Ten lectures on rough paths (work in progress)

F. CARAVENNA M. GUBINELLI L. ZAMBOTTI

TABLE OF CONTENTS

I.	Rough Equations	9
1.	The Sewing Bound 1	13
1.1.	Controlled differential equation 1	13
	-	14
		15
1.4.		17
1.5.		18
1.6.	·	20
1.7.		21
1.8.	A discrete Sewing Bound	23
1.9.	Extra (to be completed) 22	25
2 .	DIFFERENCE EQUATIONS: THE YOUNG CASE	27
2.1.		27
2.2.	The second	28
2.3.	1	29
2.4.	1	31
	J I	34
2.6.	/ 0	37
	1 0 5	37
~ -		39
2.7.		40
2.8.	Extra: a value for $\hat{\tau}$	11
3.	DIFFERENCE EQUATIONS: THE ROUGH CASE	43
3.1.	Enhanced Taylor expansion	13
3.2.		15
3.3.		17
3.4.	Set-up	18
3.5.	A priori estimates	49
3.6.	Uniqueness	51
3.7.	Continuity of the solution map	54
3.8.	Global existence and uniqueness	58
3.9.	Milstein scheme and local existence	59
4.	STOCHASTIC DIFFERENTIAL EQUATIONS	63
4.1.	Local expansion of stochastic integrals	64
4.2.		35
4.3.	SDE with a drift	66

4.5. 4.6.	Itô versus StratonovichWong-ZakaiA refined Kolmogorov criterionProof of Theorem 4.3	 	•	 	 		 	•	 	•••		 	•	•		68 69 73 76
II.	Rough Integration									•						83
5.	THE SEWING LEMMA					•				•						87
	A general problem	· ·		· ·	 		· · · ·		· · ·	· ·		· ·				87 88 89 89 91 92
6.	THE YOUNG INTEGRAL					•				•						95
6.2.6.3.6.4.6.5.6.6.	Construction of the Young integral Integral formulation of Young equations Local existence via contraction Properties of the Young integral More on Hölder spaces Uniqueness of the Young integral Two technical proofs	· · ·		· · · ·	· · · · · · · · · · · · · · · · · · ·		 		· · ·	· ·		· · ·				
7.	Rough paths															107
7.6. 7.7. 7.8.	A negative result	· · · · · · · · · · · · · · · · · · ·		· · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·		• • • •	109 110 111 112 114 115 117
8.	GEOMETRIC ROUGH PATHS															
8.5.	01	· ·		· · · ·	 		· · · ·		· ·	· ·		· ·				125 126 127 128
9.	ROUGH INTEGRATION					•				•						131
9.1.	Controlled paths					•				•						131

9.2.	The rough integral
9.3.	Continuity properties of the rough integral
9.4.	Stochastic and rough integrals
9.5.	Properties in the geometric case
10.	Rough integral equations
10.1.	Localization argument
10.2.	Invariance
10.3.	Local Lipschitz continuity
10.4.	Contraction
11.	Algebra
	A non-commutative group
11.2.	Shuffle group
11.3.	Algebra and generalised integral
11.4.	Unordered times
11.5.	An example: the Brownian case
12.	New topics
Віві	LIOGRAPHY

Part I

Rough Equations

CHAPTER 1 The Sewing Bound

The problem of interest in this book is the study of differential equations driven by *irregular functions* (more specifically: continuous but not differentiable). This will be achieved through the powerful and elegant theory of *rough paths*. A key motivation comes from stochastic differential equations driven by Brownian motion, but the goal is to develop a general theory which does not rely on probability.

This first chapter is dedicated to an elementary but fundamental tool, the *Sewing Bound*, that will be applied extensively throughout the book. It is a general Höldertype bound for functions of two real variables that can be understood by itself, see Theorem 1.9 below. To provide motivation, we present it as a natural a priori estimate for solutions of differential equations.

Notation. We fix a time horizon T > 0 and two dimensions $k, d \in \mathbb{N}$. We use "path" as a synonymous of "function defined on [0, T]" with values in \mathbb{R}^d . We denote by $|\cdot|$ the Euclidean norm. The space of linear maps from \mathbb{R}^d to \mathbb{R}^k , identified by $k \times d$ real matrices, is denoted by $\mathbb{R}^k \otimes (\mathbb{R}^d)^* \simeq \mathbb{R}^{k \times d}$ and is equipped with the Hilbert-Schmidt norm $|\cdot|$ (i.e. the Euclidean norm on $\mathbb{R}^{k \times d}$). For $A \in \mathbb{R}^k \otimes (\mathbb{R}^d)^*$ and $v \in \mathbb{R}^d$ we have $|Av| \leq |A| |v|$.

1.1. CONTROLLED DIFFERENTIAL EQUATION

Consider the following controlled ordinary differential equation (ODE): given a continuously differentiable path $X: [0, T] \to \mathbb{R}^d$ and a continuous function $\sigma: \mathbb{R}^k \to \mathbb{R}^k \otimes (\mathbb{R}^d)^*$, we look for a differentiable path $Z: [0, T] \to \mathbb{R}^k$ such that

$$\dot{Z}_t = \sigma(Z_t) \, \dot{X}_t \,, \qquad t \in [0, T]. \tag{1.1}$$

By the fundamental theorem of calculus, this is equivalent to

$$Z_t = Z_0 + \int_0^t \sigma(Z_s) \, \dot{X}_s \, \mathrm{d}s \,, \qquad t \in [0, T].$$
(1.2)

In the special case k = d = 1 and when $\sigma(x) = \lambda x$ is linear (with $\lambda \in \mathbb{R}$), we have the explicit solution $Z_t = z_0 \exp(\lambda (X_t - X_0))$, which has the interesting property of being well-defined also when X is non differentiable.

For any dimensions $k, d \in \mathbb{N}$, if we assume that $\sigma(\cdot)$ is Lipschitz, classical results in the theory of ODEs guarantee that equation (1.1)-(1.2) is well-posed for any continuously differentiable path X, namely for any $Z_0 \in \mathbb{R}^k$ there is one and only one solution Z (with no explicit formula, in general). Our aim is to extend such a well-posedness result to a setting where X is continuous but not differentiable (also in cases where $\sigma(\cdot)$ may be non-linear). Of course, to this purpose it is first necessary to provide a generalized formulation of (1.1)-(1.2) where the derivative of X does not appear.

1.2. Controlled difference equation

Let us still suppose that X is continuously differentiable. We deduce by (1.1)-(1.2) that for $0 \leq s \leq t \leq T$

$$Z_t - Z_s = \sigma(Z_s) \left(X_t - X_s \right) + \int_s^t \left(\sigma(Z_u) - \sigma(Z_s) \right) \dot{X}_u \, \mathrm{d}u, \qquad (1.3)$$

which implies that Z satisfies the following controlled difference equation:

$$Z_t - Z_s = \sigma(Z_s) \left(X_t - X_s \right) + o(t - s), \qquad 0 \le s \le t \le T, \tag{1.4}$$

because $u \mapsto \sigma(Z_u)$ is continuous and $u \mapsto \dot{X}_u$ is (continuous, hence) bounded on [0, T].

Remark 1.1. (UNIFORMITY) Whenever we write o(t - s), as in (1.4), we always mean *uniformly for* $0 \le s \le t \le T$, i.e.

$$\forall \varepsilon > 0 \ \exists \delta > 0: \quad 0 \leqslant s \leqslant t \leqslant T, \ t - s \le \delta \quad \text{implies} \quad |o(t - s)| \le \varepsilon (t - s) \,. \tag{1.5}$$

This will be implicitly assumed in the sequel.

Let us make two simple observations.

- If X is continuously differentiable we deduced (1.4) from (1.1), but we can easily deduce (1.1) from (1.4): in other terms, the two equations (1.1) and (1.4) are *equivalent*.
- If X is not continuously differentiable, equation (1.4) is still meaningful, unlike equation (1.1) which contains explicitly \dot{X} .

For these reasons, henceforth we focus on the difference equation (1.4), which provides a generalized formulation of the differential equation (1.1) when X is continuous but not necessarily differentiable.

The problem is now to prove *well-posedness* for the difference equation (1.4). We are going to show that this is possible assuming a suitable *Hölder regularity* on X, but non trivial ideas are required. In this chapter we illustrate some key ideas, showing how to prove uniqueness of solutions via a priori estimates (existence of solutions will be studied in the next chapters). We start from a basic result, which ensures the continuity of solutions; more precise result will be obtained later.

LEMMA 1.2. (CONTINUITY OF SOLUTIONS) Let X and σ be continuous. Then any solution Z of (1.4) is a continuous path, more precisely it satisfies

$$|Z_t - Z_s| \leqslant C |X_t - X_s| + o(t - s), \qquad 0 \leqslant s \leqslant t \leqslant T,$$

$$(1.6)$$

for a suitable constant $C < \infty$ which depends on Z.

Proof. Relation (1.6) follows by (1.4) with $C := \|\sigma(Z)\|_{\infty} = \sup_{0 \le t \le T} |\sigma(Z_t)|$, renaming |o(t-s)| as o(t-s). We only have to prove that $C < \infty$. Since σ is continuous by assumption, it is enough to show that Z is *bounded*.

Since o(t-s) is uniform, see (1.5), we can fix $\delta > 0$ such that $|o(t-s)| \leq 1$ for all $0 \leq s \leq t \leq T$ with $|t-s| \leq \overline{\delta}$. It follows that Z is bounded in any interval $[\overline{s}, \overline{t}]$ with $|\overline{t} - \overline{s}| \leq \overline{\delta}$, because by (1.4) we can bound

$$\sup_{t \in [\bar{s},\bar{t}]} |Z_t| \leq |Z_{\bar{s}}| + |\sigma(Z_{\bar{s}})| \sup_{t \in [\bar{s},\bar{t}]} |X_t - X_{\bar{s}}| + 1 < \infty$$

We conclude that Z is bounded in the whole interval [0, T], because we can write [0, T] as a finite union of intervals $[\bar{s}, \bar{t}]$ with $|\bar{t} - \bar{s}| \leq \bar{\delta}$.

Remark 1.3. (COUNTEREXAMPLES) The weaker requirement that (1.4) holds for any fixed $s \in [0, T]$ as $t \downarrow s$ is not enough for our purposes, since in this case Z needs not be continuous. An easy conterexample is the following: given any continuous path $X: [0, 2] \to \mathbb{R}$, we define $Z: [0, 2] \to \mathbb{R}$ by

$$Z_t := \begin{cases} X_t & \text{if } 0 \leqslant t < 1, \\ X_t + 1 & \text{if } 1 \leqslant t \leqslant 2. \end{cases}$$

Note that $Z_t - Z_s = X_t - X_s$ when either $0 \le s \le t < 1$ or $1 \le s \le t \le 2$, hence Z satisfies the difference equation (1.4) with $\sigma(\cdot) \equiv 1$ for any fixed $s \in [0, 2)$ as $t \downarrow s$, but not uniformly for $0 \le s \le t \le 2$, since Z is discontinuous at t = 1.

For another counterexample, which is even unbounded, consider

$$Z_t := \begin{cases} \frac{1}{1-t} & \text{if} \quad 0 \leqslant t < 1, \\ 0 & \text{if} \quad 1 \leqslant t \leqslant 2, \end{cases}$$

which satisfies (1.4) as $t \downarrow s$ for any fixed $s \in [0, 2]$, for $X_t \equiv t$ and $\sigma(z) = z^2$.

