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CHAPTER 1

THE SEWING BOUND

The problem of interest in this book is the study of differential equations driven by
irreqular functions (more specifically: continuous but not differentiable). This will be
achieved through the powerful and elegant theory of rough paths. A key motivation
comes from stochastic differential equations driven by Brownian motion, but the
goal is to develop a general theory which does not rely on probability.

This first chapter is dedicated to an elementary but fundamental tool, the Sewing
Bound, that will be applied extensively throughout the book. It is a general Holder-
type bound for functions of two real variables that can be understood by itself,
see Theorem 1.9 below. To provide motivation, we present it as a natural a priori
estimate for solutions of differential equations.

Notation. We fix a time horizon 7' > (0 and two dimensions k,d € N. We use “path”
as a synonymous of “function defined on [0, 7]” with values in R?. We denote by |-
the Euclidean norm. The space of linear maps from R¢ to R¥, identified by k x d
real matrices, is denoted by R* ® (R?)* ~ R¥*? and is equipped with the Hilbert-
Schmidt norm |-| (i.e. the Euclidean norm on R¥*4). For A € R*® (R%)* and v € R¢
we have |[Av| < |A]|v].

1.1. CONTROLLED DIFFERENTIAL EQUATION

Consider the following controlled ordinary differential equation (ODE): given a con-
tinuously differentiable path X:[0,7] —R? and a continuous function o: R¥ — R* ®
(RY)* , we look for a differentiable path Z: [0, 7] — R¥ such that

Zi=0(Z) Xy,  tel0,T). (1.1)

By the fundamental theorem of calculus, this is equivalent to

t
Zt:ZO—I—/a(Zs)Xsds, tel0,T]. (1.2)
0

In the special case k=d =1 and when o(x) = Az is linear (with A € R), we have
the explicit solution Z; = zgexp(\ (X; — Xp)), which has the interesting property of
being well-defined also when X is non differentiable.

For any dimensions k,d € N, if we assume that o(+) is Lipschitz, classical results
in the theory of ODEs guarantee that equation (1.1)-(1.2) is well-posed for any
continuously differentiable path X, namely for any Z, € R* there is one and only one
solution Z (with no explicit formula, in general).

13



14 THE SEWING BOUND

Our aim is to extend such a well-posedness result to a setting where X is contin-
uous but not differentiable (also in cases where o(-) may be non-linear). Of course,
to this purpose it is first necessary to provide a generalized formulation of (1.1)-(1.2)
where the derivative of X does not appear.

1.2. CONTROLLED DIFFERENCE EQUATION

Let us still suppose that X is continuously differentiable. We deduce by (1.1)-(1.2)
that for 0 <s <t T

2= 2e=o(2) (%= X0+ [ (020~ o(2)) K (13)

which implies that Z satisfies the following controlled difference equation:
Zy—Zs=0(Zs) (Xi — Xs) +o(t — s), 0<s<t<T, (1.4)
because u+— o (Z,) is continuous and u+— X, is (continuous, hence) bounded on [0, 7.

Remark 1.1. (UNIFORMITY) Whenever we write o(t — s), as in (1.4), we always
mean uniformly for 0 <s<t<T, ie.

Ve>030>0: 0<s<t<T, t—s<0 implies |o(t—s)|<e(t—3s). (1.5)

This will be implicitly assumed in the sequel.

Let us make two simple observations.

e If X is continuously differentiable we deduced (1.4) from (1.1), but we can
easily deduce (1.1) from (1.4): in other terms, the two equations (1.1) and
(1.4) are equivalent.

e If X is not continuously differentiable, equation (1.4) is still meaningful,
unlike equation (1.1) which contains explicitly X.

For these reasons, henceforth we focus on the difference equation (1.4), which pro-
vides a generalized formulation of the differential equation (1.1) when X is continuous
but not necessarily differentiable.

The problem is now to prove well-posedness for the difference equation (1.4).
We are going to show that this is possible assuming a suitable Holder reqularity on
X, but non trivial ideas are required. In this chapter we illustrate some key ideas,
showing how to prove uniqueness of solutions via a priori estimates (existence of
solutions will be studied in the next chapters). We start from a basic result, which
ensures the continuity of solutions; more precise result will be obtained later.

LEMMA 1.2. (CONTINUITY OF SOLUTIONS) Let X and o be continuous. Then any
solution Z of (1.4) is a continuous path, more precisely it satisfies

|2y — Zg| < C' | Xy — X + ot — s), 0<s<t<T, (1.6)

for a suitable constant C' < co which depends on Z.



1.3 SOME USEFUL FUNCTION SPACES 15

Proof. Relation (1.6) follows by (1.4) with C :=|0(Z)||e = supo<i<r |0(Z)],
renaming |o(t — s)| as o(t — s). We only have to prove that C' < co. Since o is
continuous by assumption, it is enough to show that Z is bounded.

Since ot — s) is uniform, see (1.5), we can fix § >0 such that |o(t — s)| <1 for
all 0 < s <t < T with |t —s|<4. It follows that Z is bounded in any interval [3, ]
with |[f — 5| <4, because by (1.4) we can bound

sup |Zi| <|Zs| + |o(Z5)| sup | X;— X5+ 1< o0.

te(s,t] te(s,t]
We conclude that Z is bounded in the whole interval [0, T, because we can write
[0, T as a finite union of intervals [5,#] with |t — 5| <J. O

Remark 1.3. (COUNTEREXAMPLES) The weaker requirement that (1.4) holds for
any fixred s €[0,T] as t|s is not enough for our purposes, since in this case Z needs

not be continuous. An easy conterexample is the following: given any continuous
path X:|0,2] — R, we define Z:[0,2] — R by

g X if 0<t<1,
BT X419 1<t<2

Note that Z; — Z,= X; — X, when either 0 <s<t<1or 1<s<t<2, hence Z satisfies
the difference equation (1.4) with o(-)=1 for any fizred s €10,2) as t]s, but not
uniformly for 0 < s <t <2, since Z is discontinuous at t = 1.

For another counterexample, which is even unbounded, consider

1 .
A if 0<t<1,
0 if 1<t<2,

which satisfies (1.4) as ¢]s for any fixed s € [0, 2], for X; =t and o(z) =22

1.3. SOME USEFUL FUNCTION SPACES
For n > 1 we define the simplex

(note that [0, 7)< =[0,T]). We then write C,,=C([0,T]%, R¥) as a shorthand for the
space of continuous functions from [0, T|% to RF:

C:=C([0,T)%, RF) :={F:[0,T)*—RF: F is continuous}. (1.8)

We are going to work with functions of one ( f;), two (Fy) or three (Gsy:) ordered
variables in [0, T, hence we focus on the spaces C1, Cy, Cs.

e On the spaces (5 and C5 we introduce a Holder-like structure: given any
n € (0,00), we define for F' € Cy and G € Cs

F. G
1Fly= s A o, s G
0<s<t<T ( ) 0<s<u<t<T (t—s)
s<t

(1.9)
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and we denote by C3 and CY the corresponding function spaces:
CJ:={FeCy ||F|,<oo}, Cd:={GeCs ||G|,<ox}, (1.10)
which are Banach spaces endowed with the norm ||-||,, (exercise).

e On the space (] of continuous functions f: [0, 7] — R* we consider the usual
Holder structure. We first introduce the increment 0 f by

Of)se:=fi—fsy  0<s<t<T, (1.11)

and note that §f € Cy for any f € C;. Then, for a € (0, 1], we define the
classical space C®=C*([0, T], R¥) of a-Hélder functions

(for a =1 it is the space of Lipschitz functions). Note that ||0f ||, in (1.12)
is consistent with (1.11) and (1.9).

Remark 1.4. (HOLDER SEMI-NORM) We stress that f+—||df]|« is a semi-norm on
C® (it vanishes on constant functions). The standard norm on C® is

1 llee:=1[flloo + 110l (1.13)
where we define the standard sup norm
[ flloo:= sup |fil. (1.14)
t€[0,T

For f:[0,7] — R* we can bound ||f|le <|f(0)] +T% |6 f]la (see (1.39) below),
hence

[ lea < SO+ A+T) (|6 la- (1.15)

This explains why it is often enough to focus on the semi-norm || f ||, -

Remark 1.5. (HOLDER EXPONENTS) We only consider the Hélder space C* for
a € (0,1] because for a>1 the only functions in C* are constant functions (note that
10f|o < 00 for a>1 implies f,=0 for every t €[0,T]).

On the other hand, the spaces CJ and CY in (1.10) are interesting for any
ezponent n € (0, 00). For instance, the condition ||F'|],, < oo for a function F € C,
means that |Fy| < C (t — s)", which does not imply F'=0 when > 1 (unless F'=4f
is the increment of some function f € ().

In our results below we will have to assume that the non-linearity o: R¥ —
R* ® (R%)* belongs to classes of Holder functions, in the following sense.

DEFINITION 1.6. Let v>0. A function F:RF —RY is said to be globally v-Hélder
(or globally of class C7) if
o for~e(0,1] we have

[Flev:i=  sup |F(z) — F(y)]

z,yeRF z+y |x_y|fy
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o forye(n,n+1] andn={1,2,...}, Fisn times continuously differentiable and

[D™F(x) — D™ F(y)|

— < 400
|z —y|”

[D™WE)ev:=  sup
z,yeERF x#y

where D™ is the n-fold differential of F.
Moreover F:RF— RN is said to be locally ~-Holder (or locally of class C7) if
e fory€(0,1] we have for all R>0

Flz)—F
wp  FF@-FO
z,yeRF z+y |IL‘—y|
lz|,ly|<R

o forye(n,n+1] andn={1,2,...}, Fisn times continuously differentiable and

[D™F(x) - D™F(y)|

— < +00.
|z —y|"

sup

z,yeRF x4y
lz|,ly|<R

We stress that in the previous definition we do not assume F of D™F to be
bounded. The case v=1 corresponds to the classical Lipschitz condition.

1.4. LOCAL UNIQUENESS OF SOLUTIONS

We prove uniqueness of solutions for the controlled difference equation (1.4) when
X €C® is an Hoélder path of erponent o > % For simplicity, we focus on the case
when o: R¥ — R* ® (R%)* is a linear application: o € (RF @ (RY)*) ® (R*)*, and we
write o Z instead of o(Z) (we discuss non linear o(-) in Chapter 2).

THEOREM 1.7. (LOCAL UNIQUENESS OF SOLUTIONS, LINEAR CASE) Fiz a path
X:[0,7] = R% in C*, with a € B, 1} , and a linear map o: RF—RF @ (RY)*. If T >0
is small enough (depending on X ,«,0), then for any zo € RF there is at most one

path Z:[0,T] — RF with Zy= 2y which solves the linear controlled difference equation
(1.4), that is (recalling (1.11))

07— (0 Zs) 6 X =o0(t — 3), 0<s<t<T. (1.16)
Proof. Suppose that we have two paths Z, Z: [0, T] — RF satisfying (1.16) with

Zo=Zy and define Y :=Z — Z. Our goal is to show that Y =0.
Let us introduce the function R € Co=C([0,T]%, R¥) defined by

Ry :=06Y— (oY) 0Xat, 0<s<t<T, (1.17)
and note that by (1.16) and linearity we have
Ry=o(t—s). (1.18)
Recalling (1.9), we can estimate

16Y [la <[o[ Y lloo 16X Jla+ [ Rl ,
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and since Ry =o(t —s) =o((t — s)*), we have ||R|l, < 400 and therefore ||0Y ||, <
+00. Since Yy =0, we can bound

1Y [loo < [¥o[ + sup [Yi=Yo[ <T*[[0Y ][a-

0<t<T
Since 1< T (t —s) > for 0< s <t < T, we can also bound

Rl <T* | R]|20
so that
[0Y [ ST (|o ] |0Y [ |6X [|a+ [ R]]2a)-

Suppose we can prove that, for some constant C'=C(X,«,0) < 00,

|R||20 < C [|0Y o (1.19)
Then we obtain
[6Y [[a ST (|o] |0X [[a+C) |6Y |-

If we fix T small enough, so that 7% (|o| [|0X ||« + C) <1, we get ||0Y || =0, hence
dY =0. This means that Y;=Y; for all s,¢€[0,7T], and since Yj=0 we obtain Y =0,
namely our goal Z = Z. This completes the proof assuming the estimate (1.19)
(where the hypothesis « >% will play a key role). O

To actually complete the proof of Theorem 1.7, it remains to show that the
inequality (1.19) holds. This is performed in the next two sections:

e in Section 1.5 we present a fundamental estimate, the Sewing Bound, which
applies to any function Ry =o(t — s) (recall (1.18));

e in Section 1.6 we apply the Sewing Bound to Ry in (1.17) and we prove the
desired estimate (1.19) for « >% (see the assumptions of Theorem 1.7).

1.5. THE SEWING BOUND

Let us fix an arbitrary function R € Co=C([0,T]%,R*) with Ry =o0(t — s). Our goal
is to bound |Rg| for any given 0 <a<b<T.

We first show that we can express R,, via “Riemann sums” along partitions
P={a=ty<ti1<...<ty,=0>b} of [a,b]. These are defined by

#P
IP(R) ::Z Rtiflti’ (120)
=1

where we denote by #P :=m the number of intervals of the partition P. Let us
denote by |P|:=max;<i<m (t; —ti—1) the mesh of P.

LEMMA 1.8. (RIEMANN SUMS) Given any R € Cy with Ryy=o0(t —s), for any 0 <
a<b<T and for any sequence (Py)n>0 of partitions of [a,b] with vanishing mesh
lim;, o0 |Ppn| =0 we have

lim Ip, (R) =0.

n—oo
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If furthermore Po={a,b} is the trivial partition, then we can write

o0

Ruy=>_ (Ip(R)—1Ip,,(R), 0<a<b<T. (1.21)

n=0

Proof. Writing P, ={a=t§ <t <...<tlp, =b}, we can estimate

#Pn |Rtf_1t}1| #Pn . .
Ip, (R)[ <) Ry 2 < A gy >t =ty
i=1 N

Jj=1

hence |Ip,(R)| — 0 as n— oo, because the final sum equals b — a and the bracket
vanishes (since Ry =o(t — s) and |P,| =maxi¢jcup, (1] —t7-1) —0).
We deduce relation (1.21) by the telescopic sum

N-1

Ipy(R) = Ipy(R) =Y _ (Ip,(R) = Ip, ,(R)),
n=0
because limy_, o, Ip,(R) =0 while Ip,(R) = Ry, for Py={a,b}. O

If we remove a single point ¢; from a partition P ={to<t; < ... <t;}, we obtain
a new partition P’ for which, recalling (1.20), we can write

I'P/(R) _I'P(R) :Rti—lti+l_Rti—lti_Rtit (1'22)

i+1°

The expression in the RHS deserves a name: given any two-variables function F' € (5,
we define its increment 0F € C'5 as the three-variables function

OF g :=Fy— Fy— Fus, 0<s<u<t<T. (1.23)
We can then rewrite (1.22) as
Ip/(R) = Ip(R) =0Ry, _t:t,.1 (1.24)
and recalling (1.9) we obtain the following estimate, for any 7 > 0:
[Ip/(R) — Ip(R)| < |6R |y [ti1 — tima|™. (1.25)
We are now ready to state and prove the Sewing Bound.

THEOREM 1.9. (SEWING BOUND) Given any R € Cy with Ry = o(t — s), the fol-
lowing estimate holds for any n € (1,00) (recall (1.9)):

IR, < K, ||0R]), where K,:=(1-2""n"1 (1.26)

Proof. Fix R € C, such that ||0R]], <oo for some n>1 (otherwise there is nothing
to prove). Also fix 0 <a <b< T and consider for n >0 the dyadic partitions P, :=

{th:=a+ ;—n (b—a): 0<i<2"} of [a,b]. Since Py={a,b} is the trivial partition, we
can apply (1.21) to bound

|Ratl <Y [, (R) = Ip, ,(R)]. (1.27)
n=0
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If we remove from P, all the “odd points” ¢35}, with 0 < 7 <2"—1, we obtain
+ P 2541

P,. Then, iterating relations (1.24)-(1.25), we have
2n—1

|IPn(R)—I7JnH(R)| < Z |5Rt§j“ n+1 n+1|
i=0

lajritasyo

< 2 orl, (202)

gnt1
= 2=V I5R]|, (b—a)". (1.28)
Plugging this into (1.27), since > o0 27 (1=D"= (1 —21=7)~1 we obtain
|Rap| < (1 =2"""1)"1|6R]],, (b—a)", 0<a<b<T, (1.29)
which proves (1.26). O

Remark 1.10. Recalling (1.11) and (1.23), we have defined linear maps

SN RING (1.30)
which satisfy § o9 =0. Indeed, for any f € C; we have

5<5f)sut:<ft_ fs)_(fu_ fs)_<ft_ fu)ZO

Intuitively, 0F € C3 measures how much a function F' € Cy differs from being the
increment 0 f of some f €}, because 0F =0 if and only if F'=46f for some f €}
(it suffices to define f;:= Fy; and to check that §fs; = 0Fost + For = Fit).

Remark 1.11. The assumption Ry =o0(t —s) in Theorem 1.9 cannot be avoided:
if R:=Jf for a non constant f € Cy, then 0R =0 while ||R]|, > 0.

1.6. END OF PROOF OF UNIQUENESS

In this section, we apply the Sewing Bound (1.26) to the function Ry defined in
(1.17), in order to prove the estimate (1.19) for a > %

We first determine the increment R through a simple and instructive computa-
tion: by (1.17), since §(6Z) =0 (see Remark 1.10), we have

O0Rsut = Rg— Reu— Rut
= (Yi—Y) - (Yu.—Y)—(Yi—Y,)
— (oY) (Xy = Xo) + (0 ¥5) (Xu = Xo) + (0 Ya) (Xi — Xo)
= [o(Ya—Y)] (Xi — Xu). (1.31)
Recalling (1.9), this implies
[6R |20 < |0 [ [[0Y [|a [|0X |[a-

We next note that if « >% (as it is assumed in Theorem 1.7) we can apply the
Sewing Bound (1.26) for n=2a >1 to obtain

[ l20 < K0 |0 |20 < Koo 0| |0V [lo [[0X |[a -
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This is precisely our goal (1.19) with C=C(X,a,0) := Ka, |0| [[0X || a-

Summarizing: thanks to the Sewing bound (1.26), we have obtained the estimate
(1.19) and completed the proof of Theorem 1.7, showing uniqueness of solutions to

the difference equation (1.4) for any X € C* with a € ]%, 1}. In the next chapters we
extend this approach to non-linear o(-) and to situations where X € C* with o < %

Remark 1.12. For later purpose, let us record the computation (1.31) withouth o:
given any (say, real) paths X and Y, if

Ay =Y, 0X, VO<s<t<T,
then
0Agut=—0Y 0 Xy, VO<s<u<t«T. (1.32)

1.7. WEIGHTED NORMS

We conclude this chapter defining weighted versions |||, - of the norms ||-||,, intro-
duced in (1.9): given F € Cy and G € C3, we set for n, 7 € (0, 00)

_L | Fl
Fll, .= Ligei_scrn€ ™ | P 1.33
1E = sup  Lo<i-ssrre ™ g5 (1.33)
—t |Gl
Glly-:= sup  lygci—s<rie 7 [Gut , 1.34
IGllri= 50 Tipcser e (75 (31

where Cy and Cj are the spaces of continuous functions from [0,7]% and [0, T]% to
R*, see (1.8). Note that as 7— oo we recover the usual norms:

Il = T . (1.35)

Remark 1.13. (NORMS VS. SEMI-NORMS) While |||, is a norm, |||, is a norm

for 7> T but it is only a semi-norm for T <T (for instance, || F ||, =0 for F' € Cy

implies Fy; =0 only for ¢ — s <7: no constraint is imposed on Fy for t — s> 7).
However, if FF=0f, that is Fy;= f; — fs for some f € C}, we have the equivalence

T\ T
1671 < o1l < (142 )% 16 1. (1.36)

The first inequality is clear. For the second one, given 0 < s <t <T, we can write
s=tog<ty1 < ---<ty=t with t;, —t;_1 <7 and N < 1+§ (for instance, we can

consider t; = s —i—it_Ts where N := V;S]); we then obtain 0fy = Zj\;l 0ft,_,t; and

|5fti—1ti| < ||5f||77,7' eti/T (ti - ti—l)n< ||5f||77,TeT/T (t - S)”) which yields (136)

Remark 1.14. (FROM LOCAL TO GLOBAL) The weighted semi-norms |||, » will
be useful to transform local results in global results. Indeed, using the standard
norms ||-||,, often requires the size "> 0 of the time interval [0,7] to be small, as
in Theorem 1.7, which can be annoying. Using ||-||,,,» will allow us to keep T' >0
arbitrary, by choosing a sufficiently small 7> 0.
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Recalling the supremum norm || f || of a function f € Cy, see (1.14), we define
the corresponding weighted version

_t
[ flloc,7:= sup e 7| f. (1.37)
0<t<T
We stress that |||l - is @ norm equivalent to |||« for any 7> 0, since
r
[ lloo,r < [lloo < €7 [|[loo,r - (1.38)

Remark 1.15. (EQUIVALENT HOLDER NORM) It follows by (1.36) and (1.38) that
[l oo, + |- lar is @ norm equivalent to ||-|[co:=||-[|sc + ||| on the space C* of Hélder
functions, see Remark 1.4, for any 7> 0.

We will often use the Holder semi-norms [[0f]|, and ||0f|s.- to bound the
supremum norms || f /o and || f||c -, thanks to the following result.

LEMMA 1.16. (SUPREMUM-HOLDER BOUND) For any f € Cy and n € (0, 00)

1 oo < LSl + T 10 f 1l (1.39)
1 loo.r < Lfol +3 (e AT) I f ., W7 >0. (1.40)

Proof. Let us prove (1.39): for any f € C; and for ¢t € ]0,7] we have

<Rl 1= fol=1fol 0 LB gy o,

The proof of (1.40) is slightly more involved. If ¢t € |0,7 AT}, then
<l + e T L p (e any o

which, in particular, implies (1.40) when 7>T. When 7 < T, it remains to consider
T <t<T: in this case, we define N:=min{n € N: n7 >t} >2 so that % <7. We
set = k% for k>0, so that ¢ty =t. Then

_t N el wlf
k=1 k k—1

N —

<L fol + (AT I6f e S e 7

k=1

By definition of N we have (N — 1)7 <t; since 7 <t we obtain N7 < 2t and therefore
L >21 Since t —ty=(N — k)%, renaming ¢:= N — k we obtain

Nt — 2 N
— t
N, Mol e l—e 1
e T = e N = — < - < 3.
k=1 =0 1—e ™ 1—e 2

The proof is complete. O
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We finally show that the Sewing Bound (1.26) still holds if we replace ||-||, by
[/, for any 7> 0.

THEOREM 1.17. (WEIGHTED SEWING BOUND) Given any R € Cy with Rg=o0(t —s),
the following estimate holds for any n € (1,00) and 7> 0:

Ry < K, |0R]ly,r  where  K,:=(1-=2"m)~1, (1.41)

Proof. Given 0 <a <b< T, let us define

5Rsut|

[0R o= sup  A2Eel

et s,u,t€a,bl: (t—S)n
s<ukt, s<t

(1.42)

Following the proof of Theorem 1.9, we can replace [|0R]|,, by [[0R];, 0.5 in (1.28)
and in (1.29), hence we obtain |Rap| < Ky ||0R||n,[a,p) (0 —a)™. Then for b —a <7 we
can estimate

et Bl =2 g ISR, o < K IIOR]
(b — a)n < n n,la,b] X A 7,7
and (1.41) follows taking the supremum over 0 <a <b<T with b —a < 7. O

1.8. A DISCRETE SEWING BOUND

We can prove a version of the Sewing Bound for functions R = (Rst)s<teT defined on
a finite set of points T:={0=1,<--- <tgr} CIRy (this will be useful to construct
solutions to difference equations via Euler schemes, see Sections 2.6 and 3.9). The
condition Ry =o0(t — s) from Theorem 1.9 is now replaced by the requirement that
R vanishes on consecutive points of T, i.e. Ry, =0 for all 1< <#T.

We define versions |||/, of the norms |||, restricted on T for 7> 0, recall
(1.33)-(1.34):

_t |A
||AH%I:T = sup ]l{o<t,3<7-}e Tﬂ, (143)
0<s<t |t —s|"
s,teT
_t |B
IBIZ, = swp  Ljgersare Aol (1.44)
0<s<u<t |t —s]
s,u,tel, s<t

for A: {(s,t) e T*0<s<t}—Rand B: {(s,u,t) €T 0<s<u<t,s<t}—R.

THEOREM 1.18. (DISCRETE SEWING BOUND) If a function R=(Rs;)s<teT vanishes

on consecutive points of T (i.e. Ry4,,,=0), then for any n>1 and 7 >0 we have

‘ 1
IRy <Cy||0R]]5)~ with C’n::2’72 mz?”Q(n)<oo. (1.45)

n>1

Proof. We fix s,t €T with s <t and we start by proving that
|Rael <Gy 0R]]57 (t = 5)".
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We have s =t and t =t;,,, and we may assume that m > 2 (otherwise there is
nothing to prove, since for m =1 we have R, , =0).

Consider the partition P={s=t; <tpi1<... <tpi, =t} with m intervals. Note
that for some index i € {k+1,...,k+m — 1} we must have ¢;;1 —t;_1 < 27(;:;),
otherwise we would get the contradiction

k4+m—1 k4+m—1

2t—5)> > (pi—ti)> Y M:2(1t—s).

. , m—1
i=k+1 i=k+1

Removing the point ¢; from P we obtain a partition P’ with m — 1 intervals. If we
define Ip(R):= l.c+m_1Rtiti+1 as in (1.20), as in (1.24) we have

i=k
21 (t — s)" |0 Ruvw |
Ip(R) — Ip(R)|=|0R:. 4., | <————L ’
|P( ) 'p( )| | tl_1t1t1+1| (m—l)" sguiligwgt |w—u|7l
u,v,weT

[terating this argument, until we arrive at the trivial partition {s,¢}, we get

|5Ruvw|

[Ip(R) — Ry| <Cy(t—s)"  sup Two—u]"

sSu<v<w<t
u,v,weT

(1.46)

with C,:=>" 21 < 50 because n>1. We finally note that Ip(R) =0 by the

77/21 n"

assumption Ry, ,=0. Finally if t — s <7 then w —u < 7 in the supremum in (1.46)

tit1

w

t
and since e "< e T we obtain

_t
¢ 7| Rl < Cy(t = 5)" [0R 71,
and the proof is complete. 0]

We also have an analog of Lemma 1.16. We set for f: T — R and 7 >0

t

1f I, :=supe | fi] .
teT

LEMMA 1.19. (DISCRETE SUPREMUM-HOLDER BOUND) For T:={0=t;<--- <
tur} CRy set

M= max |ti—ti_1|.
i=2,...,#T

Then for all f: T—R, 7>2M and n>0
1 ller < Lfol +5 7716 f1[7.7 - (1.47)

Proof. We define Ty:=0 and for i > 1, as long as TN (7;_1,T;—1 + 7] is not empty,
we set

Ti:=max TN (T}, ;-1 + 7], i=1,...,N,

so that Ty =maxT. We have by construction T; + M >T; 1+ 7 for all i=1,...,

N —1, and since M <35
T-Taz>r—-M>3.
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For := N we have only Ty >Ty_1. Therefore for i=1,... N

T : el B | fr — S|
e 7 ] < —+ T —Ti._1)"e T e T 1J 2k JIk-1]
1l < 10l O Tayre o

Ti— Ty

< ol 7 I8FIE > e
k=1

Xk
< |fo|+r"H6f||$T<1+Ze )
k=0

< fuol + 477 [0 7.1

Now for t € T\{T;}; we have T; <t < T;,; for some i and then

| <2

AL < Al e =Tre IS <M e 1o,
< Lol + 577 [16f 1o
The proof is complete. 0

1.9. EXTRA (TO BE COMPLETED)

We also introduce the usual supremum norm, for F € Cs and G € Cs:

||F||OO ‘= sup |Fst| s ||G||oo = sup |Gsut| 5

0<s<t<T 0<sSu<t<T
and a corresponding weighted version, for 7 € (0, 00):
_t _t
| Flloo,r:= sup e 7 |Fgl, |Glloo,r:=sup e 7|Ggut- (1.48)
0<s<t<T 0<sSut<T
Note that

m [[Fllocr=lFlloc,  lm [|Glly =Gy, lim [H]l-=[H]];.
T—+00 T—+00 T—+00

We have
||F1||7777'< ||G||OO,T ||H||na (Fsut:GsuHut)7 (].49)

Note that ||-||,),- is only a semi-norm on C! if 7 <T'; we have at least

T 1
7 <Ml < e { -l + =5 - lloor ) - (1.50)
T

However, if 7 >T we have again equivalence of norms

T
-l <l-lln<er gz 72T (1.51)






CHAPTER 2
DIFFERENCE EQUATIONS: THE YOUNG CASE

Fix a time horizon T'> 0 and two dimensions k£, d € N. We study the following
controlled difference equation for an unknown path Z: [0, T] — R¥:

Zi—Zy=0(Z) (X, — X)) +o(t—s), 0<s<t<T, (2.1)

where the “driving path” X:[0, 7] — R? and the function o: R* — R* @ (R%)* are
given, and o(t — s) is uniform for 0 < s <t <T (see Remark 1.1).

The difference equation (2.1) is a natural generalized formulation of the con-
trolled differential equation

Indeed, as we showed in Chapter 1 (see Section 1.2), equations (2.1) and (2.2) are
equivalent when X is continuously differentiable and o is continuous, but (2.1) is
meaningful also when X is non differentiable.

In this chapter we prove well-posedness for the difference equation (2.1) when
the driving path X € C® is Holder continuous in the regime « € H, 1}, called the
Young case. The more challenging regime o < %, called the rough case, is the object
of the next Chapter 3, where new ideas will be introduced.

2.1. SUMMARY

Using the increment notation 0 fs := f; — fs from (1.11), we rewrite (2.1) as
0y =0(Zs) 0 X+ o(t —s), 0<s<t<T, (2.3)
so that a solution of (2.3) is any path Z:[0,T] — R* such that the “remainder”
72=67,—0(Z,) 06X, satisfies ZE =0t —s). (2.4)

We summarize the main results of this chapter stating local and global existence,
uniqueness of solutions and continuity of the solution map for the difference equation
(2.3) under natural assumptions on o. We will actually prove more precise results,
which yield quantitative estimates.

THEOREM 2.1. (WELL-POSEDNESS) Let X:[0,T] —R? be of class C* with o € E, 1]
and let o: RF — R* @ (RY)*. Then we have:

e local existence: if o is locally y-Holder with v € (é —1,1] (e.g. of class C*),
then for every zo € R” there is a possibly shorter time horizon T' =T, x ,(z0) €
10,T] and a path Z:[0,T'] — R starting from Zy= zy which solves (2.3) for
0<s<t<T';

27
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e global existence: if o is globally v-Hdélder with v € (é -1, 1} (e.g. of class
C' with |Vo || <00), then we can take T} x ,(z0) =T for any zo € RY;

e uniqueness: if o is of class C7 with v € (&, 2] (e.g. if o is of class C?), then
there is exactly one solution Z of (2.3) with Zy= zo;

e continuity of the solution map: if o is differentiable with bounded and
globally (v —1)-Holder gradient with v € (é, 2] (i.e. [|[Vo|ow<o0, [Vole-1<
00 ), then the solution Z of (2.3) is a continuous function of the starting point
20 and driving path X : the map (20, X ) Z is continuous from RF x C*—C*.

In the first part of this chapter, we give for granted the existence of solutions and
we focus on their properties: we prove a prior: estimates in Section 2.3, uniqueness
of solutions in Section 2.4 and continuity of the solution map in Section 2.5. A key
role is played by the Sewing Bound from Chapter 1, see Theorems 1.9 and 1.17, and
its discrete version, see Theorem 1.18.

The proof of local and global existence of solutions of (2.3) is given at the end
of this chapter, see Section 2.6, exploiting a suitable Euler scheme.

2.2. SET-UP

We collect here some notions and tools that will be used extensively.

We recall that C; denotes the space of continuous functions f:[0,7] — R¥. Sim-
ilarly, C5 and C5 are the spaces of continuous functions of two and three ordered
variables, i.e. defined on [0, 7% and [0, T]%, see (1.7)-(1.8).

We are going to exploit the weighted semi-norms |||, -, see (1.33)-(1.34) (see also
(1.9) for the original norm ||-||,,). These are useful to bound the weighted supremum
norm || f||eo.~ of a function f € Cy, see (1.37) and (1.40):

[ lloer <[ Sl +3 (- AT) |6 f ln7s V7, 7>0. (2.5)
It follows directly from the definitions (1.33)-(1.34) that
e AT [-llgenrr, Yn,0">0, (2.6)

because (t —s)"> (t —s)"" (rt AT)™" for 0< s <t<T with t —s< 7.

Remark 2.2. The factor (1 AT)" in the RHS of (2.6) can be made small by
choosing T small while keeping T fixed. This is why we included the indicator function
L{o<t—s<r} in the definition (1.33)-(1.34) of the norms ||-||,,,-: without this indicator

function, instead of (7 AT)" we would have T, which is small only when 7" is small.

We will often work with functions F' € Cy or F' € C5 that are product of two
factors, like Fyy= gs Hg; or Fyyy = Gy Hyy. We show in the next result that the semi-
norm || F'||, - can be controlled by a product of suitable norms for each factor.
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LEMMA 2.3. (WEIGHTED BOUNDS) For any n,n’ € (0,00) and 7 >0, we have
if Fa=gHy or Fu=gHy  then  ||F |- <lgllocr [[H Iy, (2.7)
if  Fouw=Gou Hy then ||F||n+n’77< HGHW,T HHHn’ (2'8)

Proof. If F,;= g; Hy;, by (1.37) we can estimate e /7 |g;| <||g]lco.r to get (2.7). If
F, = gs Hy, for s <t we can bound e™"/" <e™*/7 in the definition (1.33)-(1.34) of
|||, hence again by (1.37) we can estimate e™*/" |gy| < [|g|loo.r to get (2.7).

