An introduction to regularity structures

Lorenzo Zambotti (Sorbonne U, Paris)

8-12 August 2022
Campinas

These slides can be downloaded from my home page

Plan of the course

In this course I want to discuss mainly the analytical aspects of the theory of regularity structures.

The plan for the four lectures is roughly:

- I. Reconstruction Theorem
- II. Models and modelled distributions
- III. Schauder estimates for germs
- IV. Multilevel Schauder estimates for modelled distributions
- V. Products and equations

Lecture notes and papers in collaboration with F. Caravenna and L. Broux, see my web page.

Chapter 1: The Reconstruction Theorem

A theory, a theorem

This talk is based on a paper (appeared in 2021 in the EMS Surveys in Mathematics)

- Hairer's Reconstruction Theorem without Regularity Structures by F. Caravenna and L.Z.
In this paper we have extracted a single result (the Reconstruction Theorem) from a larger theory (Regularity Structures).

We present the former in a simpler and more general version, without reference to the latter. A later paper by Pavel Zorin-Kranich, to appear in Revista Matematica Iberoamericana, has introduced introduced further simplifications and improvements to our results.

Prelude: The Sewing Lemma

You have seen in Sebastian's lectures last week that the main tool in rough analysis is the Theorem (Sewing Lemma)
Let $0<\alpha \leq 1<\beta$. There exists a unique map $\mathcal{I}: \mathcal{C}_{2}^{\alpha, \beta}\left([0, T]: \mathbb{R}^{d}\right) \rightarrow \mathcal{C}^{\alpha}\left([0, T]: \mathbb{R}^{d}\right)$ s.t.

$$
(\mathcal{I} \Xi)_{0}=0, \quad\left|\mathcal{I} \Xi_{t}-\mathcal{I} \Xi_{s}-\Xi_{s, t}\right| \lesssim|t-s|^{\beta}, \quad s, t \in[0, T]
$$

We recall that $\mathcal{C}_{2}^{\alpha, \beta}$ denotes the space of continuous $\Xi:\{(s, t): 0 \leq s \leq t \leq T\} \rightarrow \mathbb{R}^{d}$ s.t.

$$
\sup _{0 \leq s<t \leq T} \frac{\left|\Xi_{s, t}\right|}{|t-s|^{\alpha}}+\sup _{0 \leq s<u<t \leq T} \frac{\left|\Xi_{s, t}-\Xi_{s, u}-\Xi_{u, t}\right|}{|t-s|^{\beta}}<+\infty
$$

This theorem was proved around 2003 indipendently by Gubinelli and Feyel-de la Pradelle.
It is restricted to functions depending on a one-dimensional parameter.
It took ten years to find a version of this result in higher dimension... This is Martin's Reconstruction Theorem.

Distributions

This talk will concern the space $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ of distributions or generalised functions.
We consider the space $\mathcal{D}\left(\mathbb{R}^{d}\right):=C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ of smooth functions with compact support on \mathbb{R}^{d}. A distribution on \mathbb{R}^{d} is a linear functional $T: C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ such that for every compact set $K \subset \mathbb{R}^{d}$ there is $r=r_{K} \in \mathbb{N}$

$$
|T(\varphi)| \lesssim\|\varphi\|_{C^{r}}:=\max _{|k| \leq r}\left\|\partial^{k} \varphi\right\|_{\infty}, \quad \forall \varphi \in C_{0}^{\infty}(K)
$$

where throughout the lectures $f \lesssim g$ means that there exists a constant $C>0$ such that $f \leq C g$.

When r can be chosen uniformly over K we say that T has order r.

Distributions

Every locally integrable (in particular continuous) function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ defines a distribution:

$$
f(\varphi):=\int_{\mathbb{R}^{d}} f(x) \varphi(x) \mathrm{d} x, \quad \varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)
$$

A famous example of distribution from quantum mechanics, which actually motivated the whole theory of distributions, is the Dirac measure δ_{x} at $x \in \mathbb{R}^{d}$

$$
\delta_{x}(\varphi)=\varphi(x), \quad \varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)
$$

One can also differentiate any distribution $T \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$: for $k \in \mathbb{N}^{d}$

$$
\partial^{k} T(\varphi):=(-1)^{k_{1}+\cdots+k_{d}} T\left(\partial^{k} \varphi\right) .
$$

Products of distributions

Distributions form a linear space. If $\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ and $T \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ then it is possible to define canonically the product $\varphi \cdot T=T \cdot \varphi$ as

$$
\varphi \cdot T(\psi)=T \cdot \varphi(\psi):=T(\varphi \psi), \quad \forall \psi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)
$$

However, if $T, T^{\prime} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$, in general there is no canonical way of defining $T \cdot T^{\prime}$.
One may use some form of regularisation of T, T^{\prime} or both. Then, the result could heavily depend on the regularisation and thus be neither unique nor canonical.
For example, one can not define the square $\left(\delta_{x}\right)^{2}$ of the Dirac function.

The main question of reconstruction

For every $x \in \mathbb{R}^{d}$ we fix a distribution $F_{x} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$. If for all $\psi \in \mathcal{D}$ the map

$$
\mathbb{R}^{d} \ni x \mapsto F_{x}(\psi)
$$

is measurable, then we call $\left(F_{x}\right)_{x \in \mathbb{R}^{d}}$ a germ.
Problem:
Can we find a distribution $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ which is locally well approximated by $\left(F_{x}\right)_{x \in \mathbb{R}^{d}}$?

The main question of reconstruction

For every $x \in \mathbb{R}^{d}$ we fix a distribution $F_{x} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$. If for all $\psi \in \mathcal{D}$ the map

$$
\mathbb{R}^{d} \ni x \mapsto F_{x}(\psi)
$$

is measurable, then we call $\left(F_{x}\right)_{x \in \mathbb{R}^{d}}$ a germ.
Problem:
Can we find a distribution $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ which is locally well approximated by $\left(F_{x}\right)_{x \in \mathbb{R}^{d}}$?
Note that for $j \in \mathbb{N}^{d}, w \in \mathbb{R}^{d}$, we use the notation

$$
|j|:=\sum_{k=1}^{d} j_{k}, \quad w^{j}:=\prod_{k=1}^{d} w_{k}^{j_{k}}, \quad j!:=\prod_{k=1}^{d} j_{k}!
$$

with the convention $0^{0}:=1$.

Taylor expansions

For example, let us fix $f \in C^{\infty}\left(\mathbb{R}^{d}\right)$, and let us define for a fixed $\gamma>0$

$$
F_{x}(y):=\sum_{|k|<\gamma} \partial^{k} f(x) \frac{(y-x)^{k}}{k!}, \quad x, y \in \mathbb{R}^{d}
$$

Then the classical Taylor theorem says that there exists a function $R(x, y)$ such that

$$
f(y)-F_{x}(y)=R(x, y), \quad|R(x, y)| \lesssim|x-y|^{\gamma}
$$

uniformly for every x, y on compact sets of \mathbb{R}^{d}.
We say that the distribution f is locally well approximated by the germ $\left(F_{x}\right)_{x \in \mathbb{R}^{d}}$.