1.3. Some useful function spaces

For $n \ge 1$ we define the simplex

$$[0,T]_{\leqslant}^{n} := \{(t_{1},\ldots,t_{n}): \quad 0 \leqslant t_{1} \leqslant \cdots \leqslant t_{n} \leqslant T\}$$

$$(1.7)$$

(note that $[0,T]^1_{\leq} = [0,T]$). We then write $C_n = C([0,T]^n_{\leq}, \mathbb{R}^k)$ as a shorthand for the space of *continuous functions from* $[0,T]^n_{\leq}$ to \mathbb{R}^k :

$$C_n := C([0,T]^n_{\leqslant}, \mathbb{R}^k) := \{F : [0,T]^n_{\leqslant} \to \mathbb{R}^k : F \text{ is continuous}\}.$$
(1.8)

We are going to work with functions of one (f_s) , two (F_{st}) or three (G_{sut}) ordered variables in [0, T], hence we focus on the spaces C_1, C_2, C_3 .

• On the spaces C_2 and C_3 we introduce a Hölder-like structure: given any $\eta \in (0, \infty)$, we define for $F \in C_2$ and $G \in C_3$

$$\|F\|_{\eta} := \sup_{0 \le s < t \le T} \frac{|F_{st}|}{(t-s)^{\eta}}, \qquad \|G\|_{\eta} := \sup_{\substack{0 \le s \le u \le t \le T \\ s < t}} \frac{|G_{sut}|}{(t-s)^{\eta}}, \tag{1.9}$$

and we denote by C_2^{η} and C_3^{η} the corresponding function spaces:

$$C_2^{\eta} := \{ F \in C_2 : \|F\|_{\eta} < \infty \}, \qquad C_3^{\eta} := \{ G \in C_3 : \|G\|_{\eta} < \infty \}, \qquad (1.10)$$

which are Banach spaces endowed with the norm $\|\cdot\|_{\eta}$ (exercise).

• On the space C_1 of continuous functions $f: [0, T] \to \mathbb{R}^k$ we consider the usual Hölder structure. We first introduce the *increment* δf by

$$(\delta f)_{st} := f_t - f_s , \qquad 0 \leqslant s \leqslant t \leqslant T , \qquad (1.11)$$

and note that $\delta f \in C_2$ for any $f \in C_1$. Then, for $\alpha \in (0, 1]$, we define the classical space $\mathcal{C}^{\alpha} = \mathcal{C}^{\alpha}([0, T], \mathbb{R}^k)$ of α -Hölder functions

$$\mathcal{C}^{\alpha} := \left\{ f : [0,T] \to \mathbb{R}^k : \quad \|\delta f\|_{\alpha} = \sup_{0 \le s < t \le T} \frac{|f_t - f_s|}{(t-s)^{\alpha}} < \infty \right\}$$
(1.12)

(for $\alpha = 1$ it is the space of Lipschitz functions). Note that $\|\delta f\|_{\alpha}$ in (1.12) is consistent with (1.11) and (1.9).

Remark 1.4. (HÖLDER SEMI-NORM) We stress that $f \mapsto \|\delta f\|_{\alpha}$ is a semi-norm on \mathcal{C}^{α} (it vanishes on constant functions). The standard norm on \mathcal{C}^{α} is

$$\|f\|_{\mathcal{C}^{\alpha}} := \|f\|_{\infty} + \|\delta f\|_{\alpha}, \qquad (1.13)$$

where we define the standard sup norm

$$||f||_{\infty} := \sup_{t \in [0,T]} |f_t|.$$
(1.14)

For $f: [0,T] \to \mathbb{R}^k$ we can bound $||f||_{\infty} \le |f(0)| + T^{\alpha} ||\delta f||_{\alpha}$ (see (1.39) below), hence

$$\|f\|_{\mathcal{C}^{\alpha}} \le |f(0)| + (1+T^{\alpha}) \|\delta f\|_{\alpha}.$$
(1.15)

This explains why it is often enough to focus on the semi-norm $\|\delta f\|_{\alpha}$.

Remark 1.5. (HÖLDER EXPONENTS) We only consider the Hölder space C^{α} for $\alpha \in (0, 1]$ because for $\alpha > 1$ the only functions in C^{α} are constant functions (note that $\|\delta f\|_{\alpha} < \infty$ for $\alpha > 1$ implies $\dot{f}_t = 0$ for every $t \in [0, T]$).

On the other hand, the spaces C_2^{η} and C_3^{η} in (1.10) are interesting for any exponent $\eta \in (0, \infty)$. For instance, the condition $||F||_{\eta} < \infty$ for a function $F \in C_2$ means that $|F_{st}| \leq C (t-s)^{\eta}$, which does not imply $F \equiv 0$ when $\eta > 1$ (unless $F = \delta f$ is the increment of some function $f \in C_1$).

In our results below we will have to assume that the non-linearity $\sigma: \mathbb{R}^k \to \mathbb{R}^k \otimes (\mathbb{R}^d)^*$ belongs to classes of Hölder functions, in the following sense.

DEFINITION 1.6. Let $\gamma > 0$. A function $F: \mathbb{R}^k \to \mathbb{R}^N$ is said to be globally γ -Hölder (or globally of class \mathcal{C}^{γ}) if

• for $\gamma \in (0, 1]$ we have

$$[F]_{\mathcal{C}^{\gamma}} := \sup_{x, y \in \mathbb{R}^k, x \neq y} \frac{|F(x) - F(y)|}{|x - y|^{\gamma}} < +\infty$$

• for $\gamma \in (n, n+1]$ and $n = \{1, 2, ...\}$, F is n times continuously differentiable and

$$[D^{(n)}F]_{\mathcal{C}^{\gamma}} := \sup_{x,y \in \mathbb{R}^{k}, x \neq y} \frac{|D^{(n)}F(x) - D^{(n)}F(y)|}{|x - y|^{\gamma - n}} < +\infty$$

where $D^{(n)}$ is the n-fold differential of F.

Moreover $F: \mathbb{R}^k \to \mathbb{R}^N$ is said to be locally γ -Hölder (or locally of class \mathcal{C}^{γ}) if

• for $\gamma \in (0, 1]$ we have for all R > 0

$$\sup_{\substack{x,y\in\mathbb{R}^k,x\neq y\\|x|,|y|\leqslant R}}\frac{|F(x)-F(y)|}{|x-y|^{\gamma}}<+\infty$$

• for $\gamma \in (n, n+1]$ and $n = \{1, 2, ...\}$, F is n times continuously differentiable and

$$\sup_{\substack{x,y \in \mathbb{R}^k, x \neq y \\ |x|, |y| \leq R}} \frac{|D^{(n)}F(x) - D^{(n)}F(y)|}{|x-y|^{\gamma-n}} < +\infty.$$

We stress that in the previous definition we do not assume F of $D^{(n)}F$ to be bounded. The case $\gamma = 1$ corresponds to the classical *Lipschitz* condition.

1.4. Local uniqueness of solutions

We prove uniqueness of solutions for the controlled difference equation (1.4) when $X \in C^{\alpha}$ is an Hölder path of exponent $\alpha > \frac{1}{2}$. For simplicity, we focus on the case when $\sigma: \mathbb{R}^k \to \mathbb{R}^k \otimes (\mathbb{R}^d)^*$ is a linear application: $\sigma \in (\mathbb{R}^k \otimes (\mathbb{R}^d)^*) \otimes (\mathbb{R}^k)^*$, and we write σZ instead of $\sigma(Z)$ (we discuss non linear $\sigma(\cdot)$ in Chapter 2).

THEOREM 1.7. (LOCAL UNIQUENESS OF SOLUTIONS, LINEAR CASE) Fix a path $X: [0,T] \to \mathbb{R}^d$ in \mathcal{C}^{α} , with $\alpha \in \left]\frac{1}{2}, 1\right]$, and a linear map $\sigma: \mathbb{R}^k \to \mathbb{R}^k \otimes (\mathbb{R}^d)^*$. If T > 0 is small enough (depending on X, α, σ), then for any $z_0 \in \mathbb{R}^k$ there is at most one path $Z: [0,T] \to \mathbb{R}^k$ with $Z_0 = z_0$ which solves the linear controlled difference equation (1.4), that is (recalling (1.11))

$$\delta Z_{st} - (\sigma Z_s) \,\delta X_{st} = o(t-s), \qquad 0 \leqslant s \leqslant t \leqslant T. \tag{1.16}$$

Proof. Suppose that we have two paths $Z, \overline{Z}: [0, T] \to \mathbb{R}^k$ satisfying (1.16) with $Z_0 = \overline{Z}_0$ and define $Y := Z - \overline{Z}$. Our goal is to show that Y = 0.

Let us introduce the function $R \in C_2 = C([0, T]^2_{\leq}, \mathbb{R}^k)$ defined by

$$R_{st} := \delta Y_{st} - (\sigma Y_s) \,\delta X_{st} \,, \qquad 0 \leqslant s \leqslant t \leqslant T \,, \tag{1.17}$$

and note that by (1.16) and linearity we have

$$R_{st} = o(t-s) \,. \tag{1.18}$$

Recalling (1.9), we can estimate

$$\|\delta Y\|_{\alpha} \leq |\sigma| \|Y\|_{\infty} \|\delta X\|_{\alpha} + \|R\|_{\alpha}$$

and since $R_{st} = o(t-s) = o((t-s)^{\alpha})$, we have $||R||_{\alpha} < +\infty$ and therefore $||\delta Y||_{\alpha} < +\infty$. Since $Y_0 = 0$, we can bound

$$\|Y\|_{\infty} \leqslant |Y_0| + \sup_{0 \leqslant t \leqslant T} |Y_t - Y_0| \leqslant T^{\alpha} \|\delta Y\|_{\alpha}.$$

Since $1 \leq T^{\alpha} (t-s)^{-\alpha}$ for $0 \leq s < t \leq T$, we can also bound

$$\|R\|_{\alpha} \leqslant T^{\alpha} \|R\|_{2\alpha}$$

so that

$$\|\delta Y\|_{\alpha} \leqslant T^{\alpha} \left(|\sigma| \|\delta Y\|_{\alpha} \|\delta X\|_{\alpha} + \|R\|_{2\alpha} \right).$$

Suppose we can prove that, for some constant $C = C(X, \alpha, \sigma) < \infty$,

$$\|R\|_{2\alpha} \leqslant C \, \|\delta Y\|_{\alpha}. \tag{1.19}$$

Then we obtain

$$\|\delta Y\|_{\alpha} \leqslant T^{\alpha} \left(|\sigma| \|\delta X\|_{\alpha} + C \right) \|\delta Y\|_{\alpha}.$$

If we fix T small enough, so that $T^{\alpha}(|\sigma| \|\delta X\|_{\alpha} + C) < 1$, we get $\|\delta Y\|_{\alpha} = 0$, hence $\delta Y \equiv 0$. This means that $Y_t = Y_s$ for all $s, t \in [0, T]$, and since $Y_0 = 0$ we obtain $Y \equiv 0$, namely our goal $Z \equiv \overline{Z}$. This completes the proof assuming the estimate (1.19) (where the hypothesis $\alpha > \frac{1}{2}$ will play a key role).

To actually complete the proof of Theorem 1.7, it remains to show that the inequality (1.19) holds. This is performed in the next two sections:

- in Section 1.5 we present a fundamental estimate, the Sewing Bound, which applies to any function $R_{st} = o(t s)$ (recall (1.18));
- in Section 1.6 we apply the Sewing Bound to R_{st} in (1.17) and we prove the desired estimate (1.19) for $\alpha > \frac{1}{2}$ (see the assumptions of Theorem 1.7).

1.5. The Sewing bound

Let us fix an arbitrary function $R \in C_2 = C([0, T]^2_{\leq}, \mathbb{R}^k)$ with $R_{st} = o(t - s)$. Our goal is to bound $|R_{ab}|$ for any given $0 \leq a < b \leq T$.