If Foy= Gsy Hy, we can further bound (¢t — s)"" > (t —u)" (u — 5)" in (1.34)
and then estimate e™*/" G,/ (u — s)" < ||G||,,., which yields (2.8). O

We stress that in the RHS of (2.7) and (2.8) only one factor gets the weighted
norm or semi-norm, while the other factor gets the non-weigthed norm ||-|/,. We
will sometimes need an extra weight, which can be introduced as follows.

LEMMA 2.4. (EXTRA WEIGHT) For any n,7 € (0,00) and 0 <7 <7, we have
T
if Fa=gsHa or Fa=gHa  then  [[Flly-<|gllc-e” [H]yz.  (2.9)

Proof. Recall the definition (1.33)-(1.34) of ||-||,,,» and note that for 0 < s <t < T we
have e /7 | g:| < || g |loo.r and e /7 |gs| < ||| oo, (see the proof of Lemma 2.3). Finally,

for t — s <7 <7 we can estimate |Hy| <el/7e /7 |Hy| <e™/T ||H|,-(t—s)". O

We recall that RF @ (R%)*~R¥*4 is the space of linear applications from R? to R*
equipped with the Hilbert-Schmidt (Euclidean) norm |-|. We say that a function is of
class C™ if it is continuously differentiable m times. Given o: R¥— R* ® (R%)* of class
C?, that we represent by o}(z) withi€{1,...,k} and j €{1,...,d}, we denote by Vo:
R — R ® (RY)* ® (R¥)* its gradient and by VZo: RF — R* @ (RY)* ® (R*)* @ (R¥)*
its Hessian, represented for i,a,b€{1,...,k} and j€{1,...,d} by

9o} %o’

(Vo(eDja=52), (Vo)) = 50-(2)

Remark 2.5. (NORM OF THE GRADIENT OF LIPSCHITZ FUNCTIONS) For a locally
Lipschitz function 1: R¥ — R’ we can define the “norm of the gradient” at any point
(even where ¥ may not be differentiable):

IV(2)] :zlimsupM €1[0,00).

y—z |y_Z|

Similarly, |[V2(z)| is well defined as soon as 1) is differentiable with locally Lipschitz
gradient V1) (which is slightly less than requiring ¢ € C?).

2.3. A PRIORI ESTIMATES

In this section we prove a priori estimates for solutions of (2.3) assuming that o is
globally Lipschitz, that is ||Vo || < 0o (recall Remark 2.5).
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We first observe that if the driving path X is of class C%, then any solution Z of
(2.3) is also of class C?, as soon as ¢ is continuous.

LEMMA 2.6. (HOLDER REGULARITY) Let X be of class C* with o €]0,1] and let o
be continuous. Then any solution Z of (2.3) is of class C*.

Proof. We know by Lemma 1.2 that Z is continuous, more precisely by (1.6)
we have [0Z4| < C |0Xg| + o(t — s) with C' < oo. Since [0 X < |[0X ||o (t — $)* and
o(t —s)=o((t — s)*) for any a <1, it follows that Z € C*. O

We next formulate the announced a priori estimates. It is convenient to use the
weighted semi-norms |||, - in (1.33)-(1.34) (note that the usual norms |||, in (1.9)
can be recovered by letting 7— 00).

THEOREM 2.7. (A PRIORI ESTIMATES) Let X be of class C* with a€ |5,1] and let
o be globally ~-Hdélder with v € (i —1,1]. Then, for any solution Z:[0,T] — R* of
(2.3), the remainder Z12:= 067, — 0(Z,) 6 Xy satisfies 212 e COTV more precisely
for any >0

1Z¥ 4 1)0,r < Cary x,0 102113, with Coy x,0:= Ky41)a [6X [la[0]er,  (2.10)
where K,=(1—2")~Y Moreover, if either T or 7 is small enough, we have

16Z]la <1V 20X [l lo(Z0)])  for (TAT)* S€ay X0, (2.11)

where we define
1

I e
T2 (K ynya+3) 10X [[a [0l

(2.12)

If o is globally Lipschitz, namely if we can take y=1, we can improve (2.11) to
10Z|a.r < 210X ||a |o(Z0)] for (TAT)*<éeni1.x,0- (2.13)

Proof. We first prove (2.10). Since Z2'=o(t — s) by definition of solution, see (2.4),

s

we can estimate Z? in terms of 671, by the weighted Sewing Bound (1.41). Let
us compute 622, = 72 — 78 _ 7B recalling (2.4) and (1.32), since 60 =0, we have

028, = 00(2) 506X s = (0(Zs) — 0(Zs)) (Xy — Xo) . (2.14)
Since |0(2) —o(2)| < [o]cv |2 — 2|7 for all 2,z € R% we can bound
160 (Z)]}rar <loler 102115+, (2.15)

hence by (2.8) we obtain
10Z2 ] (y1yar < N6 X o [oler 162117 -

Applying the weighted Sewing Bound (1.41), for (v + 1)a >1 we then obtain

1220, < K 19X ol 1621121 (2.16)
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which proves (2.10).
We next prove (2.11). To simplify notation, let us set €:= (7 AT)® Recalling
(2.7) and (2.6), we obtain by (2.4)

6Z]lar < N0(Z) 0X [lar + 2% ]|a,
< oD llo,r 10X o+ 12 (41707 - (2.17)

We can estimate ||0(Z)| .- by (2.5) and (2.15):
10(2)]oo,r < |0 (Z0)| +3 &7 [o]e 10Z]]5 - -
Plugging this and (2.16) into (2.17), we get

10Z o < (lo(Zo)[ + 37 [aler [|0Z]]5,) [[0X o+
+e"Kytna 10X o [oler 162115, -

1 & N
= [0X]lalo(Z0)[ +5 162

2 o, T
O!,’Y,X7O'

where €4, x,, 18 defined in (2.12). For €7 <¢, 4 x,, the last term is bounded by
%H(SZHZM which is finite by Lemma 2.6. If ||0Z |4, <1 then (2.11) holds trivially; if

not, %||5Z||W <=0Z||a.-. Bringing this term in the LHS we obtain (2.11).

o, T X9
To prove (2.13), we argue as for (2.11) and since v =1 we obtain

3

1
102 Jar < 10X la o (Zo)[ + 5 2 102 [l -

a,1,X 0
For € <e,.1,x,» the last term is bounded by %||5Z ||la,» which is finite by Lemma 2.6.
Bringing this term in the LHS we obtain (2.13), and this completes the proof. [

2.4. UNIQUENESS

In this section we prove uniqueness of solutions to (2.3) assuming that o is of class
C1 with locally Hélder gradient (we stress that we make no boundedness assumption
on o). This improves on Theorem 1.7, both because we allow for non-linear ¢ and
because we do not require that the time horizon 7> 0 is small.

We first need an elementary but fundamental estimate on the difference of incre-
ments of a function. Given ¥: RF— R, we use the notation

Cyr:=sup{|¥(z)]: zeRF |z|<R}. (2.18)

LEMMA 2.8. (DIFFERENCE OF INCREMENTS) Let 1): RF — R! be of class Ci,t? for
some 0< p<1 (i.e. ¢ is differentiable with V1 of class C.). Then for any R >0
and for all x,%,y, § € R* with max {|z|, |y|,|Z|,|¥|} < R we can estimate

|[(x) = ()] = [%(2) — ()|
<Chl(x—y)— (z—g)|+Ci{lz —ylP+ |z - g|?} ly — 9], (2.19)

where Cr:=sup {|Vi(x)]: |z|<R} andC]{::sup{w: |x|,|y|<R}.

|z —yl”
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Proof. For z, w € R* we can write

~

U(z) = ¥(w) =¥(z,w) (z —w),
where (2, w) := folvw(u z+ (1 —u)w)du e R*® (RF)*, therefore

[(x) = ¥(y)] = [¥(@) = L(@)] = [¥() = (@] = [d(y)

(y) = ()]
Y(y, )

= P, 7) (z—T) - (y—9)
- @/3(1’,?) (& —2)~(y—9)]
+ [¥(2,2) =¥y, 9)] (y— 7).
< Cf and

By definition of Cf and Cf we have |4 (z,Z)]

|7[}(?L’,f)—7j}(y,gj)| < |7[}(?L’,f)—@Z}(y,f)l—f—li/;(y,j})—@/;(y,ﬂ)l
< Crile—ylP+]z =77,

hence (2.19) follows. O

We are now ready to state and prove the announced uniqueness result.

THEOREM 2.9. (UNIQUENESS) Let X be of class C* with a € |5,1] and let o be of
class C7 for some vy >é (for instance, we can take o € C?). Then for every z, € RF
there exists at most one solution Z to (2.3) with Zy= z.

Proof. Let Z and Z be two solutions of (2.3), i.e. they satisfy (2.4), and set
Y. =7-7.
We want to show that, for 7 >0 small enough, we have
¥ ller <2]¥5,

where the weighted norm ||-||o - was defined in (1.37). In particular, if we assume
that Zy= Z,, we obtain ||Y ||, =0 and hence Z =Z.
We know by (2.5) that for any 7>0

1Y [loo,r < [¥0] + 37 16Y [|a 7 , (2.20)

where we recall that the weighted semi-norm ||-||,, . was defined in (1.33). We now

deﬁng Y2 as the difference between the remainders Z@ and Z@ of the solutions Z
and Z as defined in (2.4), that is

vi3.= 728 _ 7B =5y, — (0(Z,) — 0(Z,)) 6 X (2.21)

(We are slightly abusing notation, since Y? is not the remainder of Y when ¢ is not
linear.) By assumption o € C? for some 7 > é: renaming vy as y A2, we may assume

that v e ]é, 2]. We are going to prove the following inequalities: for any 7 >0
16 Jlar < e 1Y [loor + 70D Y P[0, (2.22)

1Y P la,r <2V lloo,r + 2 70D [V a7, (2.23)
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for finite constants ¢;, ¢ that may depend on X ,o,Z, 7 but not on T.

Let us complete the proof assuming (2.22) and (2.23). Note that (y —1)a >0
by assumption. If we fix 7> 0 small, so that ¢; 70/~De <%, from (2.23) we get
1Y 0r <22 ||Y |Joor which plugged into (2.22) yields ||6Y |la.r <2¢1 ||V |loo.r for
7> 0 small (it suffices that 2, 70~ < ¢;). Finally, plugging this into (2.20) and
possibly choosing 7 > 0 even smaller, we obtain our goal ||Y |le < 2|Yo| which
completes the proof.

It remains to prove (2.22) and (2.23). Using the notation from Lemma 2.8 we set
Cl = sup{|Vo(2)|: [2]<[Z]leV[Z]ls}
Vo(z)— Vo =
ot = sup { VHI=R0W, o) 1y < 2] v 21 |

|z —yl?

so that |0(Z;) —o(Z,)| < C1|Z; — Z;| and, therefore,
l0(Z) = 0(Z)]lso,r S CLY [loo,r - (2.24)
We now exploit (2.21) to estimate ||dY ||o.-: applying (2.7) we obtain

1Y lar < Nl0(Z) = 0(D)lloor 16X o+ 1Y P o~
< OUY oo 16X fla+ 700 Y B yq (2.25)

where we note that || Y®||, . <70~V ||YE)||, . by (2.6). We have shown that (2.22)
holds with ¢; = C1 [|0X ||a-

We finally prove (2.23). Since Y2 =o(t — s), see (2.21) and (2.4), we bound Z?
by its increment 6712 through the weighted Sewing Bound (1.41):

1Y P ar <Ksa 1Y Pla,r (2.26)
hence we focus on [|0Y?)||,, .. By (2.21) and (1.32), since o =0, we have
SV = (60(Z) s — 60(Z) ) 6 Xt (2.27)
Applying the estimate (2.19) for v = Z,, y = Z,, T = Z,, §j = Zs, we can write

160(2) g0 — 60(Z)gu| < C1|6Z5u — 6 Zgu| + CF {16 Z5u|* L + |6 Zu 71 Zs — Zi|
= C1|6Ye| + OV {1021 4+ |0 25|71} Y4 (2.28)

hence by (2.7) we get

160(2) = 60(Z) [ r-vinr < CLISY o+ (2.29)
T+ CE{ISZIL 12127 1Y Jloorr

If we take 7 <1 we can bound [[0Y ||(y—1)a,r < ||0Y ||a, by (2.6) (recall that we are
assuming v < 2). Then by (2.27) we obtain, recalling (2.8),

10Y Plsa,- < 10X [la 190(2) = 8 (Z) | (y-1yar < E1 (10Y [larr + [V ]| ocr) -
for a suitable (explicit) constant & = ¢éy(o, Z, 7, X). Applying (2.22), we obtain

1Y Py, < (e + 1) Y flowr + & 70D Y R
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which plugged into (2.26) shows that (2.23) holds. The proof is complete. O
We conclude with an example of (2.19).

Example 2.10. If 0:R— R is o(z) =2 then we have

— %) = (y* = 7
y—9)(y+9)

(y Y+ (x—-2)[(z+7) - (y+79)]
y— )(y+y)+($—f)[(l’—y)+(f—§)],

where in the second last equality we have summed and subtracted (y — ) (v + ).
If we use this formula for x = Z7;, y = Z and &= Z;, y = Z, then we obtain

(5(22 - ZQ)St: (S(Z - Z)St (ZS+ ZS) + (Zt - Zt) [5ZSt+5ZSt]7
which is in the spirit of (2.19) with p=1. It follows that
10022 = Z)1a <201 Z 1| 10(Z = Z)lla +11Z = Z | [110Z ]|+ 10Z ||o]

which is the form that (2.29) takes in this particular case.

2.5. CONTINUITY OF THE SOLUTION MAP

In this section we assume that o is globally Lipschitz and of class C! with a glob-
ally v-Holder gradient, i.e. |[Vo|« < oo and [Vo|er < 0o, with v > é Under these
assumptions, we have global existence and uniqueness of solutions Z:[0,T] — R to
(2.3) for any time horizon T >0, for any starting point Zy € R* and for any driving
path X of class C* with %< a <1 (as we will prove in Section 2.6).

We can thus consider the solution map:

o: RFxC* — (C©

(Zo, X) — Z:= { unique solution of (2.3)for t € [0, 7] . (2.30)
05 .=

starting from Z

We prove in this section that this map is continuous, in fact locally Lipschitz.

Remark 2.11. The continuity of the solution map is a highly non-trivial property.
Indeed, when X is of class C*, note that Z solves the equation

t .
Zt:ZO—I—/ o(Zs) Xsds, (2.31)
0

which is based on the derivative X of X. We instead consider driving paths X € C*
with a € ]%, 1] which are continuous but may be non-differentiable.

We shall see in the next chapters that the continuity of the solution map holds
also in more complex situations such as X € C* with a < %, which cover the case
when X is a Brownian motion and Z is the solution to a SDE.
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Before stating the continuity of the solution map, we recall that the space C* is
equipped with the norm || f||co:= || f||oc + [|0f ||a, see Remark 1.4, but an equivalent
norm is || floo,r + |0 f ||a.r for any choice of the weight T >0, see Remark 1.15.

THEOREM 2.12. (CONTINUITY OF THE SOLUTION MAP) Let o be globally Lipschitz
with a globally (v —1)-Hélder gradient: ||Vo||s <00 and [Vo]ev-1<oo, with y € (é,
2]. Then, for any T >0 and o € ]%, 1], the solution map (Zo, X))+ Z in (2.50) is
locally Lipschitz.

More explicitly, given Moy, M, D < oo, if we assume that

max {[|[Vo |, [Voler-1} < D,

and we consider starting points Zy, Zo € R and driving paths X, X € C* with

max {|o(Zo)],|o(Zo)|} < Mo, max{ X [la. [6X ||} < M (2.32)
then the corresponding solutions Z = (Zs)sejo1), Z = (Zs)seo,r) of (2.5) satisfy

1Z = Z|oosr + 162 = 62|, < €1 | Zo— Zo| + 6 Mo [|0X — 0X || (2.33)
provided 0 <7 AT <7 for a suitable T =Ty . 1,0,0m,m >0, where we set

Cu:=2(|VolloM+1)<2(DM+1).
Proof. Let us define the constant
¢ i=|VolleeM<DM. (2.34)

We fix two solutions Z and Z of (2.3) with respective driving paths X and X. If we
define Y :=Z7 — Z, we can rewrite our goal (2.33) as

1Y llooir + 10 [l <6 Mo [[0X = 0X [l +2 (ear + 1) [Yo) - (2.35)

Let us introduce the shorthand
e:=(TNT)*

and let us agree that, whenever we write for e small enough we mean for 0 <e<egg
for a suitable £g >0 which depends on o, T, My, M, D. By (2.5), for € small enough,

1
1Y lloo.r < Yol +& [10Y o, < [Yol + = [10Y [|a (2.36)

hence to prove (2.35) we can focus on [[0Y |47
Recalling (2.4), let us define Y2 := 7z — 712 We are going to establish the
following two relations, for ¢ small enough:

4 —
£ 1Y llar <2 Mo 10X = 0X [la+ enr Yol + [V Plo 7 (2.37)
oL 1 1
1Yo, < Mol|0X = 6X [|a+ 5{Yol + £ 10 [la,r- (2.38)

Plugging (2.38) into (2.37) and applying (2.36), we obtain (2.35).
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It remains to prove (2.37) and (2.38). We record some useful bounds. Let us set

1
E=¢E = . 2.
M TS (Ko +3) DM (2:39)

We exploit the a priori estimate (2.13) from Theorem 2.7: by (2.32), we have
fore=(rAT)*<é&: max{||0Z ||a.rs |02 ||ar} <2 Mo M, (2.40)
therefore
160 (Z) [la,r IV lloo 16Z]|a,r S 2|V || Mo M =2 My err, (2.41)
and applying (2.5) and (2.32) we get, for € small enough,

10(2)|loor < |07(Zo)| + 32 100(Z) |lar < Mo (1+6 care) <2 My - (2.42)

We can now prove (2.37). Defining Y12 := 72 — 7P we obtain from (2.4)

Yo = 6Zu—07y = 0(Zs)0Xu—0(Z) 6K+ Y
= 0(2) (6X = 6X)st+ (0(Zs) — 0(Z2)) X+ Yo,

hence by (2.7) we can bound

||5Y||oz77' < ||0(Z)||oo,’r ||5X _5X||a

_ | (2.43)
HI0X [la |0(2) = 0(Z) |, + V|-
Let us look at the second term in the RHS of (2.43): by (2.5)
10(2) ~ 0(Z) e < [Vl |2 — Zll -
< Vol (Yol + 32 [16Y (o).
Hence by (2.32) and (2.34) we get, for € small enough,
, _ 1
10X la 10(Z) = 0 (Z)ow,7 < €ar [Yol + 5 [[6Y [lar (2.45)
Plugging this into (2.43) we then obtain, by (2.42),
4 _
£ 10V llar <2 Mo 10X = X [loc+ ear [¥5] + [V, (2.46)

which proves (2.37).
We finally prove (2.38). Since Y2 =z — Z2— (1 — 5), see (2.4), the weighted
Sewing Bound (1.41) and (2.6) give

Yo < Y Plha,r < Koo e? ™ [0V P - - (2.47)
To estimate 0Y'12 =522 — § Z12 note that by (2.4) and (1.32) we can write
0Vt = 00(Z)su (65X = 6X )t + (00(Z) = 60(Z) )su 6 Xt , (2.48)
hence by (2.8)
16Y P |0, <160(2) | (y-1yar 10X = 0X o+ (10X [la 60/(Z) = 60(Z) ]| y-1par- (2:49)
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The first term is easy to control: by (2.41), for ¢ small enough,
Koo & H[00(Z) ]| (v-1yar 10X = 6X [lo < Mo X = 6X || (2.50)
Let us now focus on the second term. By (2.19) we have, see also (2.28),
100(Z)su— 00 (Z)sul <[V |0 [0 Youl + [Vl er-1 {0 Zeu| "™ + 10 Z5u "~} V4] -
We apply (2.9) for H=6Z, g=Y and 7= (£)"/* from (2.39):
100(Z) = 60 (Z) | (3-1yarr < VO lloc 10Y l(-1)am +
T sl —
+H[Voler-1em (162125 +16Z 12 DNY Nlooyr
T
< DY |lar+22My M) e D ||V ||o.r, (2.51)

where we applied (2.40). Hence by (2.51), recalling (2.32), for € small enough we
obtain

Ka 10X [ 107(2) = 60(Z) 0 tar S5 10Vl + 5V oo (2:52)
and since [|Y ||oo.r < Y0l +% |0Y || .-, see (2.36), we obtain
K& 3K o [60(2) — 80 2) 1y < 2%+ 2 187 [
Finally, plugging this bound and (2.50) into (2.49) and (2.47), we obtain
IV B < Mo 63X = 65 la-+ 5]%6] + 510 e
which proves (2.38) and completes the proof. O

Remark 2.13. An explicit choice for 7 in Theorem 2.12 is

_T
o, e

= 10 (K26 +3) (1+ M) (1+ D (M + M?2))?’ (253)

with 7 = 7, p am defined in (2.39). This is obtained by tracking all the points in
the proof of Theorem 2.12 where € = (7 AT)® was assumed to be small enough: see
Section 2.8 for the details.

2.6. EULER SCHEME AND LOCAL/GLOBAL EXISTENCE

In this section we discuss global existence of solutions, under the assumption that o
is globally v-Holder with v € (é —1,1], i.e. [o]ev < oo (again with no boundedness
assumption on o). We also state a result of local existence of solutions for equation
(2.3), where we only assume that o is locally v-Hélder with ~ € (% -1, 1} (with no
boundedness assumption on o).

We fix X:[0,7] — R? of class C® with a € ]%, 1] and a starting point zo € R*. We
split the proof in two parts: we first assume that o: R* — R* @ (R%)* is globally ~-
Holder, then we consider the case when o is locally ~-Holder.
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First part: globally Holder case.

We consider a finite set T={0=1%; <--- <tgr} CR; and we define an approximate
solution Z = ZT = (Z,);eT through the Euler scheme

Z():: 20, Zt :th—f—O'(Ztl) 5Xti7ti+1 fOr 1 gzg#'ﬂ’— 1 (254)

i+1 :
Let us define the “remainder”

Rst::(SZst_0<Zs) 5Xst for s<teT. (255)

We assume that o is globally ~-Hdlder, namely [o]cv < 0o, with v € (é —-1,1 } We set

1

o X = , 2.56
Y (¢ OE Y 13 g I o (2.56)

where the constant C), is defined in (1.45). We prove the following a priori estimates
on the Euler scheme (2.54), which are analogous to those in Theorem 2.7.

LEMMA 2.14. If o is globally v-Hélder, namely [o]cy < 0o, with v € (& —1,1], then

IRII G410 < Crvsnya[o)er (1021]2)7 10X o (2.57)
and for TV <€y 5 X 0" 16Z|1Z <1V (2]|0(20)] [|6X ||a) - (2.58)

Proof. Since 0Rg = (0(Zs) — 0(Zy)) 0 Xus, recall (1.32), and since Ry, , =0 by
(2.54), we can apply the discrete Sewing Bound (1.45) with n=(y+1)a>1 to get

IR G+ 107 < Crna ORI 4110, < Clatnya [oler (10Z]]27)7 10X o (2.59)

We have proved (2.57).
We next prove (2.58). Recalling (2.55) we can bound, by (2.6) for ||-|[sa T,

162115+ < Nl (D)5 10X Nla+ T IRIE 4 1yar7 -
By (1.47)
lo(2) 5.7 < lo(20)| + 57700 Z) o, < |0 (20)] + 577 [0]er (102 ]|a.r) -
We thus obtain, combining the previous bounds,
10Z]]a7 < lo(z0)] 10X [lo+ {77 (Csa+5) [o]er 10X [la} (102 [|ar) -
Now if [|[0Z]|a <1 then (2.58) is proved, otherwise (|62 |2 )7 <||0Z]%., and then
for 7 as in (2.56) the term in brackets is less than = and we obtain (2.58). O

2
We can now prove the following
THEOREM 2.15. (GLOBAL EXISTENCE) Let X be of class C*, with a € B, 1}, and

let o be globally ~-Hélder with v € (é —1,1], i.e. [o]ev<o0. For every z€ RF, with
no restriction on T >0, there exists a solution (Zy)iepp,1) of (2.3) with Zy= 2.



2.6 EULER SCHEME AND LOCAL/GLOBAL EXISTENCE 39

Proof. Given n €N, we construct an approximate solution Z" = (Z{");ct, of (2.3)
defined in the discrete set of times T,,:= ({i2™™: ¢=0,1,...}N[0,7]) U{T} through
the Fuler scheme (2.54).

28 = 2, Zy =25+ 0(Z5) 60Xy, for t;,t; 1€ T,. (2.60)

1+ 1
Let us define the “remainder”

v =020 —0(Z1) 0 Xs for s<teT,. (2.61)
We fix T > 0 such that

We extend Z™ by linear interpolation to a continuous function defined on [0, 77,

still denoted by Z™. Given two points t; < s <t <t;,1 inside the same interval [¢;, ;1]
t

of the partition T, since 02 :ﬁéZ{ZtiH, we can bound for « € (0, 1]

|5Z£f| _ ( t—s )1_a |5Ztyzl'ti+1| < |5Zty:'ti+1|
(t—s)* \t (ier— )~ (i — )"
Given two points s <t in different intervals, say ¢; <s<t;41 <t; <t <14 for some
i < j, by the triangle inequality we can bound [0Zg| <[0Z5,, | +[0Z7, 1| + 0214
Recalling (1.9) and (1.43), we then obtain ||-||o <3 |||, hence by (2.58) we get

162" a7 <3V (6|0 (20)] 16X ]a) - (2.62)

it1— L

The family (Z"),en is equi-continuous by (2.62) and equi-bounded, since Z§ = z
for all n € IN, hence by the Arzela-Ascoli Theorem it is compact in the space C([0, 7],
R%). Let us denote by Z:[0,T] — R* any limit point. Plugging (2.58) into (2.57),
by (2.61) we can write

if TY< 0. x.0 1025 — a(Z1) 6 Xo| < c(z0) (t—8)?  Vs<teT,, (2.63)

where ¢(z0) := Cy41)a [0ler (B3 V (6 |0(20)] 10X ]|a))” |0X || . Letting n — oo and
observing that T, C T,,q, we see that (2.63) still holds with Z" replaced by Z
and T, replaced by the set T := ], Tor = ({% i,n€N}N0,T])U{T} of
dyadic rationals:

if T*<é4 x.0 1074 — 0(Zs) 6 Xst| < c(20) (t — 5)** Vs<teT.

Since T is dense in [0, 7] and Z is continuous, this bound extends to all 0 < s <t < T,
which shows that Z is a solution of (2.3). This completes the proof. O

Second part: locally Lipschitz case.

We now assume that o is locally v-Hélder and we fix zo € R¥. We also fix T'> 0 such
that T'<Z,.x 0(20), see (2.64), and we prove that there exists a solution Z:[0,7]— RF
of (2.3) with Zy= 2.

THEOREM 2.16. (LOCAL EXISTENCE) Let X be of class C*, with a € H, 1], and let o
be locally Lipschitz (e.g. of class C1). For any zo € R* and for T >0 small enough, i.e.

1 1

TY< 0y x.ol20) i == )
Xolz0) =5 (Coa+3) [[0.X [|a {1 + sUp|o—zo/<lo(z0) [ VO (2) [}

(2.64)
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there exists a solution (Zy)icio,r) of (2.5) with Zy= 2.
Let 6 be a globally v-Hdélder function (depending on zp) such that
d(z)=0(z) Y|z — 20| <0(20) and [Glcv= sup |Vo(z2)]. (2.65)

|z — 20| <o (20)

Since T'< €a.x.,0(20) < €4, x,0, see (2.64) and (2.56), by the first part of the proof
there exists a solution Z of (2.3) with & in place of o and Zy= zy,. We will prove that

|Z — 20| < o(20) for all t€]0,T7], (2.66)

therefore 6(Z;) = o(Z;) for all t € ]0,T], see (2.65). This means that Z is a solution
of the original (2.3) with o, which completes the proof of Theorem 2.16.

To prove (2.66), we apply the a priori estimate (2.13) with 7 = co: we note that
T < &4 x.0(20) <€a.x.0 (see (2.64) and (2.12), and note that Cy, > K>,), therefore

162 [loe < 210X |la [0 (20)],
because 6(z9) =0(zp). Then for every t € [0, T] we can bound
|2 = 20l ST [[0Z [0 S 2T [|6X [|a o (20)] <o (20)];

where the last inequality holds because T < &, x »(20) < (2[|0X ||o) 7, see (2.64).
This completes the proof of (2.66).

2.7. ERROR ESTIMATE IN THE EULER SCHEME
We suppose in this section that o is of class C? with ||V o ||o + || V0 ||oo < +00.
THEOREM 2.17. The Euler scheme converges at speed n?*~1.

Proof. Let us set z; :=0y; /Oyo, where (v;);>0 is defined by (2.60). Then
zig1= 2i+ Vo (yi) 200X, 120,

This shows that the pair (y;, 2;)i>0 satisfies a recurrence which is similar to (2.60)
with a map X of class C! and therefore we can apply the above results to obtain
that |z;] < const. In particular the map yo— yx is Lipschitz-continuous, uniformly
over k> 0.

Let us call, for k>0, (zék))@k as the sequence which satisfies (2.60) but has

initial value z{*) = y(t;). Since (y())e=0 is a solution to (2.4), we have

«

k _
2 = yten) S0
Since the map yo— vy is Lipschitz-continuous uniformly over k£ > 0, we have

|77 = IS I -yt ST, ez kL

Therefore

14 te

(-1
0 4 k k+1
lye—y(to)l =124 — =4 )K; 2 =N S =m0
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as t; is bounded and n— oc. O

2.8. EXTRA: A VALUE FOR T

We can give an explicit expression for 7 = 7z, ar,7 in Theorem 2.12, by tracking all
the points in the proof where 7 is small enough, namely:

o for (2.36) we need 7 <~
2.40
2.42

«

o for we need T

15
( (Pr)*:= (2 (Kaa+3) en) ™Y
( (6cpr) 1, for (2.45) we need 7% < (15 ¢pr) 1
e for (2.50) we need 7OV (2 K o car) 7
(

«

o for we need T

) <
) <
e for (2.52) we need 7"V (10 K., ¢py) ™" (first term in the RHS) and also
L -1
rr—Dag (KweﬁM Mo M? HVZO'HOO) (second term in the RHS).

Since ¢y =M ||Vo ||, see (2.34), it is easy to check that all these constraints are
satisfied for 0 < 7 <7 given by formula (2.53) in Remark 2.13.






CHAPTER 3

DIFFERENCE EQUATIONS: THE ROUGH CASE

We have so far considered the difference equation (2.3), that is
Zy— Zs=0(Zs) (Xy— Xs) +o(t — s), 0<s<t<T, (3.1)

where X is given, Z is the unknown and o(-) is sufficiently regular. This is a gen-

eralization of the differential equation Zt =0(Z;) X; which is meaningful for non
smooth X, as we showed in Chapter 2, where we proved well-posedness in the so-

called Young case, i.e. assuming that X € C* with a € ]%, 1}.
However, the restriction « >% is a substantial limitation: in particular, we cannot
take X = B as a typical path of Brownian motion, which is in C* only for o < % For

this reason, we show in this chapter how to enrich the difference equation (3.1) and
prove well-posedness when X € C* with o € ]%, %], called the rough case. This will

be applied to Brownian motion in the next Chapter 4, in order to obtain a robust
formulation of classical stochastic differential equations.

Remark 3.1. (YOUNG VS. ROUGH CASE) The restriction « >% for the study of

the difference equation (3.1) has a substantial reason, namely there is no solution to
(3.1) for general X € C* with a < % Indeed, taking the “increment” ¢ of both sides

of (3.1) and recalling (1.23) and (1.32), we obtain
(0(Zy) —0(Zy)) (Xy— X)) =o(t — s) for 0<s<u<<t<T. (3.2)

If X eC? for any « € (0, 1], then we know from Lemma 2.6 that Z € C*, but not
better in general (e.g. when o(-) =c is constant we have Z =c¢ X), hence the LHS
of (3.2) is S(u—s)*(t —u)* < (t — 5)?, but not better in general. This shows that

the restriction « >% is generally necessary for (3.1) to have solutions.

3.1. ENHANCED TAYLOR EXPANSION

We fix d, k €N, a time horizon T'> 0 and a sufficiently regular function o: R*¥ —
R*® (R%)*. Our goal is to give a meaning to the integral equation

t
Zt:ZOJr/a(Zs)Xsds, 0<t<T, (3.3)
0

where Z: [0, 7] — R” is the unknown and X:[0,7] — R¢ is a non smooth path, more

precisely X € C* with a € E, %}

43
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The difference equation (3.1) is no longer enough, for the crucial reason that
typically it admits no solutions for « <: 5, see Remark 3.1. We are going to solve

this problem by enriching the RHS of (5.1) in a suitable, but non canonical way:
this leads to the key notion of rough path which is central in this book.

To provide motivation, suppose for the moment that X is continuously differen-
tiable, so that (3.3) is meaningful. As we saw in (1.3), an integration yields for s <t

2= Ze=o(2) (X=X + [ (o2 = 0(2)) Rudu (3.4)

In Chapter 1 we observed that the integral is o(t — s), which leads to the difference
equation (3.1). More precisely, the integral is O((t — s)?) if X € C" and o is locally
Lipschitz (note that Z € C1). The idea is now to go further, expanding the integral
to get a more accurate local description, with a better remainder O((t — s)3).

To this purpose, we assume that o is differentiable and we introduce the key
function oy: R* — R* @ (RY)* @ (RY)* by

Q
%q@ .

oa(2):=Va(z)o(z), e : Zl Sz (3.5)
Since < 0(Z,) =Vo(Z,) Z, = 0s(Z,) X, by (3.3),W:can write for s < u
o(2)-0l2) = [ oz) X
— ) (X=X + [ (0lZ) = () Ko, (3.6)

where for 2 € R? and a € R? we define 0y(2) a € R* ® (RY)* by
d
i=2 ()"
=1

If we assume that oy is locally Lipschitz, then the last integral in (3.6) is O((u — 5)?)
(recall that X € C'). Plugging this into (3.4), we then obtain

Zy— Zy=0(Z,) (Xs— X,) + 0(Zs) /t(Xu — X,) @ X, du+O((t — 5)?), (3.7)

where now for z € R¢ and B € R?® R? we define 04(z) B € R by

d

[o2(2) Bl'= > [09(2)im B™. (38)

{,m=1

Let us rewrite the integral in the right-hand side of (3.7) more conveniently. To
this purpose we introduce the shorthands

t
XL =X, — X, Xﬁt::/(XT—XS)@)err, 0<s<t<T, (3.9)

s
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so that X': [0, T)2 — R¢ and X% [0, T2 — R?®@ RY, see (1.7). More explicitly:
t
(th)”:/ (Xﬁ_XSZ)XﬂdT7 Z7.]6{177d}
We can thus rewrite (3.7), replacing O((t — s)®) by o(t — s), in the compact form

Zy— Zy=0(Z) X4+ 02(Z) X3+ 0(t —s), 0<s<t<T, (3.10)

where for the product o4(Z,) X2 we use the contraction rule (3.8).

