An introduction to regularity structures

Lorenzo Zambotti (Sorbonne U, Paris)

8-12 August 2022
Campinas

These slides can be downloaded from my home page

Plan of the course

In this course I want to discuss mainly the analytical aspects of the theory of regularity structures.

The plan for the four lectures is roughly:

- I. Reconstruction Theorem
- II. Models and modelled distributions
- III. Schauder estimates
- IV. Products and equations

Lecture notes and papers in collaboration with F. Caravenna and L. Broux.

Chapter 1: The Reconstruction Theorem

A theory, a theorem

This talk is based on a paper (appeared in 2021 in the EMS Surveys in Mathematics)

- Hairer's Reconstruction Theorem without Regularity Structures by F. Caravenna and L.Z.
In this paper we have extracted a single result (the Reconstruction Theorem) from a larger theory (Regularity Structures).

We present the former in a simpler and more general version, without reference to the latter. A later paper by Pavel Zorin-Kranich, to appear in Revista Matematica Iberoamericana, has introduced introduced further simplifications and improvements to our results.

Prelude: The Sewing Lemma

You have seen in Sebastian's lectures last week that the main tool in rough analysis is the Theorem (Sewing Lemma)
Let $0<\alpha \leq 1<\beta$. There exists a unique map $\mathcal{I}: \mathcal{C}_{2}^{\alpha, \beta}\left([0, T]: \mathbb{R}^{d}\right) \rightarrow \mathcal{C}^{\alpha}\left([0, T]: \mathbb{R}^{d}\right)$ s.t.

$$
(\mathcal{I} \Xi)_{0}=0, \quad\left|\mathcal{I} \Xi_{t}-\mathcal{I} \Xi_{s}-\Xi_{s, t}\right| \lesssim|t-s|^{\beta}, \quad s, t \in[0, T]
$$

We recall that $\mathcal{C}_{2}^{\alpha, \beta}$ denotes the space of continuous $\Xi:\{(s, t): 0 \leq s \leq t \leq T\} \rightarrow \mathbb{R}^{d}$ s.t.

$$
\sup _{0 \leq s<t \leq T} \frac{\left|\Xi_{s, t}\right|}{|t-s|^{\alpha}}+\sup _{0 \leq s<u<t \leq T} \frac{\left|\Xi_{s, t}-\Xi_{s, u}-\Xi_{u, t}\right|}{|t-s|^{\beta}}<+\infty
$$

This theorem was proved around 2003 indipendently by Gubinelli and Feyel-de la Pradelle.
It is restricted to functions depending on a one-dimensional parameter.
It took ten years to find a version of this result in higher dimension... This is Martin's Reconstruction Theorem.

Distributions

This talk will concern the space $\mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ of distributions or generalised functions.
We consider the space $\mathcal{D}\left(\mathbb{R}^{d}\right):=C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ of smooth functions with compact support on \mathbb{R}^{d}. A distribution on \mathbb{R}^{d} is a linear functional $T: C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ such that for every compact set $K \subset \mathbb{R}^{d}$ there is $r=r_{K} \in \mathbb{N}$

$$
|T(\varphi)| \lesssim\|\varphi\|_{C^{r}}:=\max _{|k| \leq r}\left\|\partial^{k} \varphi\right\|_{\infty}, \quad \forall \varphi \in C_{0}^{\infty}(K)
$$

where throughout the lectures $f \lesssim g$ means that there exists a constant $C>0$ such that $f \leq C g$.

When r can be chosen uniformly over K we say that T has order r.

Distributions

Every locally integrable (in particular continuous) function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ defines a distribution:

$$
f(\varphi):=\int_{\mathbb{R}^{d}} f(x) \varphi(x) \mathrm{d} x, \quad \varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)
$$

A famous example of distribution from quantum mechanics, which actually motivated the whole theory of distributions, is the Dirac measure δ_{x} at $x \in \mathbb{R}^{d}$

$$
\delta_{x}(\varphi)=\varphi(x), \quad \varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)
$$

One can also differentiate any distribution $T \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$: for $k \in \mathbb{N}^{d}$

$$
\partial^{k} T(\varphi):=(-1)^{k_{1}+\cdots+k_{d}} T\left(\partial^{k} \varphi\right) .
$$

Products of distributions

Distributions form a linear space. If $\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ and $T \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ then it is possible to define canonically the product $\varphi \cdot T=T \cdot \varphi$ as

$$
\varphi \cdot T(\psi)=T \cdot \varphi(\psi):=T(\varphi \psi), \quad \forall \psi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)
$$

However, if $T, T^{\prime} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$, in general there is no canonical way of defining $T \cdot T^{\prime}$.
One may use some form of regularisation of T, T^{\prime} or both. Then, the result could heavily depend on the regularisation and thus be neither unique nor canonical.
For example, one can not define the square $\left(\delta_{x}\right)^{2}$ of the Dirac function.