We first show that we can express R_{ab} via "Riemann sums" along partitions $\mathcal{P} = \{a = t_0 < t_1 < \ldots < t_m = b\}$ of [a, b]. These are defined by

$$I_{\mathcal{P}}(R) := \sum_{i=1}^{\#\mathcal{P}} R_{t_{i-1}t_i}, \qquad (1.20)$$

where we denote by $\#\mathcal{P} := m$ the number of intervals of the partition \mathcal{P} . Let us denote by $|\mathcal{P}| := \max_{1 \leq i \leq m} (t_i - t_{i-1})$ the mesh of \mathcal{P} .

LEMMA 1.8. (RIEMANN SUMS) Given any $R \in C_2$ with $R_{st} = o(t-s)$, for any $0 \leq a < b \leq T$ and for any sequence $(\mathcal{P}_n)_{n \geq 0}$ of partitions of [a, b] with vanishing mesh $\lim_{n \to \infty} |\mathcal{P}_n| = 0$ we have

$$\lim_{n\to\infty}I_{\mathcal{P}_n}(R)=0.$$

If furthermore $\mathcal{P}_0 = \{a, b\}$ is the trivial partition, then we can write

$$R_{ab} = \sum_{n=0}^{\infty} (I_{\mathcal{P}_n}(R) - I_{\mathcal{P}_{n+1}}(R)), \qquad 0 \le a < b \le T.$$
(1.21)

Proof. Writing $\mathcal{P}_n = \{a = t_0^n < t_1^n < \ldots < t_{\#\mathcal{P}_n}^n = b\}$, we can estimate

$$|I_{\mathcal{P}_n}(R)| \leqslant \sum_{i=1}^{\#\mathcal{P}_n} |R_{t_{i-1}^n t_i^n}| \leqslant \left\{ \max_{j=1,\ldots,\#\mathcal{P}_n} \frac{|R_{t_{j-1}^n t_j^n}|}{(t_j^n - t_{j-1}^n)} \right\} \sum_{j=1}^{\#\mathcal{P}_n} (t_j^n - t_{j-1}^n),$$

hence $|I_{\mathcal{P}_n}(R)| \to 0$ as $n \to \infty$, because the final sum equals b - a and the bracket vanishes (since $R_{st} = o(t-s)$ and $|\mathcal{P}_n| = \max_{1 \le j \le \#\mathcal{P}_n} (t_j^n - t_{j-1}^n) \to 0)$.

We deduce relation (1.21) by the telescopic sum

$$I_{\mathcal{P}_0}(R) - I_{\mathcal{P}_N}(R) = \sum_{n=0}^{N-1} (I_{\mathcal{P}_n}(R) - I_{\mathcal{P}_{n+1}}(R)),$$

because $\lim_{N\to\infty} I_{\mathcal{P}_N}(R) = 0$ while $I_{\mathcal{P}_0}(R) = R_{ab}$ for $\mathcal{P}_0 = \{a, b\}$.

If we remove a single point t_i from a partition $\mathcal{P} = \{t_0 < t_1 < \ldots < t_m\}$, we obtain a new partition \mathcal{P}' for which, recalling (1.20), we can write

$$I_{\mathcal{P}'}(R) - I_{\mathcal{P}}(R) = R_{t_{i-1}t_{i+1}} - R_{t_{i-1}t_i} - R_{t_i t_{i+1}}.$$
(1.22)

The expression in the RHS deserves a name: given any two-variables function $F \in C_2$, we define its increment $\delta F \in C_3$ as the three-variables function

$$\delta F_{sut} := F_{st} - F_{su} - F_{ut}, \qquad 0 \leqslant s \leqslant u \leqslant t \leqslant T.$$
(1.23)

We can then rewrite (1.22) as

$$I_{\mathcal{P}'}(R) - I_{\mathcal{P}}(R) = \delta R_{t_{i-1}t_i t_{i+1}}, \qquad (1.24)$$

and recalling (1.9) we obtain the following estimate, for any $\eta > 0$:

$$|I_{\mathcal{P}'}(R) - I_{\mathcal{P}}(R)| \leq \|\delta R\|_{\eta} |t_{i+1} - t_{i-1}|^{\eta}.$$
(1.25)

We are now ready to state and prove the Sewing Bound.

THEOREM 1.9. (SEWING BOUND) Given any $R \in C_2$ with $R_{st} = o(t - s)$, the following estimate holds for any $\eta \in (1, \infty)$ (recall (1.9)):

$$||R||_{\eta} \leq K_{\eta} ||\delta R||_{\eta}$$
 where $K_{\eta} := (1 - 2^{1 - \eta})^{-1}$. (1.26)

Proof. Fix $R \in C_2$ such that $\|\delta R\|_{\eta} < \infty$ for some $\eta > 1$ (otherwise there is nothing to prove). Also fix $0 \leq a < b \leq T$ and consider for $n \geq 0$ the dyadic partitions $\mathcal{P}_n := \{t_i^n := a + \frac{i}{2^n}(b-a): 0 \leq i \leq 2^n\}$ of [a,b]. Since $\mathcal{P}_0 = \{a,b\}$ is the trivial partition, we can apply (1.21) to bound

$$|R_{ab}| \leq \sum_{n=0}^{\infty} |I_{\mathcal{P}_n}(R) - I_{\mathcal{P}_{n+1}}(R)|.$$
 (1.27)

If we remove from \mathcal{P}_{n+1} all the "odd points" t_{2j+1}^{n+1} , with $0 \leq j \leq 2^n - 1$, we obtain \mathcal{P}_n . Then, iterating relations (1.24)-(1.25), we have

$$|I_{\mathcal{P}_{n}}(R) - I_{\mathcal{P}_{n+1}}(R)| \leqslant \sum_{j=0}^{2^{n}-1} |\delta R_{t_{2j}^{n+1}t_{2j+1}^{n+1}t_{2j+2}^{n+1}}| \leqslant 2^{n} ||\delta R||_{\eta} \left(\frac{2(b-a)}{2^{n+1}}\right)^{\eta} = 2^{-(\eta-1)n} ||\delta R||_{\eta} (b-a)^{\eta}.$$
(1.28)

Plugging this into (1.27), since $\sum_{n=0}^{\infty} 2^{-(\eta-1)n} = (1-2^{1-\eta})^{-1}$, we obtain

$$|R_{ab}| \leq (1 - 2^{1 - \eta})^{-1} \|\delta R\|_{\eta} (b - a)^{\eta}, \qquad 0 \leq a < b \leq T,$$
(1.29)

which proves (1.26).

Remark 1.10. Recalling (1.11) and (1.23), we have defined linear maps

$$C_1 \xrightarrow{\delta} C_2 \xrightarrow{\delta} C_3 \tag{1.30}$$

which satisfy $\delta \circ \delta = 0$. Indeed, for any $f \in C_1$ we have

$$\delta(\delta f)_{sut} = (f_t - f_s) - (f_u - f_s) - (f_t - f_u) = 0.$$

Intuitively, $\delta F \in C_3$ measures how much a function $F \in C_2$ differs from being the increment δf of some $f \in C_1$, because $\delta F \equiv 0$ if and only if $F = \delta f$ for some $f \in C_1$ (it suffices to define $f_t := F_{0t}$ and to check that $\delta f_{st} = \delta F_{0st} + F_{st} = F_{st}$).

Remark 1.11. The assumption $R_{st} = o(t - s)$ in Theorem 1.9 cannot be avoided: if $R := \delta f$ for a non constant $f \in C_1$, then $\delta R = 0$ while $||R||_{\eta} > 0$.

1.6. END OF PROOF OF UNIQUENESS

In this section, we apply the Sewing Bound (1.26) to the function R_{st} defined in (1.17), in order to prove the estimate (1.19) for $\alpha > \frac{1}{2}$.

We first determine the increment δR through a simple and instructive computation: by (1.17), since $\delta(\delta Z) = 0$ (see Remark 1.10), we have

$$\delta R_{sut} := R_{st} - R_{su} - R_{ut}$$

$$= (Y_t - Y_s) - (Y_u - Y_s) - (Y_t - Y_u)$$

$$-(\sigma Y_s) (X_t - X_s) + (\sigma Y_s) (X_u - X_s) + (\sigma Y_u) (X_t - X_u)$$

$$= [\sigma (Y_u - Y_s)] (X_t - X_u). \qquad (1.31)$$

Recalling (1.9), this implies

$$\|\delta R\|_{2\alpha} \leq |\sigma| \|\delta Y\|_{\alpha} \|\delta X\|_{\alpha}$$

We next note that if $\alpha > \frac{1}{2}$ (as it is assumed in Theorem 1.7) we can apply the Sewing Bound (1.26) for $\eta = 2\alpha > 1$ to obtain

$$||R||_{2\alpha} \leqslant K_{2\alpha} ||\delta R||_{2\alpha} \leqslant K_{2\alpha} |\sigma| ||\delta Y||_{\alpha} ||\delta X||_{\alpha}$$

This is precisely our goal (1.19) with $C = C(X, \alpha, \sigma) := K_{2\alpha} |\sigma| ||\delta X||_{\alpha}$.

Summarizing: thanks to the Sewing bound (1.26), we have obtained the estimate (1.19) and completed the proof of Theorem 1.7, showing uniqueness of solutions to the difference equation (1.4) for any $X \in \mathcal{C}^{\alpha}$ with $\alpha \in \left[\frac{1}{2}, 1\right]$. In the next chapters we extend this approach to non-linear $\sigma(\cdot)$ and to situations where $X \in \mathcal{C}^{\alpha}$ with $\alpha \leq \frac{1}{2}$.

Remark 1.12. For later purpose, let us record the computation (1.31) withouth σ : given any (say, real) paths X and Y, if

 $A_{st} = Y_s \, \delta X_{st}, \qquad \forall 0 \leqslant s \leqslant t \leqslant T,$

$$\delta A_{sut} = -\delta Y_{su} \,\delta X_{ut} \,, \qquad \forall 0 \leqslant s \leqslant u \leqslant t \leqslant T \,. \tag{1.32}$$

1.7. Weighted Norms

We conclude this chapter defining weighted versions $\|\cdot\|_{\eta,\tau}$ of the norms $\|\cdot\|_{\eta}$ introduced in (1.9): given $F \in C_2$ and $G \in C_3$, we set for $\eta, \tau \in (0, \infty)$

$$\|F\|_{\eta,\tau} := \sup_{0 \le s \le t \le T} \mathbb{1}_{\{0 < t - s \le \tau\}} e^{-\frac{t}{\tau}} \frac{|F_{st}|}{(t - s)^{\eta}},$$
(1.33)

$$||G||_{\eta,\tau} := \sup_{0 \le s \le u \le t \le T} \mathbb{1}_{\{0 < t - s \le \tau\}} e^{-\frac{t}{\tau}} \frac{|G_{sut}|}{(t - s)^{\eta}},$$
(1.34)

where C_2 and C_3 are the spaces of continuous functions from $[0, T]^2_{\leq}$ and $[0, T]^3_{\leq}$ to \mathbb{R}^k , see (1.8). Note that as $\tau \to \infty$ we recover the usual norms:

$$\|\cdot\|_{\eta} = \lim_{\tau \to \infty} \|\cdot\|_{\eta,\tau} \,. \tag{1.35}$$

Remark 1.13. (NORMS VS. SEMI-NORMS) While $\|\cdot\|_{\eta}$ is a norm, $\|\cdot\|_{\eta,\tau}$ is a norm for $\tau \ge T$ but it is only a semi-norm for $\tau < T$ (for instance, $\|F\|_{\eta,\tau} = 0$ for $F \in C_2$ implies $F_{st} = 0$ only for $t - s \le \tau$: no constraint is imposed on F_{st} for $t - s > \tau$).