We have obtained an enhanced Taylor expansion: comparing with (3.1), we added
a “second order term” containing X%. The idea is to take this new difference equation,
that we call rough difference equation, as a generalized formulation of the differential
equation (3.3), just as we did in Chapter 1 (see Section 1.2). However, there is a
problem: the term X% depends on the derivative X, see (3.9), so it is not clearly
defined for a non-differentiable X.

To overcome this problem, we will assign a suitable function X?= (X2)o<s<i<r
playing the role of the integral (3.9) when X is not differentiable: this leads to the
notion of rough paths, defined in the next section and studied in depth in Chapter 7.
We will show in this chapter that rough paths are the key to a robust solution theory

of rough difference equations when X of class C* with a € (%, %]

3.2. ROUGH PATHS

Let us fix a path X:[0,7] — R? of class C* with a € (%, %} Motivated by the previous
section, we are going to reformulate the ill-posed integral equation (3.3) as the
difference equation (3.10), which contains X' and X2.

We can certainly define X := X; — X, as in (3.9), but there is no canonical
definition of X2 = f;(Xr - X, ® X, dr, since X may not be differentiable. We
therefore assign a function X%, which satisfies suitable properties. Note that when
X is continuously differentiable the function X2 in (3.9) satisfies:

e an algebraic identity known as Chen’s relation: for 0 < s<u <t < T
which follows from (3.9) noting that
t

th—xs?u—xztz/ (X, — X)) @ X, dr = (Xu— X.) ® (Xo— Xa)

u

e the analytic bounds

Xl Slt=sl, X3St —sP (3.12)

which follow from the fact that X is bounded.

The algebraic relation (3.11) is still meaningful for non-differentiable X, while the
analytic bounds (3.12) can naturally be adapted to the case of Holder paths X € C*
by changing the exponents 1,2 to «, 2. This leads to the following key definition.
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DEFINITION 3.2. (ROUGH PATHS) Fir a € }%,%}, deN and a path X:[0,T] — R?

of class C®. An a-rough path over X is a pair X = (X', X?) where the functions
X110, T2 = RY and X% [0, T)%2 — RI@R? satisfy, for 0<s<u<t<T:

e the algebraic relations
X=X —Xs, 0X%2,:=X%-X% -X%=X.®X,, (3.13)
where the second identity vs called Chen’s relation;
e the analytic bounds
Xl SE—sl*,  IXE[S[E—s*. (3.14)

We call Ra.4(X) the set of d-dimensional a-rough paths X= (X', X?) over X and
Rad=Uxcce Ra.a(X) the set of all d-dimensional a-rough paths.

When X is of class C, the choice (3.9) yields by (3.11)-(3.12) a a-rough path
for any o € (%, %} which we call the canonical rough path, see Section 7.7 below.
When X = B is Brownian motion, the theory of stochastic integration provides
a natural candidate for X2, in fact multiple candidates (think of Ito vs. Stratonovich
integration), as we discuss in Chapter 4 below. Incidentally, this makes it clear that
the construction of X2 is in general non canonical, i.e. there are multiple choices of
X2 for a given path X. This is a strength of the theory of rough paths, since it allows

to treat different non equivalent forms of integration.

Remark 3.3. The existence of rough paths over any given path X (i.e. the fact
that Ra.qa(X)#0) is a non trivial fact, which will be proved in Chapter 7.

Remark 3.4. (X2 As A “PATH”) The two-parameters function X% is determined
by the one-parameter function

I;:= X3 + Xo®(X; — Xo), (3.15)
which intuitively describes the integral [ (f X, ® X, dr. Indeed, we can write
X5=I-IL—-X,®(X,— X,), (3.16)

since X2 = X3, — X3, — (X, — Xo) ® (X; — X;) by Chen’s relation (3.13).

Vice versa, given a function I: [0, 7] — RY, if we define X? by (3.16), then Chen’s
relation (3.13) is automatically satisfied (recall (1.32)). In order to satisfy the ana-
lytic bound in (3.14), we must require that

I — T, — X, @ (X; — Xo)| S (¢ —s)>, (3.17)

which is a natural estimate if I, — I, should describe “= f;XT ® XT dr”.

Summarizing: given any path X:[0,7] — R? of class C?, it is equivalent to assign
X200, T2 - RY® R satisfying (3.13)-(5.14) or to assign 1:]0,T] — R? satisfying
(3.17), the correspondence being given by (3.15)-(3.16).
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3.3. ROUGH DIFFERENCE EQUATIONS

Given a time horizon T > 0 and two dimensions d, k € N, let us fix:

e apath X:[0,7] —R? of class C* with o € ]%,%],

e an a-rough path X = (X!, X?) over X, see Definition 3.2;
e a differentiable function o: RF — R*® (R9)*, which lets us define the function

oy: RF — RF @ (RY)* @ (RY)* (see (3.5)).

Motivated by the previous discussions, see in particular (3.10), we study in this
chapter the following rough difference equation for an unknown path Z:[0, 7] — Rk:

0Z4=0(Z3) XL+ 09(Z,) X2+ o(t — s), 0<s<t<T, (3.18)

where we recall the increment notation §Z,,:= Z; — Z and the contraction rule (3.8),
and we stress that o(t — s) is uniform for 0 < s<t<T, see Remark 1.1. In analogy
with (2.3)-(2.4), a solution of (3.18) is a path Z: [0, 7] — R* such that

28 =67~ 0(Z) XY~ 02(Z) X =0(t — 5) . (3.19)

We stress that the rough difference equation (3.18) is a generalization of the
integral equation (3.3), as we show in the next result.

PROPOSITION 3.5. If X and o are of class C' and oy is locally Lipschitz (e.g. if o is
of class C?), then any solution Z to the integral equation (3.3) satisfies the difference
equation (3.18) for the canonical rough path X = (X' X?) in (3.9).

Proof. If X € C?, then X= (X!, X?) defined in (3.9) is an a-rough path over X for
any o € E,%}, as we showed in (3.11)-(3.12). Given a solution Z of (3.3), if oy is
locally Lipschitz we derived the Taylor expansion (3.10), hence (3.18) holds. O

We now state local and global existence, uniqueness of solutions and continuity of
the solution map for the rough difference equation (3.18) under natural assumptions
on ¢ and o0y, summarizing the main results of this chapter. We refer to the next
sections for more precise and quantitative results.

To be completed.

PROPOSITION 3.6. Let zo€ R%. We suppose that o and oy are of class C' and globally
Lipschitz, namely ||Vo||oo+ ||V02|lw <+00. Let D:=max {1, ||V0| s, ||Vo2|«} and
M >0.

There exists Tyr,p.o >0 such that, for all T € (0,Tys.p.o) and X= (X" X?) eRu.a
such that || X|o + || X320 < M, there exists a solution Z to (5.19) on the interval
[0, T] such that Zy= zy and

1Z1la <15 M (Jo(20)] + [oa(20)])- (3.20)

The proof of this Proposition, based on a discretization argument, is postponed
to section 3.9 below.



48 DIFFERENCE EQUATIONS: THE ROUGH CASE

We are going to use the Sewing Bound (1.26), its weighted version (1.41) and its
discrete formulation (1.45).

3.4. SET-UP

We recall that the weighted semi-norms ||-||, - are defined in (1.33)-(1.34). We are
going to use the various properties that we recalled in Section 2.2, see in particular
(2.5), (2.6) and (2.7)-(2.8), as well as the natural generalization

<IGllan7 [1H 1]

3.21
<Gl 11 H o, (3:21)

if F,u:=Gs H, then HF||377,T{
In all these bounds, whenever there is a product, only one factor gets the weighted
semi-norm, while the other factor gets the ordinary semi-norm. We sometimes need
to introduce an additional weight, which is possible applying (2.9).
In Chapter 2 a key tool to study the Young difference equation (2.4) was the
estimate on the “difference of increments” in Lemma 2.8. This tool is still crucial in
this chapter, but we will need an additional ingredient that we now present.

LEMMA 3.7. (TAYLOR IDENTITY) Let 21,2 € R* and z € RY. If o: RF— RF @ (RY)* is
of class C1, defining o9: RF - R¥ @ (RY)* @ (RY)* by (3.5) and setting 6z19:= 25— 21,
we have the identities

O'(ZQ) —0'(21) —0'2(21)33' ) (322)
= VO'(Zl)((S,Zlg — O'(Zl) Q}) —|—A [(VO'(Zl —+r 5212) — VO'(Zl)) 5212] dT’,

and

0(z9) —0(z1) —02(z1)z = /0 [(o2(z1 + 7 0212) — 0a(21)) x| dr (3.23)

1

+ | [Vo(z1+4710z19) (0212 — 0 (z1) z)] dr

1

S o—

Vo(z1+1rdzo) (/ Vo (z14+v0z12) 0212 7] dv) dr.
0
Proof. The first formula is based on elementary manipulations and on the fact that

1
0(29) —0(z1) = / [Vo(z1+rdz12) 0210 dr.
0
For the second formula, setting dz := 215 for short, we similarly write
1
o(ze) —o(z1) = / [Vo(z1+rdz)dz]dr
0

= /0 [Vo(z1+7062) (62 —o(z) x)]dr +/O [Vo(z1+7106z2)o(z) ] dr

A
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and then, recalling the definition (3.5) of o9,

A= /0 [09(21 + 1 62) z]dr — /0 [Vo(z1+71062) (0(z14+702) —0(z1)) x] dr.

S

B
Finally

1 T
B = / Vo(z1+10z) </ [Vo(z1+vdz)dzz] dv) dr
0 0
from which (3.23) follows easily. O

We will see below that (3.22) is useful for the comparison between two solutions,
as in the proofs of uniqueness (Theorem 3.10) and continuity of the solution map
(Theorem 3.11), while (3.23) is well suited for a priori estimates on a single solution
(Theorem 3.9) or on a discretization scheme (Lemma 3.13).

3.5. A PRIORI ESTIMATES

In this section we prove a priori estimates for solutions of the rough difference
equation (3.18) for globally Lipschitz o and oy, i.e. ||Vo||e <00 and ||Vosl|e < 00.
A sufficient condition is that o, Vo, V20 are bounded, see (3.5), but it is interesting
that boundedness of o is not necessary (think of the case of linear o).

Given a solution Z of (3.18), we define the “remainders” Z% and ZP by
28 =674y —0(Z)Xh—0a(Z) X%,  Z=6Zy—o(Z)XL. (3.24)

Let us first show, by easy arguments, that any solution Z of (3.18) has the same
Holder regularity C* of the driving path X (in analogy with Lemmas 1.2 and 2.6),

and that the “level 2 remainder” Z2 is in €22, that is | 22| < (t — s)2

LEMMA 3.8. (HOLDER REGULARITY) Let o be of class C* and let Z be a solution
of (3.18). There is a constant C'=C(Z) < 0o such that

2] 2
25| S C [Xal +oll —5), 0<s<t<T. (3.25)
10 Zo| <O (|1 X5| + |X ||) +o(t —s),

In particular, if X= (X', X?) is an a-rough path, then Z# € C3* and Z is of class C°.

Proof. If X= (X', X?) is an a-rough path, then by the first bound in (3.25) we have
| ZB2| < (t = 5)2 4 ot — s) < (t — ), that is Z12 € C2*. Similarly, the second bound
in (3.25) gives |0Zg| S (t—5)+ (t—8)**+o(t —s) S (t— s)*, that is Z is of class C*.

It remains to prove (3.25). This follows by (3.18) with C':=supo<s<r {|0(Zs)| +
|oa(Zs)|}, so we need to show that C' < oo. Since o and oy are continuous (because
o is of class C), it is enough to prove that Z is bounded: supg<;<r |Z] < 00.

Arguing as in the proof of Lemma 1.2, we fix § >0 such that |o(t — s)| <1 for
all 0 < s <t < T with |t —s| <J. Since [0,7T] is a finite union of intervals [5,7] with
t —5< 6§, we may focus on one such interval: by (3.18) we can bound

sup | Z,] < |Zs| +|0(Zs)| sup [Xg| +[02(Zs)| sup |X5[+1<o0.

te(s,t] te(s,t] te(s,t]
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This completes the proof that supo<i<r | Z:] < 00. O

We next get to our main a priori estimates, showing in particular that the

“level 3 remainder” Z is in €3, that is |21 < |t — s[**. Let us first record a useful

computation: recalling (1.23) and (1.32), by 0d=0 and (3.13), we have

0Zy = 2= 2ol ~ Zu;
= (0(Z.) —0(Zs) — 02(Z:) X5u) X+ (02(Z0) — 02(Zs)) Xt - (3.26)
Bu

THEOREM 3.9. (ROUGH A PRIORI ESTIMATES) Let X be of class C* with a € ]é,%]
and let X= (X', X?) be an a-rough path over X. Let o and oy be globally Lipschitz.
For any solution Z of ( 3.18), recalling the “remainders” Z® and Z from (3.24),

we have ZP € C3%: more precisely, for any >0,
HZ[31||3Q’,T < K3oc Céz,X,o (H(SZHa,T + HZ[2]||2a,T) ’ (327>
where we recall that Kz, = (1 —2'73%) "1 and we define the constant

Cox,0 = VO oo XM o+ [Vo2lloo X220+ (VoI5 + [[Voalloo) IXG . (3.28)

Moreover, if either T or T is small enough, we have

16Z lar + 1 2P l20,r < 2 (0(Z0) Xl + 02(Z0) [ X2 20) (3.29)
for (TAT)*<eax0,

where we set
1

€L Xoi= )
T 4 (Ksa+3) (chxo+ 1)

(3.30)

Proof. Let us prove (3.27). Since 3a>1 and Z& = o(t — s), see (3.19), we can
apply the weighted Sewing Bound (1.41) which gives || Z5]|30.» < K30 |62 ||30.-. It
remains to estimate 62 from (3.26): applying (3.21) we can write

10Z 50,7 < 1Bll2a,r [IX![lo + [1602(Z) o, X220 (3.31)
We now focus on By, from (3.26): by (3.23) we have

1 1
Bsu = / [(02(23 +u 5Zsu) - JQ(ZS)) X;u] du + / [VJ(ZS tu 5ZSU) Zs[i}] du
0 0

—/1VO'(ZS+U5Zsu) (/U[VU(ZS+U5ZSU) 070 X1 dv)du,
0 0
so that, by (2.8),
I1Bll2a,r < (IVo2]loc + IV Z) XM o 162 [l + 1V oo 12|20, (3.32)
We can plug this estimate into (3.31), together with the elementary bound
1602(Z)|la.r < IV o2l [o 02 [|ac.7 - (3.33)
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Recalling that || Z)]34 » < Kaq [|[0Z25)]|34.7, We have proved (3.27)-(3.28).

We next prove (3.29), for which we need to estimate Z? and §Z. Writing Zs[f} =
02(Z) X2+ Z) and setting & := (7 AT)* for short, we can bound by (2.6) and (2.7)

HZ[Z}H2Q,T< ||U2(Z)Hoo,f ||X2H2a+€ HZB}H?@,T'

By (2.5) we have ||09(Z)||oo,r < 02(Z0) + 3¢ ||002(Z) || a.r and we can bound ||002(Z)||a. -
by (3.33). Applying (3.27) and recalling (3.28), we then obtain

1ZP 20, < 02(Z0) X220+ € (K3a+3) i o (102 ]|ar + 1 2%]|20,7)

1 ¢
< 09(20) X200+ 75— (10Z]ar + 1 2P 20,7) , (3.34)

4 ¢

o, X0
where we recall that €/, x , is defined in (3.30).
Similarly, writing 6Zy = 0(Z,) X4+ Z2 we can bound, by (2.6) and (2.7),
16Z la,r < lo(2) oo, XK |+ € 1 2P 20,

and since ||0(Z)||oo.r < 0(Z0) + 3¢ ||00(Z)||a.r <0(Zy) + 3¢ |V |00 [|0Z ||a.r We get,
recalling (3.28),

16Z]lar < 0(Z0) X |a+3ect 0 102 lar+2 12720,
1 ¢
< o(Z0) XM at 7 2 N 16Z oz +€ | 2|20+ (3.35)

Finally, for e <eg x » (hence 5<%, see (3.28)), by (3.34) and (3.35) we obtain

1
162 lar + 1122|207 < 7(Z0) 1 X o+ 02(Z0) [ X|20+ 5 (162 [la 7 + 12|20 ) -

Since |07 ||a.r + || 2|24, < 00 by Lemma 3.8, we have proved (3.29). O

3.6. UNIQUENESS

In this section we prove uniqueness of solutions of (3.18) under the assumption that
o:RF— RF @ (RY)* is of class C7 with >é (e.g. it suffices that o is of class C?).
This implies that oy from (3.5) is of class C! with locally (v — 2)-Holder gradient
Voo We stress that o and oy are not required to be bounded.

THEOREM 3.10. (UNIQUENESS) Let X be of class C* with a € E,%], let X= (X!,
X?) be an a-rough path over X, and let o be of class C7 with >é (e.g. if o is of
class C3). Then for every zo€ R” there exists at most one solution Z to (3.18) such
that ZO = 20-

Proof. Let us fix two solutions Z, Z of (3.18) and define their difference

Y. =7-2Z.
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Our goal is to show that, for 7> 0 small, we have ||Y ||oo » <2 |Yo|. In particular, if
Zy=Zy, then Yy=0 and therefore ||Y||o0 =0, i.e. Z=Z, which completes the proof.
We know by (2.5) that

1Y [|oo,r < [Yol + 37 [|6Y [[a,r - (3.36)

With some abuse of notation, we denote by Y@ := 72— 2 anq yPl.= ZB _ 7B
the “differences of remainders”; recall (3.24), so that we can write

Yy = (0(Z,) —o(Z)) XY+ Y2, (3.37)
Y = (0x2,) — 0o(Z) X2+ V. (3.38)

We are going to show that, for 7 > 0 small enough, the following bounds hold:

16Y Ml r < ex [V lloo,r + 7 Y 207 (3-39)
1Y P20, < 2 [V lloc,r + 7072 [Vl a7 (3.40)
HY[g]Hyoz,T g C3 HY ||oo,7' + Cé 7_(7—2)04 ||Y[3}H’YOJ77 ) <341>

for suitable constants ¢;, ¢/ that may depend on Z, 7, X', X2 o, but not on 7.

We can easily complete the proof, assuming (3.39)-(3.41): if we fix 7> 0 small
enough so that c§ 772 < %, by (3.41) we have ||[YP]|,0r <2¢3 Y ||oo.r; Plugging
this into (3.40) and taking 7> 0 small, we obtain ||Y?||2, ;<23 [|Y|ce,r, Which
plugged into (3.39) yields [|0Y ||lo.r <2¢1||Y ||oo,r, for 7>0 is small enough. Finally,
by (3.36) we obtain, for 7> 0 small, our goal ||Y ||oc,» < 2|Y0|.

It remains to prove (3.39)-(3.41). Recalling (2.18), let us define the constants

C=Cvojziavizle: CU= O z1vizicr 2= Vo 200V 2l
Vio(z)—V3o(y =
citimsup { LT, o)1y < 2]V 1211

, \V4 -V -
@@:sup{' o2(r) = Vou(y)l, |x|,|y|<||zuoovuzuoo}.

lz—y|7 2

(Note that ||Z|eo; || Z ||eo < 00 because Z, Z are continuous, see Lemma 3.8.)
We can prove (3.39) and (3.40) arguing as in the proof of Theorem 2.9, see (2.24)
and (2.25). Indeed, from (3.37) we can bound, by (2.6) and (2.7),

16Y [lo.r < Nlo(Z) = 0(Z)llooir XM la+ 70 [V P20+
< CHY oo 1M a7 1Y B0, (3.42)

because |0(Z;) — o(Z;)| < C{|Z; — Zy|, hence (3.39) holds with ¢; = C/ ||X}||,. Simi-
larly, by (3.38) we can bound

Y Plza,r < Nlo2(Z) = 02(2) ooy X220+ 7072 Vg,
< O3 Y lloour 13|20+ 7072 |V Bllg (3.43)

because |09(Z;) — 0o(Z1)| < C3|Z; — Zy|, hence also (3.40) holds with ¢y = C3 || X?||24-
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We finally prove (3.41). Since Y, = ZB — ZB — o(t — ), see (3.19), we can bound
ZB by its increment 67 through the weighted Sewing Bound (1.41):

Y ¥ a,r <Ksa l6YPha,r. (3.44)
We are going to prove the following estimate:
1Y P lsar < 3 (1Y loo,r + 3 [16Y [layr + 5 Y Plza,r (3.45)

for suitable constants ¢s, ¢4, ¢4 that depend on 7, Z, X', X2, o, but not on 7. Plugging
the estimates (3.39) and (3.40) (that we already proved) for ||6Y ||a.» and ||V |24 -,
we obtain (3.41) for suitable (explicit) constants cs, c3.

Let us then prove (3.45). Recalling (3.26), for 0 < s <u<t<T we can write

5-}{9ut — (Bsu - Bsu) leu‘, + (502(2) - 502( ))su Xut )
where By, :=0(Z,) — 0(Zs) — 09(Z,) X1, and similarly for B,, hence by (3.21)
I8V <8 = Blir sy [ XN 1603(2) — 602 Z) sy [XCa (3.46)

To obtain (3.45) we need to show that || B — B||(y=1)a,r and [|002(Z) — 609(Z)|| (y=2)a,r
can be bounded by linear combinations of ||Y ||lec,r, [|0Y |lar and 1Y @0 -
We start from ||009(Z) — 002(Z)||(y-2)a,r» Which can be bounded as in (2.29):

1605(Z) = 602(2) | (-230,r < CN0Y o+ CE{IOZIL ™+ 6Z 127 HY oo,

We next focus on ||B — B||(y-1)a,r, which we are going to estimate by the following
explicit linear combination of ||Y [|ae.r, |6Y [la.r and ||[Y®||oq
1B = Bll(s-1a.r < CUIY loor |1 Z2Z]20 + CLIY P20
+OT16Y (o 10Z o+ 2 CY [[Y oo 16212 (3.47)
Cl0Z]la 1Y [|ar,

which completes the proof of (3.45) when plugged into (3.46).
It only remains to prove (3.47). Recalling (3.24), it follows by (3.22) that

By, = J(Z)—J(Z)—JQ(Z)Xéu
_ Vo(z) 72+ / (Vo(Z, + 1672,) ~ Vo(2.)) 6Zu,dr.

N

~~

Fsu

and likewise for B,, (with F, defined similarly), therefore

1
|Buu— Bul < [Vo(Z,) 22 — Vo (2) 22 + / |Fo 6700 — FordZu dr. (3.48)
0

By the elementary estimate |[ab—ab|=|ab—ab+ab—ab|<|a—allb|+|a] |b— b,
that we apply repeatedly, we can bound
Vo(Z) 20 =Vo(Z) 23] < |Vo(Z) = Vo(Z) | Z3+ Vo (Z)| |12 - 223
< OY |28+ ci v,
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and note that by (2.7) we obtain the first line in the RHS of (3.47).
To complete the proof of (3.47), we look at the second term in the RHS of (3.48):

|Fsu 5Zsu - Fsu 5Zsu| |Fsu - Fsu| |5Zsu| + |Fsu| |5Zsu - 5Zsu|

<
< | Fow— Foul 16 Zsu| + C 1 10 Z 0] |6Yeu, (3.49)

because |Fy,| < C{'r|6Zs,|. We then see, applying (2.8), that the last term in (3.49)
produces the third line in (3.47). Finally, by (2.19) we estimate

\Fyu— Foal = [(Vo(Zut16Z0) = Vo (Za)) — (Vo (Zu+ 176 Z5s) — Vo (Za))]
< O |0V + Cl {1 6 Zou |2 + |10 Zsu =2} Vi) .

We obtain by (2.7) for 0<r <1
1F = Fll(y-2)0,r S CUNOY [lar + 2 C1 [[Y [loor 6211272

Applying again (2.8), we finally see that the first term in (3.49) yields the second
line in (3.47), which completes the proof. O

3.7. CONTINUITY OF THE SOLUTION MAP

In this section we assume that ¢ has bounded first, second and third derivatives,
while o9 has bounded first and second derivatives:

IVollso, V20 [loo, VPl <00, [[VO2los, [[ V02|00 < 00. (3.50)

(We stress that no boundedness assumption is made on ¢ and o5.) Under these
assumptions, given any time horizon 7' > 0, any starting point Z; € R¥ and any a-
rough path X= (X! X?) with %< a< %, we have global existence and uniqueness of
solutions Z: [0, T] — R¥ to (3.18) (as we will prove in Theorem 3.12).

Denoting by R, 4 the space of d-dimensional a-rough paths X = (X! X?), that
we endow with the norm [|[X!||,, + ||X?||2o we can thus consider the solution map:

: RExRog — C°
(Zo,X) 7 { unique solution of (3.18) for t€[0,7] . (3.51)
05 =

starting from Z

We prove the highly non-trivial result that this map is locally Lipschitz. In the space
C® of Holder functions we work with the weighted norm || f||co.~ + ||0f ||a,, Which is
equivalent to the usual norm || f||co:=|| f|lcc + |0 ||la, see Remark 1.15.

THEOREM 3.11. (CONTINUITY OF THE SOLUTION MAP) Let o and o4 satisfy (3.50)

(with no boundedness assumption on the functions o and o3). Then, for any T >0

and o € E,%] , the solution map (Zy, X)+— Z in (3.51) is locally Lipschitz.
More explicitly, given any My, M, D < oo, if we assume that

max {||Vo |loo, V20 ||, [[VE0 ||, [ VO2lloc, [|V202]|oc} < D, (3.52)
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and we consider starting points Zy, Zo € R? and rough paths X, X € C* with
max {|0(Zo) ; |o2(Zo)| , |0(Zo)!], |02(Zo) [} < Mo, (3.53)
max {[| X', X220, X! a, X220} < M, (3.54)
then the corresponding solutions Z = (Zy)sepo,1), Z = (Zs)sepo,r of (3.18) satisfy

HZ - Z||oo,f+ ||5Z - 52”(1,7"’ HZ[Q] - Z[2l||2a,f
<€y | Zo — Zo| +30 My (|| X — XY o+ [IX2 — X2 90). (3.55)

provided T satisfies 0 <T AT <7’ for a suitable 7' =7, 1 p . >0, where we set

Chr =16 {(||V0||lso+ || Voallos) M +1} <32 (D M +1).

Proof. It is convenient to define the constant

(IVelle+[Voalle) M <2D M. (3.56)

Chr:

Let Z and Z be two solutions of (3.18) with respective routh paths X and X.
Defining Y :=Z — Z and Y2 := 712 — 71l see (3.24), we rewrite our goal (3.55) as

1Y loo.r +10Y [lavsr + 1Y 20 <16 (chs +1) [
+30 Mo (| X = XY+ X2 = X2[l0a) . (3.57)

Throughout the proof we use the shorthand
e:=(TANT)* (3.58)

and we write for e small enough to mean for all 0 <e <gg, for a suitable ey depending
on o, T, My, M,D. We claim that the following estimates hold for §Y" and Y2

18Y fla,r < ehr 1Y [loo,r +2 Mo [ X! = XM o + & [[Y P50, (3.59)
1Y Pl < €hr 1Y lloo,r +2 Mo || X? = X220 + € Y F]|30,r, (3.60)
and, moreover, for ¢ small enough the following estimate holds for Y3.= ZB — ZBl.

_ } 1
e 1Y Plsar < IV lloor + Mo (X = XM lo + [1X* = X|20) + (101 Jlar + 7 1V
(3.61)

It is now elementary (but tedious) to deduce our goal (3.57). Plugging (3.61)
into (3.60) we obtain [|Ysar < (+++) + 1 |Y P20, which yields ||V ?|o,, <5 (...)
(since ||YP]|24.» < 00 by Lemma 3.8). Making (...) explicit, we get

1Y P20, < 2(chr+ )Y [loo,r 44 Mo (X" =X o+ X2 = X2l00) +2[[6Y [l0, (3.62)
which plugged into (3.59) yields, for € small enough (it suffices that ¢ S%),
1Y [|a,r <3 (ehr + 1) 1Y floc,r + 6 Mo (| = XMl + X = X?[|2a) , (3.63)



56 DIFFERENCE EQUATIONS: THE ROUGH CASE

and looking back at (3.62) we obtain
1Y 2l a0,r <8 (chs + 1) Y [loc,r + 16 Mo ([ X = X o + X2 = X[|20), (3.64)
so that, overall,

¥ llocie 4 18Y i+ 1Y P < 12 (el + DY e ]
+22 Mo (]| X! = X[+ [|X2 = X?|20) .~ (3.65)

It only remains to make ||Y ||oo - explicit. Since ||Y ||oo,r < |Yo| + 3¢ ||0Y ||, by (2.5),

for & small enough (more precisely for & < = ) we can bound

_
(ear+1)
(k4 DY lloer < (chs 1) %]+ 11 18 [ r (3.66)
which inserted into (3.63) yields
10Y [la,r <4 (chr+ 1) [¥o] +8 Mo (|| X! — X! o + X2 — X|20).
Plugging this into (3.66), and then (3.66) into (3.65), we obtain our goal (3.57).

It remains to prove (3.59), (3.60) and (3.61). We first state some useful bounds
that will be used repeatedly. Recalling (3.52) and (3.28)-(3.30), let us define

1

T T DM e R G Dy (R D D) (3.67)
By the a priori estimate (3.29) we can then bound
for e = (T AT)* < 7% 167 ||ar 4+ | 22|20, <4 My M, (3.68)

hence

max {|00(Z)[la.r, 1002(Z) [lar } Smax{[[Vo oo, [Vorloc} 02 |la.r <4 Mocrs,  (3.69)
which implies that, by (2.5) and for e small enough,
max {||0(Z)|lco,r » [|02(Z)||oo,r } < Mo+ 34 Moy <2 M.
We record the following simple bound, for any Lipschitz function f,
1£(Z) = F(Dlloor IV flloo 1Z = Zloo,r = IV f lloc 1Y Nloo,r- (3.70)
We will also use a number of times the elementary estimate, for a,b,a,b € R,
lab—ab|=|ab—ab+ab—ab|<|a||b—0b|+b||a—al. (3.71)
We can now prove (3.59). Since 6Ysy =02y — 62y =0(Zs) Xk — 0(Z) XL + V.2,
see (3.24) for Z and Z, by (2.7) and (3.53)-(3.54) we get, applying (3.71),

16Y la.r < Nlo(Z)lloor 1K = Xa+ 0(Z) = 0(Z)llocr 1K o+ [V o s
< 2Mo|X' = Xo+ [|0(Z) = 0(2) oo, M+ [[Y |20,

because ||V, <e ||V 20.- by (2.6) (recall the definition (3.58) of €). Applying
(3.70) with f =0 and recalling ¢j; from (3.56), we obtain (3.59).
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The proof of (3.60) is similar. Since Z5 = ZI2 — 5(Z,) X2, and similarly for Z,
see (3.24), we can write Y, = 721 — 712 = 5,(2,) X2 — 05(Z,) X% + Y¥, therefore

st

Y P20, < Nl02(2)lloo,r X2 = X220 + [[02(2) = 02(Z) o0, [X|20+ 1Y 20+
< 2 Mo X2 = XP|2a + [|02(Z) — 02(2)|low,r M + € [V 50,7

since ||YP||20.r <& [|YE)||34.- by (2.6). Applying (3.70) for f =0y we obtain (3.60).

We finally prove (3.61). Since Y, =z — ZBl— ot — 5), see (3.19), the weighted
Sewing Bound (1.41) yields

||Y[3]||3a,’r < K3oz ||5Y[3}||3o¢,’r ) (372)
hence we can focus on 6Y Bl =628 — 578 Let us recall (3.26): for 0<s<u<<t<T

5Zs[i]t = (U(Zu) - U(ZS) - ‘72(Zs) X;u) leut + 502(Z)su th )

-~

Bsu
and analogously for 67 and B,,, therefore by (3.71) and (3.21) we obtain

||5Y[3]||3a,7' < ||B||2cm' Hxl _Xlna’*: HB - BHZQ,T HXlna,T - -
002 Z) [lar [1X? = X220 + 1602(Z) — 002(Z) [lar [IXP] 20 (3.73)

It remains to estimate the four terms in the RHS: in view of (3.72), relation (3.61)
is proved if we show that, for ¢ small enough,

¢ Ko | Bl X" = Xla < My X =X, (3.74)
e Koo |B=Bllans 1Xar < g (1Y oot 1Y flar) g 1Y P er, (3.75)

€ K 802 o7 12 = X220 < My X = X (3.76)

¢ K [60:(2) = 0022 ar 50 < 5 (1Yl + 110 ) (3.77)

We first deal with (3.76) and (3.77), then we focus on (3.74) and (3.75).
Proving (3.76) is very simple: since ||d09(Z)||a.r <4 Mocjs by (3.69), we see that
(3.76) holds for e small enough. To prove (3.77), note that by (2.51) we have

160(2) = 60(Z)l(r-var < VO lloo 1Y [lar +4 Mo M [oer-1 [V [loc.r
Applying (3.54) and (3.68) we obtain
_ _ T
1602(Z) = 002(Z) |7 11X 120 S [V o2l o0 M 1Y [l + €7 [ V02|00 8 Mo M (Y oc,,

which shows that (3.77) holds for € small enough.
Let us now prove (3.74). By (3.22) we have, for 0 <s<t< T,

1
By=Vo(Z) 72 + / (Vo(Zs+10Zs) —NVo(Zs)) 6 Zg] dr (3.78)
\7—/ J 0 P

e
Fst
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and similarly for E,; and F};. In particular, recalling (3.68), we get

1Bll2a, < Vo lloo [ 2%]]20,- + V20|l 162112,
< Voo d Mo M+ [|V20 ||oo (4 Mo M)?,

hence we see that (3.74) holds for e small enough.
We finally prove (3.75), which is a bit tedious. In view of (3.78), we first consider

Ey—Ey=(Vo(Z) —Vo(Z)) 2B +Va(Z) (22 - ZB) .