The main question of reconstruction

For every $x \in \mathbb{R}^{d}$ we fix a distribution $F_{x} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$. If for all $\psi \in \mathcal{D}$ the map

$$
\mathbb{R}^{d} \ni x \mapsto F_{x}(\psi)
$$

is measurable, then we call $\left(F_{x}\right)_{x \in \mathbb{R}^{d}}$ a germ.
Problem:
Can we find a distribution $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ which is locally well approximated by $\left(F_{x}\right)_{x \in \mathbb{R}^{d}}$?

The main question of reconstruction

For every $x \in \mathbb{R}^{d}$ we fix a distribution $F_{x} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$. If for all $\psi \in \mathcal{D}$ the map

$$
\mathbb{R}^{d} \ni x \mapsto F_{x}(\psi)
$$

is measurable, then we call $\left(F_{x}\right)_{x \in \mathbb{R}^{d}}$ a germ.
Problem:
Can we find a distribution $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ which is locally well approximated by $\left(F_{x}\right)_{x \in \mathbb{R}^{d}}$?
Note that for $j \in \mathbb{N}^{d}, w \in \mathbb{R}^{d}$, we use the notation

$$
|j|:=\sum_{k=1}^{d} j_{k}, \quad w^{j}:=\prod_{k=1}^{d} w_{k}^{j_{k}}, \quad j!:=\prod_{k=1}^{d} j_{k}!
$$

with the convention $0^{0}:=1$.

Taylor expansions

For example, let us fix $f \in C^{\infty}\left(\mathbb{R}^{d}\right)$, and let us define for a fixed $\gamma>0$

$$
F_{x}(y):=\sum_{|k|<\gamma} \partial^{k} f(x) \frac{(y-x)^{k}}{k!}, \quad x, y \in \mathbb{R}^{d}
$$

Then the classical Taylor theorem says that there exists a function $R(x, y)$ such that

$$
f(y)-F_{x}(y)=R(x, y), \quad|R(x, y)| \lesssim|x-y|^{\gamma}
$$

uniformly for every x, y on compact sets of \mathbb{R}^{d}.
We say that the distribution f is locally well approximated by the germ $\left(F_{x}\right)_{x \in \mathbb{R}^{d}}$.

Scaling

Let us introduce now the following fundamental tool:
for all $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right), \lambda>0$ and $y \in \mathbb{R}^{d}$

$$
\varphi_{y}^{\lambda}(w):=\frac{1}{\lambda^{d}} \varphi\left(\frac{w-y}{\lambda}\right), \quad w \in \mathbb{R}^{d} .
$$

Then the local approximation property

$$
f(y)-F_{x}(y)=R(x, y), \quad|R(x, y)| \lesssim|x-y|^{\gamma}
$$

implies for any $\varphi \in \mathcal{D}$, uniformly for y in compact sets of $\left.\left.\mathbb{R}^{d}, \lambda \in\right] 0,1\right]$.

$$
\begin{aligned}
\left|\left(f-F_{y}\right)\left(\varphi_{y}^{\lambda}\right)\right| & =\left|\int_{\mathbb{R}^{d}} R(y, w) \varphi_{y}^{\lambda}(w) \mathrm{d} w\right| \\
& \lesssim \frac{1}{\lambda^{d}} \int_{B_{y}(\lambda)}|w-y|^{\gamma} \mathrm{d} w \lesssim \lambda^{\gamma}
\end{aligned}
$$

Taylor expansions

Another simple formula in this context is

$$
\left|\left(F_{z}-F_{y}\right)\left(\varphi_{y}^{\lambda}\right)\right| \lesssim(|y-z|+\lambda)^{\gamma}
$$

for any $\varphi \in \mathcal{D}$, uniformly for y, z in compact sets of $\left.\left.\mathbb{R}^{d}, \lambda \in\right] 0,1\right]$.
We call this property coherence, see below.
This comes from a simple estimate of $F_{z}(w)-F_{y}(w)$.