Scaling

Let us introduce now the following fundamental tool:
for all $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right), \lambda>0$ and $y \in \mathbb{R}^{d}$

$$
\varphi_{y}^{\lambda}(w):=\frac{1}{\lambda^{d}} \varphi\left(\frac{w-y}{\lambda}\right), \quad w \in \mathbb{R}^{d} .
$$

Then the local approximation property

$$
f(y)-F_{x}(y)=R(x, y), \quad|R(x, y)| \lesssim|x-y|^{\gamma}
$$

implies for any $\varphi \in \mathcal{D}$, uniformly for y in compact sets of $\left.\left.\mathbb{R}^{d}, \lambda \in\right] 0,1\right]$.

$$
\begin{aligned}
\left|\left(f-F_{y}\right)\left(\varphi_{y}^{\lambda}\right)\right| & =\left|\int_{\mathbb{R}^{d}} R(y, w) \varphi_{y}^{\lambda}(w) \mathrm{d} w\right| \\
& \lesssim \frac{1}{\lambda^{d}} \int_{B_{y}(\lambda)}|w-y|^{\gamma} \mathrm{d} w \lesssim \lambda^{\gamma}
\end{aligned}
$$

Taylor expansions

Another simple formula in this context is

$$
\left|\left(F_{z}-F_{y}\right)\left(\varphi_{y}^{\lambda}\right)\right| \lesssim(|y-z|+\lambda)^{\gamma}
$$

for any $\varphi \in \mathcal{D}$, uniformly for y, z in compact sets of $\left.\left.\mathbb{R}^{d}, \lambda \in\right] 0,1\right]$.
We call this property coherence, see below.
This comes from a simple estimate of $F_{z}(w)-F_{y}(w)$.

Coherence of Taylor expansions

Let us note that we can Taylor expand also the derivatives of f : for $|k|<\gamma$

$$
\partial^{k} f(y)=\sum_{|\ell|<\gamma-|k|} \partial^{k+\ell} f(z) \frac{(y-z)^{\ell}}{\ell!}+R^{k}(y, z), \quad\left|R^{k}(y, z)\right| \lesssim|y-z|^{\gamma-|k|}
$$

Then we can write

$$
\begin{aligned}
F_{y}(w) & =\sum_{|k|<\gamma} \partial^{k} f(y) \frac{(w-y)^{k}}{k!} \\
& =\sum_{|k|<\gamma}\left(\sum_{|\ell|<\gamma-|k|} \partial^{k+\ell} f(z) \frac{(y-z)^{\ell}}{\ell!}+R^{k}(y, z)\right) \frac{(w-y)^{k}}{k!} \\
& =F_{z}(w)+\sum_{|k|<\gamma} R^{k}(y, z) \frac{(w-y)^{k}}{k!}
\end{aligned}
$$

Coherence of Taylor expansions

Therefore

$$
F_{z}(w)-F_{y}(w)=-\sum_{|k|<\gamma} R^{k}(y, z) \frac{(w-y)^{k}}{k!}
$$

In particular

$$
\begin{aligned}
\left|F_{z}(w)-F_{y}(w)\right| & \leq \sum_{|k|<\gamma}\left|R^{k}(y, z)\right| \frac{|w-y|^{k}}{k!} \\
& \lesssim \sum_{|k|<\gamma}|y-z|^{\gamma-|k|}|w-y|^{k} \\
& \lesssim(|y-z|+|w-y|)^{\gamma}
\end{aligned}
$$

since $a^{t} b^{s} \leq(a+b)^{t}(a+b)^{s}$ for $a, b, t, s \geq 0$.

Coherence of Taylor expansions

Now recall that

$$
\varphi_{y}^{\lambda}(w):=\frac{1}{\lambda^{d}} \varphi\left(\frac{w-y}{\lambda}\right), \quad w \in \mathbb{R}^{d} .
$$

Then

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{d}}\left(F_{z}(w)-F_{y}(w)\right) \varphi_{y}^{\lambda}(w) \mathrm{d} w\right| & \lesssim \frac{1}{\lambda^{d}} \int_{B_{y}(\lambda)}(|y-z|+|w-y|)^{\gamma} \mathrm{d} w \\
& \lesssim(|y-z|+\lambda)^{\gamma} .
\end{aligned}
$$

We have obtained for the germ $\left(F_{y}\right)_{y \in \mathbb{R}^{d}}$ and for any $\varphi \in \mathcal{D}, y, z \in \mathbb{R}^{d}$

$$
\left|\left(F_{z}-F_{y}\right)\left(\varphi_{y}^{\lambda}\right)\right| \lesssim(|y-z|+\lambda)^{\gamma}
$$

Coherence

Let us set from now on

$$
\varepsilon_{n}:=2^{-n}, \quad n \in \mathbb{N} .
$$

In particular for the germ related to a Taylor expansion we have for $\lambda \in\left\{\varepsilon_{n}: n \in \mathbb{N}\right\}$

$$
\left|\left(F_{z}-F_{y}\right)\left(\varphi_{y}^{\varepsilon_{n}}\right)\right| \lesssim\left(|y-z|+\varepsilon_{n}\right)^{\gamma}, \quad\left|\left(f-F_{y}\right)\left(\varphi_{y}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\gamma},
$$

for any $\varphi \in \mathcal{D}$, uniformly for y, z in compact sets of \mathbb{R}^{d} and $n \in \mathbb{N}$.
We say that a germ $\left(F_{z}\right)_{z \in \mathbb{R}^{d}} \subset \mathcal{D}^{\prime}$ is (α, γ)-coherent for $\alpha, \gamma \in \mathbb{R}$ with $\alpha \leq \gamma$, if there exists $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ such that $\int \varphi \neq 0$ and

$$
\left|\left(F_{z}-F_{y}\right)\left(\varphi_{y}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\alpha}\left(|y-z|+\varepsilon_{n}\right)^{\gamma-\alpha}
$$

uniformly for z, y in compact sets of \mathbb{R}^{d} and $n \in \mathbb{N}$.

Hairer's Reconstruction Theorem (without regularity structures)

Theorem (Hairer 14, Caravenna-Z. 20)

Consider a (α, γ)-coherent germ with $\gamma>0$, namely we suppose that there exists $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ such that $\int \varphi \neq 0$ and

$$
\left|\left(F_{y}-F_{x}\right)\left(\varphi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\alpha}\left(|x-y|+\varepsilon_{n}\right)^{\gamma-\alpha}
$$

uniformly for x, y in compact sets of \mathbb{R}^{d} and $n \in \mathbb{N}$ (coherence condition). Then there exists a unique $\mathcal{R} F \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ such that

$$
\left|\left(\mathcal{R} F-F_{x}\right)\left(\psi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\gamma}
$$

uniformly for x in compact sets of $\mathbb{R}^{d}, n \in \mathbb{N},\left\{\psi \in \mathcal{D}(B(0,1)):\|\psi\|_{C^{r}} \leq 1\right\}$ with a fixed $r>-\alpha$.

- This result was stated and proved by Martin in [Hai14] for a subclass of germs related to regularity structures. He used wavelets.
- Later Otto-Weber proposed an approach based on a semigroup. This corresponds to a special choice of the test functions φ, ψ.
- Our statement is more general and requires no knowledge of regularity structures.
- This result can be seen as a generalisation of the Sewing Lemma in rough paths (Gubinelli, Feyel-de La Pradelle).
- The construction is completely local: constants and even the exponent α can depend on the compact set.
- We also cover the case $\gamma \leq 0$ (see below).
- Pavel Zorin-Kranich recently showed how to simplify, shorten and (slightly) improve our proof.

