(s)|
<Ot — st

< OI(X2, X7, X} — (X2, X3, Xh[at
= C|(ZL‘,y,Z) - (l’l,y/,zl)r/

for some C' > 0 that does not depend on (z,y, z) or (z',y/, 2’). Observe that v > 1
and, recalling Definition , we just proved that f is in C7(A) choosing f) = 0 for
every |j| = 1. We can now extend f to R? using Whitney’s Extension Theorem; in
particular we apply Theorem 4 of section VI.2 of [Ste70], which we have reported
in Theorem [3.2| for convenience. Moreover we obtain that V f(z,y, z) = 0 for every
(z,9,2) € A, or equivalently Vf(X2 X2, X)) = 0 for every t € [0, 1]. 0O
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7. Additional remarks

7.1. Young Integral. In section we introduced a one-dimensional integral
and studied its properties, see Theorem [3.3] We could define I as

t
L= [ epax;
0

where the previous integral is a Young mtegral which is well defined since X' and

(X?)7 are respectively in ¢+ and in C7#1and 2 le) > 1. Once more we need to
show that point 3 and 4 of Theorem [3.3] hold with this definition of I. The proof
of point 3 is the same as before recalling that integration by parts holds for Young
integrals. To prove point 4 it is enough to observe that, by definition of Young
integral, I is the only function I : [0,7] — R which satisfies

=0, L —I=(X)"(X!—X))+o(t—s)

and point 4 holds trivially. Observe that [)(X2)?dX} cannot be interpreted as a
Lebesgue integral because X! is not a function of bounded variation.

7.2. Integral inequality. Let v > 1 and let f : [0,400) — R be a positive
function such that f(0) = 0; fix 7" > 0 such that f(z) <1 for every = € [0,7] and
define M = max,cjor) f(x). Let g be a continuous function of bounded variation
on [0, 7] and assume that max,co,r] ¢(¢) —mingeor1 g(x) < 1. Then, we can write

9(x) = g1(x) = ga(x), Ve e[0,T],

where g; and g, are two monotone non decreasing functions. It is well defined the
Lebesgue-Stieltjes integral of f with respect to g defined as

/f )dg(x /f g (x /f Jdgo(

where dg; and dgy are the Lebesgue-Stieltjes measures associated respectively to
g1 and go. Since f is continuous, there exists zy € [0, 7] such that f(xg) = M. Fix
0 < ¢ < M, then there exists 0 < a < z( such that f(z) < ¢ for every z € [0, al.
So,

/0 "(f(2))dg(a) = / "(f () dga(x) - / "(f (@) dgal)

< gr(a) - 0 (0)) - / (f (@) dga(a)

< M(g1(a) — 9:1(0))
< M(gi(a) — ¢

—~ =
(=)
=
~—
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So,
/0 " () dg(a) = / “(f(o)dg(a) + / " () dg(a)

< M) = 20) + M(or(o0) —n(0)) = [ (@) (o)
< M(g1(0) = 91(0))
< M = f(zo).

This proves that it is not true that fg(f(x))"’dg(:c) > f(t) for every t € [0, T].

7.3. Non resonant example. In section we presented an example of a con-
trolled difference equation which admitted two different solutions. In particular

1
we considered a path X = (§2) where

X} =t’cost™, X7 =172 +sint™"),

for 5,7 that satisfy (4.1]). We are interested in what happens changing the defini-
tion of X. For example, we could define

X! =t

for some £ > « (so that X remains a-Holder). Then
t
I = / EuPHEH2 4 sinu ) du
0

and it is not true anymore that there exists T' €]0, 1[ such that
I, > X?
for every t € [0,7]. The best we can prove is that there exists 7" €]0, 1] such that
I > (X7)
for some p > 1. This suggests to modify the definition of f in to
flz,y) = {gv ii IZLZO.?/” -

However the resulting o is not in C? anymore. In fact, for (z,y) € A = {(z,y) €
R?: |z| > y* > 0 or z = 0},
Oyf (2, y) = 7Y Ljgyzyrz0-
Let z =0,y > 0,2’ = y” and v = y, then
10,f(z,y) = 0,f (=" )| _ vy~
(z,y) = (@)t g0
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which tends to infinity as y — 0. This underlines once more the importance
that the sine and cosine in X? and X! resonate. In fact it is only thanks to the
resonance that [; > X2.