Applying (2.9) with H = Z1% and 7 from (3.67), we obtain

_ _ T
|E = Ell20.- <V (Z) = Vo(Z) |loore™ 2P l20,7 + VO [loo [V P20~ -

By (3.70) with f=Vo and the a priori estimate (3.68) we obtain

_ T
£~ EHZa,T < ||v20||oo ||Y||oo,7'ef 4 Mo M +(|Vo || HY[Z}HM,T- (3.79)
We then consider Fy; — Fy;. By (2.19), for 0<r <1 we can estimate

(Vo (Zs+16Zy) —Vo(Zs)) — (VNo(Zs+1074) —NVo(Z,))| |6 Zs|
SIVZolloo [0atl 10Z5t] + V0 [loo max {(1—u) Y[ +u [Yil} 676"

as well as
(Vo (Zs+1024) — Vo (Z)| |0 Zst — 6 Zst| < || V30 |00 |6 Zst| |0Yat] -

We can then estimate Fy; — Fy; from (3.78) as in (3.71): applying (2.9) twice with
H=0Z and H=(6Z)?, always with 7 from (3.67), and recalling (3.68), we obtain

_ T T
IF' = Fll2ar < 2[[V?0 o [10Y llar €7 10Z]]ar + V20 lloo 1Y [loor €7 1021157
T
< T {8MoM [[V20 ||| [lar+(4 Mo M)? [ Vo0 [|oo [[Y [locr } - (3.80)

Since || B — Bllaa.r < |E — E||l2a.r + ||F — F||2a,- in view of (3.78), we see by (3.79)
and (3.80) that (3.75) holds for e small enough. The proof is complete. O

3.8. GLOBAL EXISTENCE AND UNIQUENESS
Let us suppose that o: RF— RF @ (R?%)* is of class C® with |V || + || Voo ee < +00.

THEOREM 3.12. Let o> % If 0: RF - R* @ (RY)* is of class C? with ||Vol|eo +
|Voa||oo < +00 then for every zo€ R and T >0 there is a unique solution (Zy)iefo,r]
to (3.19) such that Zy= 2.

Proof. By Theorem 3.10 we have at most one solution. We now construct a solution
on an arbitrary finite interval [0, T'], arguing as in the proof of Theorem 2.15. We
define A C[0,7T] as the set of all s such that there is a solution (Z;)¢c(o,s to (3.19).
By Proposition 3.6, A is an open subset of [0, 7] and contains 0. By the a priori
estimates of Theorem 3.9, A is a closed subset of [0, 7. Therefore A =0, T. O
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3.9. MILSTEIN SCHEME AND LOCAL EXISTENCE

In this section we prove the local existence result of Proposition 3.6, under the
assumption that o, o are of class C' and uniformly Lipschitz. To construct a solu-
tion to (3.10), we set t; ::%, i >0, and for a given yy € R”

Ytipr = Yt, + a<yti) X%iti+l + 02<yti) X%¢t¢+17 1 20.
We set D:=max {1, ||V0 |, ||Voa|o}, T:={ti:t;<T} and

5ytitj = ytj_yti7

I6y||T =  sup W%;yta
o<i<j<nT |tj_ti|

Atz’tj L= O-(yti) X%itj + UQ(yti) X%itj'

The main technical estimate is the following

LEMMA 3.13. Let M >0. There exists Ty p o> 0 such that, for all T € (0,7 p o)
and X = (X', X?) € Ro.q such that || X+ [|X3||2a < M, we have

Ioylla < BM(|o(yo)| + lo2(o)]),
10y — All3e Sape ([o(yo)| 4 o2(yo)])-

Proof. Let us set Ry, := 0y, — Ase;-

apply the discrete Sewing bound (Theorem 1.18) to R on T := {% 1< nT} and we
obtain

By the definitions, Ry, ,=0. Then we can

1
R[50 < Csa | 0R |34, C3a:23az 1

n3a'
n>1
Now, analogously to (3.26), since R = —JA,
5Rtitjtk> = —(U(Qtj) —o(yu,) — o2(yt,) X%itj)X%jtk — (oY) — Uz(ytj)) ijtka
so that
10R |30 < M (|| Bl|20 + [|C|a)-
We set

Htitj = 5yt¢tj - U(yti) X%itj’

and by (3.23) we obtain
Btitj = U(ytj) - a(yti) - 02<yti) X:tlitj =

1 1
:/ (UQ(yti + uéytitj) - UQ(yti)) X%itjdu + / Va(yti + ucsytitj) du Htitj
0 0

N~

~~

1
_/ va<yti + U‘(Sytitj) (a<yti + U‘(Sytitj) - O-(yti))X%itjdu'
0

S

N~
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First

1B < [Voallolloylla X o< DM |0y |la-
Similarly

1Gll2a < [ValZlloylla X o < D2M |6y |-
By the definition of Ry,

|Htitj| < |Rtitj| + |02(yti) X%itj

/

< TR |30+ (lo2(yo)| + T Vool N0y 1) 131 20] [t — tif*

< (T R[30 + Mloa(yo)| +T*D M ||oyla)|t; — ti**.
Therefore

IF |3 < DIH|3

< D(T?||R||30 + Mloa(yo)| + T*D M |5y ||).
Finally
IBll3% < [|E3a+ [IF]13a+ 1G5
< D [Mloy(yo)| +T* (| R[50+ DM 2 +T)|16y |la] -
Analogously
1C |13 < D6y |-

Therefore

1R ll30 < Csa DM (Moa(yo)| + T Rls0+ [1+ DM2+T)]dy]la).
If T¢Cs, DM <5 then
1R 30 < 2C30 DM (M |o5(yo)| + [1+ DM (2+T)] by o). (3.81)

We set
L(y) := 2C5a DM (M |oa(yo)| + 1+ DM(2+T*)]||0y|lx)

Now we obtain by (3.81)

loylla < IRl + 1 Alla

<
< T2L(y) + (lo(yo)| + |oa(yo)| + 2D T |0y ||a) M.

If we assume also that 2D MT* < %, we obtain

16y [lo < 2T L(y) + 2 M (lo (y0) | + [o2(0) )-

By the definition of L(y), if furthermore 2C3,D M1+ DM (2 + T )] T?* < %, we
obtain finally

loylla < 5M(|o(yo)l + loa(yo)]) .
L(y) < 1205 DM?[L+DM(2+T*)](lo(yo)| + lo2(yo)]) =: K,
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and by (3.81)
loy — Allza < K.
The proof is complete. O

Proof of Proposition 3.6. Arguing as in Theorem 2.16 we obtain the result of
local existence for equation (3.19) of Proposition 3.6. O






CHAPTER 4
STOCHASTIC DIFFERENTIAL EQUATIONS

In this chapter we connect the rough difference equations (RDE) discussed in the pre-
vious chapter, see (3.18), with the classical stochastic differential equations (SDE)
dY;=o(Y;) dB; driven by a Brownian motion B. Indeed, both RDE and SDE are
ways to make sense of the ill-posed differential equation Y; = 0 B,.

We fix a time horizon 7' >0 and two dimensions k,d € N. Let B = (By)¢cjo,1) be
a d-dimensional Brownian motion (with continuous paths) relative to a filtration
(Ft)teo,r), defined on a probability space (€2, 4, P). We fix a sufficiently regular
function o: R* — R* @ (R%)* and we consider a solution Y = (Y;);ejo,r] of the SDE

¢
dYi=0(Y;) dB; ie. Y}:Yb—l—/ o(Y;)dBs, t>0, (4.1)
0

where the stochastic integral is in the Ito sense. We always fix a version of Y with
continuous paths (we recall that the Ito integral is a continuous local martingale).

We want to show that Y solves a rough difference equation driven by the rough
path B = (B!, B?) (see Definition 3.2) defined by

BlL:=B,— B, B ::/t(Br ~B)®dB,, 0<s<t<T, (4.2)

where the stochastic integral is in the Ito sense. More explicitly, for 7, 7€ {1,...,d}

Bly=Bi-B, (B)9= [ (- BB, (43)

where we write B;=(B},..., B{), so that B [0, T)2 — R% and B% [0, T]2 — R¢® R%.
Our first main result is that (B!, B?) is indeed a rough path over B.

THEOREM 4.1. (ITO ROUGH PATH) Almost surely, B:= (B!, B?) is an a-rough path
over B (see Definition 3.2) for any o € E,%[

Our second main result is that, under suitable assumptions, the solution Y of
the SDE (4.1) solves the RDE (3.18) driven by the Ito rough path X =1B.

THEOREM 4.2. (SDE & RDE) If o(-) is of class C?, then almost surely a solution
Y = (Y))icp,1) of the SDE (4.1) is also a solution of the RDE

8Y, =0 (V) Bl + 0o(Y.) B + o(t — ), 0<s<t<T. (4.4)

(We recall that oo(-) :=Vo(-)o(-) is defined in (3.5).)

If o(+) is of class C? and, furthermore, o(-) and o3(-) are globally Lipschitz, i.e.
IV |loo+ || Voalee < 00, then almost surely both the SDE (/.1) and the RDE (4.4)
admit a unique solution Y = (Yt)te[o,T} and these solutions coincide.

63
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The key tool we exploit in this chapter is a local expansion of stochastic integrals,
see Theorem 4.3 in the next Section 4.1. The proofs of Theorems 4.1 and 4.2 are
direct consequences of this result, see Section 4.2.

In Sections 4.3 and 4.4 we discuss useful generalizations of the SDE (4.1), where
we add a drift and we allow for stochastic integration in the Stratonovich sense,
which leads to generalized versions of Theorems 4.1 and 4.2.

In Section 4.5 we present the celebrated result by Wong-Zakai on the limit of
solutions of the SDE (4.1) with a regularized Brownian motion (via convolution).

Finally, Section 4.6 is devoted to a far-reaching generalization of Kolmogorov’s
continuity criterion, which leads to the proof of Theorem 4.3 in Section 4.7.

NOTATION. Throughout this chapter we write fo S gt to mean that fo < Cgse for
all 0 < s<t < T, where C < oo is a suitable random constant.

4.1. LOCAL EXPANSION OF STOCHASTIC INTEGRALS

We recall that B = (B):c(o,r) is a d-dimensional Brownian motion. Let A= (h¢):cpo,1]
be a stochastic process with values in R* @ (R?)*. We assume that h is adapted and
has continuous paths, in particular fOT |hs|? ds < 0o, hence the Ito integral

t
I:=1I +/ h,dB, (4.5)
0

is well-defined as a local martingale. It is a classical result that the stochastic process
I= (It)te[o,T} admits a version with continuous paths, which we always fix.

We now state the main technical result of this chapter, proved in Section 4.7
below, which connects the regularity of A to the regularity of I.

THEOREM 4.3. (LOCAL EXPANSION OF STOCHASTIC INTEGRALS) Let h=(hy)c(o,1]
be adapted with continuous paths. Fix any o € ]O,%[ and recall (BY,B?) from (/.2).
1. Almost surely I is of class C?, 1.e.
|1 — I| < (t—s)°, VO<s<t<T. (4.6)
(We recall that the implicit constant in the relation < is random.)

2. Assume that, almost surely, |5hs|< (r—s)? for some 3€]0,1] (i.e. h is of
class C?). Then, almost surely,

t
/ Ohg, dB,

3. Assume that, almost surely, |0hs, — hs BL| < (r — 5)*t7 for some v €]0,1],
where h = (h¢)iepo,1) s an adapted process of class C7. Then, almost surely,

|01t — hs BY| = < (t—s8)2tP, VO<s<t<T. (4.7)

~ t ~
160, — hoBY — haB2| — / (0hsr — hoBL) B,

< (t—s)?t, VO<s<t<T. (4.8)
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4.2. BROWNIAN ROUGH PATH AND SDE
In this section we exploit Theorem 4.3 to prove Theorems 4.1 and 4.2.

Proof. (OF THEOREM 4.1) We need to verify that B = (B', B?) satisfies the Chen
relation (3.13) and the analytic bounds (3.14).

The Chen relation §BZ,, = B!, ® BL; for 0 < s <u<t<T holds by (4.3):

0(B)ay = (B —(B?)

3B
t u t
~ [Bi-myasi- [ (Bi-Byasi- [ (5i- BB
- [ (Bi=BY B~ (Bi~ BY) [ 1aB!= (Bi- B)(B{ - B

by the properties of the It6 integral and the fact that the times s <wu <t are ordered.

The first analytic bound |By| <[t —s|* for e |0, %[ is a well-known almost sure
property of Brownian motion, which also follows from Theorem 4.3, applying (4.6)
with h=1. Finally, the second analytic bound |BZ| < [t — 5]?* is also a consequence
of Theorem 4.3: it suffices to apply (4.7) with hs:= Bs and f=«. O
Proof. (THEOREM 4.2) We first prove the second part of the statement.

e  When o is globally Lipschitz (||Vo || < +00), it is a classical result that for
the SDE (4.1) there is existence of strong solutions and pathwise uniqueness.

e  When o is of class C3, by Theorem 3.10 there is uniqueness of solutions for
the RDE (3.19), and if both ¢ and o9 are globally Lipschitz (||Vo || < +00
and ||Vos|le < 400) there is also existence of solutions, by Theorem 3.12.

Therefore we only need to prove the first part of the statement: we assume that o is
of class C? and we show that given a solution Y = (Y;)ic(o. 1] of the SDE (4.1), almost
surely Y is also a solution to the RDE (4.4).

Since Y is solution to (4.1), recalling (4.2) we can write
6Vau— o(Y) BY — on(Vy) BE = / (0(V) — o(¥)) dB, — oo(Y) / (B, - BB,
= [ B an,.
Let us fix a € }0,%[. We prove below that, almost surely,

160 (Y )5t — 02(Ya) Bl < (¢ — 5)2, VO<s<t<T. (4.9)

This means that the assumptions of part 3 of Theorem 4.3 are satisfied by h,=o(Y;)
and h, = 09(Y,) with v=«: applying (4.8) we then obtain, almost surely,

|0Y: —o(Y5) Bl — o(Y) IBgt| N S)BOC-

If we fix > é, this shows that Y is indeed a solution of the RDE (4.4).
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It remains to prove (4.9). By Itd’s formula and (4.1) we have, for 0<s<t<T),

o(Yy) = oY)+ / > duo(Yy) dw% > uo () d(Ye, YY),
5 a=1 S a,b=1
: k d
= o(Yy) +/ Z 00 (Y;) Z ol(Y;)dBf +
S a=1 c=1
tq k d
a b
+ i 5217:1 z; Oub0 (YT") Oc (Y;) O-C(}/;‘) dr
h p(Yr) ’
t t
= o)+ [ w0 aB+ [ p)ar, (4.10)

therefore
t

50 (Y )og — 7a(Y) Bl — / (0a(¥;) — 0a(Y))) dBy + / p(Y,) dr.

To prove (4.9), we show that both integrals in the RHS are O((t — 5)%*).

e Since o is of class C? and Y has continuous paths, the random function
r+— p(Y,) is continuous, hence bounded for r € [0, T'], therefore

/8 tp(Yr) dr

e Almost surely Y is of class C%, thanks to (4.6) from Theorem 4.3 and (4.1).
Since o9 is of class C, hence locally Lipschitz, r+ o9(Y}) is of class C* too.
Applying (4.7) from Theorem 4.3 we then obtain, almost surely,

S(t—s) S (t—s)%, VO<s<t<T.

< (t—s)%, VO<s<t<T.

/ (02(¥;) — 0a(Y)) B,

This completes the proof. 0]

4.3. SDE WITH A DRIFT
It is natural to consider the SDE (4.1) with a non-zero drift term:

AY,=b(Y;)dt +o(Y;)dB,  ie.

t

t
Yt=Yo+/b(Ys)ds+/a(ys)st, t>0, (4.11)
0 0

where b: R*— R* and 0: R*— R* ® (R?%)* are given and we recall that B = (By)¢>o
is a d-dimensional Brownian motion. We can generalize Theorem 4.2 as follows.

THEOREM 4.4. (SDE & RDE WITH DRIFT) If o(-) is of class C* and b(-) is
continuous, then almost surely a solution Y = (Y;)ieo,1) of the SDE (4.11) is also a
solution of the RDE

§Yu=bY,) (t —5) +o(Yo) By +oo(Ya) BE +o(t —s), 0<s<t<T. (4.12)
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If o(-) and b(-) are of class C® and, furthermore, o(-), ao(-) and b(-) are globally
Lipschitz, i.e. ||Vl [VO2|lco+ | Vb]|eo < 00, almost surely the SDE (.11) and
the RDE (4.12) have a unique solution Y = (Y;)icpo,1) and these solutions coincide.

Proof. We cast the generalized SDE (4.11) in the “usual framework” by adding a
component to the driving noise B, i.e. we define B:[0,7] — R%x R by

By:=(By,t)=(B},...,Bit), €0, 7],
and accordingly we define 5: R* — R* @ (R¥+1)* by

G()b:=0(-)b+b(-)t  for b=(b,t)eRI xR,
that is 6(-)i =0 ()i Lij<ar +b(-)* L{j—a+1}- We can then rewrite the SDE (4.11) as

t
Y, =6(Y)dB, ie. Y;:Yb—i—/ 5(Y)dB,,  t>0. (4.13)
0
We next extend the Ito rough path B = (B!, B?) from (4.2), defining
- .. 1
Bl .= Bt—Bs:( Bai ) (4.14)
t—s
t
_ E . B3 / (B, — B)dr
B2 = / (B, — B,)®dB,= : . (4.15)

[(7«—5)@1& /st(r—s)dr:(t_Q—S)Q

One can show that B= (I~Bl, INBZ) is a rough path over B, following closely the proof
of Theorem 4.1. Indeed, if we fix a € ]0, %[, we have almost surely B € C%, hence

t t
/ (B, — B dr| < (t — s)o+1, / (r—s)dB,| < (t — s)o+1. (4.16)
We can now write the RDE which generalizes (4.4):
0Yer =6 (Ys) BL + 5o(Ya) BE +o(t — 5) . (4.17)

Interestingly, plugging the definitions of B and & into (4.17) we do not obtain (4.12),
because the components of B other than B2 are missing in (4.12), see (4.15). The
point is that these components can be absorbed in the reminder o(t — s), see (4.16),
hence the RDE (4.17) and (4.12) are fully equivalent.

To complete the proof, we are left with comparing the SDE (4.13) with the
RDE (4.17). This can be done following the very same arguments as in the proof of
Theorem 4.2. The details are left to the reader. 0

Remark 4.5. The strategy of adding the drift term as an additional component of
the driving noise, as in the proof of Theorem 4.4, suffers from a technical limitation,
namely we are forced to use the same regularity exponent o for all components due
to Definition 3.2 of rough paths. This prevents us from exploiting the additional
regularity of the drift term: for instance, in the second part of Theorem 4.4, the
assumption that b(-) is of class C* could be removed, because the “driving noise” ¢
is smooth and the classical theory of ordinary differential equations applies.
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A natural solution would be to generalize Definition 3.2, allowing rough paths
to have a different regularity exponent for each component. The key results can be
generalized to this setting, but for simplicity we refrain from pursuing this path.

4.4. ITO6 VERSUS STRATONOVICH

We recall that B = (Bt)te[QT] is a Brownian motion in R%. Given the It6 rough path
B = (B!, B?) over B constructed in Theorem 4.2, see (4.2), we can define a new
rough path B = (B!, B?) over B, called the Stratonovich rough path, given by

1 .1l . 2
Bst L Bsta Bst - Bst

VO<s<t<T,

that is (B,)" := (B2,)" + = "2 1gy—jy for i, €{1,...,d}. The fact that B is indeed
an a-rough path over B, for any o € ] 3 ;[ is a direct consequence of Theorem 4.1

(note that B% =B2 + §f,; with f;= 5 ' Id ke, hence 0B% = §B? because 6% = 0).

Remark 4.6. (STRATONOVICH INTEGRAL) If X,Y:[0,7] — R are continuous
semimartingales, the Stratonovich integral of X with respecto to Y is defined by

\)

t t
/Xsodn;:/xsdyg+l<x,y>t, telo, 7], (4.18)
0 0

where [ Ot X, dY; is the It6 integral and (-, -) is the quadratic covariation. For Brownian
motion B on R? we have (B‘, BY), =t 1{;—;}, hence it is easy to check by (4.2) that

t
IB?t::/IBiT@)odBT, 0<s<t<T. (4.19)

S

This explains why we call B= (B!, B?) the Stratonovich rough path.

Let us consider now the Stratonovich version of the SDE (4.11):

dY,=b(Y;)dt +o(Y;) odB, ie.

t ¢
Y;:Y(ﬁ—/ b(Ys) ds—l—/ o(Y;) od B, t>0, (4.20)
0 0

where b: R¥ — RF and o: R* — R* @ (R?)* are given. This equation can be recast in
the Ito form by the conversion rule (4.18): since the martingale part of (o(Y;)):>o is
fo 02(Y;)dBs)i>0 by the Ito formula, see (4.10), we obtain

t t
Yt=Ya+/ (b(YS)—k%Ter[og(Y;)])ds%—/J(YS) B, t>0.
0 0

This is precisely the SDE (4.11) with a different drift b(-) :=b(-) —l—%Ter[ag(-)].
As an immediate corollary of Theorem 4.4, we obtain the following result.
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THEOREM 4.7. (STRATONOVICH SDE & RDE) fo(-) is of class C* and b(-) is
continuous, then almost surely a solution Y = (Y;)icjo,r) of the Stratonovich SDE
(4.20) is also a solution of the following RDE, for 0< s<t<T:

oY = b(Y:) (t —5) + 0 (Ys) By + 0a(Y) B+ o(t — 5) (4.21)
- (b(n) +§Trm[az<ys>]) (t - 5) + 0 (¥) Bly + 0a(Y2) B + ot — 3).

If o(-), oa(-), b(+) are of class C* and, furthermore, o(-), oa(-), b(-) are globally
Lipschitz, i.e. ||Vl [V o+ | V]| < 00, almost surely the SDE (4.20) and
the RDE (4.21) have a unique solution Y = (Y;)icjo,1) and these solutions coincide.

In conclusion, if the coefficients b(-) and o(-) are sufficiently regular, the Itd
equation (4.11) can be reintepreted as the RDE

0Yu=b(Y;) (t —s)+ o (V) Bl +0o(Y)) BL +o(t —s), 0<s<t<T,
while the Stratonovich equation (4.20) can be reintepreted as the RDE
8Y, =b(Y,) (t — 5) + o (Y,) BL + 0o(Y;) BL +o(t — s), 0<s<t<T.

In other words, rough paths allow to describe the It6 and the Stratonovich SDEs as
the same equation where only the second level of the rough path has been changed.
This shows that, in a sense, the relevant noise for a SDE is not only the Brownian
path (By)>0, but rather the rough path B or B.

4.5. WONG-ZAKAI

In this section we want to show the following application of the previous results. We
consider a family (p.).~o of (even, compactly supported) mollifiers on R, namely p:
R — [0, 00) is smooth and even, has compact support, satisfies pr(x) dr =1 and
we set

1 (x
pa(x).—gp<g>, e>0,zeR.

We consider a d-dimensional two-sided Brownian motion (B;):cr, namely a Gaussian
centered process with values in R? such that

By=0, E[B: Bf] = L Lsso) (|s| A Jt]),

which is equivalent to say that (By);>0 and (B_;):>0 are two independent d-dimen-
sional Brownian motions.

We consider the following problem: we define the regularization of (B;);>o defined
by

Bf::(pg*B)t:/pE(t—s)Bsds, t>0.
R
We want now to consider the integral equation (3.3) controlled by B¢, namely

t
zg:zo+/a(zg) Beds,  0<t<T. (4.22)
0
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It is well known that (B ):>o converges to (B:)i>o: then we want to understand
whether (Z7):>0 also converges, and especially to which limit.

This question has a very natural answer in the context of rough paths. We define
the canonical rough path over BF (see section 7.7 below for more on this notion):

t
B:;':= B — B, Bgfzz/ns;}@Bgds, 0<s<t.
S

We suppose now that o: R¥—R* @ (R?)* is of class C?, with || Vo ||e + | V20 || +
V30 ||oo + [| V02|00 + || VZ02lo < +00, as in Section 3.7. Then we can prove the
following result.

THEOREM 4.8. A.s. B converges to the Stratonovich rough path B, namely for any
1

o<z
2

li}n (]| B=:t — BY|4 + || B2 — B?||24) =0. (4.23)
€l0
Moreover let (Z§)ico,1) be the solution to the controlled equation
t
Zf:Z0+/0(Z§)B§dS, t>0.
0

Then for all a € (O,%) a.s. Z2¢— 7 in C*([0,T]; R¥) as €]0, where Z is the unique
solution to the Stratonovich SDE
t
1

t t
Zi=Z+ [ a(Z)odBi=Zo+ [ o(Z) Bt [ Trndon(Z)) s
0 0 0

Proof. Fix a e (%, %) Let B* be the canonical smooth rough path associated with
B as in (3.9). Suppose we have proved that IB° converges to B as in (4.23). By
Proposition 3.5, the solution Z¢ to the controlled equation (4.22) is equal to the
(unique by Theorem 3.10) solution to the rough finite difference equation (3.19)
associated with the a-rough path B¢. In the notation (3.51), we have Z°=®(Z,, B?),

and by Theorem 4.7 we have Z = ®(Z,, B). By the continuity result Theorem 3.11

we obtain that Z¢=®(Zy, B*) — ®(Zy,B) =7 a.s. as €]0.
[t remains now to prove (4.23). We consider i, j € {1,...,d} with i # j and we
set (X,Y):=(B% B’). Let Q be a real-valued random variable with density p, so that

Ru(t) = / ;pe(u) du=P(EQ<t), teR
Setting (X7, Yy") := ((pe* X)), (pe Y )e) — ((pe X)o, (pe#Y)o), we have for 0<s <t
X = [ (pelt=0)=pols =) X, dv=
= [(Rt=0) - Ro(s=w)ax.,

V0 = [ (=) Yodw= [ ot = w)avi,



4.5 WONG-ZAKAI 71

We want to show first that [|[0.X¢— X ||, — 0 a.s. for any a < % We have

SX5 — 65Xy — /(Rg(t—v)—Rg(s—v)—]l(sgvgt))dXv
— [Pe<e@rv<) -~ Lo X,
and setting 0 :=t —s>0
E[(5XE, — 6X.0)3 = / (P(s<eQ+v<t) — Liscven)?du
= 5/(E[1(O<ZQ+U<1)—1<0<v<1)})2d“
< 5/E[(]L(o<§@+u<1)_1(0<v<1))2] dv
- el (n1-50)eo.1

where |-| denotes the Lebesgue measure and A the symmetric difference between the
two sets. Now we have for y € R

and therefore

E[(0X§ —0Xa)?] < 251E[1A<%IQI>]
<

C.6'7%er,  Cyo:=2sup A "E[LA (A|Q])] < +o0.
A>0

Now we prove that | B2 — B?||3, — 0 a.s. for all a < % We define for 0 <s <t
the processes

t t w
Ly = /5X5udYu:/ de/ dXx,,

t
e, = /5X§uxfdu=

S

t
= / du/pa(u—w)de/(RE(u—v)—Ra(s—v))dXU
t
= /de/dXv/ pe (u—w) (R (u—v) — R (s —v)) du.
We want to show that L®— L in an appropriate sense as € — 0, namely

1- |L§t - L3t| _
im  sup =
€105 te[0,T], 54t |t —s|
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We start by showing that E((L5; — Lg)?) — 0 as ¢ — 0. We have
Lo = [[atv.wax,ax,

t
) = [ peluw) (Re (=) = Rels =) du = Lcosus
= P(s<eQi+v<eQo+w<t) — Lis<v<w<t)

where (@1, Q2) is an independent pair such that @); has density p. Setting §:=¢—s
E((Ls — Ly)?) = /92(v,w) dv dw
= // dvdw(P(s <eQi1+v<eQa+w<t) — Lis<o<w<t)?
g 15 2
= ¢? // dvdw <1P<0 §3Q1 +v Sg@rl—w < 1) - 1(0§u§w§1)>

— 52// dv dw (IE[]IT_%(QLQQ)(U,M)—]lT(v,w)Dz

where T:= {0 <v <w <1}. Now we obtain
B((a~ L) < 8 [[ doduB](Lr_su00(v,0) = Tn(o,0))?)

= 52// dv dwE[l(T_%(Qth))AT(v?w)]
= o B|(T-5Q10)a1|]

where || denotes the Lebesgue measure on R?. Now for all y € R?, the set (T'—y)AT
is included in the set

{zeR%: dist(z,9T) < |y|}

where OT is the boundary of T. Since the length of 9T is 2+ /2 <4, the area of
{z e R%: dist(z, 0T) < |y|} is bounded above by 8|y|. At the same time the same
area is at most the sum of the areas of the two triangles T'— y and 7', namely 1.
Therefore for z >0

f(2):=E[(T —2(Q1, Q2)) AT[| K E[1A (8z|(Q1, Q2)])]

and then for any x>0

E((Ls — Lst)Q) =0%f (e/6) <Oy 62 rer,

where C\:=supy=g A" f(\) < 4o0.

Since for any 1< p < oo the L? and the L? norms are equivalent on a homoge-
neous Wiener chaos, and L;; — Lg; belongs to such a space of order 2, we obtain that
for any p>1

E(|LE, — Lyt|?) < C, . 671 72) evm.
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Therefore if we set Ag:= L5 — Ly in (4.25), we obtain (s, < 400 a.s for any o <%
(take p>1, k>0 such that 2a < 1—%—%).
Now we estimate the constant Koy o o in (4.26): since

therefore
Koaa,0 <X oY =Y [lat[[ X7 = X la[]Y []a-

We conclude by (4.27). O

4.6. A REFINED KOLMOGOROV CRITERION

In this section we prepare the ground for the proof of Lemmas 4.13 and 4.14 in
Section 4.7 below, which are the main technical tools in the proof of Theorem 4.3.
We suppose without loss of generality that 7'=1, namely our processes are defined
on the interval [0, 1]. Define the set D of dyadic points in [0, 1] by

D:=|J Dy,  where  Dj:={d}:= ‘

7 focicar (4.24)
k>0
We equip D with a directed graph structure: given d,d € D, we write d— d if and
only if d=d¥ and d= d¥_,, for some k>0 and 0<i< 2" — 1. More explicitly, d — d
if and only if the point d is consecutive to d in some layer Dy, of D.

Remarkably, in order to prove relation (4.39), it is enough to have a suitable
control on R, j for consecutive points d— d (together with a global control on 0R).
This is the heart of the Kolmogorov continuity criterion, but we stress that it is a
deterministic statement.

THEOREM 4.9. (KOLMOGOROV CRITERION: DETERMINISTIC PART) Given a func-
tion A:D%2 — R, let 0<a<~. Define

Q= sup |~Ad,J| , (4.25)
d,deD:d—d |d - d|fy
K,.,:= sup _ [04s,u.t —. (4.26)
’ 0<s<uct<l min (u—s,t —u)®|t —s[7®
s,u,teD
Then there is a constant Cy <00 such that
|Ast] < Cor(Qy+ Kot — 5|7, ¥(s,1) € DZ. (4.27)

A key tool for Theorem 4.9 is the next result, proved at this end of this section,
which ensures the existence of suitable short paths in the graph D.

LEMMA 4.10. (DYADIC PATHS) For any s,t €D with s <t, there are integers n,
m >1 and a path of (m+mn+1) points in D which leads from s to t, labelled as
follows:

S=8m<...<s$1<Sg=tlg<t1<...<t,=t, (4.28)
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with the property that for alli€{0,...,m —1} and j€{0,...,n—1}

|t —s|

|t s
27 '

27

Si+1 Sy Lo tien [si— siv] < |t — 4] < (4.29)

Proof of Theorem 4.9. Fix s,t €D with s <t. We use Lemma 4.10 with the same
notation. By the definition of dA, we write

Agr = Asto+ Argt + 0As 451 -

In the case m > 2, we can develop Asto as follows (recall that s=s,, and so=ty):

sto Z Ashqsl_" Z 5143 , 841,54

Similarly, when n > 2, we develop

n—1 n—2
Atot: E Atjtj+1+ E 5Atj,tj+1,ta
Jj=0 Jj=0

so that

,_.

m—

n—1
Z A3i+1si + Z Atjtj+1 +
=0

( s

i

2

+0A st Y 0Acsiist Y 0AL Lt (4.30)

N 4

3

s
I
o

2

By the definition of @), for any d — d we can bound
Ayl < Q,ld —d|n.

By Lemma 4.10, this bound applies to any couple (s;11,s;) and (¢;,¢;11). Then we
can estimate =; in (4.30) as follows, exploiting the bounds in (4.29):

m—1 n—1
QV{Z |Si_3i+1|7+z |tj+1—tj|w} <
i=0
afy e ye 3@ i -
i—0 =0

—@7{ 2 }|t—s|v

which agrees with (4.27). On the other hand, thanks to (4.26) and (4.29),

t—s|\"
|5A575i+175i|<Ka77(| = |) t— s = K, 27 [t — s

and similarly for 0A;, ; so that the term =5 can be bounded above by

j+17t7

m—2 n—2
Kot — s|7<1 +y 27y 2‘j“> < Kot = 8|7(1 +3 _22_a)-
i=0 Jj=0
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This completes the proof of (4.27). O

As a simple consequence of Theorem 4.9, we show that suitable moment condi-
tions ensure the finiteness of the constant (), in (4.25), as in the classical Kolmogorov
criterion.

PROPOSITION 4.11. (KOLMOGOROV CRITERION: PROBABILISTIC PART) Let A=
(Aszt)(sﬂs)eIDz< be a stochastic process which satisfies the following bound, for some 7y,

p,c€(0,00):
E[|Ag|P] < c|t — s|P, V(s,t) € D2.