Proof for $\gamma>0$: Uniqueness

Suppose we have two distributions $f, g \in \mathcal{D}^{\prime}$ which satisfy, uniformly for $x \in K$ for any compact $K \subset \mathbb{R}^{d}$,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left|\left(f-F_{x}\right)\left(\varphi_{x}^{\varepsilon_{n}}\right)\right|=\lim _{n \rightarrow+\infty}\left|\left(g-F_{x}\right)\left(\varphi_{x}^{\varepsilon_{n}}\right)\right|=0 \tag{1}
\end{equation*}
$$

We may assume that $c:=\int \varphi=1$ (otherwise just replace φ by $c^{-1} \varphi$).
We set $T:=f-g$, we fix a test function $\psi \in \mathcal{D}$. We recall the definition of the convolution

$$
\psi * \varphi(w)=\int_{\mathbb{R}^{d}} \psi(y) \varphi(w-y) \mathrm{d} y=\int_{\mathbb{R}^{d}} \psi(w-y) \varphi(y) \mathrm{d} y
$$

for $w \in \mathbb{R}^{d}$. This implies

$$
\begin{equation*}
T(\psi * \varphi)=\int_{\mathbb{R}^{d}} \psi(y) T(\varphi(\cdot-y)) \mathrm{d} y=\int_{\mathbb{R}^{d}} T(\psi(\cdot-y)) \varphi(y) \mathrm{d} y \tag{2}
\end{equation*}
$$

Proof for $\gamma>0$: Uniqueness

It follows that

$$
T(\psi)=\lim _{n \rightarrow+\infty} T\left(\psi * \varphi_{0}^{\varepsilon_{n}}\right)
$$

Moreover

$$
\begin{aligned}
T\left(\psi * \varphi_{0}^{\varepsilon_{n}}\right) & =\int_{\mathbb{R}^{d}} T\left(\varphi_{0}^{\varepsilon_{n}}(\cdot-y)\right) \psi(y) \mathrm{d} y=\int_{\mathbb{R}^{d}} T\left(\varphi_{y}^{\varepsilon_{n}}\right) \psi(y) \mathrm{d} y \\
\left|T\left(\psi * \varphi_{0}^{\varepsilon_{n}}\right)\right| & =\left|\int_{\mathbb{R}^{d}} T\left(\varphi_{y}^{\varepsilon_{n}}\right) \psi(y) \mathrm{d} y\right| \leq\|\psi\|_{L^{1}} \sup _{y \in \operatorname{supp}(\psi)}\left|T\left(\varphi_{y}^{\varepsilon_{n}}\right)\right| .
\end{aligned}
$$

It remains to show that $\lim _{n \rightarrow+\infty} \sup _{y \in \operatorname{supp}(\psi)}\left|T\left(\varphi_{y}^{\varepsilon_{n}}\right)\right|=0$. Now

$$
\left|T\left(\varphi_{y}^{\varepsilon_{n}}\right)\right|=\left|f\left(\varphi_{y}^{\varepsilon_{n}}\right)-g\left(\varphi_{y}^{\varepsilon_{n}}\right)\right| \leq\left|\left(f-F_{y}\right)\left(\varphi_{y}^{\varepsilon_{n}}\right)\right|+\left|\left(g-F_{y}\right)\left(\varphi_{y}^{\varepsilon_{n}}\right)\right|
$$

which vanishes as $n \rightarrow+\infty$ uniformly for $y \in \operatorname{supp}(\psi)$, by the reconstruction bound (1).

Proof for $\gamma>0$: Existence

We fix a test function $\varphi \in \mathcal{D}$ with $\int \varphi \neq 0$ which makes the germ F coherent.
We can find in an elementary way a related $\hat{\varphi} \in \mathcal{D}(B(0,1))$ such that

$$
\int_{\mathbb{R}^{d}} \hat{\varphi}(y) \mathrm{d} y=1, \quad \int_{\mathbb{R}^{d}} y^{k} \hat{\varphi}(y) \mathrm{d} y=0, \quad \forall k \in \mathbb{N}_{0}^{d}: 1 \leq|k| \leq r-1
$$

for a given $r>-\alpha$. Then we define

$$
\rho:=\hat{\varphi}^{2} * \hat{\varphi} \quad \text { and } \quad \check{\varphi}:=\hat{\varphi}^{\frac{1}{2}}-\hat{\varphi}^{2},
$$

where by $\hat{\varphi}^{\frac{1}{2}}, \hat{\varphi}^{2}$ we mean $\hat{\varphi}^{\lambda}(z)=\lambda^{-d} \hat{\varphi}\left(\lambda^{-1} z\right)$ for $\lambda=\frac{1}{2}, 2$, respectively.
This peculiar choice of ρ ensures that the difference $\rho^{\frac{1}{2}}-\rho$ is a convolution:

$$
\rho^{\frac{1}{2}}-\rho=\hat{\varphi} * \check{\varphi}
$$

It follows that

$$
\rho^{\varepsilon_{n+1}}-\rho^{\varepsilon_{n}}=\left(\rho^{\frac{1}{2}}-\rho\right)^{\varepsilon_{n}}=\hat{\varphi}^{\varepsilon_{n}} * \check{\varphi}^{\varepsilon_{n}}
$$

Proof for $\gamma>0$: Existence

Finally we define

$$
f_{n}(z):=F_{z}\left(\rho_{z}^{\varepsilon_{n}}\right), \quad f_{n}(\psi):=\int_{\mathbb{R}^{d}} F_{z}\left(\rho_{z}^{\varepsilon_{n}}\right) \psi(z) \mathrm{d} z, \quad z \in \mathbb{R}^{d}, \psi \in \mathcal{D}
$$

Then we want to prove that $f_{n}(\psi) \rightarrow f(\psi)$ and $\left|\left(f-F_{x}\right)\left(\psi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\gamma}$ for all $\psi \in \mathcal{D}$, namely that

$$
\mathcal{R} F=\lim _{n \rightarrow+\infty} f_{n} \quad \text { in } \mathcal{D}^{\prime}
$$

We study the function

$$
\begin{equation*}
f_{x, n}(z):=f_{n}(z)-F_{x}\left(\rho_{z}^{\varepsilon_{n}}\right)=\left(F_{z}-F_{x}\right)\left(\rho_{z}^{\varepsilon_{n}}\right), \quad x, z \in \mathbb{R}^{d} . \tag{3}
\end{equation*}
$$

Proof for $\gamma>0$: Existence

We write $f_{x, n}$ as a telescoping sum:

$$
\begin{align*}
& f_{x, k+1}(z)-f_{x, k}(z)=\left(F_{z}-F_{x}\right)\left(\rho_{z}^{\varepsilon_{k+1}}-\rho_{z}^{\varepsilon_{k}}\right) \\
& =\left(F_{z}-F_{x}\right)\left(\hat{\varphi}^{\varepsilon_{n}} * \check{\varphi}_{z}^{\varepsilon_{n}}\right)=\int_{\mathbb{R}^{d}}\left(F_{z}-F_{x}\right)\left(\hat{\varphi}_{y}^{\varepsilon_{k}}\right) \check{\varphi}^{\varepsilon_{k}}(y-z) \mathrm{d} y \\
& =\underbrace{\int_{\mathbb{R}^{d}}\left(F_{y}-F_{x}\right)\left(\hat{\varphi}_{y}^{\varepsilon_{k}}\right) \check{\varphi}^{\varepsilon_{k}}(y-z) \mathrm{d} y}_{g_{x, k}^{\prime}(z)}+\underbrace{\int_{\mathbb{R}^{d}}\left(F_{z}-F_{y}\right)\left(\hat{\varphi}_{y}^{\varepsilon_{k}}\right) \check{\varphi}^{\varepsilon_{k}}(y-z) \mathrm{d} y}_{g_{k}^{\prime \prime}(z)} \tag{4}
\end{align*}
$$

where again we use (2). By coherence we have

$$
\begin{array}{r}
\left|g_{k}^{\prime \prime}(z)\right| \leq\left\|\check{\varphi}^{\varepsilon_{k}}\right\|_{L^{1}} \sup _{|y-z| \leq \varepsilon_{k}}\left|\left(F_{z}-F_{y}\right)\left(\hat{\varphi}_{y}^{\varepsilon_{k}}\right)\right| \lesssim \varepsilon_{k}^{\alpha} \varepsilon_{k}^{\gamma-\alpha}=\varepsilon_{k}^{\gamma}, \\
\left|\int_{\mathbb{R}^{d}} g_{x, k}^{\prime}(z) \psi(z) \mathrm{d} z\right| \leq \sup _{y \in \bar{K}_{1}}\left|\left(F_{y}-F_{x}\right)\left(\hat{\varphi}_{y}^{\varepsilon_{k}}\right)\right|\left\|\check{\varphi}^{\varepsilon_{k}} * \psi\right\|_{L^{1}} \lesssim \varepsilon_{k}^{\alpha}\left\|\check{\varphi}^{\varepsilon_{k}} * \psi\right\|_{L^{1}} .
\end{array}
$$