Coherence of Taylor expansions

Let us note that we can Taylor expand also the derivatives of f : for $|k|<\gamma$

$$
\partial^{k} f(y)=\sum_{|\ell|<\gamma-|k|} \partial^{k+\ell} f(z) \frac{(y-z)^{\ell}}{\ell!}+R^{k}(y, z), \quad\left|R^{k}(y, z)\right| \lesssim|y-z|^{\gamma-|k|}
$$

Then we can write

$$
\begin{aligned}
F_{y}(w) & =\sum_{|k|<\gamma} \partial^{k} f(y) \frac{(w-y)^{k}}{k!} \\
& =\sum_{|k|<\gamma}\left(\sum_{|\ell|<\gamma-|k|} \partial^{k+\ell} f(z) \frac{(y-z)^{\ell}}{\ell!}+R^{k}(y, z)\right) \frac{(w-y)^{k}}{k!} \\
& =F_{z}(w)+\sum_{|k|<\gamma} R^{k}(y, z) \frac{(w-y)^{k}}{k!} .
\end{aligned}
$$

Coherence of Taylor expansions

Therefore

$$
F_{z}(w)-F_{y}(w)=-\sum_{|k|<\gamma} R^{k}(y, z) \frac{(w-y)^{k}}{k!}
$$

In particular

$$
\begin{aligned}
\left|F_{z}(w)-F_{y}(w)\right| & \leq \sum_{|k|<\gamma}\left|R^{k}(y, z)\right| \frac{|w-y|^{k}}{k!} \\
& \lesssim \sum_{|k|<\gamma}|y-z|^{\gamma-|k|}|w-y|^{k} \\
& \lesssim(|y-z|+|w-y|)^{\gamma}
\end{aligned}
$$

since $a^{t} b^{s} \leq(a+b)^{t}(a+b)^{s}$ for $a, b, t, s \geq 0$.

Coherence of Taylor expansions

Now recall that

$$
\varphi_{y}^{\lambda}(w):=\frac{1}{\lambda^{d}} \varphi\left(\frac{w-y}{\lambda}\right), \quad w \in \mathbb{R}^{d} .
$$

Then

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{d}}\left(F_{z}(w)-F_{y}(w)\right) \varphi_{y}^{\lambda}(w) \mathrm{d} w\right| & \lesssim \frac{1}{\lambda^{d}} \int_{B_{y}(\lambda)}(|y-z|+|w-y|)^{\gamma} \mathrm{d} w \\
& \lesssim(|y-z|+\lambda)^{\gamma} .
\end{aligned}
$$

We have obtained for the germ $\left(F_{y}\right)_{y \in \mathbb{R}^{d}}$ and for any $\varphi \in \mathcal{D}, y, z \in \mathbb{R}^{d}$

$$
\left|\left(F_{z}-F_{y}\right)\left(\varphi_{y}^{\lambda}\right)\right| \lesssim(|y-z|+\lambda)^{\gamma}
$$

Coherence

Let us set from now on

$$
\varepsilon_{n}:=2^{-n}, \quad n \in \mathbb{N} .
$$

In particular for the germ related to a Taylor expansion we have for $\lambda \in\left\{\varepsilon_{n}: n \in \mathbb{N}\right\}$

$$
\left|\left(F_{z}-F_{y}\right)\left(\varphi_{y}^{\varepsilon_{n}}\right)\right| \lesssim\left(|y-z|+\varepsilon_{n}\right)^{\gamma}, \quad\left|\left(f-F_{y}\right)\left(\varphi_{y}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\gamma},
$$

for any $\varphi \in \mathcal{D}$, uniformly for y, z in compact sets of \mathbb{R}^{d} and $n \in \mathbb{N}$.
We say that a germ $\left(F_{z}\right)_{z \in \mathbb{R}^{d}} \subset \mathcal{D}^{\prime}$ is (α, γ)-coherent for $\alpha, \gamma \in \mathbb{R}$ with $\alpha \leq \gamma$, if there exists $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ such that $\int \varphi \neq 0$ and

$$
\left|\left(F_{z}-F_{y}\right)\left(\varphi_{y}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\alpha}\left(|y-z|+\varepsilon_{n}\right)^{\gamma-\alpha}
$$

uniformly for z, y in compact sets of \mathbb{R}^{d} and $n \in \mathbb{N}$.