Then, for any value of v such that
<02 (431)
the random variable Q= Q,(A) defined in (4.25) is in LP:
B[] Q7] < oo

In particular, Q4 < oo a.s..
Proof. By definition of @), in (4.25), bounding the supremum with a sum we can
write
k_1
p _ e,arl H—l
|Q7| < ~Z ~<|J—d|7 Z Z dklm
d,deD:d—d k>0 i=0

. 1 . 1
Let us write v =y — %, for some € > 0. Since d¥ ; —df == we have

2k—1
E[Q, 7] Z Z c|dz+1—df|p(%*7)
k>0 =0
2k—1
DI I e e el
k>0 i=0 k>0
The proof is complete. 0

Remark 4.12. Given a stochastic process (X;):ep defined on dyadic times, if we
apply Theorem 4.9 and Proposition 4.11 to (Ag:= 00X = X; — Xs)(s,t)en)i we obtain
the classical Kolmogorov continuity criterion. Note that in this case K, , =0 because

0A=0.

Proof of Lemma 4.10. We refer to Figure 4.1 for a graphical representation. Given
s, t €D with s <t, since 0 <t —s<1, we can define £ > 1 as the unique integer such
that

S<t

o7 —sg—%_l. (4.32)

We now take the smallest k € {0,...,2°— 1} for which df > s and define

Soiztoiz di
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The definition of k guarantees that df < t, because if d >t then % —s>t—s> %
and this would violate the minimality of k.
Note that 0 < df, —s<di, —df,_, = % and 0 <t —dj, <t — s, by (4.32), therefore

1
O<SO_S<F’ O<t—t0<w (433)
Since both so—s€ D and t —tg€ D, for suitable integers m >1 and n > 1 we have
1 1 1 ; 1 1 1
SO—S—ﬁ—f—ﬁ‘l—...‘l—%, — 0_27’1+27‘2+"'+W’
where ¢, > ¢n_1>...>q@ > and r,> ... >r; > /. We can thus write
B 1 1 1
STS0T 90 T 9m T T 9ame
1 1
t=t .
0ton TRt Tty
We can finally define
1 1 1 .
Si'=80 " 55 T5m T T 3w fori=1,...,m,
1 .
t _t0+2r1+2r2+ ..—|—2T for j=1,...,n
=& § po§ B
% H— % —1 {
0 83 S9 S1 S()Zto tl tg 1

1

Figure 4.1. An instance of Lemma 4.10 with s :% and t:1_f13' Note that £=1 (because

% <|t—s] :% < %, cf. (4.32)) and so=to :%. The points t1,...,t, are built iteratively:
first take the largest 211 (i.e. the smallest 1) such that ¢1:=to+ 211 <t;if t1 <t, then take
the largest 2—12 such that to:=1; +2—1.2 <t; and so on, until ¢, =t. Similarly for si,..., Sm.

Since ¢; and r; are strictly increasing integers with ¢, > ¢ and r > ¢, we have the
bounds ¢; > ¢+ (i —1) and r; > ¢+ (j—1), for all i € {0,...,m —1} and j €{0,...,
n — 1}, hence

1 11 |t—s|
|Si—3i+1|=—2qi+1<§7 TR
111 _Ji—s|

tin—til=sgm < Gm <5

having used (4.32). This proves the bounds in (4.29).

We note that, for any integer r» > ¢, we have the inclusion D, C D,. Then, given
any x € Dy, we have that x € D,, hence x — x4+ 27". Since tg= di € Dy and ry >/, this
shows that to— t; =1%o+ 27"". Proceeding inductively, we have t; = ¢;, 1 =t;+27"7 1
A similar argument applies to the points s; and completes the proof of (4.29). O

4.7. PROOF OF THEOREM 4.3

In this section we prove the three assertions of Theorem 4.3.
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Proof of the first assertion of Theorem 4.3. We want to prove that for any
a € (O, %), a.s. I is a-Holder continuous, namely there is an a.s. finite random
constant C' such that

|0 1| < Ct — s|%, VO<s<t<T. (4.34)

First observation: if the claim holds under the stronger assumption |h| < ¢ almost
surely, for some deterministic ¢ < oo, then we can deduce the general result by
localization. Indeed, if we only assume that supj 7 |h| < oo a.s., we can define for
n € N the stopping times

T, :=inf {t € [0, T]: |he| > n}.
Let us define
t
WY =henr, I = / h"dB,.
0

Note that supjo 71 |h™| <n by the definition of 7,,. Then
I <CM|t—s]*,  VO<s<t<T, (4.35)

for a suitable a.s. finite random constant C'™. Let us define the events

Api={m,=oco}={sup|h|<n}
[0,7]
and note that h =A™ on A,. By the locality property of the stochastic integral,
I=1" as. on A%

Note that A:={]J, . An={supjo,7] || < oo}, hence P(A) =1. If we define C':=
C™ on A\ A,—1 (with Ag:=0) and C:=00 on A we have C'< oo a.s. and relation
(4.6) holds.

Second observation: if relation (4.34) holds for all s, in a (deterministic) dense
subset D C [0, 77, then it holds for all s,¢€[0,7T], because 1 is a continuous function
of (s,t).

In conclusion, the proof is reduced to showing (4.34) only for s,¢ € D, under the
assumption that supjo,7 |h| < ¢ < oo almost surely. Suppose that this is the case and
set Agp:=01y, 0<s<t<T. Here 0 A=0 and therefore the constant K, . in (4.26)
is equal to zero for any 0 < a <. It remains to estimate ), using Proposition 4.11.

By the BDG inequality of Proposition 4.15, for any p > 2

t 2 p
E[|614|7] Scp]El</ hﬁdu) }<0p|t—s|2.

Then Proposition 4.11 applies with ~ :% and any a =y — % € (0, %) for p sufficiently
large. By Theorem 4.9, we obtain (4.34) and the proof is complete. O

For 0 < s <t<T we define the (random) continuous function

t
RStZ:It—Is—hs (Bt—BS):/(ShSTdBr. (436)

4.1. We mean that I and I are indistinguishable on A,: for a.e. w € A, one has I{™(w) = I,(w) for
all t €[0,1] (we recall that we always fix continuous versions of the stochastic integrals).
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We recall that a.s. B €C” for every 3 < %

Proof of the second assertion of Theorem 4.3. Let (< % We want to show
that, if a.s. h € C®, for some « € (0, 3], then, for any , there is an a.s. finite random
constant C' such that

|Ry| <Clt—s|*TF,  YO<s<t<T. (4.37)

First observation: if the claim holds under the stronger assumption ||0h ||, < ¢ almost
surely, for some deterministic ¢ < oo, then we can deduce the general result by
localization. Indeed, if we only assume that ||0h ||, < oo a.s., we can define for n € N
the stopping times

T i=inf {t € [0, 1]: |6k ||a.p.q> 1},

where ||0h|]4,[0,4 is the Hélder semi-norm of h restricted to [0,¢] (equivalently, the
Holder semi-norm of s+ hgsy on the whole interval s € [0, 1]). Let us define

S

t
WY =hopn, I = / nmap,,  RW.=1"— 1™ _p"(B, - B,).
0

Note that [|6h™||, < n, by definition of 7,. (Indeed, ||6h||a0,q <7 for all t <7,
which means that |h(r) — h(s)| <n|r —s|* for all r, s € [0, 7,); then, by continuity,
|h(r) —h(s)| <n|r—s|® for all r,s € [0,7,], which means that ||6h]|q.(0.r,)= |64 <
n). Then

IR <CM|t — o8, Vo<s<t<T, (4.38)
for a suitable a.s. finite random constant C'™. Let us define the events
Ap:={mn=00}={||6h[la <n}

and note that h =A™ on A,. By the locality property of the stochastic integral,
I=1" as. on A, %2 hence also R= R™ as. on A,. Redefining C™ = o on the
exceptional set { R= R™}¢ we get by (4.38)

on the event A,: | Rt| <CW|t — s]o+P, VO<s<t<T.

Note that A:={J, cxAn={[[0h]la <00}, hence P(A)=1. If we define C :=C™ on
A\ A,—1 (with Ag:=0) and C:=o00 on A°, we have C' < oo a.s. and relation (4.7)
holds.

Second observation: if relation (4.37) holds for all s, in a (deterministic) dense
subset ID C [0, 1], then it holds for all s,¢ € [0, 1], because Ry is a continuous function
of (s,t).

In conclusion, the proof is reduced to showing (4.37) only for s,¢ € D, under the

assumption that ||0h||, < ¢ < oo. This technical result is formulated in the separate
Lemma 4.13. 0

4.2. We mean that 1™ and I are indistinguishable on A,: for a.e. w € A, one has I{™(w) = I,(w) for
all t €[0,1] (we recall that we always fix continuous versions of the stochastic integrals).
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LEMMA 4.13. Let 0<a<f< % Assume that E[||0h||E] < oo for all p>0. Then
there is an a.s. finite random constant C' such that

|Rot| < C|t — 5|27, Vs,teD with s<t. (4.39)
Equivalently, a.s. Re C57,

Proof. We apply Theorem 4.9 to the (random) function A(s,t)= R, with v=
n=a+ [, N=1, p=a and p large enough (to be fixed later). Then relation (4.27)
yields (4.39). It remains to show that a.s. Quy5 <00 and Ky o4p< 00.

We recall that Ry is defined in (4.36). In particular, for s <u <t

5Rsut - Rst - Rsu - Rut - (hu - hs)(Bt - Bu)
Then by (4.26), a.s.

_ at_ulﬁ
Ko ass(R)<||0h]|10B sup _ Ju—sl?] .
ats(R) < [0h]lal[0B 5 oS0 in (u s, f—w) i — 5]

By our assumption that ||0h||, € L? and by the fact that B is a Brownian motion, it
only remains to show that the constant defined by the supremum is bounded above
by 1. The constant is in fact easily seen to be equal to

a*b’ < ab
sup —_— = sup
a,b>0,a+b=1 min (a7 b)a a,b>0,a+b=1

- B—a <
min(a,b)) sl

We want now to estimate Qo+ g(R). We note that, for fixed s <t, we have Ry =
f:(hu — hs) dB, a.s.. By the Burkholder-Davies-Gundy inequality, see Proposition
4.15, for any p > 2 there is a universal constant c, such that

P

E|Ra?] < cﬂE[(Lt(hu—hs)Zdu)Q}
< o E|lniz( [ t<u—s>2adu)§]

< e E[oh]?) (¢ — s+,

By Proposition 4.11, we have (), <oo a.s. for any v <a +%— %. Plugging y=a+ /3
we get 0 < % — %, which is satisfied for p large enough, since [ < % O
Next, we suppose that there exists another adapted process h! = (h%)te[oj] with
values in R¥ @ (R?) such that a.s.
|0het — hs Bay| S|t — s
Then we define

A

Ry = Rg— hﬁ Bgt =0l — hy Bﬁt - hg ]Bgt
t
= / (6hsr — hiBL)dB,, (4.40)
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where B? is defined in (4.2). Then the third assertion of Theorem 4.3 follows with
the same localisation argument as for the second one and from the following

LEMMA 4.14. Assume that E[||6hY||2 + ||6h — h'B!||5,] < oo, for some a € (0,%) and
for all p>0. Then there is an a.s. finite random constant C' such that

|Ry| <CJt—sl?, — Vs,teD withs<t. (4.41)
FEquivalently, a.s. Re 3.

Proof. We set v=n=3a, N=2, py=2a, po=a. Then

0 Reur = (0hsy — h1 BL,) BL, + 6hl, B2,

A

which implies that a.s. K, 34(R) < +00. Indeed

Kosa(R) < |10h— BB s [BYl.  su [u— st —ul®
s h 2 a0<s<uzt<1mm (u—s,t—u)*|t —s|>

_ at_u|2a
+|0hY|| o || B? sup - [u—s[* .
O (i e e

We note that both suprema are equal to

ab? )a
sup —— | <1.
(a,b>0,a+b1 min (a, b) h

Now by (4.40)

t 3
E[| Ryl < ]EK/ (5hsu—h§18§u)2du> }

t 3
< cpIE{H(Sh—hlIBlﬂga(/ (u—s)4o‘du) }

1
< B0~ nBYg.) (¢ — 5"
By Proposition 4.11, we have (), < oo a.s. for any v <2« +%— %. Plugging v =3«

we get o < % — %, which is satisfied for p large enough, since a < % 0J

Finally, we give a proof of (half of) Burkholder-Davies-Gundy inequality for
p=2.

PROPOSITION 4.15. For all p > 2 there is a constant c, < oo such that for all 0 <
s<t<T

([ o [0

for any progressively measurable process such that folyg du < oo, P-a.s..

Proof. To simplify notation we set s=0 and m;:= fgyu dB,.
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In a first time we make the additional assumptions that IE[ [ 01 y2 du] < oo and m
is bounded by some deterministic constant. By the It6 formula applied to m;, we get

-1
Al = plmel sgn(m)ye d B, + P2 -2z ar.

In general (fg|mu|pflsgn(mu)yu dB,); is a local martingale, but under our
additional assumptions it is a true martingale with zero expectation, because
IE[fOl Im 2P~ y2du] < oo (recall that m is bounded). Consequently

Ellmd? =22 [l

If we set |my| :=supy<: |my|, we obtain by Hélder

. t
Elmd?] < 2220 e [l
0

p

< WEHmml‘iEK/Otyg du>2F’. (4.42)

Since (|my|)¢>0 is submartingale bounded in L? with continuous trajectories, by
Doob L? inequality we have: IE[|m|?] < (p]%l)p]EHmdp]. Plugging the above in (4.42)

we conclude:
t t p/2
o oone)eo( f0)")
0 0

As far as the general case is concerned, let us define

t
7" =inf {t >0: |mt|>n}/\inf{t20:/ yﬁdu>n}
0

Note that 7" is a non decreasing sequence of stopping times, with 7" = oo for n large
enough, P-a.s.. We denote y;':=y 1 (t) and m := fOtyZdBu. By construction, y"
and m' satisfy our additional assumptions. Since my =ma,» a.s., we have

tAT™ t p/2
E[/ yudBu|p] < cpIE{(/ y§1[077n](u)du> }
0 0
t p/2
cl(fen)']
0

Finally we notice that by Fatou’s Lemma
tAT™
[ ]

t P
E{(/ yudBu) ] = E{liminf
tAT™
< limianE[/ yudBu|p}
t p/2
([

The proof is complete. 0







Part 11

Rough Integration












CHAPTER 5

THE SEWING LEMMA

We fix throughout the chapter a time horizon 7" >0 and two continuous functions
X,Y:[0,7] — R. In this setting the integral

T
/ Y, dX, (5.1)
0

can be defined as |, (;[ Y, X, dr if X is differentiable or, more generally, as a Lebesgue
integral if X is of bounded variation, so that dX is a signed measure. The key
question we want to address is: how to define the integral when X does not have
such regularity? This is an example of a more general problem: given a distribution
(generalized function) X and a non-smooth function Y, how to define their product
VX ?

A motivation is given by X = B with (B;):>0 a Brownian motion. In this special
case, one can use probability theory to answer the question and define the integral
n (5.1), but one sees that there are several possible definitions: for example Ito,
Stratonovich, etc.

In this book, we are going to present the alternative answer provided by the
theory of Rough Paths, originally introduced by Terry Lyons. This theory yields
a robust construction of the integral in (5.1) and sheds a new “pathwise” light on
stochastic integration.

The approach we follow is based on the Sewing Lemma, to which this chapter
is devoted. In particular, we will show in Chapter 6 that the integral in (5.1) has a
canonical definition ( Young integral) when Y and X are Holder continuous, under a
constraint on their Holder exponents. Going beyond this constraint requires Rough
Paths, which will be studied in Chapter 7.

5.1. LOCAL APPROXIMATION

If X is of class C', we can define the integral function
t
It::/ Y, X, dr, te0,T].
0
Then we have Ip=0 and for 0 <s<t<T

[t—[s—YS(Xt—Xs):/t(Y;—Yg)XTdr:o(t—s) (5.2)

87
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as t —s— 0, because X is bounded and |Y; — Y| =o0(1) as |r — s| — 0. Thus the
integral function I; satisfies

Iy=0, I —I,=Y,(X;— Xs) +o(t — s), 0<s<t<T. (5.3)

Remarkably, the relation (5.3) characterizes (It)iepor). Indeed, if I' and I? satisfy
(5.3) with the same functions X,V their difference A := I — I? satisfies

A — A =o0(t —s), 0<s<t<T,

which implies <A, =0 and then A,=Aq= I} — I3 =0 by (5.3). This simple result
deserves to be stated in a separate

LEMMA 5.1. Given any pair of functions X ,Y:[0,T]| — R, there can be at most one
function I:[0,T] — R satisfying (5.3).

The formulation (5.3) is interesting also because the derivative X of X does not
appear. Therefore, if we can find a function I:[0,7] — R which satisfies (5.3), such
a function is unique and we can take it as a definition of the integral (5.1).

We will see in Section 6.1 that this program can be accomplished when X and
Y satisfy suitable Holder regularity assumptions. In order to get there, in the next
sections we will look at a more general problem.

5.2. A GENERAL PROBLEM

Let us generalise the problem (5.3). We define A:[0,7]% — R by setting for 0< s <
t<T

Ay =Y, (Xt - Xs) : (5-4>

We can then decouple (5.3) in two relations:
1[y=0, I, — I,=Aq+ Ry, 0<s<t<T, (5.5)
R:[0, T2 =R, Ry=o(t—s). (5.6)

The general problem is, given a continuous A:[0,7]%— R, to find a pair of functions
(I, R) satisfying (5.5)-(5.6). We call

e A:[0,T)2— R the germ,
e [:[0,7] =R the integral,
e R:[0,T]%— R the remainder.

We are going to present conditions which allow to solve this problem.
Note that we always have uniqueness. Indeed, given (I', R') and (1%, R?) which
solve (5.5)-(5.6) for the same A, by the same arguments which lead to Lemma 5.1

we have % (I} — I?) =0, hence I'=I? and then R'= R? by (5.5). We record this as

LEMMA 5.2. Given any germ A, there can be at most one pair of functions (I, R)
satisfying (5.5)-(5.6).
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5.3. AN ALGEBRAIC LOOK

We first focus on relation (5.5) alone. For a fixed germ A, this equation has infinitely
many solutions (I, R), because given any I we can simply define R so as to fulfill
(5.5). Interestingly, all solutions admit an algebraic characterization in terms of R
alone.

LEMMA 5.3. Fiz a function A € C.
1. If a pair (I, R) € Cy x Cy satisfies (5.5), then R satisfies

2. Viceversa, given any function R € Cy which satisfies (5.7), if we set I :=
Aot + Ry, the pair (I, R) € Cy x Cy satisfies (5.5).

Proof. Relation (5.5) clearly implies (5.7), simply because §(61) =0. Viceversa,
given R satisfying (5.7), we can define Ly := Ag + Rt so that

Lst - Lsu - Lut =0.
Applying this formula to (s, u’,;t")=(0, s,t), we obtain that [;:= Lo, satisfies
It - Is = LOt - LOS = Lst = Ast+ Rst

and the proof is complete because Iy:= Loy = Ago+ Roo =0, which follows by (5.7)
for s=u=0. O

We can now rephrase Lemma 5.3 as follows.

PROPOSITION 5.4. Fiz A€ Cy. Finding a pair (I, R) € Cy x Cy satisfying (5.5) is
equivalent to finding R € Cy such that

5Rsut:—(sz43ut, VOgséuéth (58)

5.4. ENTERS ANALYSIS: THE SEWING LEMMA

So far we have analyzed (5.5). We now let (5.6) enter the game, i.e. we look for a pair
of functions (I, R) € Cy x Cy which fulfills (5.5)-(5.6), given a (general) germ A € Cs.
We stress that condition (5.6) is essential to ensure uniqueness: without it, equa-
tion (5.5) admits infinitely many solutions, as discussed before Lemma 5.3. When
we couple (5.5) with (5.6), uniqueness is guaranteed by Lemma 5.2, but ezistence
is no longer obvious. This is what we now focus on.
We start with a simple necessary condition.

LEMMA 5.5. For (5.5)-(5.6) to admit a solution, it is necessary that the germ A
satisfies

|0Asut| = o(t — s), for 0<s<u<t<T. (5.9)
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Proof. If (5.5) admits a solution, by Proposition 5.4 we have |0Agu| = |0Rsu|. If
furthermore R satisfies (5.6), we must have for 0 <s<u<t<T

|0 Rout| < |Rst| + | Rsu| + |Rut] = 0(t — ) +0(u— s) +o(t —u)=o0(t — ). 0

Remark 5.6. Choosing u=s in (5.9) we obtain that —Ass=o0(t — s), which means
that Ass=0. Therefore a necessary condition for (5.5)-(5.6) to admit a solution is
that A vanishes on the diagonal of [0, T)%.

Remarkably, the necessary condition in Lemma 5.5 is close to being sufficient:
it is enough to upgrade o(t — s) in O((t — s)") for some 7> 1. This is the content of
the celebrated Sewing Lemma, which we next present.

We have seen in the Sewing bound (Theorem 1.9) that any R € C such that
Ry =o0(t —s) for 0 < s <t <T satisfies an a priori estimate || R||, < K, ||0R||, for any
n>1. Of course, this estimate is only interesting if |[0R |, < oo for some 7> 1. This
property, that we call coherence, is at the heart of the celebrated Sewing Lemma
(Gubinelli [2], Feyel-de La Pradelle [1]), as it provides a sufficient condition on the
germ A for the solution of (5.5)-(5.6).

DEFINITION 5.7. (COHERENCE) A germ A € Cy is called coherent if, for somen>1,
it satisfies 0A € C3, i.e. ||0Al|, <oo. More explicitly:

dne(1,00): |0 Asue|l S|t — 5|7, 0<s<u<t<T. (5.10)

THEOREM 5.8. (SEWING LEMMA) For any coherent germ A € Cy there exists a
(unique) function I:]0,T] — R such that |As — 01| = o(t — s); equivalently, there
exists a unique pair (I, R) € Cy x Cy such that

_[OZO, It_ISZASt+RSt thh Rst:O(t—S). (511)
o The “remainder” Ry := 01y — Ay satisfies the Sewing Bound:
R, < K, ||16A]l, where K,:=(1-2"n"1, (5.12)

e The integral I € Cy is the limit of Riemann sums of the germ:
#P—1
Ii:=1li Ape. 5.13
t \731|r30 ; titit1 ( )
along arbitrary partitions P ={0=to<t;<...<tx=t} of [0,t] with vanishing
mesh |P|:=max;—q ... g_1|tiz1—t:| —0 (we set #P:=k).

.....

The Sewing Lemma is a cornerstone of the theory of Rough Paths, to be intro-
duced in Chapter 7. We will already see in Chapter 6 an interesting application to
Young integrals. The (instructive) proof of Theorem 5.8 is postponed to Section 5.6.
Remark 5.9. For a fixed partition P of [0, ] we have, by 0l = Ag + R,

#P—1 #P—1

[t: Z Atiti+1+ Z Rt¢t¢+1'
1=0 =0
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Therefore, (5.13) is equivalent to
4p—1

lim Rt't' =0
"P|—>0 1li41
=0

which is the reason why one wants the remainder R to be small close to the diagonal.
The information Ry = o(t — s) is not enough in general to obtain the existence of
(I, R), while the stronger estimate |Rg| < |t — s|” is sufficient.

5.5. THE SEWING MAP

Given a coherent germ A, by Theorem 5.8 we can find an integral I and a remainder
R which solve (5.5)-(5.6). We now look closer at the remainder R.

LEMMA 5.10. In the setting of Theorem 5.8, the remainder R is a function of dA:
gwen two coherent germs A, A" with 0A=0A’, the corresponding remainders R, R’
coincide. Moreover, the map 0A+— R is linear.

Proof. By Proposition 5.4 we have 6(R— R')=0(A"— A)=0, hence R— R'=0f for
some f € C) (see Remark 1.10). Both |Ry| and |R%| are o(|t — s|) by (5.6), hence
| fi— fs|=o0(]t — s|). Then f must be constant by Lemma 5.1 and therefore R= R/
Linearity of the map 0A+— R is easy. 0J

Since R is a function of § A, we introduce a specific notation for this map:
R=—-A(54)

where the minus sign is for later convenience.
Let us describe more precisely this map A. Throughout the following discussion,
we fix arbitrarily 7 € (1, c0).

e Domain. The map A is defined on A for coherent germs A, see Definition 5.7.
The domain of A is then C3 N dC,, where we denote by 6Cy C C3 the image
of the space Cy under the operator ¢ in (1.23).

e (Codomain. The map A sends 0A to —R, and we have |Ry| < |t — s, see
(5.12). A natural choice of codomain for A is then C3.

e Characterization. In view of Proposition 5.4 and Lemma 5.2, the function
—R=A(dA) is characterized by the properties

§(—R)=06A,  |Ru|=o0(t—s).

The second condition is already enforced by our choice C3 of codomain for A,
which yields |Rs| S|t — s|” (with n>1). The first relation can be rewritten
as 0(A(B)) =B for all B in the domain of A, that is d o A is the identity map.

In conclusion, we have proved the following result.

THEOREM 5.11. (SEWING MAP) Let n€ (1,00). There exists a unique map

A:CIN5C, — CY,
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called the Sewing Map, such that 6 o A =1id is the identity on CJNdCs.

o The map A is linear and satisfies
IAB, <K, IBll,  ¥BeCyndCs, (5.14)

where K, is the same constant as in (5.12).

e Given a coherent germ A € Csy, i.e. such that 0A € C3, the unique solution
(I,R) of (5.5)-(5.6) is R:=—A(0A) and I;:= Aot + Rot.

5.6. PROOF OF THE SEWING LEMMA

We prove the Sewing Lemma, i.e. Theorem 5.8.

Proof. We fix a germ A € C; with ||0A|],, < oo for some 1> 1 (we do not require A,,=
o(b—a)). Our goal is to build a function I:[0,7] — R such that |01 — As| = o(t — s).
Uniqueness of I follows by Lemma 5.2, while the bound (5.12) follows by the Sewing
Bound (1.26) applied to Ry := 0y — Ag (note that R =—0A, because d 06 =0).

We fix 0< s <t<T. Given a partition P={s=ty<t1<...<t,=t} of [s,t], let
us define Ip(A):= Z;':Ol A, asin (1.20). The following bound holds:

91

|Ip(A) — Ay < C,, ||6A]], (t —5)" with C’n::Z <00 (5.15)

n>1

as we showed in the proof of Theorem 1.18, see (1.46), which applies to any function
A= (A ;). Similarly, if Q@ D P is another partition of [s, ],
#P—1
|IQ(A) - IP(A)| < Z |IQﬂ[ti7ti+1}(A) - Atiti+1|
i=0
#P—1
< GylIdAlly Y (i —t)"
i=0
#P—1
< Gy ||0A]f, P71 Z (tit1—t;)
i=0

< Gy 0A]l, T [P

where we recall that |P|:=max; (t;+1 —t;). Finally, if P and P’ are arbitrary par-
titions, setting @ :="PUP’ and applying the triangle inequality yields

|1p(A) = Ip(A)| < Cy [|6A], T (P~ + [P771).

This shows that the family Ip(A) is Cauchy as |P|— 0 (for every ¢ > 0 there exists
de > 0 such that |P],|P’| <0, implies |Ip/(A) — Ip(A)| <€), hence it admits a limit
as |P|— 0, that we call Jg.

We now define I, := Jy;. We claim that

L —1I,=Jy forall 0<s<t<T.
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Indeed, if we consider partitions P’ on [0, s] and P of [s,t], then P":=PUP’is a
partition of [0,¢] such that Ips(A) — Ip/(A)=1Ip(A), and taking the limit of vanishing
mesh we get Jo; — Jos = Jst, that is the claim.

Finally, taking the limit of relation (5.15), since Ip(A) — Jg = I; — I, we obtain
our goal |01 — Ag| S(t—s)"=o0(t — s). This completes the proof, since (5.13) holds
by construction. 0

Remark 5.12. Taking the limit of (5.15) gives
|Rst|§Cn||5A||n|t—S|n, Rst::(SIst_Asta 0<S<t<T,

which is the bound (5.12) with K, replaced by the worse constant C;. This is because
the estimate (5.15) holds for arbitrary partitions.






CHAPTER 6

THE YOUNG INTEGRAL

We can now come back to the problem that we discussed at the beginning of
Chapter 5: given two continuous functions X, Y: [0, 7] — R, how can we give a
meaning to the integral I, = [V'dX for ¢ € [0,7]?

A natural answer, recall (5.3), is to look for a function I:[0,7] — R satisfying
Iy=0, I —I,=Y,(X; — X;) +o(t — s), 0<s<t<T. (6.1)

As an application of the Sewing Lemma (Theorem 5.8), we can show that such a
function I exists (and is necessarily unique) when X and Y are Holder functions
of exponents «, 3 € ]0, 1] such that o+ 5> 1. This leads to the notion of Young
integral, to which this chapter is devoted.

Going beyond this setting, in order to treat the case o+ 3 <1, will require the
notion of Rough Paths, that we discuss in Chapter 7.

6.1. CONSTRUCTION OF THE YOUNG INTEGRAL

As we did in Chapter 5, it is convenient to rewrite (6.1) as follows: we look for a
function I:[0,7] — R satisfying

_[0:0, It_ISZASt+RSt Wlth Rst:O(t—S), (62)
where the germ A:[0,T]% — R is defined by
Ast:}{SéXSt:}{S(Xt_XS) . (63)

This is the framework of the Sewing Lemma, see Theorem 5.8, for which we need to
fulfill the coherence condition (5.10), that is ||0A]], < oo for some 1> 1 (we use the
norms introduced in (1.9)). Recalling that

5Asut = Ast - Asu - Aut = _5}/:9u 5Xut 5
see (1.32), we can write for any «, 5 € ]0,1]
0Asul = Yu =Y | X = Xu| = [|0A]Jasp<[[0X [|a 16 ][5 (6.4)

As a consequence, it is natural to assume that ||[0.X ||, < oo and ||0Y ||3 < oo for «,
B € 10,1] such that a+ 5> 1.

We can now give a consistent definition of the integral I, = [ g Y dX, known as
Young integral, when X and Y are suitable Holder functions.

95
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THEOREM 6.1. (YOUNG INTEGRAL) Fiz o, 5 € |0,1] with a+ 5>1. For every (X,
Y) € C¥x CP there is a (necessarily unique) function I:[0,T] — R which satisfies
(6.1), i.e.

Iy=0, IL—L=Y,(X,—X,)+o(t—s). (6.5)

The functon I, called the Young integral, is also denoted by I;=: fOtYdX.
The remainder Ry :=1I; — I, — Y, (X; — X;) satisfies the bound

[Rllots < Katp [0X o [[0Y 15, (6.6)
where K,:=(1—2"")71 see (5.12). This yields I € C*, more precisely
107 [|o < (IIY [loo + KarsT? ([0 ]I5) 10X o - (6.7)

The Young integral I = (1})ico,1], as a function of (X,Y), is a continuous bilinear
map I:C* x CP— C°.

Proof. Recalling (6.2)-(6.4), we have ||0A||a+s< [|[0X || ||0Y ]| s < 00, that is 6A € C
with n=a + > 1, where the spaces C; were defined in (1.10). By the Sewing
Lemma, see Theorem 5.8, there exists a (unique) function I which satisfies (5.11)
and (5.12), hence (6.5) and (6.6) hold.

In order to prove (6.7), we note that

16700 < [1Alla+ 1 Rlla < 1Y lloo 10X [l +T7 | Rlla+s
< Yl 16X o+ TP Kot 10X [|a [16Y [l -

Recalling Remark 1.4, in particular (1.15), this bound implies that I is a continuous
function of (X,Y), as a map from C%x CP to C*.

We finally prove that the map (X ,Y") I is bilinear: given X, X’ €C® and a fixed
Y €CP if I satisfies (6.5) for (X,Y) and I’ satisfies (6.5) for (X', Y), then for any
a,b€R the function I,:=a I, +b I} satisfies (6.5) for (X :=a X +bX',Y). Linearity
with respect to Y is proved similarly. O

Remark 6.2. The setting of Theorem 6.1 provides a natural example of a germ
Agt:=Y;0X which is not in CJ for any 7> 1 (excluding the trivial case when Y =0
on the intervals where X is not constant, hence A=0), but it satisfies A € Cy with
n=a+F>1.

Remark 6.3. (BEYOND YOUNG) It is natural to wonder what happens in The-
orem 6.1 for (X,Y)€C*x CP with a+ 3 < 1. In this case, there might be no solution

to (5.5)-(5.6), because the necessary condition (5.9) in Lemma 5.5 can fail. For a
simple example, consider X;=t* and Y; =t for t € [0, 7] and note that for s=0 and

u:% we have by (1.32)
@)z e

which is not o(t —s) =o0(t) when a+ 3 <1.

0 A0l = 0441, = ‘55/0%

5X,
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In order to define a notion of integral I; = fOtY; dX, when (X,Y)e€C%x C? with
a+ (<1, we need to relax condition (5.3), see Definition 7.1 below. This will lead
to the notion of Rough Paths, described in Chapter 7.

6.2. INTEGRAL FORMULATION OF YOUNG EQUATIONS

In this section we explain why we call (2.4) a Young equation. In fact, we can
interpret the finite difference equation (2.4) as an integral equation, using the Young
integral of section 6.1.

PROPOSITION 6.4. Let Z € C*([0,T]; R¥) with > % Then Z satisfies (2.4 ) if and
only if
t
z:%+/d4m&, te[0,7], (6.9)
0

where the integral 1s in the Young sense.

Proof. We consider the germ Ay :=0(Z;) 0 X5, 0<s<t<T. By (6.4)
0Asut| =0(Zu) — o (Z)|Xe = Xul = [|0Al2a < [|Vo|[co[|6X [[a]|0Z]]a -
Therefore we obtain that (2.4) is equivalent to (6.5) above. O

In the case a € (%, %], this argument does not work and the Young integral is not
adapted, since the germ A,;:=0(Z,) 6X,; has the property 6A € C3* with 2a: < 1, so
that the Sewing Lemma can not be applied. However the equation (3.19) suggests
another germ:

AstIZU(Zs) th_{—O-Q(Zs) tha 0<s<t<T.

Note that A =67 — ZFl in the notation (3.19). Then by (3.27) we know that
dA € C3%. Therefore we can interpret the formula

57 =A— A(5A)
as

t
Zt=Zo+/a<Zs)dXs, 0<i<T.
0

which for the moment is only a notation that will be made more precise in chapter 9.

6.3. LOCAL EXISTENCE VIA CONTRACTION

As an application of the estimates on the Young integral of Theorem 6.1, we want to
give a local existence result for equation (2.4) which does not rely on compactness
and which can be therefore used also in infinite dimension.