However, if $F = \delta f$, that is $F_{st} = f_t - f_s$ for some $f \in C_1$, we have the equivalence

$$\|\delta f\|_{\eta,\tau} \leqslant \|\delta f\|_{\eta} \leqslant \left(1 + \frac{T}{\tau}\right) e^{\frac{T}{\tau}} \|\delta f\|_{\eta,\tau}.$$

$$(1.36)$$

The first inequality is clear. For the second one, given $0 \leq s < t \leq T$, we can write $s = t_0 < t_1 < \cdots < t_N = t$ with $t_i - t_{i-1} \leq \tau$ and $N \leq 1 + \frac{T}{\tau}$ (for instance, we can consider $t_i = s + i \frac{t-s}{N}$ where $N := \lceil \frac{t-s}{\tau} \rceil$); we then obtain $\delta f_{st} = \sum_{i=1}^N \delta f_{t_{i-1}t_i}$ and $|\delta f_{t_{i-1}t_i}| \leq ||\delta f||_{\eta,\tau} e^{t_i/\tau} (t_i - t_{i-1})^{\eta} \leq ||\delta f||_{\eta,\tau} e^{T/\tau} (t-s)^{\eta}$, which yields (1.36).

Remark 1.14. (FROM LOCAL TO GLOBAL) The weighted semi-norms $\|\cdot\|_{\eta,\tau}$ will be useful to transform *local* results in *global* results. Indeed, using the standard norms $\|\cdot\|_{\eta}$ often requires the size T > 0 of the time interval [0, T] to be *small*, as in Theorem 1.7, which can be annoying. Using $\|\cdot\|_{\eta,\tau}$ will allow us to *keep* T > 0*arbitrary*, by choosing a sufficiently small $\tau > 0$. Recalling the supremum norm $||f||_{\infty}$ of a function $f \in C_1$, see (1.14), we define the corresponding weighted version

$$\|f\|_{\infty,\tau} := \sup_{0 \le t \le T} e^{-\frac{t}{\tau}} |f_t|.$$
(1.37)

We stress that $\|\cdot\|_{\infty,\tau}$ is a norm equivalent to $\|\cdot\|_{\infty}$ for any $\tau > 0$, since

$$\|\cdot\|_{\infty,\tau} \leqslant \|\cdot\|_{\infty} \leqslant e^{\frac{T}{\tau}} \|\cdot\|_{\infty,\tau}.$$
(1.38)

Remark 1.15. (EQUIVALENT HÖLDER NORM) It follows by (1.36) and (1.38) that $\|\cdot\|_{\infty,\tau} + \|\cdot\|_{\alpha,\tau}$ is a norm equivalent to $\|\cdot\|_{\mathcal{C}^{\alpha}} := \|\cdot\|_{\infty} + \|\cdot\|_{\alpha}$ on the space \mathcal{C}^{α} of Hölder functions, see Remark 1.4, for any $\tau > 0$.

We will often use the Hölder semi-norms $\|\delta f\|_{\alpha}$ and $\|\delta f\|_{\alpha,\tau}$ to bound the supremum norms $\|f\|_{\infty,\tau}$ and $\|f\|_{\infty,\tau}$, thanks to the following result.

LEMMA 1.16. (SUPREMUM-HÖLDER BOUND) For any $f \in C_1$ and $\eta \in (0, \infty)$

$$||f||_{\infty} \leq |f_0| + T^{\eta} ||\delta f||_{\eta}, \qquad (1.39)$$

$$\|f\|_{\infty,\tau} \leq |f_0| + 3 \, (\tau \wedge T)^{\eta} \, \|\delta f\|_{\eta,\tau}, \qquad \forall \tau > 0.$$
(1.40)

Proof. Let us prove (1.39): for any $f \in C_1$ and for $t \in [0, T]$ we have

$$|f_t| \leq |f_0| + |f_t - f_0| = |f_0| + t^{\eta} \frac{|f_t - f_0|}{t^{\eta}} \leq |f_0| + T^{\eta} \|\delta f\|_{\eta}.$$

The proof of (1.40) is slightly more involved. If $t \in [0, \tau \wedge T]$, then

$$e^{-\frac{t}{\tau}} |f_t| \leq |f_0| + t^{\eta} e^{-\frac{t}{\tau}} \frac{|f_t - f_0|}{t^{\eta}} \leq |f_0| + (\tau \wedge T)^{\eta} \|\delta f\|_{\eta,\tau},$$

which, in particular, implies (1.40) when $\tau \ge T$. When $\tau < T$, it remains to consider $\tau < t \le T$: in this case, we define $N := \min\{n \in \mathbb{N}: n\tau \ge t\} \ge 2$ so that $\frac{t}{N} \le \tau$. We set $t_k = k \frac{t}{N}$ for $k \ge 0$, so that $t_N = t$. Then

$$\begin{split} \mathbf{e}^{-\frac{t}{\tau}} |f_t| \leqslant |f_0| + \sum_{k=1}^N (t_k - t_{k-1})^{\eta} \mathbf{e}^{-\frac{t - t_k}{\tau}} \bigg[\mathbf{e}^{-\frac{t_k}{\tau}} \frac{|f_{t_k} - f_{t_{k-1}}|}{(t_k - t_{k-1})^{\eta}} \bigg] \\ \leqslant |f_0| + (\tau \wedge T)^{\eta} \, \|\delta f\|_{\eta,\tau} \sum_{k=1}^N \mathbf{e}^{-\frac{t - t_k}{\tau}}. \end{split}$$

By definition of N we have $(N-1)\tau < t$; since $\tau < t$ we obtain $N\tau < 2t$ and therefore $\frac{t}{N\tau} \ge \frac{1}{2}$. Since $t - t_k = (N-k)\frac{t}{N}$, renaming $\ell := N - k$ we obtain

$$\sum_{k=1}^{N} e^{-\frac{t-t_{k}}{\tau}} = \sum_{\ell=0}^{N-1} e^{-\ell \frac{t}{N\tau}} = \frac{1-e^{-\frac{t}{\tau}}}{1-e^{-\frac{t}{N\tau}}} \leqslant \frac{1}{1-e^{-\frac{1}{2}}} \leqslant 3.$$

The proof is complete.

We finally show that the Sewing Bound (1.26) still holds if we replace $\|\cdot\|_{\eta}$ by $\|\cdot\|_{\eta,\tau}$, for any $\tau > 0$.

THEOREM 1.17. (WEIGHTED SEWING BOUND) Given any $R \in C_2$ with $R_{st} = o(t-s)$, the following estimate holds for any $\eta \in (1, \infty)$ and $\tau > 0$:

$$||R||_{\eta,\tau} \leq K_{\eta} ||\delta R||_{\eta,\tau} \quad where \quad K_{\eta} := (1 - 2^{1 - \eta})^{-1}.$$
(1.41)

Proof. Given $0 \leq a \leq b \leq T$, let us define

$$\|\delta R\|_{\eta,[a,b]} := \sup_{\substack{s,u,t \in [a,b]:\\s \leqslant u \leqslant t, \ s < t}} \frac{|\delta R_{sut}|}{(t-s)^{\eta}}.$$
 (1.42)

Following the proof of Theorem 1.9, we can replace $\|\delta R\|_{\eta}$ by $\|\delta R\|_{\eta,[a,b]}$ in (1.28) and in (1.29), hence we obtain $|R_{ab}| \leq K_{\eta} \|\delta R\|_{\eta,[a,b]} (b-a)^{\eta}$. Then for $b-a \leq \tau$ we can estimate

$$e^{-\frac{b}{\tau}} \frac{|R_{ab}|}{(b-a)^{\eta}} \leqslant e^{-\frac{b}{\tau}} K_{\eta} \, \|\delta R\|_{\eta,[a,b]} \leqslant K_{\eta} \, \|\delta R\|_{\eta,\tau} \,,$$

and (1.41) follows taking the supremum over $0 \leq a \leq b \leq T$ with $b - a \leq \tau$.

1.8. A discrete Sewing Bound

We can prove a version of the Sewing Bound for functions $R = (R_{st})_{s < t \in \mathbb{T}}$ defined on a finite set of points $\mathbb{T} := \{0 = t_1 < \cdots < t_{\#\mathbb{T}}\} \subseteq \mathbb{R}_+$ (this will be useful to construct solutions to difference equations via Euler schemes, see Sections 2.6 and 3.9). The condition $R_{st} = o(t - s)$ from Theorem 1.9 is now replaced by the requirement that R vanishes on consecutive points of \mathbb{T} , i.e. $R_{t_i t_{i+1}} = 0$ for all $1 \leq i < \#\mathbb{T}$.

We define versions $\|\cdot\|_{\eta,\tau}^{\mathbb{T}}$ of the norms $\|\cdot\|_{\eta,\tau}$ restricted on \mathbb{T} for $\tau > 0$, recall (1.33)-(1.34):

$$||A||_{\eta,\tau}^{\mathbb{T}} := \sup_{\substack{0 \le s < t \\ s,t \in \mathbb{T}}} \mathbb{1}_{\{0 < t-s \le \tau\}} e^{-\frac{t}{\tau}} \frac{|A_{st}|}{|t-s|^{\eta}},$$
(1.43)

$$\|B\|_{\eta,\tau}^{\mathbb{T}} := \sup_{\substack{0 \leq s \leq u \leq t\\s,u,t \in \mathbb{T}, s < t}} \mathbb{1}_{\{0 < t - s \leq \tau\}} e^{-\frac{t}{\tau}} \frac{|B_{sut}|}{|t - s|^{\eta}}$$
(1.44)

 $\text{for } A: \{(s,t) \in \mathbb{T}^2: 0 \leqslant s < t\} \to \mathbb{R} \text{ and } B: \{(s,u,t) \in \mathbb{T}^3: 0 \leqslant s \leqslant u \leqslant t, s < t\} \to \mathbb{R}.$

THEOREM 1.18. (DISCRETE SEWING BOUND) If a function $R = (R_{st})_{s < t \in \mathbb{T}}$ vanishes on consecutive points of \mathbb{T} (i.e. $R_{t_i t_{i+1}} = 0$), then for any $\eta > 1$ and $\tau > 0$ we have

$$\|R\|_{\eta,\tau}^{\mathbb{T}} \leqslant C_{\eta} \|\delta R\|_{\eta,\tau}^{\mathbb{T}} \qquad with \qquad C_{\eta} := 2^{\eta} \sum_{n \ge 1} \frac{1}{n^{\eta}} = 2^{\eta} \zeta(\eta) < \infty \,. \tag{1.45}$$

Proof. We fix $s, t \in \mathbb{T}$ with s < t and we start by proving that

$$|R_{st}| \leq C_{\eta} \|\delta R\|_{\eta}^{\mathsf{T}} (t-s)^{\eta}.$$

We have $s = t_k$ and $t = t_{k+m}$ and we may assume that $m \ge 2$ (otherwise there is nothing to prove, since for m = 1 we have $R_{t_i t_{i+1}} = 0$).