Hairer's Reconstruction Theorem (without regularity structures)

Theorem (Hairer 14, Caravenna-Z. 20)

Consider a (α, γ)-coherent germ with $\gamma>0$, namely we suppose that there exists $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ such that $\int \varphi \neq 0$ and

$$
\left|\left(F_{y}-F_{x}\right)\left(\varphi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\alpha}\left(|x-y|+\varepsilon_{n}\right)^{\gamma-\alpha}
$$

uniformly for x, y in compact sets of \mathbb{R}^{d} and $n \in \mathbb{N}$ (coherence condition). Then there exists a unique $\mathcal{R} F \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ such that

$$
\left|\left(\mathcal{R} F-F_{x}\right)\left(\psi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\gamma}
$$

uniformly for x in compact sets of $\mathbb{R}^{d}, n \in \mathbb{N},\left\{\psi \in \mathcal{D}(B(0,1)):\|\psi\|_{C^{r}} \leq 1\right\}$ with a fixed $r>-\alpha$.

Comments

- This result was stated and proved by Martin in [Hai14] for a subclass of germs related to regularity structures. He used wavelets.
- Later Otto-Weber proposed an approach based on a semigroup. This corresponds to a special choice of the test functions φ, ψ.
- Our statement is more general and requires no knowledge of regularity structures.
- This result can be seen as a generalisation of the Sewing Lemma in rough paths (Gubinelli, Feyel-de La Pradelle).
- The construction is completely local: constants and even the exponent α can depend on the compact set.
- We also cover the case $\gamma \leq 0$ (see below).
- Pavel Zorin-Kranich recently showed how to simplify, shorten and (slightly) improve our proof.

Proof for $\gamma>0$: Uniqueness

Suppose we have two distributions $f, g \in \mathcal{D}^{\prime}$ which satisfy, uniformly for $x \in K$ for any compact $K \subset \mathbb{R}^{d}$,

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left|\left(f-F_{x}\right)\left(\varphi_{x}^{\varepsilon_{n}}\right)\right|=\lim _{n \rightarrow+\infty}\left|\left(g-F_{x}\right)\left(\varphi_{x}^{\varepsilon_{n}}\right)\right|=0 \tag{1}
\end{equation*}
$$

We may assume that $c:=\int \varphi=1$ (otherwise just replace φ by $c^{-1} \varphi$).
We set $T:=f-g$, we fix a test function $\psi \in \mathcal{D}$. We recall the definition of the convolution

$$
\psi * \varphi(w)=\int_{\mathbb{R}^{d}} \psi(y) \varphi(w-y) \mathrm{d} y=\int_{\mathbb{R}^{d}} \psi(w-y) \varphi(y) \mathrm{d} y
$$

for $w \in \mathbb{R}^{d}$. This implies

$$
\begin{equation*}
T(\psi * \varphi)=\int_{\mathbb{R}^{d}} \psi(y) T(\varphi(\cdot-y)) \mathrm{d} y=\int_{\mathbb{R}^{d}} T(\psi(\cdot-y)) \varphi(y) \mathrm{d} y \tag{2}
\end{equation*}
$$

Proof for $\gamma>0$: Uniqueness

It follows that

$$
T(\psi)=\lim _{n \rightarrow+\infty} T\left(\psi * \varphi_{0}^{\varepsilon_{n}}\right)
$$

Moreover

$$
\begin{aligned}
T\left(\psi * \varphi_{0}^{\varepsilon_{n}}\right) & =\int_{\mathbb{R}^{d}} T\left(\varphi_{0}^{\varepsilon_{n}}(\cdot-y)\right) \psi(y) \mathrm{d} y=\int_{\mathbb{R}^{d}} T\left(\varphi_{y}^{\varepsilon_{n}}\right) \psi(y) \mathrm{d} y \\
\left|T\left(\psi * \varphi_{0}^{\varepsilon_{n}}\right)\right| & =\left|\int_{\mathbb{R}^{d}} T\left(\varphi_{y}^{\varepsilon_{n}}\right) \psi(y) \mathrm{d} y\right| \leq\|\psi\|_{L^{1}} \sup _{y \in \operatorname{supp}(\psi)}\left|T\left(\varphi_{y}^{\varepsilon_{n}}\right)\right| .
\end{aligned}
$$

It remains to show that $\lim _{n \rightarrow+\infty} \sup _{y \in \operatorname{supp}(\psi)}\left|T\left(\varphi_{y}^{\varepsilon_{n}}\right)\right|=0$. Now

$$
\left|T\left(\varphi_{y}^{\varepsilon_{n}}\right)\right|=\left|f\left(\varphi_{y}^{\varepsilon_{n}}\right)-g\left(\varphi_{y}^{\varepsilon_{n}}\right)\right| \leq\left|\left(f-F_{y}\right)\left(\varphi_{y}^{\varepsilon_{n}}\right)\right|+\left|\left(g-F_{y}\right)\left(\varphi_{y}^{\varepsilon_{n}}\right)\right|
$$

which vanishes as $n \rightarrow+\infty$ uniformly for $y \in \operatorname{supp}(\psi)$, by the reconstruction bound (1).