Let Zy€ R* and X €C([0,T];R?) be given, o: R¥ - R?¢® (R?)* smooth and the
unknown Z:[0,7] — R* is such that ¢(Z) €C* and 2a > 1, so that the right-hand side
of (6.9) can be interpreted as a Young integral. We want now to show the following
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THEOREM 6.5. (CONTRACTION FOR YOUNG DIFFERENTIAL EQUATIONS) Let o:
RF — R* @ (RY)* be of class C* with Vo and V*o bounded. Let o € ]%, 1] and
X eC([0,T);RY) fized. It T >0 is small enough, then for any Zy€ R there exists
a unique Z € C*([0, T); R¥) which satisfies (6.9).

Proof. For all f€C*([0,T]; R*) we have
lo(f) =o(fII< NV allo | fi = [l
so that
160 (F)lla <[V ollo 10/ a-
By (6.7) with o= /3 we obtain for all f € C® satisfying (6.9)
16 f Mo < (fo(fo)l + (14 Koa) TV 0 [ool|0 f o) 1[0 X ]|

since

lo(Hllee < lo(fo)| +T*[[da (F)]lo-

Therefore, if T' satisfies
1 1

<
2 (14 Kao) [[Volloof0 X o

[e7

then we have the following a priori estimate on solutions to (6.9)
162 [loe < 2o (Z0) |6 X [|o
We fix such T" and we set C*(Zy) :={f €C* fo=Z0, |10 f||la <2|0(Z0)|||0X ||} Then
we define A:C*— C® given by
t
Mp=he b=zt [ o(f)ax, el
0

It is easy to see, arguing as above, that A acts on C*(Z), namely A:C*(Zy) — C*(Zy).
Note that the map C*(Zy) x C*(Zy) 3 (a,b)— ||0a — 0b||, defines a distance on C*(Zy)
which induces the same topology as ||-||ce. We want to show that A is a contraction
for this distance if 7" is small enough. By (6.7) we have for a =f3

16A(a) = A D) la <(llo(a) = o(b)llc + Koo T*[|60(a) = d0(b)la) 10X [|a-
ST(1 + Kao) [|6X [|a[|60(a) = 00(b) o

We now need to estimate ||[do(a) — do(b)||. By Lemma 2.8

160 (a) = do(b)]la < IV ollxllda = 0bllat][VZ o llo(lldallat0b]la) [la— bl
Since, as usual, ||a — b|c <T“||da — db||, We obtain

160(a) = do(b)]la < (Vo llat T V0 [[so((ldallat[|5b]la))[[6a — 6b|a- (6.10)
Therefore, for all a,b € C*(Zy)
[6A(a) = A D)< Crllda — b,

where Cr:=T1 + Ka) [|[0 X ||a IV ||aotT||V 20 ||ocd|o(Z0)| |6 X ||a). Tt is now
enough to consider 7" small enough so that Cp < 1. O
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6.4. PROPERTIES OF THE YOUNG INTEGRAL

The Young integral [ g Y dX, defined in Theorem 6.1, shares many properties with
the classical Riemann-Lebesgue integral, that we now discuss.
A elementary but useful observation is that | g Y dX is a linear function of Y (for

fixed X) and a linear function of X (for fixed Y'), by bilinearity.
For an interval [s,t] C [0, 7] we will use the notation

t
It—IS::/ YdX.

If the integrand Y, = ¢ is constant for all u € [s, t], then fstYdX =c (X — X;), which
follows directly from (6.5). As a corollary, we obtain the following useful formula
for the remainder.

LEMMA 6.6. Let (X,Y)eC*xC” for a, 3€]0,1] with a+ 3> 1 and let It::nguqu
be the Young integral, see Theorem 6.1. Then the remainder

Rst::It_Is_Y;(Xt_Xs)a O<S<t<T7

admits the explicit formula
t
Rst:/ (Y, —Y,)dX,, 0<s<t<T, (6.11)

where the right hand side is a Young integral.

Proof. By linearity and the basic property mentioned above, we obtain

t t t
/(Yu—Ys)qu:/Yuqu—/nquzft—fs—th—Xs):Rst. 0

An important property is integration by parts, which follows by the uniqueness
of the solution for the problem (5.5)-(5.6), recall Lemma 5.2.

PROPOSITION 6.7. (INTEGRATION BY PARTS) Fiz «, 5 € ]0,1] with o+ 3> 1. For
all (X,Y)€C*xC” the Young integral satisfies

t t
/ Xdy +/ YdX = X\Y,— XY, (6.12)
0 0

Proof. Let us set I} := fOtX dY + fOtY dX. By the property (6.5) we have

I —L=Y(X; — X))+ Xs(Yi - Yo) +o(t — ).

-~

Ast

Next we set I} := X;Y; — Xo Yy and note that, by direct computation,

4 N
~~

S
Ast Rst

J
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where |Ry| <||6X||o]|0Y ||s]t — s|**?=o0(t — s). By Lemma 5.2, for any germ A,
there can be at most one function I which satisfies 01y = Ag + o(t — s) (5.5)-(5.6),
hence I'=1". O

We next discuss the chain rule.

PROPOSITION 6.8. (CHAIN RULE) Let X € C* with o € ]%, 1]. Let ¢: R— TR be
differentiable with o' € C?'(R), for v € ]0,1] such that v>1/(1+ «) (a sufficient
condition is that p € C%). Then ¢'(X)=¢'o X €C* and

t
P(X) = o(X0) = [ (30X, (6.13)
0
where the right hand side is a Young integral.

Proof. It is easy to see that ¢'(X) € C*?, which implies that fggo/(X) dX is well-

defined as a Young integral, since a + a7y > 1. By definition (6.5) of the Young
integral, proving (6.13) amounts to showing that

[p(Xp) = p(Xs) = o' (Xo) (Ko = XQ)| St —s[*T
By the classical Lagrange theorem, if say X; > Xj, then
P(Xi) — p(Xs) — ' (Xo) (Xe = Xo) = (¢(§) — ' (X)) (Xi — X)
with € € | X, Xi[. Since ¢’ €C? and X € C?, it follows that
|p(Xr) — o(Xs) — 9'(Xo) (X — Xo)| S1Xe = X HE S|t — s[oFe
which completes the proof. 0

More generally, we have

COROLLARY 6.9. In the same setting of Proposition 6.8, for all s<t
t
p(Xe) — (X)) = ' (X) (Xe — Xo) + / (0(Xr) = ¢'(X)) dX;. (6.14)

Proof. It is enough to note that, by (6.13),
t
P —o(X) = [ (X)X,

t
= /(X)) (Xe — X) +/ (¢(Xr) — ¢'(X5)) dX,,
where all integrals are in the Young sense. 0

In particular, for X € C* with o > %, we have

2 2 t
%— )é XX — X))+ / (X, — X,)dX,. (6.15)
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which can be rewritten as follows:

_XP XS

t 2
/(Xr—Xs)dXT A XXX X X7

2

(6.16)

6.5. MORE ON HOLDER SPACES

We discuss further properties of the Holder spaces C for o € (0,1) (excluding the
case a =1 of Lipschitz functions). These will be useful in the next Section 6.6, when
we discuss the uniqueness of the Young integral.

Let us denote by C'* the space of infinitely differentiable functions. We note
that C°° C C* for every a € (0,1), but C* is not dense in C*.

THEOREM 6.10. For any a € (0,1), the closure of C™ in C* is the subset C§ defined by

Co ={[:[0,T] =R [f(t) = f(s)|=o(t = s) uniformly as |t —s| — 0} .

Remark 6.11. Note that f€C§ if and only if
Ve>0 30.>0: | f(t)— f(s)| <e|t—s|*  for |t —s| <0, (6.17)

which implies (exercise) that C' C C§ C C® for a € (0,1). It follows that the closure
of C*in C? is again C§, simply because C* C C' C C§.

Exercise 6.1. Prove that C' C C§ and C§' C C* for a € (0,1) (inclusions are strict).

We stress that the subset C§ is strictly included in C%, but what is left out is not
so large, in the following sense.

Exercise 6.2. Prove that C® CC§ for 0< a < a’<1 (the inclusion is strict).

The proof of Theorem 6.10, which we defer to Section 6.7, is based on the
following classical approximation result (also proved in Section 6.7).

LEMMA 6.12. For any continuous f:[0,T] — R there is a sequence f, € C* such
that || fn — flloo— 0. One can take f,, with the same modulus of continuity as f, in
the following sense: given an arbitrary function h(-),

if [f() = f(s)|<h(t—s) Vs, t€]0,T],

then | fu(t) = fu(s)| <h(t—s)  Vs,t€[0,T], VneN, (6.18)

It follows that ||0fulla <||0f||a for alln €N and a € (0, 1).

Remark 6.13. Lemma 6.12 holds with no change for functions f:[0,7]— R, where

R is an arbitrary Banach space. One only needs a notion of integral [ (;[ fsds when
f is continuous, and for this one can take the Riemann integral, i.e. the limit of
Riemann sums ). f(t;)(ti11 — ;) along partitions (Z;) of [0, T] with vanishing mesh
max; |t;+1 —t;| — 0 (one can check that such Riemann sums form a Cauchy family).

This integral satisfies the key usual properties: f+— f(;[fs ds is linear, |f0TfS ds| <
Sy £l ds and [ fds= fr— fo
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6.6. UNIQUENESS OF THE YOUNG INTEGRAL

Throughout this section we denote by I;/°"™ the Young integral I, = | Ot Y dX built
in Theorem 6.1. We want to compare it with the classical integral

t
[glassical: — / Y;; Xu du
0

which is defined for continuous Y and continuously differentiable X € C*.

We remarked in (5.2)-(5.3) that I gatisfies property (6.5), therefore [¢lassical
coincides with I,/°"™ when (X,Y) € C* x C?, for any 3€]0,1]. In other terms, the
Young integral is an extension of the classical integral.

We can be more precise: by Theorem 6.1, for a, 3 €10, 1] with o+ 5> 1, the
Young integral 1Yowe— (T °U8) cjo,7] 1S a continuous bilinear map from C* x C” to
C®. This means that Yo" is a continuous extension of the classical integral Jassical
defined on C* x C#. It would be tempting to state that it is the unique continuous
extension, but this is not true, because C' C C* is not dense in C® (see Theorem 6.10
and Remark 6.11).

Interestingly, it is possible to characterize the Young integral as the unique
continuous extension of /¢ssical if we let the exponent a vary. Given a €]0, 1], we

define the space
co= | ¢

a€la,l]

and we agree that f, — f in C~% if and only if f, — f in C* for some a > @. The
basic observation is that C* is dense in C>%: for any f €C>% we can find a sequence
fn € C* such that f, — f in C>9.61

If we fix a=1— 3, for 3€]0,1], the Young integral IYouns = ([goung)te[oﬂ is a
continuous map from C~~%) x CP to C>1~9) by Theorem 6.1.

These observations yield immediately the following result.

PROPOSITION 6.14. (CHARACTERIZATION OF THE YOUNG INTEGRAL, 1) Fiz any
B €]0,1]. TheYoung integral Y8 = ([tYoung)te[O,T}, viewed as a map from C~1=5) x

CP to C>(=P) s the unique continuous extension of the classical integral T2l =

(Igtessiealy, co. 7y defined on C* x CP.
Explicitly, 1Y is the unique map I:C~~7) x CP—C>0=5 such that:

. [tzlflaSSicaI:ngLXudu for X € C;

o if (X,,Y,)—(X,Y) inC*xCP, for some a>1— 3, then we have the con-
vergence 1(X,,Y,) — I1(X,Y) in C* for some o' >1— 3.

Alternatively, we can characterize the Young integral as the unique continuous
extension of the classical integral on C® x C? for fixed «, provided we consider a
weaker notion of convergence on C®.

6.1. If f€ C™ with a> @&, by Exercise 6.2 we have f € C§ for any o’ €]a, af, then by Theorem 6.10
we can find f, € C* such that f, — f in C®, hence f, — f in C>%.
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DEFINITION 6.15. Fiz a €]0,1]. Given f,, f:[0,T] — R, with n € N, we write

fo~af — | fn— fllo—0 and sug”éfn||a<oo. (6.19)
ne

In other terms, f,~>o [ if and only if f, — f in the sup-norm and, moreover, the
sequence f, is bounded in C*.

We leave it as an exercise to check some basic properties.

Exercise 6.3. Fix a €]0,1] and let f,, f:[0,7] — R, with n € N. Prove the following.
1. If fr,~~q f, then f€C® more precisely ||0f ||o <suppen [|0fn]la < oo.
2. If fy~q f, then f,— f in C® for any o’ < o, but not necessarily f, — f in C°.
3. If f~qf and p:R— R is Lipschitz, then o(f) ~a@(f).

4. In the definition (6.19) of fy, ~~4 f, the uniform convergence ||f, — f|lcc — 0 can be
replaced by pointwise convergence: f,(t) — f(t) for every t € [0, T].

We can now provide the following characterization of the Young integral.

THEOREM 6.16. (CHARACTERIZATION OF THE YOUNG INTEGRAL, II) Fiz «,
(3 €10,1] with a+ 3>1. The Young integral Y= ([tyvoung)te[QT] is the unique map
I:C*x CP—C® such that:

1. Iy=Igessiel = (1Y, X, du for X € CY;
2. if Xp~a X and Yy, ~3Y, we have 1(X,,,Y,) ~o [(X,Y).
Proof. We already know that the Young integral IY°u"# satisfies property 1. Let

us show that it also satisfies property 2: given X,, ~+, X and Y,,~»3Y, we need to
prove that

TYoung( X Y,) ~ag IYOU8( XY, (6.20)
Let us fix o’ < a, ' < [ such that we still have o’ + 3’ > 1. We know by Exercise
6.3 that X, — X in C* and Y, —» Y in C?". Since the Young integral is a continuous

bilinear operator 1Y°us: C®’ x C%" — C% we have the convergence IY°"¢(X,,,Y,) —
IY°ws( XY in C*', which implies

||[Young(Xn’ Y;z) _ [Young()(7 Y)Hoo —0.
To prove (6.20), it remains to observe that, by (6.7),
sup || 178X, Yo o < sup ([[Valloo + Kar s T |6, |8) | Xl < 00
We next consider an operator I: C® x C% — C® which satisfies properties 1 and 2
and we show that it must coincide with the Young integral 7Y°"&. Given X € C® and
Y € C?, by Lemma 6.12 we can construct a sequence (X,,) C C! with ||X,, — X |loc — 0

and || X,||o < [|X |l By property 2 we have I(X,,Y)~, I[(X,Y) and I"°""8(X,,
Y) ~o IYO8(X Y, which implies pointwise convergence: for any ¢ € [0, T

L(X,Y)=lim[,(X,,Y) and  I°(X,Y)=lim;""¥(X,,Y).
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By property 1 we have I,(X,,,Y)=1""%X,,Y) for any n, hence
L(X,Y)=I""8(X,Y) Vte[0,T),

which completes the proof. 0

6.7. TWO TECHNICAL PROOFS
We give here the proof of Theorem 6.10 and Lemma 6.12.

Proof of Lemma 6.12. We extend f:[0,7]— R to a function defined on the whole
real line, by setting f(t) = f(0) for t <0 and f(t)= f(T) for t >T.

Let us fix a C* function ¢: R — R supported in [—1, 1] with unit integral:
Jow(u)du=1. Note that ¢,(t):=nep(nt) is supported in [—%, %] and also has unit
integral: ngpn(u) du=1. We then define f,= ¢, * f, that is

falt) = /R @n(t —u) f(u)du.

It is a classical result that f, € C* (we can differentiate inside the integral by
dominated convergence, since f is bounded).
We next write

falt) = /R on(w) f(t—u)du= /

R

w(v)f<t—%>dv,

which implies || fr, — f||oo < SUPter, ul<1 | f(t —%) - f(t)| (since o has unit integral),
hence || f,, — f]|lc — 00. Property (6.18) is also directly checked. O

Proof of Theorem 6.10. First we show that C§ is closed in C*: given f,, in C§ and
f€C*such that || f, — flla — 0, we need to show that f €Cg, that is (6.17) holds.
For s <t and n € N we can write, by the triangle inequality,

|f(t) = f(s)] | fa(t) = fn(s)]

WS [0f = dfulla+ S (6.21)
Fix n =, such that [|0fs, — 0|« <5. Since fs €C§, by (6.17) we can fix d. >0 such
that for |t — s| <¢ the last term in (6.21) is gé and we are done.

It remains to show that, for any f € Cf, there is a sequence f, € C* such
that || fn — flleo + 10fn — 0f ||a — O (recall Remark 1.4). We define f, € C* as in
Lemma 6.12, so we only need to show that [|df, —df]|o— 0.

Since f €C§, property (6.17) holds. The same property holds replacing for f,,
uniformly for n € N, thanks to relation (6.18). This means that for any e > 0, for all
0<s<t<T with |t — s| <0, and for any n € N, we can write

[(fn= @) = (fn= NS o falt) = fuls)] | 1S = F(S)] o
(t—s)" ST Eose T = SO

If we fix 7. > 0 such that || f, — f|leo <€ (0)® for all n >n,, for |t —s|>J. we get

(= DO = (a= D] _2fo= Fls _,
=) STer S
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Altogether, the previous relations show that ||df,, — 0 f ||o < 2€¢ for n >7i.. This implies
that ||0f, — df]|la— 0. O






CHAPTER 7
ROUGH PATHS

We have seen in Chapter 3 that it is possible to build a robust theory for a controlled
equation of the form Y;=o(V;) X; with X:[0, 7] — R of class C* for a € (%, %],
provided we choose a function X2 [0, T]i — RY® RY satisfying for 0<s<u<t<T

5X§ut:X§u®X}zta |X§t| S |t_5|2a>

see (3.13), where we denote X}, :=0X,;, 0<s<t<T. In coordinates, the former
identity means

(0XH), =0XL,0X),  |(XHI|S|t—sP,  i,je{l,...,d} (7.1)

sut u

In Section 3.2 we left the problem of the existence of such a function X? open.
We recall that, for X of class C!, we have a natural choice for X2 given by

t .
(Xit)“:z/(Xf—X;)Xﬂdr, 0<s<t<T,

see (3.9). In Lemma 6.6 we saw that, for a >% and X €C([0,T]; R?), the (uniquely
defined) Young integral 1,7 := fOtXi dX7 satisfies

t
Ry =1 — I — X5 (X{ — X{) =/ (X;=X5)dX], [RGISIE -],

where the integral in the right-hand side is again of the Young type and 2« > 1.

There is a clear resemblance between the two last expressions, and indeed for
! >% we show in Lemma 7.14 below that setting (X%)¥:= R we obtain (7.1) and
this is the only possible choice.

If now o < %, neither of these formulae is well-defined, because for 2a < 1 we are
not in the setting of the Young integral. However, we have seen in Chapter 3 that
the bound |XZ%| <[t — 5|2 is enough for the whole theory of existence, uniqueness
and stability of the rough equation (3.19) to work, even if 2a0 < 1.

This suggests that, for every i,j € {1,...,d}, the function (X%)¥ can be inter-
preted as the remainder RY associated with an integral I/ of (X, X7), where we

weaken our requirements with respect to the Young integral, namely we only require
that

I =19 = X3 (X] = X)) = (X)9,  [(XE)Y|S [t —sf*,
and now 2a < 1. Therefore the choice of the rough path X = (X! X?) over X is

equivalent to the choice of a generalised integral [ = [[ X ® dX €C*([0,T]; R*®@RY),

and in this case X2 plays the role of a generalised remainder with respect to the
germ (s,t)— X, ® (X; — X;).
In this chapter we explore these notions and explain them in greater detail.

107



108 ROUGH PATHS

7.1. INTEGRAL BEYOND YOUNG

Let us fix (X,Y)€C*x CP We saw in Theorem 6.3 that when o+ 3> 1 we can
define the integral [, = [ g YdX as the unique function which solves

10:0, 5Ist:}/;5Xst+Rst7 Rst:O(t—S) . (72)
This was based on the observation that for the germ A, :=Y, X, we have
0Asut=—0Yu0Xw = [0A[lars<[[0X|lall0Y 5.

Therefore if n:=a+ §>1 we have ||0A]], < oo, i.e. the germ A is coherent, see
Definition 5.7, and the Sewing Lemma can be applied, see Theorem 5.8.

We now focus on the regime v+ < 1. As we have already seen in (6.8) above,
there exist germs A which allow no function I solving (7.2). Indeed, we recall
that choosing X; =1t and Y; =t", t€[0,T], then the germ A, :=Y,X,; satisfies
|5A0%t| >t2*8 see (6.8), and therefore the necessary condition (5.9) in Lemma 5.5
is not satisfied.

A solution is to relax the requirement Ry =o(t — s) in (7.2), say to

dn< L | Rt| S|t —s|™. (7.3)
Arguing as in Lemma 5.5, this would imply
0 Rout| S|t = s[" 4 |u— s[4+ [t —ul" S u—s["+ [t —ul"

since n < 1. On the other hand, by Proposition 5.4 we have [0 Reu| = |0 Asut| <
lu — s]P|t —u|®. Choosing |u — s| = |t —u| shows that the best we can hope for in
(7.3)is n=a+ f.

Summarizing, given (X,Y) € C® x C? with a + 8 <1, it is natural to wonder
whether there exists a function I which satisfies the following weakening of (7.2)

Iy=0,  0ly=Y,6Xy+ Ry,  |Rul<|t—s[ot?, (7.4)

This would provide a “generalised notion of integral” [ O'YdX . This justifies the
following

DEFINITION 7.1. Fiz o, 3€(0,1) with a+ < 1. Given (X,Y)€C*x CP, if there
exists a function I:[0,T| — R which satisfies

I — [,=Y,(X; — X,) + O(Jt — s]**F) uniformly as |t —s| — 0, (7.5)

we say that I is a generalised integral of Y in dX.

We stress that this new definition of integral extends the previous one (7.2) for
(X,Y)eC®x CP with a+ 8> 1, because the term ot — s) is actually O(|t — s|**7)
in this case, by the key estimate for the Young integral (or, equivalently, for the
sewing map).

On the positive side, there is always ezistence for (7./) if a+ f<1. This is a
non-trivial result, due (in a more general setting) to Lyons and Victoir. We state
this as a separate result, which is a consequence of Proposition 7.5 below.
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LEMMA 7.2. Let (X,Y)€C*x CP with a+ 3 <1. There exists (I, R) €C*x Cg+’
satisfying (7.4).

Remark 7.3. It is an easy observation that uniqueness can not hold for (7.1).
Indeed, given I which solves (7.4), any function of the form I/ := I; + h; — ho with
h € CoP still solves (7.4). As a matter of fact, all solutions are of this form, because
given two solutions I, I’ of (7.4), with corresponding R, R’, their difference h:=1"—1
must satisfy |0hs| = |Ri — Ret| S|t — 5|27

Remark 7.4. An integral I as in Definition 7.1 is necessarily of class C* by (7.5).
We state now a result which implies Lemma 7.2 above.

PROPOSITION 7.5. (PARAINTEGRAL) Fiz o, 5€(0,1) with a+ 3 <1. There exists
a (non unique) bilinear and continuous map J<:C*x CP— CSF such that

[J<(X, Y ) [ar s S Cl0X [ 10 |5, (7.6)
for a suitable C=C(«, 3,T), with the property that, for all s <u<t,
5J—<(X7Y)sut:5}{su5Xut- (77)

The proof of Proposition 7.5 is postponed to Section 7.9 below.

Remark 7.6. Let o, 5€(0,1) with a+ < 1. Finding a generalised integral of Y
in dX for (X,Y)eC*xC? as in Definition 7.1 is equivalent to finding Ry, € C57°
such that

5Rsut = 5Ysu 5Xut ;
ReCytr.

Indeed, if we define Ay :=Y, 00Xy, relation (7.8) implies that 6(A + R) =0, hence
there exists I:[0,7] — R which satisfies 6] = A+ R, which is exactly relation (7.5).

By Proposition 7.5 and Remark 7.6, if «, € (0,1) and o+ 5 < 1, any (X,
Y) €C® x C” admits an integral I as in Definition 7.1.

7.2. A NEGATIVE RESULT

We show that the usual integral I(f,g)= fgfs g.ds, when g € C, cannot be extended
to a continuous operator on C* x C?', when o’ + 3’ < 1.

LEMMA 7.7. Set [0,T]=[0,1] and define, for a;, 5 €(0,1),

fn(t) ::%cos (nt), gn(t):= % sin (nt) .

Then f,~40 and g,~>50 (recall Definition 6.15), more precisely:

[ falle =0, l[0fulla < 2; [gnlloc =0, lognlls <2. (7.10)
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(In particular, f,—0 in C* and g, — 0 in C* for any o’ <a and 3' < f3.)
However, if we fit a+ <1, we have I( fn, gn) + 0, because
+oo if a+p<1
vt e0,1]: m I(fo, gn)e=4 5t if a+pB=1.
0 if a+p5>1

Proof. Note that || fulleo=n"" and || f;]|cc = n' =%, hence
| foy = fuld Smin{]| falloclt = 51, 2| fulloc} <min {n' e[t —s],2 n7}.
Since min {x,y} <x7y*~7, for any ~ €0, 1], choosing 7= a we obtain

| fult) = fuls)] <27 [t = s,
hence [|0fp]|o <2'7*< 2. Similar arguments apply to gn, proving (7.10).

Next we observe that % ) 02 "cos?(z) dr = f 0 sin?(xz)dz = ~. Then, for fixed
t>0, as n— 00

nt

nt 2m 5] 1 nt ¢
/ cos®(r) dx :/ cos?(z) dz+ O(1) :—QW{ J +0(1)==n+0(1).
. . 27712 2

™

It follows that

t nt
I(fa, gn)t:#/‘o cos?(ns) ds:#/o cos?(x) dxwgnl—(c&ﬂ)_ ]

7.3. A CHOICE

We have seen in (6.11) above that, given (X,Y) € C%x C? with a+ 3> 1, we have
an ezplicit formula for the remainder Ry =1I; — I, — Y; (X; — X§), given by

t
Rst:/(yu—y;)dxu, 0<s<t<T, (7.11)

where [; = f o Yud X, is the unique function given by the Young integral of Theorem
6.1. Moreover Ry = f (Y, — Y;) dX, is the unique function in Cy which satisfies

ReCy™s, OReut =0Ysu 0 X,  0<s<u<t<T. (7.12)

In the regime o+ 3 < 1, the Young integral is not available anymore. However by
Proposition 7.5 we know that we can find an integral I € C* in the sense of Definition
7.1 by setting

5151? - (Xt Xs) - J_<(X, Y)st7

where J_ is the paraintegral of Proposition 7.5, see also Remark 7.6. This shows that,
in this setting, the remainder Ry = I, — I, — Y; (X; — X;) is not given by an explicit
formula like (7.11) (which is now ill-defined), rather we have

R: _J_<(X7Y)
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However formula (7.11) suggests that we can define
t
/(Yu—yg) AXyi= Ry —Jo(X, V),  O<s<t<T. (7.13)

In other words, the left hand side of (7.13) is chosen to be equal to the remainder
R associated with the integral [ as in (7.4). We recall that R=—J,(X,Y") satisfies

ReCS™,  ORuy=06Yu 06Xy,  0<s<u<t<T. (7.14)

The difference between formula (7.14) and formula (7.12), is that in the former
a+ (<1 while in the latter a« + 3> 1. Accordingly, in (7.14) the function R is not
uniquely determined, while in (7.12) it is.

The comparison between formula (7.14) and formula (7.12), and the explicit
expression (7.11) in the case a+ 3> 1 show that (7.13) is a reasonable definition of
the function (s,t)— f; (Y, —Y;) dX, in the setting o+ < 1.

We also stress that R in (7.14) can not be uniquely determined. Indeed, by
Remark 7.3, we have infinitely many possible choices given by

R'= R+ 6h, heCotB8 hy=0. (7.15)
Remark 7.8. In the special case X =Y and a= (< %, (7.4) becomes

[0:0, 5[5t:X55X5t+R5t7 |R5t|§|t—8|2a. (716)

Now the germ is Ay = X(X; — X;) and we have a simple canonical solution which
does not rely on the paraintegral and is given by

ItZZ%(XtZ_XOQ)a Rstizé(Xt—Xs)Z,
since
X7 X2) = XX X+ (- X2

As we have seen in (6.15)-(6.16), if « >% then (I, R) is the only solution of (7.16)
and moreover

t
Ry = / (X, — X;)dX,

where the integral is in the Young sense. If a < %, then we have infinitely many
possible solutions (I’, R’).

7.4. ONE-DIMENSIONAL ROUGH PATHS

We have seen at the beginning of this chapter that for every i, j € {1,...,d}, the
function (X2)¥ plays the role of the remainder R% associated with a generalised
integral " of (X*, X7) in the sense of Definition 7.1 with a = < %: in other words

the choice of X2 is equivalent to the choice of integrals (in the sense of Definition
7.1) IV eCfor all 4, €{1,...,d}, such that

=0, OLi=XISXA+ (), [(X2)9| S| — sl
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or, in more compact notations,
[0:07 5[St:Xs®X;t+X§t7 |X§t|§|t—8|2a (717)

Existence of X? satisfying (7.17) with a < %is therefore granted by Lemma 7.2, e.g.
via the paraintegral of Theorem 7.5. We also know that in the regime « <% we have
infinitely many possible choices for (7, X?), all of the form (7.15) above.

Suppose first that we are in the setting d =1. Then Definition 3.2 becomes

DEFINITION 7.9. Let a € ]é,%] and X:[0,T] =R of class C*. A a-Rough Path over
X is a pair X = (X!, X?) € C§ x C3* such that

X;t:Xt — X, 5X§ut:X;u Xlltt' (7-18>

We recall that the conditions X € C® and X! =0X € C% are equivalent, and that
(X!, X?) € O x C3* is equivalent to

IXal SfE—slo, XEIS[E—sP

We have seen in Chapter 3 that it is possible to build an integration theory for every
choice of the a-rough path X over X. In this theory we can recover existence and
uniqueness of the integral function [ 6Y dX for a large class of choices of Y. For
this we have to give very different roles to the integrator X and to the integrand Y,
whereas in the case of the Young integral the two functions play a symmetric role:
X will be a component of a rough path and Y a component of a controlled path, see
Chapter 9.

We note that the algebraic condition 6X2,, = X1, X}, is non-linear, which implies
that a-rough paths do not form a vector subspace of C§ x C3°.

11
For all o € (5,5
a rough path lying above X. Indeed, I; ::%th is a generalised integral of X in d.X

|, given any real-valued path X € C*([0,T];R), there is always

integral in the sense of Definition 7.1, because

5@:%@(& _X2)=X, 5X5t+%(5Xst)2 X, 65X+ Ot — 5[2).

Then, by Remark 7.8, we can define a rough path X by setting
X =2 (0, (7.19)
More directly, note that (7.19) satisfies the Chen relation (7.21), and clearly X? €
C3>.
7.5. THE VECTOR CASE

Let us consider now a vector valued path X:[0,T] —R?, with X;= (X/,..., X{). We
suppose that X is of class C%, namely that X*€C® for alli=1,...,d, with a > %
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We can now generalise Definition 7.9 to the vector case. The multi-dimensional
case d > 2 is sensibly richer, because off-diagonal terms [ X*dX? with ¢ # j do not
have explicit candidates as in (7.19).

DEFINITION 7.10. Let o € ]%,%], d>1 and X:[0,T] — R? of class C*. A a-Rough
Path on R? over X is a pair X= (X', X?), with

o X!'=(6X%,_1 ... 4€C%(0,T);RY)
o X2=(RY); 1. . a€C3*(0,T)%; R‘@RY)
such that
(5X§ut)ij = (Xéu)Z (len)ja (7.20)
or equivalently

th_XEu _X%t:X§u®Xit- (7-21)

We denote by Ra.q the space of a-rough paths on RY and by Ra.qa(X) the set of a-
rough paths over X.

The condition (7.20)-(7.21) is the celebrated Chen relation. As in the one-dimen-
sional case, existence of X? satisfying (7.20)-(7.21) with « <% is therefore granted
by Lemma 7.2, e.g. via the paraintegral of Theorem 7.5. We also know that in the
regime « <% we have infinitely many possible choices for (I, X?), all of the form
(7.15) above.

We are going to see in Chapter 9 that it is possible to build an integration theory
for every choice of an a-rough path X. Again, we note that the condition (7.20)-
(7.21) is non-linear, which implies that a-rough paths do not form a vector space.

The following exercise is a simple summary of the discussion at the beginning of
this chapter.

Exercise 7.1. Given a a-rough path X = (X!, X2) over X in R? a process I € C%([0, T7;
RI®RY) satisfying (7.17) is a generalised integral of X in dX in the sense of Definition 7.1.
Viceversa, given X € C%([0,T]; RY) and an integral I € C%([0, T]; R¢® R?) of X in dX, in

the sense of Definition 7.1, defining X2 by (7.17) we obtain a a-rough path X = (X!, X?) over

X in R<

In the multi-dimensional case X € C*([0, T]; R?) with d > 2, building a rough path
over X is non-trivial, because one has to define off-diagonal integrals [ X*dX7 for
i+ j. However, by the results we have proved on the existence of the paraintegral
in Proposition 7.5, we can easily deduce the following.
PROPOSITION 7.11. For any deN, a € (%,%) and X € C([0,T];RY), there is a a-
rough path X which lies above X (hence, by Lemma 7.15, there are infinitely many
of them).

Proof. For any fixed i,j€{1,...,d}, let I be a generalised integral of X*in d X’/
in the sense of Definition 7.1, whose existence is guaranteed by the paraintegral of

Proposition 7.5. Then, by Exercise 7.1, defining X2 by (7.17) we obtain a rough path
X which lies above X. 0
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We conclude with an elementary observation, that will be useful later. By Exer-
cise 7.1, any a-rough path X over X € C%([0,T];R%) determines an integral I of (X,
X), given by (7.17). Applying the latter relation in a telescopic fashion, we can write

[t: Z (th 5Xtiti+1+xgiti+1) ) (722)

[ti,tit1]€EP

where P={0=ty<t;<...<tp=t} is an arbitrary partition of [0, ¢]. We will see
later 777 that a generalization of (7.22), when we also take the limit of vanishing
mesh |P|— 0, is the correct recipe for building “Riemann-sums”, in order to define
a generalised integral of A in dX in the sense of Definition 7.1 for a wide class of
functions h.