Proof for $\gamma>0$: Existence

By the properties of $\check{\varphi}$ we can write

$$
\left(\check{\varphi}^{\varepsilon} * \psi\right)(y)=\int_{\mathbb{R}^{d}} \check{\varphi}^{\varepsilon}(y-z)\left\{\psi(z)-p_{y}(z)\right\} \mathrm{d} z
$$

where $p_{y}(z):=\sum_{|k| \leq r-1} \frac{\partial^{k} \psi(y)}{k!}(z-y)^{k}$ is the Taylor polynomial of ψ of order $r-1$ based at y; since $\left|\psi(z)-p_{y}(z)\right| \lesssim\|\psi\|_{C^{r}}|z-y|^{r}$, we obtain

$$
\left\|\check{\varphi}^{\varepsilon_{k}} * \psi\right\|_{L^{1}} \lesssim \int_{\mathbb{R}^{d}}\left|\check{\varphi}^{\varepsilon_{k}}(y-z)\right||z-y|^{r} \mathrm{~d} z \lesssim \varepsilon_{k}^{r}
$$

We obtain

$$
\left|\int_{\mathbb{R}^{d}} g_{x, k}^{\prime}(z) \psi(z) \mathrm{d} z\right| \lesssim \varepsilon_{k}^{\alpha+r}, \quad\left|\int_{\mathbb{R}^{d}} g_{k}^{\prime \prime}(z) \psi(z) \mathrm{d} z\right| \lesssim \varepsilon_{k}^{\gamma} .
$$

Now we have by assumptions $\gamma>0$ and $\alpha+r>0$.

Proof for $\gamma>0$: Existence

In particular, as $n \rightarrow+\infty$,

$$
f_{x, n}(\psi)=f_{x, 0}(\psi)+\sum_{k=0}^{n-1}\left[g_{x, k}^{\prime}(\psi)+g_{k}^{\prime \prime}(\psi)\right]
$$

converges to a distribution of order r. Now that $F_{x}\left(\rho_{.}^{\varepsilon_{n}}\right)$ converges to F_{x} in \mathcal{D}^{\prime}. We obtain $f_{n}=f_{x, n}+F_{x}\left(\rho_{\varepsilon^{\varepsilon_{n}}}\right)$ converges to a distribution $\mathcal{R} F$ in \mathcal{D}^{\prime}. We also obtain for all ℓ

$$
\mathcal{R} F(\psi)=F_{x}(\psi)+f_{x, \ell}(\psi)+\sum_{k=\ell}^{\infty}\left[g_{x, k}^{\prime}(\psi)+g_{k}^{\prime \prime}(\psi)\right]
$$

and the latter formula yields similarly the reconstruction bound $\left|\left(f-F_{x}\right)\left(\psi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\gamma}$.

The Reconstruction Theorem for $\gamma \leq 0$.

Theorem (Hairer 14, Caravenna-Z. 20)
Let $F: \mathbb{R}^{d} \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ be a (α, γ)-coherent germ, with $\alpha \leq \gamma \leq 0$, namely there exists a $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ with $\int \varphi \neq 0$ s.t.

$$
\left|\left(F_{y}-F_{x}\right)\left(\varphi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\alpha}\left(|x-y|+\varepsilon_{n}\right)^{\gamma-\alpha}, \quad n \in \mathbb{N}, x, y \in \mathbb{R}^{d},
$$

(coherence condition). Then there exists a non-unique $\mathcal{R} F \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ such that

$$
\left|\left(\mathcal{R} F-F_{x}\right)\left(\psi_{x}^{\varepsilon_{n}}\right)\right| \lesssim\left\{\begin{array}{ll}
\varepsilon_{n}^{\gamma} & \text { if } \gamma<0 \\
\left(1+\left|\log \varepsilon_{n}\right|\right) & \text { if } \gamma=0
\end{array} .\right.
$$

uniformly for x in compact sets of $\mathbb{R}^{d}, n \in \mathbb{N},\left\{\psi \in \mathcal{D}(B(0,1)):\|\psi\|_{C^{r}} \leq 1\right\}$ with a fixed $r>-\alpha$.

Proof for $\gamma \leq 0$

In the proof with $\gamma>0$, we wrote, see (4) and (3),

$$
f_{x, n}:=f_{n}-F_{x}\left(\rho_{\rho_{n}}^{\varepsilon_{n}}\right)=f_{x, 0}+\sum_{k=0}^{n-1}\left[g_{x, k}^{\prime}+g_{k}^{\prime \prime}\right], \quad\left|g_{x, n}^{\prime}\right| \lesssim \varepsilon_{n}^{\alpha+r}, \quad\left|g_{n}^{\prime \prime}\right| \leq \varepsilon_{n}^{\gamma}
$$

Now we can choose r such that $\alpha+r>0$, but $\gamma \leq 0$ is fixed.
The solution is to define a different approximation sequence, eliminating the term $g_{n}^{\prime \prime}$ whose convergence depends on $\gamma>0$, and the proof follows with the same estimates. Namely

$$
\bar{f}_{n}:=f_{n}-\sum_{k=0}^{n-1} g_{k}^{\prime \prime}, \quad \bar{f}_{x, n}(\psi):=\bar{f}_{n}(\psi)-F_{x}\left(\rho^{\varepsilon_{n}} * \psi\right)=f_{x, 0}(\psi)+\sum_{k=0}^{n-1} g_{x, k}^{\prime}(\psi)
$$

Then with the same arguments $\bar{f}_{n}(\psi) \rightarrow \bar{f}(\psi)$ and $\left|\left(\bar{f}-F_{x}\right)\left(\psi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\gamma}$.

Homogeneity

The coherence assumption only concerns $F_{z}-F_{y}$, never F_{y} alone.
Under coherence alone, the reconstruction $\mathcal{R} F$ exists in \mathcal{D}^{\prime} but we have little more information.

Another crucial notion for germs is homogeneity (with exponent $\bar{\alpha}$)

$$
\left|F_{x}\left(\psi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\bar{\alpha}}
$$

uniformly for x in compact sets, $n \in \mathbb{N}$ and $\psi \in \mathcal{D}(B(0,1))$ with $\|\psi\|_{C^{r}} \leq 1$, for some fixed $r>-\bar{\alpha}$.

Negative Hölder (Besov) spaces

Given $\bar{\alpha} \in]-\infty, 0\left[\right.$, we define $\mathcal{C}^{\bar{\alpha}}=\mathcal{C}^{\bar{\alpha}}\left(\mathbb{R}^{d}\right)$ as the space of distributions $T \in \mathcal{D}^{\prime}$ such that for all $\psi \in \mathcal{D} \backslash\{0\}$

$$
\frac{\left|T\left(\psi_{x}^{\varepsilon}\right)\right|}{\|\psi\|_{C^{r} \bar{\alpha}}} \lesssim \varepsilon^{\bar{\alpha}}
$$ uniformly for x in compact sets and $\varepsilon \in(0,1]$,

where we define $r_{\bar{\alpha}}$ as the smallest integer $r \in \mathbb{N}$ such that $r>-\bar{\alpha}$.

Theorem

The reconstruction $\mathcal{R} F$ of $a(\alpha, \gamma)$-coherent germ F with homogeneity exponent $\bar{\alpha}$ is in $\mathcal{C}^{\bar{\alpha}}$ (and the map $F \mapsto \mathcal{R} F \in \mathcal{C}^{\bar{\alpha}}$ is linear continuous).