Proof for $\gamma>0$: Existence

We fix a test function $\varphi \in \mathcal{D}$ with $\int \varphi \neq 0$ which makes the germ F coherent.
We can find in an elementary way a related $\hat{\varphi} \in \mathcal{D}(B(0,1))$ such that

$$
\int_{\mathbb{R}^{d}} y^{k} \hat{\varphi}(y) \mathrm{d} y=0, \quad \forall k \in \mathbb{N}_{0}^{d}: 1 \leq|k| \leq r-1
$$

for a given $r>-\alpha$. Then we define

$$
\rho:=\hat{\varphi}^{2} * \hat{\varphi} \quad \text { and } \quad \check{\varphi}:=\hat{\varphi}^{\frac{1}{2}}-\hat{\varphi}^{2},
$$

where by $\hat{\varphi}^{\frac{1}{2}}, \hat{\varphi}^{2}$ we mean $\hat{\varphi}^{\lambda}(z)=\lambda^{-d} \hat{\varphi}\left(\lambda^{-1} z\right)$ for $\lambda=\frac{1}{2}, 2$, respectively.
This peculiar choice of ρ ensures that the difference $\rho^{\frac{1}{2}}-\rho$ is a convolution:

$$
\rho^{\frac{1}{2}}-\rho=\hat{\varphi} * \check{\varphi} .
$$

It follows that

$$
\rho^{\varepsilon_{n+1}}-\rho^{\varepsilon_{n}}=\left(\rho^{\frac{1}{2}}-\rho\right)^{\varepsilon_{n}}=\hat{\varphi}^{\varepsilon_{n}} * \check{\varphi}^{\varepsilon_{n}}
$$

Proof for $\gamma>0$: Existence

Finally we define

$$
f_{n}(z):=F_{z}\left(\rho_{z}^{\varepsilon_{n}}\right), \quad f_{n}(\psi):=\int_{\mathbb{R}^{d}} F_{z}\left(\rho_{z}^{\varepsilon_{n}}\right) \psi(z) \mathrm{d} z, \quad z \in \mathbb{R}^{d}, \psi \in \mathcal{D}
$$

Then we want to prove that $f_{n}(\psi) \rightarrow f(\psi)$ and $\left|\left(f-F_{x}\right)\left(\psi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\gamma}$ for all $\psi \in \mathcal{D}$, namely that

$$
\mathcal{R} F=\lim _{n \rightarrow+\infty} f_{n} \quad \text { in } \mathcal{D}^{\prime}
$$

We study the function

$$
\begin{equation*}
f_{x, n}(z):=f_{n}(z)-F_{x}\left(\rho_{z}^{\varepsilon_{n}}\right)=\left(F_{z}-F_{x}\right)\left(\rho_{z}^{\varepsilon_{n}}\right), \quad x, z \in \mathbb{R}^{d} . \tag{3}
\end{equation*}
$$

Proof for $\gamma>0$: Existence

We write $f_{x, n}$ as a telescoping sum:

$$
\begin{align*}
& f_{x, k+1}(z)-f_{x, k}(z)=\left(F_{z}-F_{x}\right)\left(\rho_{z}^{\varepsilon_{k+1}}-\rho_{z}^{\varepsilon_{k}}\right) \\
& =\left(F_{z}-F_{x}\right)\left(\hat{\varphi}^{\varepsilon_{n}} * \check{\varphi}_{z}^{\varepsilon_{n}}\right)=\int_{\mathbb{R}^{d}}\left(F_{z}-F_{x}\right)\left(\hat{\varphi}_{y}^{\varepsilon_{k}}\right) \check{\varphi}^{\varepsilon_{k}}(y-z) \mathrm{d} y \\
& =\underbrace{\int_{\mathbb{R}^{d}}\left(F_{y}-F_{x}\right)\left(\hat{\varphi}_{y}^{\varepsilon_{k}}\right) \check{\varphi}^{\varepsilon_{k}}(y-z) \mathrm{d} y}_{g_{x, k}^{\prime}(z)}+\underbrace{\int_{\mathbb{R}^{d}}\left(F_{z}-F_{y}\right)\left(\hat{\varphi}_{y}^{\varepsilon_{k}}\right) \check{\varphi}^{\varepsilon_{k}}(y-z) \mathrm{d} y}_{g_{k}^{\prime \prime}(z)} \tag{4}
\end{align*}
$$