Consider the partition $\mathcal{P} = \{s = t_k < t_{k+1} < \dots < t_{k+m} = t\}$ with *m* intervals. Note that for some index $i \in \{k+1,\dots,k+m-1\}$ we must have $t_{i+1} - t_{i-1} \leq \frac{2(t-s)}{m-1}$, otherwise we would get the contradiction

$$2(t-s) \ge \sum_{i=k+1}^{k+m-1} (t_{i+1}-t_{i-1}) > \sum_{i=k+1}^{k+m-1} \frac{2(t-s)}{m-1} = 2(t-s).$$

Removing the point t_i from \mathcal{P} we obtain a partition \mathcal{P}' with m-1 intervals. If we define $I_{\mathcal{P}}(R) := \sum_{i=k}^{k+m-1} R_{t_i t_{i+1}}$ as in (1.20), as in (1.24) we have

$$|I_{\mathcal{P}}(R) - I_{\mathcal{P}'}(R)| = |\delta R_{t_{i-1}t_i t_{i+1}}| \leqslant \frac{2^{\eta} (t-s)^{\eta}}{(m-1)^{\eta}} \sup_{\substack{s \leqslant u < v < w \leqslant t \\ u, v, w \in \mathbb{T}}} \frac{|\delta R_{uvw}|}{|w-u|^{\eta}}$$

Iterating this argument, until we arrive at the trivial partition $\{s, t\}$, we get

$$|I_{\mathcal{P}}(R) - R_{st}| \le C_{\eta} (t-s)^{\eta} \sup_{\substack{s \le u < v < w \le t \\ u, v, w \in \mathbb{T}}} \frac{|\delta R_{uvw}|}{|w-u|^{\eta}}, \tag{1.46}$$

with $C_{\eta} := \sum_{n \ge 1} \frac{2^{\eta}}{n^{\eta}} < \infty$ because $\eta > 1$. We finally note that $I_{\mathcal{P}}(R) = 0$ by the assumption $R_{t_i t_{i+1}} = 0$. Finally if $t - s \leqslant \tau$ then $w - u \leqslant \tau$ in the supremum in (1.46) and since $e^{-\frac{t}{\tau}} \leqslant e^{-\frac{w}{\tau}}$ we obtain

$$\mathrm{e}^{-\frac{t}{\tau}} |R_{st}| \leqslant C_{\eta} \, (t-s)^{\eta} \, \|\delta R\|_{\eta,\tau}^{\mathbb{T}}$$

and the proof is complete.

We also have an analog of Lemma 1.16. We set for $f: \mathbb{T} \to \mathbb{R}$ and $\tau > 0$

$$\|f\|_{\infty,\tau}^{\mathbb{T}} := \sup_{t \in \mathbb{T}} e^{-\frac{t}{\tau}} |f_t|.$$

LEMMA 1.19. (DISCRETE SUPREMUM-HÖLDER BOUND) For $\mathbb{T} := \{0 = t_1 < \cdots < t_{\#\mathbb{T}}\} \subseteq \mathbb{R}_+$ set

$$M := \max_{i=2,...,\#\mathbb{T}} |t_i - t_{i-1}|.$$

Then for all $f: \mathbb{T} \to \mathbb{R}, \ \tau \ge 2M$ and $\eta > 0$

$$\|f\|_{\infty,\tau}^{\mathbb{T}} \leqslant \|f_0\| + 5\,\tau^\eta \,\|\delta f\|_{\eta,\tau}^{\mathbb{T}}\,. \tag{1.47}$$

Proof. We define $T_0 := 0$ and for $i \ge 1$, as long as $\mathbb{T} \cap (T_{i-1}, T_{i-1} + \tau]$ is not empty, we set

$$T_i := \max \mathbb{T} \cap (T_{i-1}, T_{i-1} + \tau], \qquad i = 1, \dots, N$$

so that $T_N = \max \mathbb{T}$. We have by construction $T_i + M > T_{i-1} + \tau$ for all $i = 1, \ldots, N-1$, and since $M \leq \frac{\tau}{2}$

$$T_i - T_{i-1} \geqslant \tau - M \geqslant \frac{\tau}{2} \,.$$

For i = N we have only $T_N > T_{N-1}$. Therefore for i = 1, ..., N

$$\begin{aligned} \mathbf{e}^{-\frac{T_{i}}{\tau}} |f_{T_{i}}| &\leqslant |f_{0}| + \sum_{k=1}^{i} (T_{k} - T_{k-1})^{\eta} \mathbf{e}^{-\frac{T_{i} - T_{k}}{\tau}} \left[\mathbf{e}^{-\frac{T_{k}}{\tau}} \frac{|f_{T_{k}} - f_{T_{k-1}}|}{(T_{k} - T_{k-1})^{\eta}} \right] \\ &\leqslant |f_{0}| + \tau^{\eta} \|\delta f\|_{\eta,\tau}^{\mathbb{T}} \sum_{k=1}^{i} \mathbf{e}^{-\frac{T_{i} - T_{k}}{\tau}} \\ &\leqslant |f_{0}| + \tau^{\eta} \|\delta f\|_{\eta,\tau}^{\mathbb{T}} \left(1 + \sum_{k=0}^{\infty} \mathbf{e}^{-\frac{k}{2}} \right) \\ &\leqslant |f_{t_{0}}| + 4\tau^{\eta} \|\delta f\|_{\eta,\tau}^{\mathbb{T}}. \end{aligned}$$

Now for $t \in \mathbb{T} \setminus \{T_i\}_i$ we have $T_i < t < T_{i+1}$ for some i and then

$$e^{-\frac{t}{\tau}} |f_t| \leqslant e^{-\frac{t}{\tau}} |f_{T_i}| + (t - T_i)^{\eta} e^{-\frac{t}{\tau}} \frac{|f_t - f_{T_i}|}{(t - T_i)^{\eta}} \leqslant e^{-\frac{T_i}{\tau}} |f_{T_i}| + \tau^{\eta} \|\delta f\|_{\eta,\tau}^{\mathbb{T}}$$

$$\leqslant |f_0| + 5\tau^{\eta} \|\delta f\|_{\eta,\tau}^{\mathbb{T}}.$$

The proof is complete.

1.9. EXTRA (TO BE COMPLETED)

We also introduce the usual supremum norm, for $F \in C_2$ and $G \in C_3$:

$$||F||_{\infty} := \sup_{0 \leqslant s \leqslant t \leqslant T} |F_{st}|, \qquad ||G||_{\infty} := \sup_{0 \leqslant s \leqslant u \leqslant t \leqslant T} |G_{sut}|,$$

and a corresponding weighted version, for $\tau \in (0, \infty)$:

$$\|F\|_{\infty,\tau} := \sup_{0 \le s \le t \le T} e^{-\frac{t}{\tau}} |F_{st}|, \qquad \|G\|_{\infty,\tau} := \sup_{0 \le s \le u \le t \le T} e^{-\frac{t}{\tau}} |G_{sut}|.$$
(1.48)

Note that

$$\lim_{\tau \to +\infty} \|F\|_{\infty,\tau} = \|F\|_{\infty}, \quad \lim_{\tau \to +\infty} \|G\|_{\eta,\tau} = \|G\|_{\eta}, \quad \lim_{\tau \to +\infty} \|H\|_{\eta,\tau} = \|H\|_{\eta}.$$

We have

$$||F||_{\eta,\tau} \leq ||G||_{\infty,\tau} ||H||_{\eta}, \qquad (F_{sut} = G_{su} H_{ut}),$$
(1.49)

Note that $\|\cdot\|_{\eta,\tau}$ is only a semi-norm on C_n^{η} if $\tau < T$; we have at least

$$\|\cdot\|_{\eta,\tau} \leqslant \|\cdot\|_{\eta} \leqslant e^{\frac{T}{\tau}} \left(\|\cdot\|_{\eta,\tau} + \frac{1}{\tau^{\eta}} \|\cdot\|_{\infty,\tau} \right).$$

$$(1.50)$$

However, if $\tau \geq T$ we have again equivalence of norms

$$\|\cdot\|_{\eta,\tau} \leqslant \|\cdot\|_{\eta} \leqslant e^{\frac{T}{\tau}} \|\cdot\|_{\eta,\tau}, \qquad \tau \ge T.$$
(1.51)

CHAPTER 2

DIFFERENCE EQUATIONS: THE YOUNG CASE

Fix a time horizon T > 0 and two dimensions $k, d \in \mathbb{N}$. We study the following controlled difference equation for an unknown path $Z: [0, T] \to \mathbb{R}^k$:

$$Z_t - Z_s = \sigma(Z_s) \left(X_t - X_s \right) + o(t - s), \qquad 0 \leqslant s \leqslant t \leqslant T, \tag{2.1}$$

where the "driving path" $X: [0, T] \to \mathbb{R}^d$ and the function $\sigma: \mathbb{R}^k \to \mathbb{R}^k \otimes (\mathbb{R}^d)^*$ are given, and o(t-s) is uniform for $0 \leq s \leq t \leq T$ (see Remark 1.1).

The difference equation (2.1) is a natural generalized formulation of the *controlled differential equation*

$$\dot{Z}_t = \sigma(Z_t) \, \dot{X}_t \,, \qquad 0 \leqslant t \leqslant T. \tag{2.2}$$

Indeed, as we showed in Chapter 1 (see Section 1.2), equations (2.1) and (2.2) are equivalent when X is continuously differentiable and σ is continuous, but (2.1) is meaningful also when X is non differentiable.

In this chapter we prove well-posedness for the difference equation (2.1) when the driving path $X \in C^{\alpha}$ is Hölder continuous in the regime $\alpha \in \left[\frac{1}{2}, 1\right]$, called the Young case. The more challenging regime $\alpha \leq \frac{1}{2}$, called the rough case, is the object of the next Chapter 3, where new ideas will be introduced.

2.1. SUMMARY

Using the increment notation $\delta f_{st} := f_t - f_s$ from (1.11), we rewrite (2.1) as

$$\delta Z_{st} = \sigma(Z_s) \,\delta X_{st} + o(t-s), \qquad 0 \leqslant s \leqslant t \leqslant T, \tag{2.3}$$

so that a solution of (2.3) is any path $Z: [0,T] \to \mathbb{R}^k$ such that the "remainder"

$$Z_{st}^{[2]} := \delta Z_{st} - \sigma(Z_s) \,\delta X_{st} \qquad \text{satisfies} \qquad Z_{st}^{[2]} = o(t-s) \,. \tag{2.4}$$

We summarize the main results of this chapter stating *local and global existence*, uniqueness of solutions and continuity of the solution map for the difference equation (2.3) under natural assumptions on σ . We will actually prove more precise results, which yield quantitative estimates.

THEOREM 2.1. (WELL-POSEDNESS) Let $X: [0,T] \to \mathbb{R}^d$ be of class \mathcal{C}^{α} with $\alpha \in \left[\frac{1}{2},1\right]$ and let $\sigma: \mathbb{R}^k \to \mathbb{R}^k \otimes (\mathbb{R}^d)^*$. Then we have:

• **local existence**: if σ is locally γ -Hölder with $\gamma \in \left(\frac{1}{\alpha} - 1, 1\right]$ (e.g. of class C^1), then for every $z_0 \in \mathbb{R}^k$ there is a possibly shorter time horizon $T' = T'_{\alpha,X,\sigma}(z_0) \in [0,T]$ and a path $Z: [0,T'] \to \mathbb{R}^k$ starting from $Z_0 = z_0$ which solves (2.3) for $0 \leq s \leq t \leq T'$;

- **global existence**: if σ is globally γ -Hölder with $\gamma \in \left(\frac{1}{\alpha} 1, 1\right]$ (e.g. of class C^1 with $\|\nabla \sigma\|_{\infty} < \infty$), then we can take $T'_{\alpha,X,\sigma}(z_0) = T$ for any $z_0 \in \mathbb{R}^d$;
- **uniqueness**: if σ is of class C^{γ} with $\gamma \in (\frac{1}{\alpha}, 2]$ (e.g. if σ is of class C^2), then there is exactly one solution Z of (2.3) with $Z_0 = z_0$;
- continuity of the solution map: if σ is differentiable with bounded and globally $(\gamma - 1)$ -Hölder gradient with $\gamma \in (\frac{1}{\alpha}, 2]$ (i.e. $\|\nabla \sigma\|_{\infty} < \infty$, $[\nabla \sigma]_{\mathcal{C}^{\gamma-1}} < \infty$), then the solution Z of (2.3) is a continuous function of the starting point z_0 and driving path X: the map $(z_0, X) \mapsto Z$ is continuous from $\mathbb{R}^k \times \mathcal{C}^{\alpha} \to \mathcal{C}^{\alpha}$.