7.4. Canonical Rough Path. In section [4.3| we presented an example of rough
difference equation driven by a path X, which admitted two different solutions. In
particular we defined X = (X!, X?) as a non-canonical rough path. We made such
choice because the canonical rough path for which

t
X2 = / (X, — X,)® X, du
does not satisfy the analytical condition (4.9). In fact
t
ot =[x x) Xidu
St ‘
= / X2X}du — X20X),
st . 28
> / X2X}du — Ot — s)wt
St
= / nu?? =112 4 sinw ™) sinu " dut
" as 28
+ / Bu (2 +sinu™") cosu " du — C(t — s) 7+
t ’ t
> / nu? =" L sin? w™" du + 2 / nu?? =1L sin ™" du+

— 3% — ) du— C(t — )71

Y

I I
3 / nu?17 1 du — 3 / nu?? 1 cos 2u~" du + (u% COS u‘"‘z + 4+
t
+ / 26u* "t cosu™" du — 3(t* — s*)du — C(t — 5)%
1 [ 1 ¢ B[t
> 5/ nu*P 171 du + (ZuQ’B sin 2u’"‘s — 5/ w1 sin 20" du
i

—5(t% + s%) du — C(t — )it
1 t
> 5/ nu* " du — (6 + B)(t7 + 5*7) du — C(t — s)n%ﬁ1

and the first integral diverges as s — 0 since 25 — n — 1 < —1. Analogously we
can prove that (X?)12 is not O(t — s)?*. On the other hand (X?)'! and (X?)*?
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are both O(t — s)?*, in fact for i = 1,2
L N 1. . ,
[ = X Xdu = 50 - X0
and X is a-Holder.

7.5. Geometric Rough Path - Solutions. In section [£.5] we built a sequence

1
of canonical rough paths (X,,) = (X},X2?) over smooth paths X,, = i’ﬁ) such
1

that X,, converges to a rough path X = (X!, X?) over X = <X

XQ) for which the

problem

(7.1)

0Zg = O-(ZS)X;t + 02(Zs)th +o(t — s)
ZO = 07

with ¢ as in (4.11)) does not admit a unique solution in [0,77]. In particular, we
proved in section {4.3| that (7.1]) admits

0 = 1—~)1
Zt = (th) and Zt — (( X;Qy> t)

as solutions, where I; is defined as in (3.3)). For every n € N consider the problem

(7.2)

6Zst = O-(ZS)X}LS,t + 0-2<Z3>X31,8,t + O(t - S)
ZQ - O

and define a sequence of functions (Z,)nen in which each element is the solution
to for the corresponding n. Observe that (Z,),en is well defined because o
is in C7 with v €]2,3[ and, for every n, X,, is a smooth path, hence for every n
admits a unique solution. We want to understand to which solution of
this sequence converges.

Recall that If z is such that z = (0,y) for some y € R, then

[o2(2))5 = 0
for every i, 7,1 € {1,2} because

doi(z)
82’2

=0 and o;(z) = 0.

NOW7 Zn,t - <X02
n,t

) trivially satisfies (7.2)). In fact, noticing that o'!(Z, ;) = 0 for
every s € [0,T] and recalling the computations above, problem (7.2)) is equivalent
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to
§ZL = o(t — s)
525215 = 6X72L,s,t +o(t — s)
Zy=0
72 = 0.

0
X7
result we only used properties of o, hence for any sequence of rough paths (X,,)
over paths X, in C* with v > £ (so that the solution of is unique) converging

This proves that (Z,),en converges to Z; = < ) Observe that to prove this

to X, the solutions to the corresponding problems will converge to Z; = ( )?2)
t

We stress that this does not depend on the fact that X is a geometric rough path.

Let us finally explain why the the approximating rough difference equations
fail to admit a solution similar to Z. Recall that we were able to prove that Z
was a solution of by demonstrating that I; > X? for ¢ small enough. This
inequality primary relied on two key factors: firstly, X! oscillates rapidly near the
origin and in particular it is not a function of bounded variation; secondly, the
sine and cosine in X! and X2 resonate causing the integral to behave like a power
function with exponent 8(y + 1) — n for sufficiently small ¢. Since X? is bounded
by 3t? this ensured that I, > X?2. If we define

t
I, = / (X2, VX2, du,
0

then there cannot exist 7' > 0 such that I,,; > X2, for every ¢ € [0,7]. This holds
because X! is of bounded variation, see section for a more detailed discussion.

7.6. Reverse Holder functions. Let o € [0, 1]. There cannot exist a function
f:[0,1] = R in C* and a constant C' > 0 such that

[f () = fs)] = Clt = s]*.

Suppose such a function exists. Then f must be injective. Indeed, if f(t) = f(s)
for some t # s, we would have |f(t) — f(s)| = 0, which cannot be greater than
Clt — s|* for any C' > 0. Since f is in C%, it is continuous. Being both continuous
and injective, f must be strictly monotone.

Consider the partition P, of [0, 1] defined as

Pn:{ﬁzk:O,...,n}.
n
n—1

() ()5

k=0

Then,
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This implies that f is not a function of bounded variation. However, this is a
contradiction because a strictly monotone function is always of bounded variation.
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