where again we use (2). By coherence we have

$$
\begin{aligned}
&\left|g_{k}^{\prime \prime}(z)\right| \leq\left\|\check{\varphi}^{\varepsilon_{k}}\right\|_{L^{1}} \sup _{|y-z| \leq \varepsilon_{k}}\left|\left(F_{z}-F_{y}\right)\left(\hat{\varphi}_{y}^{\varepsilon_{k}}\right)\right| \\
& \lesssim \varepsilon_{k}^{\alpha} \varepsilon_{k}^{\gamma-\alpha}=\varepsilon_{k}^{\gamma} \\
&\left|\int_{\mathbb{R}^{d}} g_{x, k}^{\prime}(z) \psi(z) \mathrm{d} z\right| \leq \sup _{y \in \bar{K}_{1}}\left|\left(F_{y}-F_{x}\right)\left(\hat{\varphi}_{y}^{\varepsilon_{k}}\right)\right|\left\|\check{\varphi}^{\varepsilon_{k}} * \psi\right\|_{L^{1}} \\
& \lesssim \varepsilon_{k}^{\alpha}\left\|\check{\varphi}^{\varepsilon_{k}} * \psi\right\|_{L^{1}}
\end{aligned}
$$

Proof for $\gamma>0$: Existence

By the properties of $\check{\varphi}$ we can write

$$
\left(\check{\varphi}^{\varepsilon} * \psi\right)(y)=\int_{\mathbb{R}^{d}} \check{\varphi}^{\varepsilon}(y-z)\left\{\psi(z)-p_{y}(z)\right\} \mathrm{d} z
$$

where $p_{y}(z):=\sum_{|k| \leq r-1} \frac{\partial^{k} \psi(y)}{k!}(z-y)^{k}$ is the Taylor polynomial of ψ of order $r-1$ based at y; since $\left|\psi(z)-p_{y}(z)\right| \lesssim\|\psi\|_{C^{r}}|z-y|^{r}$, we obtain

$$
\left\|\check{\varphi}^{\varepsilon_{k}} * \psi\right\|_{L^{1}} \lesssim \int_{\mathbb{R}^{d}}\left|\check{\varphi}^{\varepsilon_{k}}(y-z)\right||z-y|^{r} \mathrm{~d} z \lesssim \varepsilon_{k}^{r}
$$

We obtain

$$
\left|\int_{\mathbb{R}^{d}} g_{x, k}^{\prime}(z) \psi(z) \mathrm{d} z\right| \lesssim \varepsilon_{k}^{\alpha+r}, \quad\left|\int_{\mathbb{R}^{d}} g_{k}^{\prime \prime}(z) \psi(z) \mathrm{d} z\right| \lesssim \varepsilon_{k}^{\gamma}
$$

Now we have by assumptions $\gamma>0$ and $\alpha+r>0$.

Proof for $\gamma>0$: Existence

In particular, as $n \rightarrow+\infty$,

$$
f_{x, n}(\psi)=f_{x, 0}(\psi)+\sum_{k=0}^{n-1}\left[g_{x, k}^{\prime}(\psi)+g_{k}^{\prime \prime}(\psi)\right]
$$

converges to a distribution of order r. Now that $F_{x}\left(\rho_{\text {. }}^{\varepsilon_{n}}\right)$ converges to F_{x} in \mathcal{D}^{\prime}. We obtain $f_{n}=f_{x, n}+F_{x}\left(\rho_{\varepsilon^{\varepsilon_{n}}}\right)$ converges to a distribution $\mathcal{R} F$ in \mathcal{D}^{\prime}. We also obtain for all ℓ

$$
\mathcal{R} F(\psi)=F_{x}(\psi)+f_{x, \ell}(\psi)+\sum_{k=\ell}^{\infty}\left[g_{x, k}^{\prime}(\psi)+g_{k}^{\prime \prime}(\psi)\right]
$$

and the latter formula yields similarly the reconstruction bound $\left|\left(f-F_{x}\right)\left(\psi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\gamma}$.

The Reconstruction Theorem for $\gamma \leq 0$.