Sewing versus reconstruction

In dimension $d=1$, the Sewing Lemma and the Reconstruction are almost equivalent.
For a continuous $\Xi:\{(s, t): 0 \leq s \leq t \leq T\} \rightarrow \mathbb{R}$ which vanishes on the diagonal we can define the germ $F_{t}(\cdot):=\partial_{s} \Xi{ }_{\cdot, t}$.
Let $z>y>x$ and $\varphi:=\mathbb{1}_{(-1,0)}$, so that $\varphi_{y}^{y-x}=\frac{1}{y-x} \mathbb{1}_{(x, y)}$. Then

$$
\begin{aligned}
\left(F_{z}-F_{y}\right)\left(\varphi_{y}^{y-x}\right) & =\frac{1}{y-x} \int_{x}^{y}\left(\partial_{s} \Xi_{s, z}-\partial_{s} \Xi_{s, y}\right) \mathrm{d} s \\
& =-\frac{1}{y-x}\left(\Xi_{x, z}-\Xi_{x, y}-\Xi_{y, z}\right)
\end{aligned}
$$

Then

$$
\left|\left(F_{z}-F_{y}\right)\left(\varphi_{y}^{y-x}\right)\right| \lesssim|y-x|^{-1}(|z-y|+|y-x|)^{\beta-1+1} \Longleftrightarrow\left|\Xi_{x, z}-\Xi_{x, y}-\Xi_{y, z}\right| \lesssim|z-x|^{\beta}
$$

namely $(-1, \beta-1)$-coherence of F is equivalent to $\delta \Xi \in \mathcal{C}_{3}^{\beta}$.

Sewing versus reconstruction

In particular, we can interpret the conditions

$$
\underbrace{\sup _{0 \leq s<t \leq T} \frac{\left|\Xi_{s, t}\right|}{|t-s|^{\alpha}}<+\infty}_{\text {homogeneity }}
$$

As for reconstruction, also Sewing is possible under mere coherence

- coherence implies existence of $\mathcal{I} \Xi$
- homogeneity implies that $\mathcal{I} \Xi \in \mathcal{C}^{\alpha}$.

Moreover for $\beta \leq 1$ we still have a version of the Sewing Lemma, as for Reconstruction with $\gamma=\beta-1 \leq 0$ (see Broux/Z.).

Singular product

Let $f \in \mathcal{C}^{\alpha}$ with $\alpha>0$ and $F_{y}(w)=\sum_{|k|<\alpha} \partial^{k} f(y) \frac{(w-y)^{k}}{k!}$.
Let also $g \in \mathcal{C}^{\beta}$ with $\beta \leq 0$. We define the germ $P=\left(P_{x}:=g \cdot F_{x}\right)_{x \in \mathbb{R}^{d}}$, that is

$$
P_{x}(\varphi)=\left(g \cdot F_{x}\right)(\varphi):=g\left(\varphi F_{x}\right), \quad \varphi \in \mathcal{D}
$$

Theorem

If $f \in \mathcal{C}^{\alpha}$ and $g \in \mathcal{C}^{\beta}$, with $\alpha>0$ and $\beta \leq 0$, then the germ $P=\left(P_{x}\right)_{x \in \mathbb{R}^{d}}$ is ($\beta, \alpha+\beta$)-coherent, namely

$$
\left|\left(P_{z}-P_{y}\right)\left(\varphi_{y}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\beta}\left(|y-z|+\varepsilon_{n}\right)^{\alpha} .
$$

If $\alpha+\beta>0$, the unique distribution $\mathcal{R} P$ can be used to construct a canonical product of f and g. Moreover $\mathcal{R} P \in \mathcal{C}^{\beta}$.
If $\alpha+\beta \leq 0$, the (non-unique) distribution $\mathcal{R} P$ can be used to construct a non-canonical product of f and g. Moreover $\mathcal{R} P \in \mathcal{C}^{\beta}$.

Recent developments

- Reconstruction Theorem for Germs of Distributions on Smooth Manifolds by Paolo Rinaldi and Federico Sclavi
- On a Microlocal Version of Young's Product Theorem by Claudio Dappiaggi, Paolo Rinaldi and Federico Sclavi
- Besov Reconstruction
by Lucas Broux and David Lee
- Reconstruction theorem in quasinormed spaces by Pavel Zorin-Kranich
- A stochastic reconstruction theorem by Hannes Kern
- The Sewing lemma for $0<\gamma \leq 1$ by Lucas Broux and L.Z.

What we did yesterday

We defined the notion of coherent germs: $\left(F_{x}\right)_{x \in \mathbb{R}^{d}} \subset \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ such that

$$
\left|\left(F_{z}-F_{y}\right)\left(\varphi_{y}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\alpha}\left(|y-z|+\varepsilon_{n}\right)^{\gamma-\alpha},
$$

where for all $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right), \lambda>0$ and $y \in \mathbb{R}^{d}$

$$
\varphi_{y}^{\varepsilon_{n}}(w):=\frac{1}{\varepsilon_{n}^{d}} \varphi\left(\frac{w-y}{\lambda}\right), \quad w \in \mathbb{R}^{d} .
$$

Here $\gamma, \alpha \in \mathbb{R}$ and $\alpha \leq \gamma$.
We stated the Reconstruction Theorem: there exists $\mathcal{R} F \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ such that

$$
\left|\left(\mathcal{R} F-F_{x}\right)\left(\psi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\gamma}
$$

(with a log-correction for $\gamma=0$) and $\mathcal{R} F$ is unique if $\gamma>0$.

An important special case of reconstruction

Let F be a (α, γ)-coherent germ with $\gamma>0$.
We know that the (unique) reconstruction $\mathcal{R} F$ satisfies

$$
\mathcal{R} F(\psi)=\lim _{n \rightarrow+\infty} \int_{\mathbb{R}^{d}} F_{z}\left(\rho_{z}^{\varepsilon_{n}}\right) \psi(z) \mathrm{d} z, \quad \forall \psi \in \mathcal{D}
$$

Let us suppose now that $(x, y) \mapsto F_{x}(y)$ is continuous.
Then by dominated convergence we obtain

$$
\mathcal{R} F(\psi)=\int_{\mathbb{R}^{d}} F_{z}(z) \psi(z) \mathrm{d} z, \quad \forall \psi \in \mathcal{D}
$$

namely the reconstruction $\mathcal{R} F$ is equal to the function $z \mapsto F_{z}(z)$.
This includes the Taylor polynomial example where $F_{x}(x)=f(x)$.

Non-uniqueness for $\gamma \leq 0$

Let F be a (α, γ)-coherent germ with $\alpha \leq \gamma<0$.
Suppose that $T \in \mathcal{D}^{\prime}$ is a reconstruction of F, namely

$$
\left|\left(T-F_{x}\right)\left(\psi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\gamma}
$$

uniformly for x in compact sets etc.
Then for any $D \in \mathcal{C}^{\gamma}$, the distribution $T+D$ is also a reconstruction of F.
Viceversa, if T^{\prime} is a reconstruction of F, then

$$
\left|\left(T-T^{\prime}\right)\left(\psi_{x}^{\varepsilon_{n}}\right)\right| \leq\left|\left(T-F_{x}\right)\left(\psi_{x}^{\varepsilon_{n}}\right)\right|+\left|\left(T^{\prime}-F_{x}\right)\left(\psi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\gamma}
$$

so that $T-T^{\prime} \in \mathcal{C}^{\gamma}$.
Therefore, for $\gamma<0$, the reconstruction of F is unique up to an element of \mathcal{C}^{γ}.

Again on singular products

Let us go back to the singular product between $f \in \mathcal{C}^{\alpha}$ with $\alpha>0$ and $g \in \mathcal{C}^{\beta}$ with $\beta \leq 0$. We defined a germ P which is $(\alpha, \alpha+\beta)$-coherent.

If $\alpha+\beta>0$ then the product $f g=\mathcal{R} P$ is canonical (we can call it the Young product).
If $\alpha+\beta<0$ then the reconstruction $\mathcal{R} P$ is unique up to an element of $\mathcal{C}^{\alpha+\beta}$.

Chapter 2: Models and modelled distributions

More on germs

The reconstruction theorem can be applied to coherent germs, which form a large (vector) space.

However this space is too large. When we want to solve SPDEs, we are going to use a much smaller space to set up a fixed point.

We are going to study germs which can be written as suitable linear combinations of a fixed finite family of germs.