In the first part of this chapter, we give for granted the existence of solutions and we focus on their properties: we prove *a priori estimates* in Section 2.3, *uniqueness* of solutions in Section 2.4 and continuity of the solution map in Section 2.5. A key role is played by the Sewing Bound from Chapter 1, see Theorems 1.9 and 1.17, and its discrete version, see Theorem 1.18.

The proof of local and global *existence of solutions of* (2.3) is given at the end of this chapter, see Section 2.6, exploiting a suitable Euler scheme.

2.2. Set-up

We collect here some notions and tools that will be used extensively.

We recall that C_1 denotes the space of continuous functions $f: [0, T] \to \mathbb{R}^k$. Similarly, C_2 and C_3 are the spaces of continuous functions of two and three ordered variables, i.e. defined on $[0, T]^2_{\leqslant}$ and $[0, T]^3_{\leqslant}$, see (1.7)-(1.8).

We are going to exploit the weighted semi-norms $\|\cdot\|_{\eta,\tau}$, see (1.33)-(1.34) (see also (1.9) for the original norm $\|\cdot\|_{\eta}$). These are useful to bound the weighted supremum norm $\|f\|_{\infty,\tau}$ of a function $f \in C_1$, see (1.37) and (1.40):

$$\|f\|_{\infty,\tau} \leq |f_0| + 3 \, (\tau \wedge T)^{\eta} \, \|\delta f\|_{\eta,\tau}, \qquad \forall \eta, \tau > 0.$$
(2.5)

It follows directly from the definitions (1.33)-(1.34) that

$$\|\cdot\|_{\eta,\tau} \leqslant (\tau \wedge T)^{\eta'} \|\cdot\|_{\eta+\eta',\tau}, \qquad \forall \eta, \eta' > 0,$$

$$(2.6)$$

because $(t-s)^{\eta} \ge (t-s)^{\eta+\eta'} (\tau \wedge T)^{-\eta'}$ for $0 \le s \le t \le T$ with $t-s \le \tau$.

Remark 2.2. The factor $(\tau \wedge T)^{\eta'}$ in the RHS of (2.6) can be made small by choosing τ small while keeping T fixed. This is why we included the indicator function $\mathbb{1}_{\{0 < t-s \leq \tau\}}$ in the definition (1.33)-(1.34) of the norms $\|\cdot\|_{\eta,\tau}$: without this indicator function, instead of $(\tau \wedge T)^{\eta'}$ we would have $T^{\eta'}$, which is small only when T is small.

We will often work with functions $F \in C_2$ or $F \in C_3$ that are product of two factors, like $F_{st} = g_s H_{st}$ or $F_{sut} = G_{su} H_{ut}$. We show in the next result that the semi-norm $||F||_{\eta,\tau}$ can be controlled by a product of suitable norms for each factor.

LEMMA 2.3. (WEIGHTED BOUNDS) For any $\eta, \eta' \in (0, \infty)$ and $\tau > 0$, we have

if
$$F_{st} = g_s H_{st}$$
 or $F_{st} = g_t H_{st}$ then $||F||_{\eta,\tau} \leq ||g||_{\infty,\tau} ||H||_{\eta}$, (2.7)

if
$$F_{sut} = G_{su} H_{ut}$$
 then $||F||_{\eta+\eta',\tau} \leq ||G||_{\eta,\tau} ||H||_{\eta'}$. (2.8)

Proof. If $F_{st} = g_t H_{st}$, by (1.37) we can estimate $e^{-t/\tau} |g_t| \leq ||g||_{\infty,\tau}$ to get (2.7). If $F_{st} = g_s H_{st}$, for $s \leq t$ we can bound $e^{-t/\tau} \leq e^{-s/\tau}$ in the definition (1.33)-(1.34) of $||\cdot||_{\eta,\tau}$, hence again by (1.37) we can estimate $e^{-s/\tau} |g_s| \leq ||g||_{\infty,\tau}$ to get (2.7).

If $F_{sut} = G_{su} H_{ut}$, we can further bound $(t-s)^{\eta+\eta'} \ge (t-u)^{\eta} (u-s)^{\eta'}$ in (1.34) and then estimate $e^{-s/\tau} G_{su}/(u-s)^{\eta} \le ||G||_{\eta,\tau}$, which yields (2.8).

We stress that in the RHS of (2.7) and (2.8) only one factor gets the weighted norm or semi-norm, while the other factor gets the non-weighted norm $\|\cdot\|_{\eta}$. We will sometimes need an extra weight, which can be introduced as follows.

LEMMA 2.4. (EXTRA WEIGHT) For any $\eta, \bar{\tau} \in (0, \infty)$ and $0 < \tau \leq \bar{\tau}$, we have

if
$$F_{st} = g_s H_{st}$$
 or $F_{st} = g_t H_{st}$ *then* $\|F\|_{\eta,\tau} \le \|g\|_{\infty,\tau} e^{\frac{1}{\tau}} \|H\|_{\eta,\bar{\tau}}$. (2.9)

Proof. Recall the definition (1.33)-(1.34) of $\|\cdot\|_{\eta,\tau}$ and note that for $0 \leq s \leq t \leq T$ we have $e^{-t/\tau} |g_t| \leq \|g\|_{\infty,\tau}$ and $e^{-s/\tau} |g_s| \leq \|g\|_{\infty,\tau}$ (see the proof of Lemma 2.3). Finally, for $t-s \leq \tau \leq \overline{\tau}$ we can estimate $|H_{st}| \leq e^{T/\overline{\tau}} e^{-t/\overline{\tau}} |H_{st}| \leq e^{T/\overline{\tau}} \|H\|_{\eta,\overline{\tau}} (t-s)^{\eta}$. \Box

We recall that $\mathbb{R}^k \otimes (\mathbb{R}^d)^* \simeq \mathbb{R}^{k \times d}$ is the space of linear applications from \mathbb{R}^d to \mathbb{R}^k equipped with the Hilbert-Schmidt (Euclidean) norm $|\cdot|$. We say that a function is of class C^m if it is continuously differentiable m times. Given $\sigma \colon \mathbb{R}^k \to \mathbb{R}^k \otimes (\mathbb{R}^d)^*$ of class C^2 , that we represent by $\sigma_j^i(z)$ with $i \in \{1, ..., k\}$ and $j \in \{1, ..., d\}$, we denote by $\nabla \sigma \colon \mathbb{R}^k \to \mathbb{R}^k \otimes (\mathbb{R}^d)^* \otimes (\mathbb{R}^k)^*$ its gradient and by $\nabla^2 \sigma \colon \mathbb{R}^k \to \mathbb{R}^k \otimes (\mathbb{R}^d)^* \otimes (\mathbb{R}^k)^* \otimes (\mathbb{R}^k)^*$ its Hessian, represented for $i, a, b \in \{1, ..., k\}$ and $j \in \{1, ..., d\}$ by

$$(\nabla \sigma(z))_{ja}^{i} = \frac{\partial \sigma_{j}^{i}}{\partial z_{a}}(z), \qquad (\nabla^{2} \sigma(z))_{jab}^{i} = \frac{\partial^{2} \sigma_{j}^{i}}{\partial z_{a} \partial z_{b}}(z).$$

Remark 2.5. (NORM OF THE GRADIENT OF LIPSCHITZ FUNCTIONS) For a *locally* Lipschitz function $\psi: \mathbb{R}^k \to \mathbb{R}^\ell$ we can define the "norm of the gradient" at any point (even where ψ may not be differentiable):

$$|\nabla \psi(z)| := \limsup_{y \to z} \frac{|\psi(y) - \psi(z)|}{|y - z|} \in [0, \infty).$$

Similarly, $|\nabla^2 \psi(z)|$ is well defined as soon as ψ is differentiable with locally Lipschitz gradient $\nabla \psi$ (which is slightly less than requiring $\psi \in C^2$).

2.3. A PRIORI ESTIMATES

In this section we prove a priori estimates for solutions of (2.3) assuming that σ is globally Lipschitz, that is $\|\nabla \sigma\|_{\infty} < \infty$ (recall Remark 2.5).

We first observe that if the driving path X is of class C^{α} , then any solution Z of (2.3) is also of class C^{α} , as soon as σ is continuous.

LEMMA 2.6. (HÖLDER REGULARITY) Let X be of class C^{α} with $\alpha \in]0,1]$ and let σ be continuous. Then any solution Z of (2.3) is of class C^{α} .

Proof. We know by Lemma 1.2 that Z is continuous, more precisely by (1.6) we have $|\delta Z_{st}| \leq C |\delta X_{st}| + o(t-s)$ with $C < \infty$. Since $|\delta X_{st}| \leq ||\delta X||_{\alpha} (t-s)^{\alpha}$ and $o(t-s) = o((t-s)^{\alpha})$ for any $\alpha \leq 1$, it follows that $Z \in \mathcal{C}^{\alpha}$.

We next formulate the announced a priori estimates. It is convenient to use the weighted semi-norms $\|\cdot\|_{\eta,\tau}$ in (1.33)-(1.34) (note that the usual norms $\|\cdot\|_{\eta}$ in (1.9) can be recovered by letting $\tau \to \infty$).

THEOREM 2.7. (A PRIORI ESTIMATES) Let X be of class C^{α} with $\alpha \in \left[\frac{1}{2}, 1\right]$ and let σ be globally γ -Hölder with $\gamma \in \left(\frac{1}{\alpha} - 1, 1\right]$. Then, for any solution $Z: [0, T] \to \mathbb{R}^k$ of (2.3), the remainder $Z_{st}^{[2]} := \delta Z_{st} - \sigma(Z_s) \,\delta X_{st}$ satisfies $Z^{[2]} \in C_2^{(\gamma+1)\alpha}$, more precisely for any $\tau > 0$

$$\|Z^{[2]}\|_{(\gamma+1)\alpha,\tau} \leqslant C_{\alpha,\gamma,X,\sigma} \|\delta Z\|_{\alpha,\tau}^{\gamma} \qquad with \ C_{\alpha,\gamma,X,\sigma} := K_{(\gamma+1)\alpha} \|\delta X\|_{\alpha} [\sigma]_{\mathcal{C}^{\gamma}}, \quad (2.10)$$

where $K_{\eta} = (1 - 2^{1-\eta})^{-1}$. Moreover, if either T or τ is small enough, we have

$$\|\delta Z\|_{\alpha,\tau} \leq 1 \lor (2 \|\delta X\|_{\alpha} |\sigma(Z_0)|) \qquad for \ (\tau \land T)^{\alpha\gamma} \leq \varepsilon_{\alpha,\gamma,X,\sigma}, \tag{2.11}$$

where we define

$$\varepsilon_{\alpha,\gamma,X,\sigma} := \frac{1}{2\left(K_{(\gamma+1)\alpha} + 3\right) \|\delta X\|_{\alpha} [\sigma]_{\mathcal{C}^{\gamma}}} .$$

$$(2.12)$$

If σ is globally Lipschitz, namely if we can take $\gamma = 1$, we can improve (2.11) to

$$\|\delta Z\|_{\alpha,\tau} \leq 2 \|\delta X\|_{\alpha} |\sigma(Z_0)| \qquad for \ (\tau \wedge T)^{\alpha} \leq \varepsilon_{\alpha,1,X,\sigma}.$$

$$(2.13)$$

Proof. We first prove (2.10). Since $Z_{st}^{[2]} = o(t-s)$ by definition of solution, see (2.4), we can estimate $Z^{[2]}$ in terms of $\delta Z^{[2]}$, by the weighted Sewing Bound (1.41). Let us compute $\delta Z_{sut}^{[2]} = Z_{st}^{[2]} - Z_{su}^{[2]} - Z_{ut}^{[2]}$: recalling (2.4) and (1.32), since $\delta \circ \delta = 0$, we have

$$\delta Z_{sut}^{[2]} = \delta \sigma(Z)_{su} \,\delta X_{ut} = \left(\sigma(Z_u) - \sigma(Z_s)\right) \left(X_t - X_u\right). \tag{2.14}$$