Theorem (Hairer 14, Caravenna-Z. 20)
Let $F: \mathbb{R}^{d} \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ be a (α, γ)-coherent germ, with $\alpha \leq \gamma \leq 0$, namely there exists a $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ with $\int \varphi \neq 0$ s.t.

$$
\left|\left(F_{y}-F_{x}\right)\left(\varphi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\alpha}\left(|x-y|+\varepsilon_{n}\right)^{\gamma-\alpha}, \quad n \in \mathbb{N}, x, y \in \mathbb{R}^{d},
$$

(coherence condition). Then there exists a non-unique $\mathcal{R} F \in \mathcal{D}^{\prime}\left(\mathbb{R}^{d}\right)$ such that

$$
\left|\left(\mathcal{R} F-F_{x}\right)\left(\psi_{x}^{\varepsilon_{n}}\right)\right| \lesssim\left\{\begin{array}{ll}
\varepsilon_{n}^{\gamma} & \text { if } \gamma<0 \\
\left(1+\left|\log \varepsilon_{n}\right|\right) & \text { if } \gamma=0
\end{array} .\right.
$$

uniformly for x in compact sets of $\mathbb{R}^{d}, n \in \mathbb{N},\left\{\psi \in \mathcal{D}(B(0,1)):\|\psi\|_{C^{r}} \leq 1\right\}$ with a fixed $r>-\alpha$.

Proof for $\gamma \leq 0$

In the proof with $\gamma>0$, we wrote, see (4) and (3),

$$
f_{x, n}:=f_{n}-F_{x}\left(\rho_{.}^{\varepsilon_{n}}\right)=g_{x, n}^{\prime}+g_{n}^{\prime \prime}, \quad\left|g_{x, n}^{\prime}\right| \lesssim \varepsilon_{n}^{\alpha+r}, \quad\left|g_{n}^{\prime \prime}\right| \leq \varepsilon_{n}^{\gamma} .
$$

Now we can choose r such that $\alpha+r>0$, but $\gamma \leq 0$ is fixed.
The solution is to define a different approximation sequence, eliminating the term $g_{n}^{\prime \prime}$ whose convergence depends on $\gamma>0$, and the proof follows with the same estimates. Namely

$$
\bar{f}_{n}:=f_{n}-\sum_{k=0}^{n-1} g_{k}^{\prime \prime}, \quad \bar{f}_{x, n}(\psi):=\bar{f}_{n}(\psi)-F_{x}\left(\rho^{\varepsilon_{n}} * \psi\right)=f_{x, 0}(\psi)+\sum_{k=0}^{n-1} g_{x, k}^{\prime}(\psi)
$$

Then with the same arguments $\bar{f}_{n}(\psi) \rightarrow \bar{f}(\psi)$ and $\left|\left(\bar{f}-F_{x}\right)\left(\psi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\gamma}$.

Homogeneity

The coherence assumption only concerns $F_{z}-F_{y}$, never F_{y} alone.
Under coherence alone, the reconstruction $\mathcal{R} F$ exists in \mathcal{D}^{\prime} but we have little more information.

Another crucial notion for germs is homogeneity (with exponent $\bar{\alpha}$)

$$
\left|F_{x}\left(\psi_{x}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\bar{\alpha}}
$$

uniformly for x in compact sets, $n \in \mathbb{N}$ and $\psi \in \mathcal{D}(B(0,1))$ with $\|\psi\|_{C^{r}} \leq 1$, for some fixed $r>-\bar{\alpha}$.

Negative Hölder (Besov) spaces

Given $\bar{\alpha} \in]-\infty, 0\left[\right.$, we define $\mathcal{C}^{\bar{\alpha}}=\mathcal{C}^{\bar{\alpha}}\left(\mathbb{R}^{d}\right)$ as the space of distributions $T \in \mathcal{D}^{\prime}$ such that for all $\psi \in \mathcal{D} \backslash\{0\}$

$$
\frac{\left|T\left(\psi_{x}^{\varepsilon}\right)\right|}{\|\psi\|_{C^{r} \bar{\alpha}}} \lesssim \varepsilon^{\bar{\alpha}}
$$ uniformly for x in compact sets and $\varepsilon \in(0,1]$,

where we define $r_{\bar{\alpha}}$ as the smallest integer $r \in \mathbb{N}$ such that $r>-\bar{\alpha}$.

Theorem

The reconstruction $\mathcal{R} F$ of $a(\alpha, \gamma)$-coherent germ F with homogeneity exponent $\bar{\alpha}$ is in $\mathcal{C}^{\bar{\alpha}}$ (and the map $F \mapsto \mathcal{R} F \in \mathcal{C}^{\bar{\alpha}}$ is linear continuous).