An example in one-dimension

You saw in Theorem 55 of Riedel3.pdf that given

- $\alpha \in\left(\frac{1}{3}, \frac{1}{2}\right)$
- $\mathbf{X}=(X, \mathbb{X})$ a α-rough path
- $Y \in \mathcal{D}_{X}^{\alpha}([0, T])$ a controlled path
then setting

$$
\Xi_{u, v}:=Y_{u} \delta X_{u, v}+Y_{u}^{\prime} \mathbb{X}_{u, v}
$$

one obtains $\delta \Xi \in C_{3}^{3 \alpha}$ and one can apply the Sewing Lemma to define the rough integral

$$
I_{t}=\int_{0}^{t} Y_{u} \mathrm{~d} \mathbf{X}_{u}
$$

which is the unique continuous function $I:[0, T] \rightarrow \mathbb{R}$ s.t.

$$
I_{0}=0, \quad\left|I_{t}-I_{s}-\Xi_{s, t}\right| \lesssim|t-s|^{3 \alpha}
$$

For the reconstruction theorem, we want analogs of \mathbf{X} and Y to build coherent germs.

Pre-models

Definition

A pre-model is a pair (Π, Γ) s.t.

1. $\Pi=\left(\Pi^{i}\right)_{i \in I}$ is a family of germs $\Pi^{i}=\left(\Pi_{x}^{i}\right)_{x \in \mathbb{R}^{d}}$ labelled by a finite index set I,
2. $\mathbb{R}^{d} \times \mathbb{R}^{d} \ni(x, y) \mapsto\left(\Gamma_{x y}^{i j}\right)_{i, j \in I}$ is a matrix-valued function such that

$$
\Pi_{y}^{j}=\sum_{i \in I} \Pi_{x}^{i} \Gamma_{x y}^{i j}, \quad j \in I, x, y \in \mathbb{R}^{d}
$$

3. there exist $\left(\alpha_{i}\right)_{i \in I} \subset \mathbb{R}$ and a $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ with $\int \varphi \neq 0$ such that

$$
\left|\Pi_{x}^{i}\left(\varphi_{x}^{\epsilon_{n}}\right)\right| \lesssim \epsilon_{n}^{\alpha_{i}},
$$

uniformly over x in compact sets of $\mathbb{R}^{d}, n \in \mathbb{N}$.
We denote $\bar{\alpha}:=\min \left(\alpha_{i}, i \in I\right)$.

An example

For a fixed $\gamma>0$, the family of classical monomials

$$
\Pi_{y}^{j}(w)=\frac{(w-y)^{j}}{j!}, \quad j \in \mathbb{N}^{d}, \quad y, w \in \mathbb{R}^{d}, \quad j \in I:=\left\{i \in \mathbb{N}^{d}:|i| \leq \gamma\right\}
$$

with $\alpha_{i}=|i|$, any $\varphi \in \mathcal{D}$ and

$$
\Gamma_{x y}^{i j}=\mathbb{1}_{(i \leq j)} \frac{(x-y)^{j-i}}{(j-i)!}, \quad i, j \in I
$$

forms a pre-model.

Modelled distributions

Definition

Let (Π, Γ) be a pre-model, and let $\gamma>\max \left(\alpha_{i}, i \in I\right)$.
If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{I}$ is measurable and satisfies for all $i \in I$

$$
\left|f_{x}^{i}\right| \lesssim 1, \quad\left|f_{x}^{i}-\sum_{j \in I} \Gamma_{x y}^{i j} f_{y}^{j}\right| \lesssim|x-y|^{\gamma-\alpha_{i}}
$$

uniformly for x, y in compact subsets of \mathbb{R}^{d}, then we call f a distribution modelled by (Π, Γ), or simply a modelled distribution, and we write $f \in \mathcal{D}_{(\Pi, \Gamma)}^{\gamma}$.
Given a pre-model (Π, Γ) and a modelled distribution $f \in \mathcal{D}_{(\Pi, \Gamma)}^{\gamma}$, we define the germ

$$
\langle\Pi, f\rangle_{x}:=\sum_{i \in I} \Pi_{x}^{i} f_{x}^{i}, \quad x \in \mathbb{R}^{d}
$$

Coherence of $\langle\Pi, f\rangle$

We want to show that $\langle\Pi, f\rangle$ is $(\bar{\alpha}, \gamma)$-coherent, where $\bar{\alpha}:=\min \left(\alpha_{i}, i \in I\right)$. Using the reexpansion property $\Pi_{z}^{j}=\sum_{i \in I} \Pi_{y}^{i} \Gamma_{y z}^{i j}$ we have

$$
\langle\Pi, f\rangle_{z}-\langle\Pi, f\rangle_{y}=\sum_{j \in I} \Pi_{z}^{j} f_{z}^{j}-\sum_{i \in I} \Pi_{y}^{i} f_{y}^{i}=-\sum_{i \in I} \Pi_{y}^{i}\left(f_{y}^{i}-\sum_{j \in I} \Gamma_{y z}^{i j} f_{z}^{j}\right) .
$$

Therefore

$$
\left(\langle\Pi, f\rangle_{z}-\langle\Pi, f\rangle_{y}\right)\left(\varphi_{y}^{\varepsilon}\right)=-\sum_{i \in I} \Pi_{y}^{i}\left(\varphi_{y}^{\varepsilon}\right)\left(f_{y}^{i}-\sum_{j \in I} \Gamma_{y z}^{i j} f_{z}^{j}\right),
$$

namely

$$
\left|\left(\langle\Pi, f\rangle_{z}-\langle\Pi, f\rangle_{y}\right)\left(\varphi_{y}^{\varepsilon}\right)\right| \lesssim \sum_{i \in I} \varepsilon^{\alpha_{i}}|z-y|^{\gamma-\alpha_{i}} \lesssim \varepsilon^{\bar{\alpha}}(\varepsilon+|z-y|)^{\gamma-\bar{\alpha}}
$$

uniformly for y, z in compact sets.

Homogeneity of $\langle\Pi, f\rangle$

Moreover

$$
\left|\langle\Pi, f\rangle_{y}\left(\varphi_{y}^{\varepsilon}\right)\right| \leq \sum_{i \in I} f_{y}^{i}\left|\Pi_{y}^{i}\left(\varphi_{y}^{\varepsilon}\right)\right| \lesssim \sum_{i \in I} \epsilon^{\alpha_{i}} \lesssim \varepsilon^{\bar{\alpha}},
$$

uniformly over y in compact subsets of \mathbb{R}^{d}. In other words we have proved that Theorem
If (Π, Γ) is a pre-model and $f \in \mathcal{D}_{(\Pi, \Gamma)}^{\gamma}$, then $\langle\Pi, f\rangle$ is a $(\bar{\alpha}, \gamma)$-coherent germs with uniform homogeneity bound with exponent $\bar{\alpha}$.
Note that here $\alpha=\bar{\alpha}$.