Since $|\sigma(z) - \sigma(\bar{z})| \leq [\sigma]_{\mathcal{C}^{\gamma}} |z - \bar{z}|^{\gamma}$ for all $z, \bar{z} \in \mathbb{R}^d$, we can bound

$$\|\delta\sigma(Z)\|_{\gamma\alpha,\tau} \leq [\sigma]_{\mathcal{C}^{\gamma}} \|\delta Z\|_{\alpha,\tau}^{\gamma}, \qquad (2.15)$$

hence by (2.8) we obtain

$$\|\delta Z^{[2]}\|_{(\gamma+1)\alpha,\tau} \leqslant \|\delta X\|_{\alpha} [\sigma]_{\mathcal{C}^{\gamma}} \|\delta Z\|_{\alpha,\tau}^{\gamma}.$$

Applying the weighted Sewing Bound (1.41), for $(\gamma + 1)\alpha > 1$ we then obtain

$$\|Z^{[2]}\|_{(\gamma+1)\alpha,\tau} \leqslant K_{(\gamma+1)\alpha} \|\delta X\|_{\alpha} [\sigma]_{\mathcal{C}^{\gamma}} \|\delta Z\|_{\alpha,\tau}^{\gamma}, \qquad (2.16)$$

which proves (2.10).

We next prove (2.11). To simplify notation, let us set $\varepsilon := (\tau \wedge T)^{\alpha}$. Recalling (2.7) and (2.6), we obtain by (2.4)

$$\begin{aligned} \|\delta Z\|_{\alpha,\tau} &\leqslant \|\sigma(Z)\,\delta X\|_{\alpha,\tau} + \|Z^{[2]}\|_{\alpha,\tau} \\ &\leqslant \|\sigma(Z)\|_{\infty,\tau} \,\|\delta X\|_{\alpha} + \varepsilon^{\gamma} \,\|Z^{[2]}\|_{(\gamma+1)\alpha,\tau} \,. \end{aligned}$$
(2.17)

We can estimate $\|\sigma(Z)\|_{\infty,\tau}$ by (2.5) and (2.15):

$$\|\sigma(Z)\|_{\infty,\tau} \leq |\sigma(Z_0)| + 3\varepsilon^{\gamma} [\sigma]_{\mathcal{C}^{\gamma}} \|\delta Z\|_{\alpha,\tau}^{\gamma}$$

Plugging this and (2.16) into (2.17), we get

$$\begin{split} \|\delta Z\|_{\alpha,\tau} &\leqslant (|\sigma(Z_0)| + 3\varepsilon^{\gamma} [\sigma]_{\mathcal{C}^{\gamma}} \|\delta Z\|_{\alpha,\tau}^{\gamma}) \|\delta X\|_{\alpha} + \\ &+ \varepsilon^{\gamma} K_{(\gamma+1)\alpha} \|\delta X\|_{\alpha} [\sigma]_{\mathcal{C}^{\gamma}} \|\delta Z\|_{\alpha,\tau}^{\gamma} \\ &= \|\delta X\|_{\alpha} |\sigma(Z_0)| + \frac{1}{2} \frac{\varepsilon^{\gamma}}{\varepsilon_{\alpha,\gamma,X,\sigma}} \|\delta Z\|_{\alpha,\tau}^{\gamma} \,, \end{split}$$

where $\varepsilon_{\alpha,\gamma,X,\sigma}$ is defined in (2.12). For $\varepsilon^{\gamma} \leq \varepsilon_{\alpha,\gamma,X,\sigma}$ the last term is bounded by $\frac{1}{2} \|\delta Z\|_{\alpha,\tau}^{\gamma}$ which is finite by Lemma 2.6. If $\|\delta Z\|_{\alpha,\tau} \leq 1$ then (2.11) holds trivially; if not, $\frac{1}{2} \|\delta Z\|_{\alpha,\tau}^{\gamma} \leq \frac{1}{2} \|\delta Z\|_{\alpha,\tau}$. Bringing this term in the LHS we obtain (2.11).

To prove (2.13), we argue as for (2.11) and since $\gamma = 1$ we obtain

$$\|\delta Z\|_{\alpha,\tau} \leq \|\delta X\|_{\alpha} |\sigma(Z_0)| + \frac{1}{2} \frac{\varepsilon}{\varepsilon_{\alpha,1,X,\sigma}} \|\delta Z\|_{\alpha,\tau}.$$

For $\varepsilon \leq \varepsilon_{\alpha,1,X,\sigma}$ the last term is bounded by $\frac{1}{2} \|\delta Z\|_{\alpha,\tau}$ which is finite by Lemma 2.6. Bringing this term in the LHS we obtain (2.13), and this completes the proof. \Box

2.4. UNIQUENESS

In this section we prove uniqueness of solutions to (2.3) assuming that σ is of class C^1 with locally Hölder gradient (we stress that we make no boundedness assumption on σ). This improves on Theorem 1.7, both because we allow for non-linear σ and because we do not require that the time horizon T > 0 is small.

We first need an elementary but fundamental estimate on the difference of increments of a function. Given $\Psi \colon \mathbb{R}^k \to \mathbb{R}^\ell$, we use the notation

$$C_{\Psi,R} := \sup\left\{ |\Psi(x)|: x \in \mathbb{R}^k, |x| \leq R \right\}.$$

$$(2.18)$$

LEMMA 2.8. (DIFFERENCE OF INCREMENTS) Let $\psi: \mathbb{R}^k \to \mathbb{R}^\ell$ be of class $\mathcal{C}_{\text{loc}}^{1+\rho}$ for some $0 < \rho \leq 1$ (i.e. ψ is differentiable with $\nabla \psi$ of class $\mathcal{C}_{\text{loc}}^{\rho}$). Then for any R > 0and for all $x, \bar{x}, y, \bar{y} \in \mathbb{R}^k$ with $\max\{|x|, |y|, |\bar{x}|, |\bar{y}|\} \leq R$ we can estimate

$$\begin{aligned} [\psi(x) - \psi(y)] &- [\psi(\bar{x}) - \psi(\bar{y})]| \\ &\leq C_R' \left| (x - y) - (\bar{x} - \bar{y}) \right| + C_R'' \left\{ |x - y|^{\rho} + |\bar{x} - \bar{y}|^{\rho} \right\} |y - \bar{y}| , \end{aligned}$$

$$(2.19)$$

where $C'_R := \sup\left\{ |\nabla \psi(x)|: |x| \leq R \right\}$ and $C''_R := \sup\left\{ \frac{|\nabla \psi(x) - \nabla \psi(y)|}{|x-y|^{\rho}}: |x|, |y| \leq R \right\}.$

+ $[\hat{\psi}(x,\bar{x}) - \hat{\psi}(y,\bar{y})](y-\bar{y}).$

Proof. For $z, w \in \mathbb{R}^k$ we can write

$$\psi(z) - \psi(w) = \hat{\psi}(z, w) (z - w),$$

where $\hat{\psi}(z, w) := \int_0^1 \nabla \psi(u \, z + (1 - u) \, w) \, \mathrm{d}u \in \mathbb{R}^\ell \otimes (\mathbb{R}^k)^*$, therefore $[\psi(x) - \psi(y)] - [\psi(\bar{x}) - \psi(\bar{y})] = [\psi(x) - \psi(\bar{x})] - [\psi(y) - \psi(\bar{y})]$ $= \hat{\psi}(x, \bar{x}) (x - \bar{x}) - \hat{\psi}(y, \bar{y}) (y - \bar{y})$ $= \hat{\psi}(x, \bar{x}) [(x - \bar{x}) - (y - \bar{y})]$

By definition of C'_R and C''_R we have $|\hat{\psi}(x, \bar{x})| \leq C'_R$ and

$$\begin{aligned} |\hat{\psi}(x,\bar{x}) - \hat{\psi}(y,\bar{y})| &\leqslant |\hat{\psi}(x,\bar{x}) - \hat{\psi}(y,\bar{x})| + |\hat{\psi}(y,\bar{x}) - \hat{\psi}(y,\bar{y})| \\ &\leqslant C_R'' \{ |x - y|^{\rho} + |\bar{x} - \bar{y}|^{\rho} \}, \end{aligned}$$

hence (2.19) follows.

We are now ready to state and prove the announced uniqueness result.

THEOREM 2.9. (UNIQUENESS) Let X be of class C^{α} with $\alpha \in \left[\frac{1}{2}, 1\right]$ and let σ be of class C^{γ} for some $\gamma > \frac{1}{\alpha}$ (for instance, we can take $\sigma \in C^2$). Then for every $z_0 \in \mathbb{R}^k$ there exists at most one solution Z to (2.3) with $Z_0 = z_0$.

Proof. Let Z and \overline{Z} be two solutions of (2.3), i.e. they satisfy (2.4), and set

$$Y := Z - \bar{Z}$$

We want to show that, for $\tau > 0$ small enough, we have

 $||Y||_{\infty,\tau} \leq 2 |Y_0|,$

where the weighted norm $\|\cdot\|_{\infty,\tau}$ was defined in (1.37). In particular, if we assume that $Z_0 = \overline{Z}_0$, we obtain $\|Y\|_{\infty,\tau} = 0$ and hence $Z = \overline{Z}$.

We know by (2.5) that for any $\tau > 0$

$$\|Y\|_{\infty,\tau} \leqslant |Y_0| + 3\tau^{\alpha} \|\delta Y\|_{\alpha,\tau}, \qquad (2.20)$$

where we recall that the weighted semi-norm $\|\cdot\|_{\alpha,\tau}$ was defined in (1.33). We now define $Y^{[2]}$ as the difference between the remainders $Z^{[2]}$ and $\overline{Z}^{[2]}$ of the solutions Zand \overline{Z} as defined in (2.4), that is

$$Y_{st}^{[2]} := Z_{st}^{[2]} - \bar{Z}_{st}^{[2]} = \delta Y_{st} - (\sigma(Z_s) - \sigma(\bar{Z}_s)) \,\delta X_{st} \,.$$
(2.21)

(We are slightly abusing notation, since $Y^{[2]}$ is not the remainder of Y when σ is not linear.) By assumption $\sigma \in \mathcal{C}^{\gamma}$ for some $\gamma > \frac{1}{\alpha}$: renaming γ as $\gamma \wedge 2$, we may assume that $\gamma \in \left[\frac{1}{\alpha}, 2\right]$. We are going to prove the following inequalities: for any $\tau > 0$

$$\|\delta Y\|_{\alpha,\tau} \leq c_1 \|Y\|_{\infty,\tau} + \tau^{(\gamma-1)\alpha} \|Y^{[2]}\|_{\gamma\alpha,\tau}, \qquad (2.22)$$

$$\|Y^{[2]}\|_{\gamma\alpha,\tau} \leqslant c_2 \, \|Y\|_{\infty,\tau} + c_2' \, \tau^{(\gamma-1)\alpha} \, \|Y^{[2]}\|_{\gamma\alpha,\tau} \,, \tag{2.23}$$

for finite constants c_i, c'_i that may depend on $X, \sigma, Z, \overline{Z}$ but not on τ .