7.6. DISTANCE ON ROUGH PATHS

We denote by R, q the set of all a-rough paths in R¢. For X= (X1, X?) e Ra,qa we set

X4

XZ
X = ot (XK= sup oty Xl
0§s<t§T|t 5| 0§s<t§T|t 5|

(7.23)

We stress that R, 4 is not a vector space, because the Chen relation (7.21) is not
linear. However, it is meaningful to define for X, X e R, 4

AR (X, X =X = X o + X2 = X220 (7.24)

Exercise 7.2. dr, ,is a distance on Rq 4.

When we talk of convergence in R, 4, we mean with respect to the distance
dr, . Note that dg, ,is equal on R, 4 to the distance induced by the natural norm
| F o+ |G l2a for (F,G) € C§ x C3°. In particular X, = (X;,, X2) —» X = (X!, X?)
in R, q if and only if X! —X'in C% and X2 — X? in C3“.

LEMMA 7.12. The metric space (Ra,q,dr, ,) i complete.

Proof. Let (X,)nen C Ra,q be a Cauchy sequence. Then, by definition of dz, ,, for
every € >0 there is n. < oo such that for all n,m >n. and 0<s<t <T

IXL(s,t) = Xp(s, 1) <e|t —s|™,  |XE(s,t)— X2 (s,0)|<e|t —s|*. (7.25)
Note that
_ Xl_Xl o XQ_X2 o
dRa,d(X’ X) Z || [e% || + || T20t || :

T

It follows that the sequences of continuous functions (X}),en and (X2),en are
Cauchy in the sup-norm, hence there are continuous functions X! and X2 such that
XL — X — 0 and || X2 — X2|| o — 0. In particular, we have pointwise convergence
Xh(s,t) = X!(s,t) and X2,(s,t) — X?(s,t) as m — oo. Taking this limit in (7.25)
shows that dr, ,(X,, X) < 2¢ for all n > n.. O
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This allows to rephrase the continuity result of section 3.7. We fix
D >|Vo oo+ IV lloo + | Vo0 || + [[ Vo2l oo + [ VZ02 oo

We obtain from Proposition 3.11

PROPOSITION 7.13. We suppose that o € (%, %] and o: RF— R ® (RY)* is of class

C3, with ||[Vo oo+ |V ||oo + | V30 ||oo + [| Vo2 0o + || V02|00 < +00 (without bound-
edness assumptions on o and o3). For X € R4 and Zy € R* we denote by Z:
[0, 7] — R® the unique solution to equation (3.19)

Z[i] = O(t - 5)7 Zg] = 5Zst - J(Zs) Xét - 02(Zs) X?ta

s

Then the map R* X Rea.a3 (Zo, X) — Z €C* is locally Lipschitz continuous.

7.7. CANONICAL ROUGH PATHS FOR « >%

Let %< a’'< % <a<1. Then it is well known that C*C C®'. Therefore, if X €C*([0,T];

R?) we have in particular X € C*'([0,7]; R?) and therefore there is a a’-rough path
X over X. However, is there a a-rough path over X? Note that we have restricted

Definition 7.10 to the range a € (%, %], while here we are discussing the existence of
X2 [0, T2 — R @ R? satisfying the Chen relation (7.21) and

XSt —sp*

1
where now « > 5

LEMMA 7.14. Let o € (%, 1]. For every X € C*([0, T|; RY), there is a unique X*
0, T2 — RI@R? satisfying the Chen relation (7.21) and such that X* € C3*. We
have the explicit formula

t
X2, = / XL, ®dX, X,=6Xe 0<s<i<T, (7.26)

where the integral is in the Young sense. Moreover the map C*> X — X2 € C3* is
continuous (in particular, locally Lipschitz-continuous).

Proof. It is easy to check that X* in (7.26) satisfies the Chen relation (7.18), thanks
to the bi-linearity of the Young integral. Indeed, we can rewrite (7.26) as

t
X2, = / X, ®dX, — X,® (X, — X.), (7.27)

hence for s <u <t we have that
(5X2)sut - _Xs X (Xt - Xs) + Xs ® (Xu - Xs) + Xu ® (Xt - Xu)

- 5X5u ® 5Xut .
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We show now that X?€ O3 We recall that the Young integral satisfies the following
key estimate, for f €C® and g € C? with o+ 8> 1:

gca-ﬁ-ﬁlt - 3|a+ﬁ :

[fdg— fs (gt = 95)

Choosing f=X"and g= X7 shows that X?, given by (7.27), is O(|t — s|**). Finally,
we prove the continuity of C*3 X — X2 e (3. Given X, X €C® and the respective
X2 X% e 0%, we have

t t
X2, - X% = [ (Xl —XL) ®dX, + / XL @ d(X — X).,

s

with all integrals in the Young sense. Then by the Sewing Lemma
X2 = XZ[l2a < Kaa([[0X [lo+ 10X [la) 10X — 60X ||

The proof is complete. O

Therefore, we could extend Definition 7.10 to a-rough paths for o € ( 1]. For
a€ ( 1] and X €C*([0,T]; R%) there is a unique a-rough path over X, which we
call the canonical r’ough path over X.

Whlle for a> < L there is a unique rough path lying above a given path X € C¢,
for a <+ > there are mﬁmtely many of them, that can be characterized explicitly.

1 1

LEMMA 7.15. Let X = (X', X?) be a a-rough path in R, with o€ (5,5]. Then

X = (X', X?) is a a-rough path if and only if for some f € C?**([0,T]; R?®@RY) one
has X2=X2+0f, that is

Xg=X%+ fi— fs 0<s<t<T.

Proof. By assumption X? and X? satisfy the Chen relation (7.21). If X?=X%+§f
then X? € C3* if and only if X2 =9§X? and X2 € C3%. Therefore, if X is a a-rough
path then so is X.

Viceversa, if X is a a-rough path, then §X2?=§X? because both X and X satisfy
the Chen relation (7.21) with the same X', hence X?= X2+ §f for some f. Since
both X2, X2 belong to C2%, then also §f € C3®, which is the same as f € C?*. O

Remark 7.16. We malnly work with a-Holder rough pats for a € ( ) excluding
the boundary case a == for technical reasons. Let us stress that, by domg S0, we are
not throwing away any rough paths, but only giving up a tiny amount of reqularity,
because any %—rough path is a a-rough path, for any a < %

To summarize, the situation is the following:
1. For a € (%, 1} and X € C%([0,T]; R?) there is a unique a-rough path over X

2. Fora e (%, %) and X € CY([0,T];RY), there are infinitely many a-rough paths
over X
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3. For a=
of them.

2, either there is no a-rough path over X, or there are infinitely many

In the range a € (%, 1}, the unique a-rough path X above X can be called the
canonical rough path over X. We let R; 4 be the set of all canonical rough paths
over paths X € C'! (see Lemma 7.14).

7.8. LACK OF CONTINUITY

We have seen in Lemma 7.14 that, for « > =, the map C*> X — X2€ C3* is contin—
uous. It is a crucial fact that this contlnulty property can not be extended to « <
as shown by the next example.

For n € N consider the smooth paths X}, X2:[0,1] = R

XAt ::%cos (nt), X2(t) ::%sin (nt).

We have already shown in Lemma 7.7 that X! — 0 and X2 — 0 in C%, for all a € (0,
) More precisely, we have shown that X! 1 0 and X2 1 0, by showing that

16X, ||1 <2, ||5X2||1 <2 for all n € N and, obv1ously, | X ||OO—>O | X2]|o — 0. Next

we set
I(t /XZ )dX (u for i, j €{1,2},
and correspondingly
(X0 = (7.28)
Z/t(Xﬁ;(U) = Xa(s)) dX;](u) = L) (t) = I,/ () — Xi(s) (X (1) — X(5)) -

It is not difficult to show that (X2)¥ — (X2)¥ in C9, for any 6 € (0,1), where we define

o t-—s Eoiti=1,j=2
xXd=l ,_. * |= i i=2,5=1 - (7.29)
2 0 0 if i=j

As a consequence, for any « € ( ), we have Xj, — 0 in C* and X2 — X? in (3,
that is the canonical rough path (X}L,Xi) converge in R 4 to the rough path (0,X?).

Let us prove that (X2)¥ — (X2)¥ in CY, for any 6 € (0,1). We have already shown
the pointwise (actually uniform) convergence I2(t) —%t. With similar arguments,
one shows the uniform convergence I,” — I/ defined by

5 ifi=1,j=2
=4 -5 ifi=2,j=1"
2 0 ifi=j

I9(t)=
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It follows by (7.28) that we have the uniform convergence (X2)% — I%(t) — I'(s) =
(X?)4. To prove convergence in C9, it suffices to show a uniform “Lipschitz-like”

bound |(X2)| < 2|t — s|, which is easy:

O < [ 1)~ X106 ()|
< 21X X el
=2 Dty
X R
= 2|t—s|.

7.9. PROOF OF PROPOSITION 7.5

Given continuous functions X,Y:[0,7] — R, let us define R, R?> € C,
RYX,Y)y:=-Y,0Xq, RY(X,Y)s:=X;0Yy, 0<s<t<T, (7.30)
and note that
R%=RL+ (XY ).
Recalling Remark 7.6, it is easy to check that R! and R? satisfy
ORY X, Y )qut = O0R*(X, Y )sut = 0 Yor 0 X s . (7.31)

However, neither R nor R? are in Cy ™5 in general, because we can only estimate

B o <MY Nloo 16X Mlay (B2l <X oo [16Y |- (7.32)

We are going to show that, by combining R' and R? in a suitable way, one can build
R which satisfies both (7.8) and (7.9). This yields the existence of an integral.
We start with a technical approximation lemma.

LEMMA 7.17. Given f €C®, there is a sequence (fn)n C C™ such that

0)+> falx),  Vze[0,T]. (7.33)

n>0

One can choose [, so that for every n >0
1Flle <CNOfla2™, I fallo ST I0f la 270, (7.34)
where C € (0,00) depends only on T (e.g. one can take C=2(T*+1)).

Proof. We may assume without loss of generality that f(x)=0 (it suffices to
redefine f(z) as f(z)— f(0), which does not change [|0f||a-)

We extend f:R— R (e.g. with f(x):= f(0) for t <0 and f(z):= f(T) for x >T)
so that || f|» is not changed. Then we fix a probability density ¢:[—1,1] — [0, c0)
with ¢ € C' and for n >0 we define the rescaled density

Pn(x) :=2"9(2" 1) .
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Next, for n >0, we set f,(z):=(f* ¢,)(x), that is

/ fla—2) | (7.35)
It is easy to check that || f, — f|lco — 0. Next we define
folx):=fo(x),  for k>1:  fy(w):= fu(e) = frr(2).

Note that ", fr= fn, hence relation (7.33) is proved (we recall that f(0)=0).
We now prove the first relation in (7.34). Since f(0)=0, for all x € [0,7] we can
write

o=@ < [ 7= o) d= [ 1@ =2)= s0)lo:) d:
<67 o | fo =217 0(2) d= < (T*+ 1) 6 o,
where for the last inequality we have used (x4 y)*<z*+ y* (for a <1 and x,y >0),

r<T and [p]2|* ¢(2)dz < f[im]gb(z) dz =1, because ¢ is a density supported on
[—1,1]. For k>1 we estimate

@) = 1fu@) = fua(o)]
/|fx—2k Flo - 2| 6(2) da
< 2 5f |

again because [ |2]*¢(z) dz <1. We have proved the first relation in (7.34).
We finally prove the second relation in (7.34). Note that

/f ) ¢z — 2) dz—Z"/fx—— (2)dz,

which has the same form as f,(x), see the last integral in (7.35), just with an extra
multiplicative factor 2" and with ¢ replaced by ¢’. Arguing as before, we obtain

@) =1 ()] < (T2 + 1) ( / ]|¢/<z>|dz) 167l

N

@)= )= fa(@ <29 ([ 1oe)1as ) e

for £ >1. We can choose ¢ to be symmetric, decreasing on [0, 1], with ¢(0)=1 and
#(1)=0, so that

/ 6/(2)] dz=2 / (—6/(2)) dz=2($(0) — B(1) =2,
[-1,1] 0

and this completes the proof. 0

Proof of Proposition 7.5. The existence of an integral is an immediate conse-
quence of Remark 7.6, because if we define Ry := J<(X,Y )y, then both relations
(7.8) and (7.9) are satisfied.
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It remains to build J.. Let us write, applying Lemma 7.17,

X(@)=X0)+) Xu(z), Y(@)=Y(0)+) Yulr).

m2>0 n>0
Recalling (7.30), we define
JL(X,Y)i= > RM(X, Y+ > RA(X,, V). (7.36)
os<m<n o<n<m

We show below that the series converge uniformly. Note that Zn>0Xn(ZL‘) =X(x)—
X(0), hence > ., 60X, =0(X — X(0)) =06X, and similarly for Y. Applying (7.31),
we get

5 J—<(X> Y)sut: Z (5?71)5u (5Xm)ut + Z (5}/;1)511 (5Xm)ut

ogm<n o<n<m
n>0 m2>0

which proves (7.7). We now prove (7.6). Note that, by (7.34),
|(6Xn)sel < [ Xilloo [ = 8| S O [|6X [la 272" [t — 51) ,
but at the same time, always by (7.34),
|(6Xn)stl < 1 Xn(3)] + | Xalt) < 2| Xalloo S 2C [|0X [0 272"
Altogether, using the notation z A y :=min{z, y},
1(6X,)st] <2C (16X |0 27" (2]t — 5| A1)
Similarly
(8 Yon)stl S2C 0Y [[5277m (27t — 5| A1)
Recalling (7.30) and applying again (7.34), we get
|R1(Xm Ym)st| < H?MHOO |(5Xn)st|
< 2C2|5X [l [8Y || 27220t — | A1),
and similarly
|R2(Xna Ym)st| < HXHHOO |(5}7m)st|
< 2C%|6X || [|0Y ||g270m27Fm (2™t — s| A1)

These relations show that the series in (7.36) converge indeed uniformly. We now
plug these estimates into (7.36), getting

TL(X, V)l < 2o2||5X||a||5Y||ﬁ< ST 2memgim(gmj s A1)

os<m<n

+ ) 2memhm (2nft— 5| A 1)). (7.37)

osn<m
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Let us set for convenience

L 1
k:kst::log2m,

so that 2™|t — s| <2 if and only if m < k. Since Z;’o:m2_“" < 17127Q 27m the first

sum in (7.37) can be bounded as follows (neglecting the prefactor (1 —27%)71):

Z 9—(atp)m (27t —s| A1)t — 5] Z g(l—a=PFm 4 Z 9—(a+pB)m
m>0 0<€n<15 v (ngé,
l—a—pB)k —(a+P)k
<[t — s 2 2

ol—a—p8 _1q * 1 — 9—(a+h)
é{ ! + ! } [t —s|oth.

21*0*5 -1 1— 27(a+5)
The same estimates apply to the second sum in (7.37), hence (7.6) is proved. [

Remark 7.18. In the previous proof, if a+ =1, then we have

Z 2(1_a_6)m = /% = log2;
_ N—— |t — s|
o<m<k =1
and therefore we obtain, instead of (7.6), that
|J<(f79)|st§|t—8|10g; 0<s<tLT.

|t —s|’






CHAPTER 8§
GEOMETRIC ROUGH PATHS

8.1. GEOMETRIC ROUGH PATHS

We recall that the set of smooth paths C! is not dense in C®, but its closure is quite
large, because it contains C for all o’ > cv. The situation is different for rough paths:
the set R 4 of canonical rough paths over smooth paths is again not dense in R, 4,
but its closure is a significantly smaller set, that we now describe.

DEFINITION 8.1. The closure of Ri,4 in Ra,q for a € E, 1] is denoted by RS ; and
its elements are called geometric rough paths.

For smooth paths f, g € C?, the integration by parts formula holds:

/tf(U) dg(u) = f(t)g(t) — f(s)g(s) —/tg(U)df(U)-

It follows that
t

t
/ (f(u) = f(s))dg(u) +/ (9(u) = g(s)) df(u) = (f(£) = f(s))(g(t) = g(s)).
We have seen in Proposition 6.7 that the same formula holds if (f, g) € C% x C? with
a—+ 3 >1 and the integral is in the Young sense.

Given a smooth path X € C!, define X? by (7.26) as an ordinary integral (i.e.
(X', X?) is the canonical rough path over X). The previous relation for f=X; and
g = X; shows that

(th)ij + (th)ﬁ = (th)i(xit)j . (8.1)
This relation is called the shuffle relation: for i = j it identifies X% in terms of X
| 4
(th)”:_((xit)z)Qa (8'2)
2

while for i # j it expresses (X?)¥ in terms of (X')!, (X')7, (X?)7". Denoting by
Sym(X?) ::% (X2 + (X?)T) the symmetric part of X%, we can rewrite the shuffle
relation more compactly as follows:

Sym(X?) =2 X' @ X", (8.3)

DEFINITION 8.2. Rough paths in Ra.q that satisfy the shuffle relation (8.1)-(8.3)
are called weakly geometric and denoted by Ry%.

123
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Exercise 8.1. For o >% we have R, ¢=R3% (every rough path is weakly geometric).

We can now show that the closure of R; 4 in R, 4 is included in R;V%d.

LEMMA 8.3. Geometric rough paths are weakly geometric: RE, ;CRYE for any a € (%,
1), with a strict inclusion.

Proof. Canonical rough paths (X!, X?) € R; 4 over smooth paths satisfy the shuffle
relation (8.1)-(8.3). Geometric rough paths are by definition limits in R, 4 of smooth
paths in R; 4. Since convergence in R, 4 implies pointwise convergence, geometric
rough paths satisfy the shuffle relation too. This shows that Rf ;C Ry,

To prove that the inclusion R% ;,C Ry, is strict, it suffices to consider a weakly
W,

geometric rough path (X', X?) € R}%; which lies above a path X € C* which is not
in the closure of C'. Such a path is not geometric (recall that (X}, X2) — (X!, X?)
in R4 implies X}, — X! in C%).

To prove the existence of such a rough path, in the one-dimensional case d =1
it is enough to consider the one provided by (7.19), which is by construction weakly
geometric, since the shuffle relation reduces to X2, 32%@@02- 0]

Although the inclusion R, ; C RY%; is strict, what is left out turns out to be not
so large. More precisely, recalling that R}, ; is the closure of Ry 4 in Ry q, we have
a result which is similar to what happens for Holder spaces, with the important
difference that the whole space R, 4 is replaced by R.%. The proof is non-trivial
and we omit it. 7

PROPOSITION 8.4. For any %< o' <a <1 one has R4 CRE ;. This means that
for any X € R;V%d there is a sequence X,, € Ry 4 such that X,;, — X in Ry 4.

We stress that the notion of “weakly geometric” rough path depends only on the
function X = (X!, X?), but the notion of “geometric” rough path depends also on the
chosen space R, 4. Given a weakly geometric rough path X € R, 4, even though X
may fail to be geometric in R, 4, it is certainly geometric in R,/ 4 for all o’ <. In
this sense, every weakly geometric rough path is a geometric rough path, of a possibly
slightly lower reqularity.

Finally we note the following

PROPOSITION 8.5. Let a € (%, 1) and X € C*([0,T}; RY). The canonical a-rough
path constructed in Lemma 7.1/ 1s geometric.

Proof. We recall that by the Chen relation

5(X2)ZA = Xsiu 5X1{t7 5(X2)£it = 5iju 5Xzita
so that

O[(X2)7 + (X)) g = X, 6 X3y + 0X7, 0K iy
On the other hand by a simple computation

S[6X 16X g =0X2, 00X, + X7, 6XE,.
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Therefore (X?)¥ + (X?)% — §X?6X7=4f for some f € C; such that §f € C3*. Since
2a> 1, we obtain that 6 f =0. O

Note that Proposition 8.5 can be seen as a consequence of the integration by
parts formula satisfied by the Young integral, see Proposition 6.7.
8.2. THE STRATONOVICH ROUGH PATH

Let (By)i>0 be a d-dimensional Brownian motion. We have seen in Theorem 4.2 that
the B= (B!, B?), defined by

t
Bl 5B, th:/IB;T@dBT, 0<s<I<T,

11
302
the Ité rough path. As in section 4.4 we modify now this definition and we set

with an [t6 integral, defines a.s. a a-rough path for all a € ( ), that we can call

t
Bli=0Bs  Bli= [ BLoodB,  0<s<i<T.
S
where o denotes Stratonovich integration, namely

t J—
I_Bét::(;Bsta I_Bgt:/(Br_Bs)(g)dBr"'tTSIa O<S<t<T7

with I the identity matrix in R¢® R?% By Lemma 7.15, B = (B!, B?) defines a a-
rough path for all a € (%, %), that we call the Stratonovich rough path. Now we show
that B is geometric. We recall that the integration by parts formula reads in this case
t t
B; B} —B;‘Bg:/ B;;odBH/ B! odB¢, 0<s<t.
Moreover ’ ’

/ BiodB!= B! (B} — B}).
Therefore ’
(B2)7+ (B2)" = BiB! - BB~ Bi(B] - B]) - B/ (B} - By)
= (Bi—B)(B] - B])=[Bi @ Bj]".
As in the remark following Proposition 8.5, also in the case of the Stratonovich rough
path an integration by parts formula is at the heart of the geometric property.

On the other hand, the It6 rough path is not geometric, since the integration by
parts formula with It integrals reads for ¢ = j

t
(35)2—(32)222/ BidBi+(t—s), 0<s<t,

and moreover we have

t
/ BidBi= Bl (Bi— Bi).

s
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Therefore by the definition of B2,
2(B%)% = (Bti)2 (B)?—2BI(B; — B!) — (t —s)
(Bi—Bg)*—(t—s)
[ st & Bst] (t - S)
[ st ® ]Bst] .

"
Note that for i = j we do obtain (IB%)¥ + (IB%)’ = [BL ® BL]¥.

8.3. NON-GEOMETRIC ROUGH PATHS

We next consider generic rough paths. These cannot be approximated by canonical
rough paths over smooth paths. However we have

LEMMA 8.6. Given an arbitrary rough path (X', X?) € R,.q4 lying above X, there is
always a weakly geometric rough path (Xl,}@) R&E lying above the same path X.

Proof. It suffice to define X2 :=XF, for all i > j and use the shuffle relation to define
the remaining entries of X2, i.e. XZQZ = (Xl) and X2 =Xi X} — X3 for all i < j.
In this way (X!, X?) satisfies the shufﬂe relation by construction and it is easy to
check that X2 e C3°. )

It remains to prove that the Chen relation (7.21) holds for (X!, X?), that is

55&%(3, u,t) =X} (s,u) X}(u, t).

If 4> j this holds because X = X3}, so we only need to consider i=j and i < j.

Note that if we define A := 5fst dgst, for arbitrary f, g: [a,b] — R, we have

5Asut = 5fst 59325 - 5fsu 5gsu - 5fut 5gut
= (dfsu + 5fut) 5gst - 5fsu 5gsu - 5fut 5gut
= 5fsu 5gut + 5gsu5fut

Applying this to f= X% and g= X’ yields, for i < j,

0XF(s,u,t) = 6(XIX}—X%)(s,u,t)
= Xi(s,u) Xj(u, t) + X (s, u) Xi(u, t) — Xj(s, u) XHu, t)
= Xi(s,u) Xj(u,t).

Similarly, choosing f = g=X; gives 6X%(s, u,t) = X! (s, u) X u, t). O
As a corollary, we obtain a useful approximation result.

PROPOSITION 8.7. For any rough path (X!, X?) € R, 4, there is a function f €
C?([0,T]; RY@RY) and a sequence of canonical rough paths over smooth paths (X},
X2) e R4 such that

(X5, X2 +0f) — (X1, X?) in Rard, Va'e <§, a) .
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Proof. By Lemma 8.6 there is a weakly geometric rough path (X! X?) lying
above the same path X. Then X2 — X2=§f for some f e C2*([0,T]; R*® R,
by Lemma 7.15. By Proposition 8.4, there is a sequence (X}, X2) € Ry 4 such that
(XL, X2) = (X!, X?) in Rarg, for any o < a. It follows that (X}, X2 +0f) — (X,
X2+ 0f) = (X!, X?). O

8.4. PURE AREA ROUGH PATHS

Given X € C%, we have defined in Definition 3.2 the subset R, q4(X) of rough paths
(X!, X?) € R, 4 lying above X, i.e. such that X' =0X. The case of X' =0 is partic-
ularly interesting:

DEFINITION 8.8. The elements of Ra.a(0), i.e. those of the form X =(0,X?), are
called pure area rough paths.

Pure area rough paths are very explicit. Let us denote by (IR9*?)? the subspace
of R¥*? given by antisymmetric matrices.

LEMMA 8.9. X =(0,X?) is a pure area a-rough path if and only if X*=4f, for
some f €C* ([0, T); R¥%). Such rough path is weakly geometric if and only if X% €
(R&*N2 4.e. X2 is an antisymmetric matriz, for all s,t € |0, T]Qg; equivalently, we

can take f€C?*([0,T]; (R¥*9)2).

Proof. Since (0,0) is a rough path, it follows by Lemma 7.15 that for all (pure area)
rough paths (0, X?) we have X?=4f for some f € C**. We may assume that f(0)=0
(just redefine f(t) as f(¢) — f(0)). Since X! =0, the shuffle relation (8.3) becomes
Sym(X?) =0, i.e. X2 is an antisymmetric matrix. Then f(t)= f(t) — f(0) =X3, is
antisymmetric too. 0

Note that the set R, 4(0) of pure area rough paths is a vector space, because
the Chen relation (7.21) reduces to the linear relation §X?=0. Here is the link with
general rough paths.

PROPOSITION 8.10. The set Ra,a(X) of rough paths laying above a given path X is
an affine space, with associated vector space Ra.qa(0), the space of pure area rough
paths.

Proof. Given rough paths X = (X! X2?) and X = (X!, X?) lying above the same
path X, their difference X — X = (0, X2 — X?2) is a pure area rough path, because it
satisfies the Chen relation §(X? — X2) =0 (since 0X?=X'® X! =§ X?).
Alternatively, Lemma 7.15 yields X2 — X2=§f for some f € C?*, hence (0, X2 —
X?) is a pure area rough path by Lemma 8.9. 0

We have seen in Section 7.8 how pure area rough paths can arise concretely as
limits of canonical rough paths associated with smooth paths.
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8.5. D0SS-SUSSMANN

In this section we suppose that o: IR¥— R*¥ ® (R9)* is such that for alli € {1,...,k} the
d x d matrix ((02)});¢ is symmetric, namely by (3.5) we have the Frobenius condition

k
> ot (W) 0uoi(y) =Y of(y)doi(y),  VyeRFie{l,... .k} j,le{l,..d}. (84)

=1 a=1

js)

If we introduce the vector fields (X;);—1

k
Xif:=Y oo,  [fEC™(RH,
a=1
then the Frobenius condition (8.4) is equivalent to the commutation relation

XjOXg:XgOXj, j,ge{l,,d}

For example, if £k=d=2 and we consider

U}(y) = Lqi=j) vi

namely
0
J(y):( yol )7 y:(ylay2)€R27
Y2
then
0u05(y) = Lizj=a},
and

02 ]é Z aaa ]L{z j=£} Yi,

which is clearly symmetric in (7, /).
If the Frobenius condition (8.4) holds and X = (X!, X?) is a weakly geometric a-
rough path, we obtain

()X = 37 (oialy) ()
= 3 S0t (2)iah ) ()

8
>
Il

Y (@ {(X) + (X2)}

a,

N =
o

o
N

(o2)an(y) (XT)2(X1)° (8.5)

[N N =
o
o
Il
MR

(o2(y) (X @ XY)"
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In this case it turns out that the solution Z to the associated finite difference
equation is a function of X! alone since (3.19) is equivalent to

1
Z3 | Slt=sP,  Z31=0Zu—0(2) Xl — 5 02(Z:) (X 0 XYy). (8.6)

Arguing as in the proof of the proof of Theorem 3.11, it can be seen that the map
(Zo, X' Z is continuous.

PROPOSITION 8.11. Let M >0 and let us suppose that X 1is a weakly geometric
rough path and o: R¥ — RF @ (RY)* satisfies the Frobenius condition (8.4 ). If

max {|0(Zo)| +[0(Zo)| + o2 Zo) |, [XM]as 1KMo} < M,
then for every T >0 there are Tar p 1, Cor p.r >0 such that for T € 10, Tar.p 7]

1Z = Zllooyr + 1162 = 6Z | r + 1 2P = 2|20 - <
<Cu.p.1 (120 — Zo|+ || X = XY )

Proof. The proof follows from the same arguments as in the proof of Theorem
3.11, if one uses the algebraic relations for YBl:= ZB — ZBl and syl .= 528 — § 7]
obtained by replacing X2 with %Xl ® X!, as in

7B = 674 —o(Z) XL — % o2(Zs) (XL @ XL,),

1
07y = (0(Z) = 0(Zs) = 0o 2) X4) X+ 5 005(Z) e (X @ X),

sut
and analogously for ZP¥, §Z13. One can also note the simple estimate
IX!'® X! = X' @ X! lza < X' = X la(IXH o+ 1XH o).

The rest of the proof is identical to that of Theorem 3.11. O

Remark 8.12. Doss and Sussmann prove a continuity result in the sup-norm.

8.6. LACK OF CONTINUITY (AGAIN)

In section 8.5 we have seen that, under appropriate conditions on o, the map (Z,
X1 Z is continuous if X = (X!, X?) varies in the class of weakly geometric rough
paths. In this section we show that this is not a general fact, and the continuity
result of Proposition 3.11 can not be improved in general.

More precisely, we consider the sequence X, = (X}, X2) such that X}, — 0, X2 —
X2=£0 constructed in Section 7.8 and we provide an explicit o: R¥ — R* ® (R%)* one
such that the solution Z™ to the finite difference equation

025 — 0(Z3) (Xp)ste — 02(Z)(X3)se = 0(t — 5)

is not a continuous function of (Z, X') (but only of (Zy, X!, X?)).
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For y1, 12 € R, 0: R? — R?*® (R?)*, we set

() (50

0}(3/) = lyi—j=1y y2 + Li=j=2y y1.

In coordinates,

If we compute the partial derivative

90;(y)
ST =T iay, a€{l,2},
Dy Li=ita) 11,2}

we obtain the expression for o

02 ]E Z aaa ]L{z j#L} Ye

Note that o is not symmetric with respect to (j,¢) i.e. (02)%# (02)f;, namely it does
not satisfy the Frobenius condition (8.4). By taking X? from Section 7.8, we compute

(2(y) X?)' = bzl (@)éb(y)(XQ)b“:FTS(]l{i:% Y1 — Lii=1y ).

Since we have already shown that X! =0, we get

10 -1

we can conclude that the solution y is in the form of exponential different from a
constant.



CHAPTER 9

ROUGH INTEGRATION

9.1. CONTROLLED PATHS

We fix a € ]%, %], X eC([0,T);RY). We recall that fixing a a-rough path X over X
as in Definition 7.9 is equivalent to choosing a solution (I,X?) to (7.17), with I and
X2 representing our choices of the integrals, respectively,

t t
[t::/XT@)er, th::/ (X, - X,)®dX,=L,— I,— X,® (X, — X,).
0 s

The key point is that, having fixed a choice of X2, it is now possible to give a
canonical definition of the integral [|Y dX for a wide class of Y € C*([0, T]; R*®@RY),
namely those paths Y which are controlled by X. In order to motivate this notion,
let us recall that, given X € C%([0,T]; RY) and Y:[0,T] — R* ® R% we look now for
J:[0, 7] — R* and R’:[0,T]% — R* such that, in analogy with (7.4),

Jo=0,  0Ju=Y.0Xu+ Ry,  |RLS|t—s>.

In order to make this operation iterable, it is natural to require that each component
of Y has an analogous property. This is exactly the motivation for the next

DEFINITION 9.1. Let o € ]%,%] and X= (X', X?) an a-rough path on RY. A pair

Z=(Z,7"eC([0,T];R* x (R*®R?)) is a path controlled by X if
Za=ZXo+ 27, |ZJIS =5l (s €0, T (9.1)

The function Z* is called a derivative of Z with respect to X and Z1? is the remainder
of the couple (Z,7").

For a fived a-rough path X on RY, we denote by D¥(R¥) the space of paths
controlled by X with values in RF.

Remark 9.2. Note that in general Z! is not determined by (Z,X!'), so that we
say that Z! is a derivative rather than the derivative of Z. Viceversa, Z is not
determined by (Z1, X1): if (Z, Z') is controlled by X and f € C?*([0, T]; R¥) then
(Z + f,Z%) is also controlled by X.

It is now clear from the definitions that, unlike rough paths, controlled paths
have a natural linear structure, in particular as a linear subspace of C* x C®.
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9.2. THE ROUGH INTEGRAL

Now we can finally show how to modify the germ Y;(X; — X;) in order to obtain a
well-defined integration theory.

PROPOSITION 9.3. Let a € ]%,%] and X = (X', X?) a a-rough path on R If Z=(Z,

ZH:00,T) = R* x (R*®@ RY) is controlled by X as in Definition 9.1, then the germ
Ast =7 th + Zsl th

satisfies 6 A € C3% with 3a > 1.
Therefore we can canonically define J;= JZ dX” as the unique function J: |0,
T] — RF such that Jo=0 and §J — A€ C3%, namely

| Je— Js— Zs X4 — ZE X3 S|t — s>
Finally we have
#P-1
Jt: lim (Zth%lt
i=0

1w?2
i+1 + Ztixtiti+1)

along arbitrary partitions P of [0,t] with vanishing mesh |P|— 0.

Proof. We compute by (7.20)

(SAsut = _5Zsu leLt + Zsl 5X§ut - §Zslu X%t
= — 70X - 028X, (9:2)

Then by (2.8

| 2|20l — s P IX o]t — ul *+10Z |a]u — 5] X|2a]t — u**

)
|5Asut| g |
< (123 aa [IXH o102 all X2 [|2a) [ — 512 (9.3)

Since § A € C3%, we can apply the Sewing Lemma and define JB:= —A(§A) and
J: [0, T] — R* such that Jo=0 and 6J = A+ JP where A is the Sewing Map of
Theorem 5.11, namely

Jo=0,  6Ju=ZXL+ZIX2+ I8 B <t —spe. (9.4)

The last assertion on the convergence of the generalised Riemann sums follows from

(5.13). O
We have in particular proved by (5.14) and (9.3) that

1750 < K (122 | X o162 ] K] 20)- (9.5)

We stress that the function J depends on (Z,X), in particular on Z! as well. We
use the following notations

J:=(J,2), /tz dX:= (J,, Z,) = J.. (9.6)
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We shall see in Proposition 9.5 below that J:[0,7] — R* x (R¥ ® R?) is controlled
by X, i.e. Z is a derivative of J with respect to X as in Definition 9.1.