Hölder functions as modelled distributions

We have see that the classical polynomial family

$$
\Pi_{y}^{i}(w)=\frac{(w-y)^{i}}{i!}, \quad \Gamma_{x y}^{i j}=\mathbb{1}_{(i \leq j)} \frac{(x-y)^{j-i}}{(j-i)!}, \quad i, j \in \mathbb{N}^{d}
$$

forms a pre-model. It is an interesting exercise to check that modelled distributions with respect to this pre-model are actually classical Hölder functions.
Let us consider for simplicity the case $\gamma \notin \mathbb{N}$. Now, a modelled distribution $f \in \mathcal{D}_{(\Pi, \Gamma)}^{\gamma}$ satisfies by definition

$$
\left|f_{x}^{i}-\sum_{j \geq i,|j|<\gamma} \frac{(x-y)^{j-i}}{(j-i)!} f_{y}^{j}\right| \lesssim|x-y|^{\gamma-|i|}, \quad \forall|i|<\gamma .
$$

This is in fact a Taylor expansion of f^{i} at order $\lfloor\gamma-|i|\rfloor$ with a remainder of order $\gamma-|i|$, and this implies that f^{i} is of class $C^{\gamma-|i|}$ and

$$
f^{j}=\partial_{j-i} f^{i}, \quad \forall j \geq i .
$$

Hölder functions as modelled distributions

In particular, for $i=0$ we see that f^{0} is of class C^{γ} and satisfies

$$
f^{0}(y)-F_{x}(y)=R(x, y), \quad|R(x, y)| \lesssim|x-y|^{\gamma}
$$

Then f^{0} is a reconstruction of $\langle\Pi, f\rangle$, and since $\gamma>0$ it is the unique reconstruction. In other words we have seen that

$$
f^{0}=\mathcal{R}\langle\Pi, f\rangle \in C^{\gamma}, \quad f^{i}=\partial_{i} f^{0}, \quad \forall|i|<\gamma
$$

The fact that f^{0} is the reconstruction of $\langle\Pi, f\rangle$ is also a consequence of $\mathcal{R}\langle\Pi, f\rangle=\left\{x \mapsto\langle\Pi, f\rangle_{x}(x)\right\}=\left\{x \mapsto f_{x}^{0}\right\}$.

Semi-norms

Back to the general case, for a fixed pre-model (Π, Γ) we can interpret, by analogy with the case of Hölder functions of the previous section, the space $\mathcal{D}_{(\Pi, \Gamma)}^{\gamma}$ of all distributions modelled by (Π, Γ) as the collection of generalised derivatives of $u:=\mathcal{R}\langle\Pi, f\rangle$ with respect to the pre-model (Π, Γ).
We can define a system of seminorms for $f \in \mathcal{D}_{(\Pi, Г)}^{\gamma}$

$$
[f]_{\mathcal{D}_{(\Pi, \Gamma)}^{\gamma}, K}=\sup _{i \in I} \sup _{x, y \in K, x \neq y} \frac{\left|f_{x}^{i}-\sum_{j \in I} \Gamma_{x y}^{i j} f_{y}^{j}\right|}{|x-y|^{\gamma-\alpha_{i}}},
$$

where K is a compact subset of \mathbb{R}^{d}.
This is rather original with respect to the standard situation in ODEs or PDEs, where one sets an equation in a fixed Banach space. Here the Banach (Fréchet) space depends on an external parameter, the pre-model (Π, Γ). For SDEs and SPDEs, the pre-model (or rough path) (Π, Γ) is actually random.

Models

Definition

A model is a pre-model (Π, Γ), such that moreover

1. $\Gamma_{x y}^{i i}=1$ for all $i \in I$,
2. $\Gamma_{x y}^{i j}=0$ if $\alpha_{i} \geq \alpha_{j}$ and $i \neq j$,
3. $\left|\Gamma_{x y}^{i j}\right| \lesssim|x-y|^{\alpha_{j}-\alpha_{i}}$ if $\alpha_{i}<\alpha_{j}$.

For a fixed $\gamma>0$, the family of classical monomials

$$
\begin{gathered}
\Pi_{y}^{j}(w)=\frac{(w-y)^{j}}{j!}, \quad j \in \mathbb{N}^{d}, \quad y, w \in \mathbb{R}^{d}, \quad j \in I:=\left\{i \in \mathbb{N}^{d}:|i| \leq \gamma\right\} \\
\Gamma_{x y}^{i j}=\mathbb{1}_{(i \leq j)} \frac{(x-y)^{j-i}}{(j-i)!}, \quad i, j \in I
\end{gathered}
$$

with $\alpha_{i}=|i|$, forms a model.

Lemma

Let (Π, Γ) be a model. Fix an exponent $\gamma>\max \left(\alpha_{i}: i \in I\right)$ and set $\bar{\alpha}:=\min \left(\alpha_{i}: i \in I\right)$. Then

1. The space $\mathcal{D}_{(\Pi, \Gamma)}^{\gamma}$ is not reduced to the null vector.
2. For any $\gamma^{\prime}>\bar{\alpha}$, the restricted family $\left(\Pi^{\prime}, \Gamma^{\prime}\right):=\left(\Pi^{i}, \Gamma^{i j}\right)_{i, j \in I^{\prime}}$ labelled by
$I^{\prime}:=\left\{i \in I: \alpha_{i}<\gamma^{\prime}\right\}$ is a model. If $\gamma>\gamma^{\prime}$, the projection

$$
f=\left(f^{i}\right)_{i \in I} \mapsto f^{\prime}=\left(f^{i}\right)_{i \in I^{\prime}}
$$

maps $\mathcal{D}_{(\Pi, \Gamma)}^{\gamma}$ to $\mathcal{D}_{\left(\Pi^{\prime}, \Gamma^{\prime}\right)}^{\gamma^{\prime}}$.

Proof.

For the first assertion, we consider an element Π_{x}^{i} of minimal homogeneity $\bar{\alpha}=\min _{I} \alpha$. In this case we see that $\Gamma_{x y}^{i j}=\delta_{i j}$ for all $j \in I$, where δ is the Kronecker symbol, and the function $f_{x}^{j}=\delta_{i j}$ is a modelled distribution.

Chapter 3: The Schauder estimates for germs

A theory, a theorem

This lecture and the next are based on work with L. Broux and F. Caravenna (see the Lecture Notes and a forthcoming paper). We discuss one of the most important operations on coherent germs: the convolution with a regularising integration kernel.

The temptative title for this paper is

- Hairer's multilevel Schauder estimates without Regularity Structures

In this paper we have extracted a single result (the multilevel Schauder estimates) from a larger theory (Regularity Structures).

We present the former in a simpler and more general version, without reference to the latter.

Definition (Regularising kernel)

Fix a dimension $d \in \mathbb{N}$ and an exponent $\beta \in(0, d)$. A measurable function $\mathrm{K}: \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ is called a β-regularizing kernel up to degree $m \in \mathbb{N}$ if the following conditions hold:

- the function $x \mapsto \mathrm{~K}(x)$ is of class C^{m} on $\mathbb{R}^{d} \backslash\{0\}$;
- the following upper bound holds:

$$
\begin{array}{ll}
\forall k \in \mathbb{N}^{d} \text { with }|k| \leq m: \quad\left|\partial^{k} \mathrm{~K}(x)\right| \lesssim \frac{1}{|x|^{d-\beta+|k|}} \mathbb{1}_{\{|x| \leq 1\}} \tag{5}\\
& \text { uniformly for } x \text { in compact sets } .
\end{array}
$$

By the way, let us introduce the notations

$$
\begin{aligned}
\mathcal{G}^{\alpha, \gamma} & :=\left\{\left(H_{x}\right)_{x \in \mathbb{R}^{d}}: H \text { is }(\alpha, \gamma) \text {-coherent }\right\} \\
\mathcal{G}^{\bar{\alpha} ; \alpha, \gamma} & :=\left\{\left(H_{x}\right)_{x \in \mathbb{R}^{d}} \in \mathcal{G}^{\alpha, \gamma}: H \text { has homogeneity bound with exponent } \bar{\alpha}\right\}
\end{aligned}
$$

Classical Schauder Estimates

Theorem

Let $\gamma \in \mathbb{R}$ and $\beta>0$.
Let K be a β-regularising kernel up to degree $m>\gamma+\beta$.
Suppose that $\{\gamma, \gamma+\beta\} \cap \mathbb{Z}=\emptyset$.
Then, the convolution by K defines a continuous linear map from \mathcal{C}^{γ} to $\mathcal{C}^{\gamma+\beta}$.

We want to lift this result to coherent germs, in a way which is compatible with the reconstruction.