Sewing versus reconstruction

In dimension $d=1$, the Sewing Lemma and the Reconstruction are almost equivalent.
For a continuous $\Xi:\{(s, t): 0 \leq s \leq t \leq T\} \rightarrow \mathbb{R}$ which vanishes on the diagonal we can define the germ $F_{t}(\cdot):=\partial_{s} \Xi{ }_{\cdot, t}$.
Let $z>y>x$ and $\varphi:=\mathbb{1}_{(-1,0)}$, so that $\varphi_{y}^{y-x}=\frac{1}{y-x} \mathbb{1}_{(x, y)}$. Then

$$
\begin{aligned}
\left(F_{z}-F_{y}\right)\left(\varphi_{y}^{y-x}\right) & =\frac{1}{y-x} \int_{x}^{y}\left(\partial_{s} \Xi_{s, z}-\partial_{s} \Xi_{s, y}\right) \mathrm{d} s \\
& =-\frac{1}{y-x}\left(\Xi_{x, z}-\Xi_{x, y}-\Xi_{y, z}\right)
\end{aligned}
$$

Then

$$
\left|\left(F_{z}-F_{y}\right)\left(\varphi_{y}^{y-x}\right)\right| \lesssim|y-x|^{-1}(|z-y|+|y-x|)^{\beta-1+1} \Longleftrightarrow\left|\Xi_{x, z}-\Xi_{x, y}-\Xi_{y, z}\right| \lesssim|z-x|^{\beta}
$$

namely $(-1, \beta-1)$-coherence of F is equivalent to $\delta \Xi \in \mathcal{C}_{3}^{\beta}$.

Sewing versus reconstruction

In particular, we can interpret the conditions

$$
\underbrace{\sup _{0 \leq s<t \leq T} \frac{\left|\Xi_{s, t}\right|}{|t-s|^{\alpha}}<+\infty}_{\text {homogeneity }}
$$

As for reconstruction, also Sewing is possible under mere coherence

- coherence implies existence of $\mathcal{I} \Xi$
- homogeneity implies that $\mathcal{I} \Xi \in \mathcal{C}^{\alpha}$.

Moreover for $\beta \leq 1$ we still have a version of the Sewing Lemma, as for Reconstruction with $\gamma=\beta-1 \leq 0$ (see Broux/Z.).

Singular product

Let $f \in \mathcal{C}^{\alpha}$ with $\alpha>0$ and $F_{y}(w)=\sum_{|k|<\alpha} \partial^{k} f(y) \frac{(w-y)^{k}}{k!}$.
Let also $g \in \mathcal{C}^{\beta}$ with $\beta \leq 0$. We define the germ $P=\left(P_{x}:=g \cdot F_{x}\right)_{x \in \mathbb{R}^{d}}$, that is

$$
P_{x}(\varphi)=\left(g \cdot F_{x}\right)(\varphi):=g\left(\varphi F_{x}\right), \quad \varphi \in \mathcal{D}
$$

Theorem

If $f \in \mathcal{C}^{\alpha}$ and $g \in \mathcal{C}^{\beta}$, with $\alpha>0$ and $\beta \leq 0$, then the germ $P=\left(P_{x}\right)_{x \in \mathbb{R}^{d}}$ is ($\beta, \alpha+\beta$)-coherent, namely

$$
\left|\left(P_{z}-P_{y}\right)\left(\varphi_{y}^{\varepsilon_{n}}\right)\right| \lesssim \varepsilon_{n}^{\beta}\left(|y-z|+\varepsilon_{n}\right)^{\alpha} .
$$

If $\alpha+\beta>0$, the unique distribution $\mathcal{R} P$ can be used to construct a canonical product of f and g. Moreover $\mathcal{R} P \in \mathcal{C}^{\beta}$.
If $\alpha+\beta \leq 0$, the (non-unique) distribution $\mathcal{R} P$ can be used to construct a non-canonical product of f and g. Moreover $\mathcal{R} P \in \mathcal{C}^{\beta}$.

Recent developments

- Reconstruction Theorem for Germs of Distributions on Smooth Manifolds by Paolo Rinaldi and Federico Sclavi
- On a Microlocal Version of Young's Product Theorem by Claudio Dappiaggi, Paolo Rinaldi and Federico Sclavi
- Besov Reconstruction
by Lucas Broux and David Lee
- Reconstruction theorem in quasinormed spaces by Pavel Zorin-Kranich
- A stochastic reconstruction theorem by Hannes Kern
- The Sewing lemma for $0<\gamma \leq 1$ by Lucas Broux and L.Z.