We define a norm ||-|pz2e and a seminorm []pz. on the space D of paths con-
trolled by X, defined as follows:

1Zlpge == |2l +1201+ 2]z, Z=(2.Z") (9.7)
Z)pge = 167 |a+ 2P0, 28 =620 — 2 XL,

as in (9.1). Recall that we defined the standard norm || f|lce = || fllocc + ||0 f]la in
(1.13).

LEMMA 9.4. We have the equivalence of norms for all Z =(Z,Z') € D¥
1Z llpge <N Zlleo+ 12 leo + 11 2P |20 < C1 Z |l pge, (9-8)

where C' >0 is an explicit constant which depends only on (X, T, «). In particular,
(D, || - lp2e) is @ Banach space.

Proof. The first inequality in (9.8) is obvious by the definition of the norm ||-||ca.
In order to prove the second one, first we note that by (1.15)

[ llee=I1flloo +16.f [la < (L+T*) (| fol +[19.f[a)-

This shows that || ZY]|ce S || Z || p2e for (Z,Z%) € DX Now, since 62y = Z; X3 + z2
by (9.1),

10Z]la < NZ ool XM o+ 122

<
< Crol|Z3l + 182" ) IX o+ T 2] 2a,

namely ||Z||ce S || Z || p2e + || ZP]|20. Finally [|Z®2q < || Z||pze. The proof is com-
plete. 0

9.3. CONTINUITY PROPERTIES OF THE ROUGH INTE-
GRAL

We wrote before Definition 9.1 that the notion of controlled path aimed at making
the rough integral map (7, Z') — (J, Z) iterable, where we use the notation of
Proposition 9.3. In order to make this precise, we need the following important

PROPOSITION 9.5. Let X be a a-rough path on RY with o € ]%,%] and Z € D¥ a

path controlled by X. Then, in the notation of (9.6),
o J=[ ZdX is controlled by X

o the map D¥> Z+— J € D3 is linear and for all Z € DX

Tlpze < 201+ Xz, ) Zo] + T(1 + Ksa) [ Z]pze]- (9.9)
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Proof. Recall first (9.5), so that in particular || J5||5, < +00. Now J=Z1 X2 4 J&!
satisfies

1720 < 122 ) T o < 22 el X T T (9.20)
Finally §J = Z, X}, + JS[?} and therefore
16l < 1 Z oo XM 0 12 |0l X2 |20+ T2 T B34

Therefore (J, Z, J?) € C* x C* x O3 and we obtain that (J, Z) is controlled by X.
We prove now the second assertion. Since 6Zy = Z; X3, + Zg}, by (1.39)
162 lo <NZH || X a7 1 22 2
<Xl +1)(1Z0] + T 2] pge).-

Now, analogously to (9.10), again by (1.39)

17220 <12 ool X 20+ | 7|20
TN T aat X220l Z3] + T 1621 a)-

Therefore, since || X', + [|X?]|20 = |X]|z,, ,, recall (7.23),

a,d)
10Z |+ 17¥ |20 < T TP l30 (1 + X%, )1 23] + T*[Z] pe].

By (9.5) we obtain
Jlpge = 110Z]|a+ |7Z]20 <
< 2(1+ [XIr, )1 Z0] + (1 + Kso) T Z] 3]

The proof is complete. O

We note that the estimate of the seminorm [J]pz« in terms of [Z]pz. rather than
of the norm ||J || pz= in terms of || Z || pz= plays an important role in Chapter 10, see in
particular (10.9). In any case, from (9.9) it is easy to obtain an estimate of ||J || pza:
since Jy=0 and J} = Z,, we obtain

[T llpze = |Zo] + [J]pze <
< 201+ Kso)(1+ [ X[z, o) 1+ T Z || pie
Therefore the linear operator D3> Z — f (')Z dX € D% is continuous. In fact a

stronger property holds: we have continuity of the map (X, Z) — | O'Z dX. In order
to prove this, we need to introduce the following space

S.:={(X, Z): X is a a-rough path, Z € D¥'},
and the following quantity for Z € D¥ and Z € DX

1Z; Z)x 5 00:= 162" = 62| o+ || 2P — 2] 2,
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where ZB =67 — Z'X" and ZP =67 — Z'X!, recall (9.7). We endow S, with the
distance (see (7.24) for the definition of dr, ,)

da((X, 2), (X, Z)) = dr,, (X, X) +|Z0 — Zo|+|Z5 — Z5|+1Z; Z]x x 20
Let us note that in the case X =X, we have
Z; Z)x x20= 2 — Z]pyp,  du((X,2),(X,2))=|Z - Z||pz,
see the definition (9.7) of the norm ||-[|p2e. Note that [Z; Z]x x 2, is not a function

of Z — Z when X#X.

PROPOSITION 9.6. (LOCAL LIPSCHITZ ESTIMATE) Let a € ]%, %] )

So2 (X, Z2)— (X, [,ZdX) €8, is continuous with respect to dg.
_ More precisely, for every M >0 there is Kyro >0 such that for all (X, Z), (X,
Z) €S, satisfying

The function

LT+ [ Xlry ot 12 1032 < M,
setting J := [ Z dX and j::f(;Z dX we have
da((X, J), (X, ) <
S2MP(1+ Kso)ldr,, (X, X) +]Zo — Zol+1 Z5 — Z|+T°(Z; Z]x x 2]
L2LMP(1+ K34) do((X, Z), (X, Z)).

Proof. Let X = (X', X?) and X = (X', X?) be a-rough paths with a € ]é, %] and

Z € D¥, Z € D. We argue as in the proof of (9.9), using furthermore a number
of times the simple estimate

lab—ab| <|a—al|b|+|a||b—b]|. (9.11)
We set for notational convenience € := 7. Then, since §Z,, = Z XL, + Zg], by (1.39)
162 =62 la <N 2" = ZM|oolI XM o+ [| 2 || X = X |ate | 25— ZP] 24
<SUIXMa+1)(1Z5 — Zo|+¢[Z; Z]x x20) + MIX = X[,
since by assumption
120 < 1Z0] +ell0Z o < (1+e)(1Z0] + 1021 a) < M.

Now J& = 7 X2 4 J&

o » so that arguing similarly

1T — Tl < T = TBl a0+ [| 27 X2 = 20 X230 <
<e | T¥ = T 0t IXP]l2a(1 26 — Zol+e|62" — 621 la) + M2 X — X2 56

Therefore, since 1+ || X o+ [|X?] 20 =1+ || Xz, , < M,

167 = 67 [|oc+ || TP = TP 20 <
<6”‘][3} - j[3]H3a+M2(|Z& - Z&H—E[Z, Z]X,X,Qa + dRa,d<X7 X))
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We can estimate in the same way

16A =8 A0 < 12 = ZP 50l X |a+ 1220 ]| X" = X |o +
102" = 6ZM|al X220+ 102 [ XZ — X2||20
< 125 Zx 500 X[ Ra o+ [Z] D20 dr,, (X, X)
< M([Z7 Z]X,X,Qa + dRa,d<X7 X))
By the Sewing bound (1.41), and since ¢ < M,
€ ||J[3] - j[3] ||3a < Kg@M(e[Z7 Z]X,X,Za + MdRa,d(Xa X))
We obtain
[T Tx 5,20 =107 = 0Z |0+ || P — JP||20 <
SMP(1+ K30)[1 26 — Zg|+dr,, (X, X) + €[ Z; Z]x 5 20)-
Since Jy— Jo=0, J} — Jt = Zy— Z,, we obtain
do((X, ), (X, J)) = dr,, (X, X) +]Zo — Zo|+[T; I )x % 20
S2MP(1+ Kso)[| 20 — Zol+| 26 — Z§|+-dr,, (X, X) + €[ Z; Z]x 5 24)-

The second estimate follows since we have assumed that 1 +¢ < M. O

9.4. STOCHASTIC AND ROUGH INTEGRALS
By Theorem 4.3, a.s. the Itd integral in (4.5) is a generalised integral of A in dB in
the sense of Definition 7.1.

9.5. PROPERTIES IN THE GEOMETRIC CASE

We have seen in Proposition 6.7 that the Young integral satisfies the classical inte-
gration by parts formula. We consider now a weakly geometric rough path X and

two paths f=(f, f'),g=(g,9") controlled by X. We set

t t
Ft::F0+/ deXS7 Gt::G0+/g5dX5, tZO
0 0

We want to show that, under the assumption that X is weakly geometric, an anal-
ogous integration by parts formula holds, namely:

t t
kG, = F0G0+/ FsngXs+/ G, [ dX,.
0 0

J/

-~

I
We start by showing that (F, g,, Fy g2 + fs9s)sejo,r) is controlled by X:
tht _Fsgs = Ftégst+ gs(stt
- Fs 5931& + gs 5Fst +5Fst 59325
= (Fogs + fo95) Xs + O(It — s *).
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The same holds of course for (f; Gy, Gsfs+ fs gs)sefo,7]- Now we know that I is the
integral uniquely associated with the germ

Ast = (FS gs + Gs fS)Xét + (Fs gsl + Gsfsl + 2fs gs)XEt-
By the weakly geometric condition, we have 2X2 = (X},)? and therefore we obtain
ASt = (FS Js + GS fS)X;t + (FS gsl + Gstl)th + fs Js (X;t)Q
Now we write

5(FG)5t — 5F5th+F55GSt
— Gs 5F3t+Fs(SGst+(SFst 5Gst
- (Fs Js + Gs fs)xgt + (Fs gsl + Gsfsl)th + 5Fst 5Gst + O(|t - S|3a)'

Now since X2 € C3¢

5Fst 5Gst = (fsxét + fleEt)(gsxét + gngt) + O(lt - S|3a)
= [59:(X5)* + O(|t — s*¥).

Then we obtain that
(PG = A+ O(|t —s[*).
Since 3a > 1, it follows that FiG; — FyGo=1I; for all t > 0.

Example 9.7. It is well known that the Stratonovich stochastic integral satisfies the
above integration by parts formula. This section extends this result to all (weakly)
geometric rough paths.






CHAPTER 10

ROUGH INTEGRAL EQUATIONS

In this chapter we go back to the finite difference equation (3.19) in the rough setting

11
@€ (33
end of Section 6.2. Now that we have studied the rough integral in Chapter 9, we
can indeed show that the equation

], and we discute its integral formulation that we already mentioned at the

1 ZB < |t — |3, 728 =67, —0(2,) XY — 02(Z,) X2, (10.1)

recall (3.18), can be interpreted in the context of controlled paths. Indeed, (10.1)
suggests that, for any candidate solution Z, the pair Z = (Z,0(Z)) should be con-
trolled by X. At the same time, in order to apply Proposition 9.3 and interpret
(10.1) as an integral equation, we are going to shows that (0(Z), 02(Z)) is controlled
by X. This is guaranteed by the following

LEMMA 10.1. Let ¢: RE— TR’ be of class C? and f=(f, f') € D¥(RF). Set
o(f) = (o(f), Vo(f) 1),
where §(f): [0,T] — R’ is defined by ¢(f)::= ¢(f,) and
Vo(f) L0, TI=R@RY, (Vo(f) f)i'= i 00" (fo) - (fi)7.
Then ¢(f) € D3 (R). B

Proof. Analogously to (3.22) we have for f=(f, f) € D¥(RF), setting f2:=
Ofs— fiXY asin (9.1),

o(HE = () — () — Vol fs) f1XL (10.2)
1
= Vo) f2 /0 VO(fot r3fa) — VO(£2)] drofir

= Vo(f) 2+ /O (1= 1) V20 fo+ ubfug) dit 80 @ 8o

Then we can write using the estimate |ab—ab|<|a —al|b|+|a||b—b]

IVo(fe) 1=V o(f) 11 < el —= FH+e 1 = Fl 11 Moo,
16(H)T < S 1R+ 181412, (10.3)
where
cé{)JI:: sup |[Vo(fs)l, céf)f:: sup IV20( fs+udfs)l. (10.4)
s€[0,7] 5,t€[0,T],u€(0,1]

139



140 ROUGH INTEGRAL EQUATIONS

Therefore (¢(f), Vo(f) f1) is controlled by X. O

This suggests that we can reinterpret the finite difference equation (10.1) as
follows: we look for Z:[0,T] — R¥ such that Z = (Z,0(Z7)) is controlled by X (namely
it belongs to D3*(IRF)) and

Z,=(Z,0) +/ta(Z) X,  Vtelo,T). (10.5)

By Lemma 10.1, 6(Z)=(c(Z),Vo(Z) Z'), but here Z'=0c(Z), so that
0(Z)=(0(2),Va(Z)a(Z))=(0(2),02(2)),

is controlled by X, where we use the notation o9: R¥ — R*F ® R¢ ® R?

oa(y):=Va(y)aly),  loa(y)]Tm:=) " Vaio'i(y) o (y).

By Proposition 9.3, the integral equation in (10.5) is equivalent to

\ZB) <)t — s, ZB =67 — 0(Z2) XY, — 05(Z,) X2 (10.6)

Viceversa, if Z € C*([0,T]; R¥) is such that ZPl € C3%, then setting Z':=o(Z)
the path Z = (Z,Z') is controlled by X and satisfies (10.5). Therefore, the integral
equation (10.5) is equivalent to the finite difference equation (10.6).

10.1. LOCALIZATION ARGUMENT

PROPOSITION 10.2. If we can prove local existence for the rough differential equation
(10.6) under the assumption that o is of class C* and o,V o ,V?c,V30 are bounded,
then we can prove local existence for (10.6) assuming only that o is of class C®.

Proof. Let o be of class C3. Note that ¢ and its derivatives are bounded on the
closed unit ball B:={z € R*: |z — Zy| <1}, which is a compact subset of R*. Then
we can find a function ¢ of class C® which is bounded with all its derivatives up
to the third on the whole R* and coincides with o on B. By local existence for &,
there is a solution Z: [0, T] — R* of the RDE (10.6) with o replaced by 4. Since
Z is continuous with Zy€ B, we can find 7" > 0 such that Z; € B for all t € [0,7"].
Then o(Z;) =6(Z;) and 09(Z;) = 69(Z;) for all t €0, 7], so that Z is a solution of
the original RDE (10.6) on the shorter time interval [0,7”]. We have proved local
existence assuming only that o is of class C3. 0

10.2. INVARIANCE

In this section we prepare the ground for a contraction argument to be proved in
the next section. We start with an estimate of [0(f)]pza(re) in terms of [ f]pza g,
under the assumption that o is of class C? with bounded first and second derivative.
We fix D >0 such that

D> max { Vo . V20 ).
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LEMMA 10.3. Let o:IRF— R*¥ @ R? be of class C? with |Vo ||e + || V30 ||ee < D, for
some D < +o0. Then for some C >0 and any f=(f, f) € D3 (RF)

lo(Hlpzemrary < D([Flpzemey + [ loollOf lla+ 105 112)- (10.7)
Proof. By (10.3) we have
16(Va(f) flla< DU o+ 1 lsollOf Nla),
o ()P 20 < D P20+ (165 112)-

Therefore, recalling (9.7),

o (Hlpzemrery = 16(Vo(f) Flla+ lo(F) Pz
< D([flogeey + 1 cllof lla+ 165 112)-

where, in the last inequality, we apply (9.8). O
We define I': D3¢ (R*) — D3(RF)

P(f) = (Z0,0) + / o(f) dX,

0

(we know that indeed I' maps D3*(RR¥) into D3¢(R¥) by Lemma 10.1). In other
words, I'(f, f1) is equal to the only (J, J') € D¥" such that

Jo=2Zy, Ji=o(fs), 0Ju—o(f)Xy—Volfs) fi XZeC3 (10.8)

We want to construct solutions to (10.6) by a fixed point argument for 7' small
enough. Let M >0 and X such that || X, + [|X?|l2o < M and

B:={f=(f. ") €D (fo, fo) = (Zo,0(Z0)), [ flpae(mn <AC}, (10.9)
where
C:=(14+M)D| 0| s (10.10)

LEMMA 10.4. If T*<eq given by

f0:= 8(1+K3a)(1+D)(11+ ICa S IEEYaEk (10.11)
then I'(B) C B. Moreover, setting
L::2(1+M)||a||ooz%, (10.12)
for any £=(f, f1) € B we have
max {[|6f o, [| ffloc} < L. (10.13)

Proof. Let f e B. Setting ¢:=T%, if € <¢( then in particular

oo < ol

C< <
ST K)ol A+ M) S8
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We obtain
1 oo < [o(Zo)| +€ll0f M la < [lo oo + o[ flpzemey < 2ll0 [l < L,
since £04C < ||0 ||oo- Similarly

1f lla < el P a4 Il FH ool X o < 20AC + (|00 + £04C) M
= cdC(14+M) + |0l M <2(1+M)|o||oc=L.

Therefore (10.13) is proved.
We prove now that I'( f) € B. We recall that T'( f)=(J,0(f)), where J is uniquely
determined by (10.8). By (9.9)

[C(H)lpzemey < 2(1+M)(IVa(Zo) 0(Zo)| +e(1+ Kzo) o (f)]p2amr))-
By (10.7) and (10.13) we obtain
[C(F))pzerny <201+ M)(D o floo + (1 + Ksa) D([ flpgecmer) +2L7)).

Now (14+ M)D||o||.c=C, and

4C? C
D([fpze(me) +2L%) < D(4C’+2ﬁ> < 8C(D _1_5)

Note that

D+ S =Dt (14 Mo < (14 M)A+ D)1+ o), (10.14)

so that by (10.11)
[C(f))pzemey < 20 +2C =4C.

Therefore, I'( f) € B. O

10.3. LOCAL LIPSCHITZ CONTINUITY

We suppose that o is of class C?, with |0 |lec + |V O |lec + [|V?0 ||l so + || V20|00 < +00
and we fix D >0 such that

D2 Voo + V0 oo + V0 |-

LEMMA 10.5. (LOCAL LIPSCHITZ ESTIMATE) If T € |0, o] where gq is as in
(10.11), then for f, f € B, with B defined in (10.9), we have the local Lipschitz

estimate
[o(f) — U(f)]D%g(Rk@Rd) < 24+ D+lolleo) [f — f]pgg(w) (10.15)
Proof. By Lemma 10.4 we have for f=(f, f\), f=(f, f)

max {[|0f la, 10 lla 1/ lloc} < L,



10.3 LocAL LIPSCHITZ CONTINUITY 143

with L as in (10.12). Now, we want to estimate
lo(f)— U(f)]Dgg(Rk@aRd) = U5(V0(f) ft— VU(f) JH)Hg
A
Ho () = o) g

-~

B

We set A= f— f, Al:= f1— f1, ARl.= 2 12l We first estimate A:
0(Va(f) f1=Vo(f) [Nsl=
=[6(Vo(f))s fi + Vo (f)ofs—o(V

) o(F))s fi = Vo (f)ofil
<[0(Va(f) =Va(f))s fil+16(Va(f)
(

)st (ftl _7f_t1)| +
(5f - 5f)st|

+(Vo(fs) = Vo(f))oful +Vo(f)
By Lemma 2.8 and (1.39) we have for e =T

A < DI lloo(I8A ot (10f 1+ 10F la) 1A ) + 10F lall Al +
HAllool|6f o+ 10AY o]
< DS Nla+ 10 a1 Hloo + 18f e [Alloo + 11 ool 0A o+
+(1+e[l0f o)l oA |o]
< DIRL + 6 ) Alloo + LIIGA a1+ L) [6A[o]

We show now that

B < D((1fPaat310f Aot (N6 lla+ 18 la) 1A o+ A2 ]|20)
< DI fPN2at3L) | Alloot2L 1 6A o+ | A%]|20]. (10.16)

We have by (10.2)
B<|Vo(f) fA=Va(f) [Pz +

+/1HV20'(f+U(Sf)5f®(sf—VQO'(f_—i—U(Sf_)éf_@(;f_Hga du.
0

With the usual estimate |ab—ab|<|a —a| |b|+|a||b—b| we can write

IVo(f) f2 = Vol f) fP]aa<

<Vo(f) = Vo (Pl Fza+ Vo f)llocl A2
<IVE 0 lloo [ Aol 20t 1V o lloo [| AP 20
DA ool £ P20+ | A 20).

For the other term
1
[ 19207+ us)- 61 @8 = Vo(F + ubf)- 6] 67 |2 dus
0

<V o lloo 10 IAUIA ot 10Alo0) + V2 0 o (10 o+ 116f lla) 104l
SDIOF AN Allsot10A o) + (10 o+ 10 o) Ao

Recalling that ||0A||oc < 2||A||co, we have finished the proof of (10.16).
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Since Ag= fo— fo=0, we have ||A|<e]|0A]|o. Summing up, we obtain

[O'(f) - O.(f)]D%a(Rk@Rd) =A+B )
<{BL+e(5L* + [ f]p2ewm)) [0Ala + (1 + L) [f — flp2emrm}-

On the other hand

10A[e < el AP o + 1A ool X

<
< el|AP|zq +eM [|0Aq
< e(I+M)[f - f]Dgg(]Rk’)-
Therefore
lo(f) — U(f)]pgg(ﬂ%k@n{d) < (e(T+M)er+eo) [f - J_:]Dgg(ﬂak),

where we set

c1:=D (3L + ([ f]p2e(re) + 5L?)), co:=D(1+4¢L).
Since [ f]pzamr) <4C we obtain, recalling that DL =2C by (10.12),

¢1 < D(3L+2(4C+5L%))<6C + 2050<D +%)

< 6C +20eC(1+ D)(1+ ||o|o) (1 + M)
< 60 +3C=9C,

where we have used first (10.14) and then (10.10)-(10.11). Similarly

e(14+ M)er < 9C(1 + M) = 9D ||o||oo(1 + M)? <2,

and
co=D+eDL=D+2C <D+ 0] -
Therefore
1+ M)y +c2<2+ D+ ||0]0c-
The proof is finished. O

10.4. CONTRACTION

In this section we prove local existence by means of a fixed point argument, assuming
o to be of class C® and bounded with its first, second and third derivatives, namely
10 loo T+ |V |loo + [| V20 ||o + || V30 || oo < +00. Therefore the assumptions are stronger
than for the discrete approximation of Section 3.9. However this method has the
advantage of not requiring compactness of the image of I' and therefore this approach
works also for rough equations with values in infinite-dimensional spaces.

Let us fix D >0 such that

D Zmax {[|V 0o, [[V?0 [[oc; [[VP0 oo}
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Recalling that B was defined in (10.9), we can now show the following

LEMMA 10.6. If T*€ |0,g0| where e is as in (10.11), then I': B— B is a contraction

for |l pze-

Proof. Let f=(f, f!) and f=(f, f') bein B. Since fo= fo and f¢ = f4, by the
definitions, see in particular (9.7),

f) - F(f)HD%g(IRk) = [F(f) - F(f)]D%g(Rk)-
9)

1T

We set e:=T“ By (9
(f) - F(f)]Dgg(Rk) < e2(1+ M)(1+ K3o) [o(f) — U(f)]Dgg(Rk)-
Now by Lemma 10.5
lo(f) — U(f)]Dgg(IRk@IRd) < 2+ DH+|lofleo) [f - f]Dgg(Rk)-
Now 2+ D+ ||0|lc <2(1 +D)(1 4|0 ||c). Therefore
[C(f) —T(f)|pzemey < calf — J_:]Dgg(n{k),

with
1
2
by (10.11). This concludes the proof. O

ca=e2(1+M)(1+ K34)2(1+ D)(1+[[o]lo) <






CHAPTER 11

ALGEBRA

Let us recall that a d-dimensional a-rough path X = (X', X?) with « >% is such that
X,; takes values in G :=R? x (1Rd® ]Rd) for all 0 <s<t<T. We want to show that
the Chen relation (7.21) has a very natural algebraic interpretation if we endow G
with a suitable group structure.

11.1. A NON-COMMUTATIVE GROUP

We denote in the following generic elements x € G =R? x (R?® R?) by z = (z1, 72)
with z; € R? and 2, € RY® RY. We define an operation *: G x G — G as follows: for
x,y€G with == (x1,29) and y = (y1, y2) we set

xxy:=z=21,22), 21:=21+ Y1, 20 =T+ Yo+ 11 R Y1.

It is simple to see that (G, *,1), is a group, where 1:=(0,0). First associativity of
the product:

(x*xy)*z = (11+wy+21,02+ Y+ 22+1Q Y1+ (T1+11) @ 21)
(x1+y1+21,$2+y2+22+x1®(y1+21)+y1®21)

= rx(yx2).

Now the fact that 1 is the neutral element is obvious. Finally the inverse is given
explicitly by

V= (), —2y+ 1, @11). (11.1)

Let us note that (G, *,1) is non-commutative for d > 2, since in general x; ® y; #
Y1 X T7.

Now we want to interpret the Chen relation (7.21) in this setting. Given a a-
rough path X = (X! X?), we write

X: [0, T]Zg — @G, Xy = (X;t, X?t).
Then the Chen formula (7.21) yields
Xt = Xy * Xy, 0<s<t«T.
Indeed it is enough to note that for 0 <s<u <t <T

X=X, + X, Xz =X2, + X%+ XL, o X,

147
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Note that we also have, by the analytical estimates |XZ| <[t — s|* that X =1.

11.2. SHUFFLE GROUP

We can consider the subset H C G given by
Hi={r=(21,22) €G: w2+ =11Q11}, (11.2)

where (a @ b)T:=b®a for a,be R%
We can see that H is a subgroup of G: if x,y € H then z:=x x y satisfies

otz = Tt Yt Q@u+as 4y + 1 ®a
= 10T+ Y1 QU +x1 QY1+ Y1 ® a1
= (x1+y1)®(x1+y1)221®21.

Moreover if € H then its inverse y =271 € G satisfies

Yoty = —To+T1QT1— 75 + 1101
= 111+ 215101
= (—2) @ (—2) =y @y
so that 2*("Y € H. Finally 1 € H. Therefore H is indeed a (proper) subgroup of

G. Moreover by (11.1) and the relation defining elements of H we have the simpler
expression for the inverse

2N = (=, 1), reH. (11.3)
Indeed for z € H we obtain
(.Tl,.l’g)*(—l’l,l'g) = (_x17xg)*(x17x2)
= ($1—$1,$2+$2T—$1®$1)
= (0,0).

Therefore by (8.1) we have the following

LEMMA 11.1. A rough path X is weakly geometric if and only if the associated map
X: (0,712 — G takes values in H.

11.3. ALGEBRA AND GENERALISED INTEGRAL

As we explained at the beginning of Chapter 7, given X! =X € C¢, a choice of X?
is equivalent to a choice of a generalised integral [; = f Ot X;®dX, t€]0,T], namely

[0, T| - R@RY, In=0, 04— X,®0Xs=X%, X?e(3~ (11.4)
Given X = (X! X?), we set now

X:[0,7T]—G, Xp=(X,1,), te[0,T].
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We can see that (X )o<s<i<r can be recovered as a purely algebraic function of
(X¢)o<t<r Indeed for 0< s <t

X*(il) * Xt =

S

Xs, =L+ X5 ® Xs) % (X¢ Iy)
Xt X, It — IS+XS®XS_XS®Xt)
. 0l — Xs @ (Xy — X))
st X3t) = X (11.5)

(=
(
(X5
(X5

Remark 11.2. This definition of X:[0,7'] — G is not the only possible one. In fact,
given any fixed g € G, the function X;:= g * X, will also satisfy X:(_l) * X; = X,
Vice versa, given any X: [0, 7] — G with this property, we obtain that X, * X:(fl) =
X, * X;Y namely the function [0, 7] 3t — X, * X,V is constant and therefore
there is a g € G such that X;:= g+ X;. Denoting g = (X, Iy) € G, we see that the
generic element g X, is given by

g*x X = (Xo+ Xy, Io+ I+ Xg® Xy) =: (X, I)
which corresponds to a change of initial condition. Indeed (X/, I{)c[o,1] satisfies
Ol — X{0Xo =0l + X0 ® 0 X — Xg® 0X g — X, @ 0 X = X5y, (11.6)

namely [' is still a generalised integral of the form 5+ [ (Xg+ X;) ® dX,.

For example, if X;: =Xy, then we also have X:(_l) * X; = X,; and in this case by
(11.4)

Xt:XOt — (Xt - Xo, It - Xo® (Xt - X())) — (—X(), —X0®X0) % (Xt, -[t) (117)

Finally, we note that the condition X2 € C3* is equivalent to the condition that
(I’, X") be controlled by X, since by (11.6)

IXZ|20 = (101" — X' @ X| 0.

Suppose now that (X )ocs<i<r 18 weakly geometric, namely X, belongs to the
semigroup H defined in (11.2). It is then natural to ask that X:[0,7] — G takes also
values in H. If we define as above X;:= X, = (X{;, X3;), then this has the desidered

properties since
X5+ (X3)" = X @ Xy

Again this function is not unique since for any h € H the function ¢t — h* X, again has
the same property (and this is the general form of the function with such property).

Interestingly, it seems that in the geometric case it is not possible to consider
the example we choose at the beginning of this section, namely I, = fOX ® d X,
t €10, T], satisfying (11.4), unless Xo=0. Indeed, if X0, then the element (—Xj,
—Xo® Xy) € G does not belong to H, since

—Xo® Xo+ (—Xo® Xo)T = -2 X, ® Xo # Xo ® Xo.
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On the other hand we have seen in (11.7) that X; = (—Xo, —Xo ® Xo) * (X3, I}), so
that (X3, I;) does not belong to H either (otherwise all three elements in the equality
would).

This includes the smooth case. A general and simple solution is to replace

(Xs)se[o,T] by (Xs - Xo)se[o,T}-

11.4. UNORDERED TIMES

Given the relation (11.5) X:(*l) * X; = X, for s <t, it is natural to wonder whether

we have an expression for X:(_l) * X; when s> t, which is equivalent to having an
expression for X,; when s >t. If X, = X; — X, and X:[0,T] — R%is of class C*, then
it is enough to set

XL i=—-XL=X,— X, th::/ (X, — X,) ® X, dr. (11.8)
Then !
X:t(_l) = (X%su _th + X%s & X%s)
_ (ng,/ (XT—XS+XS—Xt)®XTdr)
t

- th.

If X=X, — X,and X:[0,T]— R%is only of class C® with a € (0,1), the definition
of X} for s>t is the same.

X;t::_X%& 0<t<S<T7
and we obtain
XL =X, - X, |X§t|§|t—s|a, Vs, te€[0,T].

However the definition of X2 in (11.8) can not be used if X is not C'. We want at
least to extend X? to [0,7T]? so that for all s,u,t € [0,T]

5X§ut = Xéu ® lezta |X§t| 5 |t - S|2a'
We set for 0 <t <s<T following (11.1)

T =-XE 4 X e X

S

th = X:

Note that then we clearly have |XZ| < |t — s]2* for all s,t€[0,T].
With these choices, we have by (11.1)

X=XV s telo,T].
Then by (11.5), for 0<t<s<T
Xst = X:éil) = (X:(il) * Xs)*(il) = X:(il) % Xt,

namely (11.5) holds for all s,¢ € [0,T].
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Now, suppose that we have a general germ A: [0, T]> — R. We suppose that it
satisfies for some 7> 1

| Agt — Ag — Al <Ca(Ju — s| V[t —ul)”, s,u,t€0,T).

In particular, the restriction A: [0, T])% — R is such that dA:[0,7]2 — R belongs to
CJ. By the Sewing Lemma, we have a unique choice for (I, R) such that

IOZOa 5Ist:Ast+Rst7 |Rst|§,|t_5|n7 0<s<t<T.

We want to extend R to a function on [0,7]? in such a way that the previous formula
holds over [0, T]%. We set

Ry=—Agy—Ay— Ry,  0<t<s<T. (11.9)
Since 01, = —0dl;, we have for t < s
Rst = _Ast - (5[ts - Rts) - Rts = _Ast - (Hts = 5[st - Asu
so that 67 = A+ R on [0, T]?. Moreover, since Ass=0 by Remark 5.6,
| Rst| <|(0A)sts| + | Res| < (Cp+1) Calt —s|7, 0<t<s<T. (11.10)

11.5. AN EXAMPLE: THE BROWNIAN CASE

Let consider the It6 Brownian rough paths in R¢
t
Bl,=B,— B, thz/ (B,~B)®dB,  0<s<t<T.
Note that if s>t we can not use naively the definition (11.8) for B since the
stochastic integral f:(Bs — B,) ® dB, is anticipative, namely (Bs — B,):<r<s iS not

adapted to the filtration of (B,):<,<s, and therefore some care is required. Let us
rather apply the algebraic definition By;:= IB;E,_I), namely for 0 <t <s<T we set

Bgt = Bt_BS7
B2 = —/ (B, — By) ©dB, + (B, — B) ® (B, — B,)
t

= / dB, ® (B, — By) + (s —t)I,
t
where I is the identity matrix of R% In other words
(B2)9 = [ 4BL(B,~ BY+ (5= D1y
t

Here a one-parameter function B: [0, 7] — G such that By = ]B:(fl) * B, is given by

t
IBt:(Bt,/Br@)dBr), t>0.
0
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Let us consider now the Stratonovich case:
¢
Bl=DB,~ B, th:/ (B.—B)@odB,,  0<s<t<T.

Then we obtain from the definitions of the previous section for 0 <t <s<T

Bgt = Bi— B,
and if one applies (11.3) then we have for 0 <t <s<T
By = (BL)'= [ odBo (B~ By
t
namely
(B2) = [ (B~ Biods!
t

Here a one-parameter function B:[0,7] — H such that B, =B~ % B, is given by

t
Bt:<Bt,/Br®OdBr), tZO
0

As discussed at the end of Section 11.3, with this definition B; € H for all t € [0, T]
as long as By=0.
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NEW TOPICS

Regularization by noise

Stochastic sewing lemma

Machine learning (Rama Cont, rough neural)
Unbounded rough drivers

Equazioni riflesse

Rough Gronwall

BM in magnetic field

Parte algebrica, alberi, prodotto tensore, rough equations
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