Partition of unity

With a partition of unity, it is possible to decompose

$$
\mathrm{K}(x)=\sum_{n=0}^{\infty} \mathrm{K}_{n}(x) \quad \forall x \in \mathbb{R}^{d} \backslash\{0\}
$$

where $\mathrm{K}_{n}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is of class C^{m} and is supported in the annulus $\left\{\frac{1}{2} \epsilon_{n} \leq|x| \leq 2 \epsilon_{n}\right\}$. Moreover

$$
\begin{aligned}
& \forall k \in \mathbb{N}^{d} \text { with }|k| \leq m: \\
& \qquad \begin{aligned}
\left|\partial^{k} \mathrm{~K}_{n}(x)\right| \lesssim & \frac{1}{|x|^{d-\beta-|k|}} \mathbb{1}_{\left\{\frac{1}{2} \epsilon_{n} \leq|x| \leq 2 \epsilon_{n}\right\}} \\
& \lesssim \epsilon_{n}^{\beta-d-|k|} \mathbb{1}_{\left\{\frac{1}{2} \epsilon_{n} \leq|x| \leq 2 \epsilon_{n}\right\}}
\end{aligned} \\
& \text { uniformly for } n \in \mathbb{N} .
\end{aligned}
$$

Singular convolution

We want to consider the convolution $\mathrm{K} * f \in \mathcal{D}^{\prime}$ between K and $f \in \mathcal{D}^{\prime}$. This is formally defined by

$$
(\mathrm{K} * f)(x):=f(\mathrm{~K}(x-\cdot))=\int_{\mathbb{R}^{d}} \mathrm{~K}(x-y) f(\mathrm{~d} y)
$$

but we stress that in general $\mathrm{K} * f$ is ill-defined. Under suitable conditions, $\mathrm{K} * f$ can be defined as a distribution by duality: for a test function $\psi \in \mathcal{D}$ we set

$$
(\mathrm{K} * f)(\psi):=f\left(\mathrm{~K}^{*} \psi\right) \quad \text { where } \quad\left(\mathrm{K}^{*} \psi\right)(y):=\int_{\mathbb{R}^{d}} \psi(x) \mathrm{K}(x-y) \mathrm{d} x
$$

The delicate point is that $\mathrm{K}^{*} \psi$ needs not be smooth, hence we cannot hope to define $f\left(\mathrm{~K}^{*} \psi\right)$ for arbitrary $(f, \psi) \in \mathcal{D}^{\prime} \times \mathcal{D}$.

This delicate point is hidden under the carpet in these slides, but its solution is explained in the lecture notes.

Convolution with coherent germs

Fix two real numbers α, γ such that

$$
\alpha \leq \gamma, \quad \gamma \neq 0
$$

We define r_{α} as the smallest integer larger than $-\alpha$, namely

$$
r_{\alpha}:=\min \{k \in \mathbb{N}: k>-\alpha\} .
$$

Let $F=\left(F_{x}\right)_{x \in \mathbb{R}^{d}}$ be a (α, γ)-coherent germ. We now want to lift the convolution with K on the space of coherent germs, i.e. to find a coherent germ $H=\left(H_{x}\right)_{x \in \mathbb{R}^{d}}$ with the property

$$
\mathcal{R} H=\mathrm{K} * \mathcal{R} F .
$$

A simple solution is the constant germ $H_{x} \equiv \mathrm{~K} * \mathcal{R} F$, which is trivially coherent, but this does not allow to construct a fixed-point theory for PDEs.

Convolution with coherent germs

The naive guess $H_{x}=\mathrm{K} * F_{x}$ needs not give a coherent germ, therefore we need to enrich it. To this purpose, we look for H_{x} of the following special form:

$$
\forall x \in \mathbb{R}^{d}: \quad H_{x}=\mathrm{K} * F_{x}+R_{x} \quad \text { where } R_{x}(\cdot) \text { is a polynomial } .
$$

Remarkably, this is possible with the following explicit solution:

$$
H_{x}:=\mathrm{K} * F_{x}+\underbrace{\sum_{|\ell|<\gamma+\beta}\left(\mathcal{R} F-F_{x}\right)\left(\partial^{\ell} \mathrm{K}(x-\cdot)\right) \mathbb{X}_{x}^{\ell}}_{R_{x}(\cdot)},
$$

where we denote for $x \in \mathbb{R}^{d}, \ell \in \mathbb{N}^{d}$ the classical monomials

$$
\mathbb{X}_{x}^{\ell}: \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad \mathbb{X}_{x}^{\ell}(w):=\frac{(w-x)^{\ell}}{\ell!}
$$

and where we agree that

$$
R_{x}(\cdot) \equiv 0 \quad \text { if } \quad \gamma+\beta \leq 0
$$

Schauder estimates on coherent germs

Theorem
Fix $\alpha, \gamma, \beta \in \mathbb{R}$ such that

$$
\alpha \leq \gamma, \quad \gamma \neq 0, \quad \beta>0
$$

where we further assume for simplicity that $\{\alpha+\beta, \gamma+\beta\} \cap \mathbb{N}=\emptyset$. Consider

- $F=\left(F_{x}\right)_{x \in \mathbb{R}^{d}} \in \mathcal{G}^{\alpha, \gamma}$ is a (α, γ)-coherent germ;
- K is a β-regularizing kernel up to degree $m>\gamma+\beta+r_{\alpha}$.

Then

1. the germ $H=\left(H_{x}\right)_{x \in \mathbb{R}^{d}}$ is well-defined.
2. H is $((\alpha+\beta) \wedge 0, \gamma+\beta)$-coherent, namely $H \in \mathcal{G}^{(\alpha+\beta) \wedge 0, \gamma+\beta}$.
3. H satisfies $\mathcal{R} H=\mathrm{K} * \mathcal{R} F$.

Schauder estimates on coherent germs

In other words, setting $\mathcal{K} F:=H$, with

$$
H_{x}:=\mathrm{K} * F_{x}+\sum_{|\ell|<\gamma+\beta}\left(\mathcal{R} F-F_{x}\right)\left(\partial^{\ell} \mathrm{K}(x-\cdot)\right) \mathbb{X}_{x}^{\ell}
$$

we have a well-defined linear operator satisfying

$$
\mathcal{K}: \mathcal{G}^{\alpha, \gamma} \rightarrow \mathcal{G}^{(\alpha+\beta) \wedge 0, \gamma+\beta}, \quad \mathcal{R} \circ \mathcal{K}=\mathrm{K} * \mathcal{R}
$$

Let us define the new germ

$$
J_{x}:=F_{x}-\mathcal{R} F,
$$

which allows to rewrite H as

$$
\begin{aligned}
H_{x} & =\mathrm{K} * F_{x}-\sum_{|\ell|<\gamma+\beta} J_{x}\left(\partial^{\ell} \mathrm{K}(x-\cdot)\right) \mathbb{X}_{x}^{\ell} \\
& =\mathrm{K} * \mathcal{R} F+L_{x}, \quad \text { where } \quad L_{x}:=\mathrm{K} * J_{x}-\sum_{|\ell|<\gamma+\beta} J_{x}\left(\partial^{\ell} \mathrm{K}(x-\cdot)\right) \mathbb{X}_{x}^{\ell}
\end{aligned}
$$

Sketch of the proof

The proof is based on two steps:

- L is $((\alpha+\beta) \wedge 0, \gamma+\beta)$-coherent,
- L has homogeneity bound with exponent $\gamma+\beta$.

In other words we show that $L \in \mathcal{G}^{\gamma+\beta ;(\alpha+\beta) \wedge 0, \gamma+\beta}$.
(Recall that we did not assume homogeneity of F. Indeed, $H_{x}=\mathrm{K} * \mathcal{R} F+L_{x}$ is not homogeneous either, in general.)

Then 0 is $\mathbf{a}(\gamma+\beta)$-reconstruction of L, i.e. $\mathrm{K} * \mathcal{R} F$ is a $(\gamma+\beta)$-reconstruction of H, namely

$$
\mathcal{R} \circ \mathcal{K}=\mathrm{K} * \mathcal{R} .
$$

Chapter 4: The Schauder estimates for modelled distributions