Let us complete the proof assuming (2.22) and (2.23). Note that $(\gamma - 1) \alpha > 0$ by assumption. If we fix $\tau > 0$ small, so that $c'_2 \tau^{(\gamma-1)\alpha} < \frac{1}{2}$, from (2.23) we get $\|Y^{[2]}\|_{\gamma\alpha,\tau} \leq 2 c_2 \|Y\|_{\infty,\tau}$ which plugged into (2.22) yields $\|\delta Y\|_{\alpha,\tau} \leq 2 c_1 \|Y\|_{\infty,\tau}$ for $\tau > 0$ small (it suffices that $2 c_2 \tau^{(\gamma-1)\alpha} < c_1$). Finally, plugging this into (2.20) and possibly choosing $\tau > 0$ even smaller, we obtain our goal $\|Y\|_{\infty,\tau} \leq 2 |Y_0|$ which completes the proof.

It remains to prove (2.22) and (2.23). Using the notation from Lemma 2.8 we set

$$C_{1}' := \sup \left\{ |\nabla \sigma(x)|: |x| \leq ||Z||_{\infty} \vee ||\bar{Z}||_{\infty} \right\}, C_{1}'' := \sup \left\{ \frac{|\nabla \sigma(x) - \nabla \sigma(y)|}{|x - y|^{\rho}}: |x|, |y| \leq ||Z||_{\infty} \vee ||\bar{Z}||_{\infty} \right\}.$$

so that $|\sigma(Z_t) - \sigma(\bar{Z}_t)| \leq C'_1 |Z_t - \bar{Z}_t|$ and, therefore,

$$\|\sigma(Z) - \sigma(Z)\|_{\infty,\tau} \leqslant C_1' \|Y\|_{\infty,\tau} \,. \tag{2.24}$$

We now exploit (2.21) to estimate $\|\delta Y\|_{\alpha,\tau}$: applying (2.7) we obtain

$$\|\delta Y\|_{\alpha,\tau} \leqslant \|\sigma(Z) - \sigma(\bar{Z})\|_{\infty,\tau} \|\delta X\|_{\alpha} + \|Y^{[2]}\|_{\alpha,\tau} \leqslant C_1' \|Y\|_{\infty,\tau} \|\delta X\|_{\alpha} + \tau^{(\gamma-1)\alpha} \|Y^{[2]}\|_{\gamma\alpha,\tau},$$
 (2.25)

where we note that $\|Y^{[2]}\|_{\alpha,\tau} \leq \tau^{(\gamma-1)\alpha} \|Y^{[2]}\|_{\gamma\alpha,\tau}$ by (2.6). We have shown that (2.22) holds with $c_1 = C_1' \|\delta X\|_{\alpha}$.

We finally prove (2.23). Since $Y_{st}^{[2]} = o(t-s)$, see (2.21) and (2.4), we bound $Z^{[2]}$ by its increment $\delta Z^{[2]}$ through the weighted Sewing Bound (1.41):

$$\|Y^{[2]}\|_{\gamma\alpha,\tau} \leqslant K_{\gamma\alpha} \|\delta Y^{[2]}\|_{\gamma\alpha,\tau}, \qquad (2.26)$$

hence we focus on $\|\delta Y^{[2]}\|_{\gamma\alpha,\tau}$. By (2.21) and (1.32), since $\delta \circ \delta = 0$, we have

$$\delta Y_{sut}^{[2]} = \left(\delta \sigma(Z)_{su} - \delta \sigma(\bar{Z})_{su}\right) \delta X_{ut} \,. \tag{2.27}$$

Applying the estimate (2.19) for $x = Z_u, y = Z_s, \bar{x} = \bar{Z}_u, \bar{y} = \bar{Z}_s$, we can write

$$\begin{aligned} |\delta\sigma(Z)_{su} - \delta\sigma(\bar{Z})_{su}| &\leq C_1' |\delta Z_{su} - \delta \bar{Z}_{su}| + C_1'' \{ |\delta Z_{su}|^{\gamma - 1} + |\delta \bar{Z}_{su}|^{\gamma - 1} \} |Z_s - \bar{Z}_s| \\ &= C_1' |\delta Y_{su}| + C_1'' \{ |\delta Z_{su}|^{\gamma - 1} + |\delta \bar{Z}_{su}|^{\gamma - 1} \} |Y_s|. \end{aligned}$$

$$(2.28)$$

hence by (2.7) we get

$$\|\delta\sigma(Z) - \delta\sigma(\bar{Z})\|_{(\gamma-1)\alpha,\tau} \leqslant C_1' \|\delta Y\|_{(\gamma-1)\alpha,\tau} + C_1'' \{\|\delta Z\|_{\alpha}^{\gamma-1} + \|\delta \bar{Z}\|_{\alpha}^{\gamma-1} \} \|Y\|_{\infty,\tau}.$$
(2.29)

If we take $\tau \leq 1$ we can bound $\|\delta Y\|_{(\gamma-1)\alpha,\tau} \leq \|\delta Y\|_{\alpha,\tau}$ by (2.6) (recall that we are assuming $\gamma \leq 2$). Then by (2.27) we obtain, recalling (2.8),

$$\|\delta Y^{[2]}\|_{\gamma\alpha,\tau} \leqslant \|\delta X\|_{\alpha} \|\delta\sigma(Z) - \delta\sigma(\bar{Z})\|_{(\gamma-1)\alpha,\tau} \leqslant \tilde{c}_1 \left(\|\delta Y\|_{\alpha,\tau} + \|Y\|_{\infty,\tau}\right),$$

for a suitable (explicit) constant $\tilde{c}_1 = \tilde{c}_1(\sigma, Z, \overline{Z}, X)$. Applying (2.22), we obtain

$$\|\delta Y^{[2]}\|_{\gamma\alpha,\tau} \leq (c_1+1) \, \tilde{c}_1 \, \|Y\|_{\infty,\tau} + \tilde{c}_1 \, \tau^{(\gamma-1)\alpha} \, \|Y^{[2]}\|_{\gamma\alpha,\tau},$$

which plugged into (2.26) shows that (2.23) holds. The proof is complete.

We conclude with an example of (2.19).

Example 2.10. If $\sigma: \mathbb{R} \to \mathbb{R}$ is $\sigma(x) = x^2$, then we have

$$\begin{aligned} (\sigma(x) - \sigma(y)) &- (\sigma(\bar{x}) - \sigma(\bar{y})) \\ &= (x^2 - y^2) - (\bar{x}^2 - \bar{y}^2) = (x^2 - \bar{x}^2) - (y^2 - \bar{y}^2) \\ &= (x - \bar{x}) \left(x + \bar{x} \right) - (y - \bar{y}) \left(y + \bar{y} \right) \\ &= \left[(x - \bar{x}) - (y - \bar{y}) \right] \left(y + \bar{y} \right) + (x - \bar{x}) \left[(x + \bar{x}) - (y + \bar{y}) \right] \\ &= \left[(x - \bar{x}) - (y - \bar{y}) \right] \left(y + \bar{y} \right) + (x - \bar{x}) \left[(x - y) + (\bar{x} - \bar{y}) \right] \end{aligned}$$

where in the second last equality we have summed and subtracted $(y - \bar{y})(x + \bar{x})$. If we use this formula for $x = Z_t$, $y = Z_s$ and $\bar{x} = \bar{Z}_t$, $\bar{y} = \bar{Z}_s$, then we obtain

$$\delta(Z^2 - \bar{Z}^2)_{st} = \delta(Z - \bar{Z})_{st} (Z_s + \bar{Z}_s) + (Z_t - \bar{Z}_t) [\delta Z_{st} + \delta Z_{st}],$$

which is in the spirit of (2.19) with $\rho = 1$. It follows that

$$\|\delta(Z^2 - \bar{Z}^2)\|_{\alpha} \leq 2 \|\bar{Z}\|_{\infty} \|\delta(Z - \bar{Z})\|_{\alpha} + \|Z - \bar{Z}\|_{\infty} [\|\delta Z\|_{\alpha} + \|\delta \bar{Z}\|_{\alpha}],$$

which is the form that (2.29) takes in this particular case.

2.5. CONTINUITY OF THE SOLUTION MAP

In this section we assume that σ is globally Lipschitz and of class C^1 with a globally γ -Hölder gradient, i.e. $\|\nabla \sigma\|_{\infty} < \infty$ and $[\nabla \sigma]_{\mathcal{C}^{\gamma}} < \infty$, with $\gamma > \frac{1}{\alpha}$. Under these assumptions, we have global existence and uniqueness of solutions $Z: [0, T] \to \mathbb{R}^k$ to (2.3) for any time horizon T > 0, for any starting point $Z_0 \in \mathbb{R}^k$ and for any driving path X of class \mathcal{C}^{α} with $\frac{1}{2} < \alpha \leq 1$ (as we will prove in Section 2.6).

We can thus consider the *solution map*:

$$\Phi: \mathbb{R}^{k} \times \mathcal{C}^{\alpha} \longrightarrow \mathcal{C}^{\alpha}$$

$$(Z_{0}, X) \longmapsto Z:=\begin{cases} \text{unique solution of } (2.3) \text{ for } t \in [0, T] \\ \text{starting from } Z_{0} \end{cases}$$

$$(2.30)$$

We prove in this section that this map is *continuous*, in fact *locally Lipschitz*.

Remark 2.11. The continuity of the solution map is a highly non-trivial property. Indeed, when X is of class C^1 , note that Z solves the equation

$$Z_t = Z_0 + \int_0^t \sigma(Z_s) \, \dot{X}_s \, \mathrm{ds} \,, \tag{2.31}$$

which is based on the derivative \dot{X} of X. We instead consider driving paths $X \in \mathcal{C}^{\alpha}$ with $\alpha \in \left[\frac{1}{2}, 1\right]$ which are continuous but may be non-differentiable.

We shall see in the next chapters that the continuity of the solution map holds also in more complex situations such as $X \in \mathcal{C}^{\alpha}$ with $\alpha \leq \frac{1}{2}$, which cover the case when X is a Brownian motion and Z is the solution to a SDE. Before stating the continuity of the solution map, we recall that the space C^{α} is equipped with the norm $||f||_{C^{\alpha}} := ||f||_{\infty} + ||\delta f||_{\alpha}$, see Remark 1.4, but an equivalent norm is $||f||_{\infty,\tau} + ||\delta f||_{\alpha,\tau}$ for any choice of the weight $\tau > 0$, see Remark 1.15.

THEOREM 2.12. (CONTINUITY OF THE SOLUTION MAP) Let σ be globally Lipschitz with a globally $(\gamma - 1)$ -Hölder gradient: $\|\nabla \sigma\|_{\infty} < \infty$ and $[\nabla \sigma]_{\mathcal{C}^{\gamma-1}} < \infty$, with $\gamma \in (\frac{1}{\alpha}, 2]$. Then, for any T > 0 and $\alpha \in [\frac{1}{2}, 1]$, the solution map $(Z_0, X) \mapsto Z$ in (2.30) is locally Lipschitz.

More explicitly, given $M_0, M, D < \infty$, if we assume that

$$\max\left\{\|\nabla\sigma\|_{\infty}, [\nabla\sigma]_{\mathcal{C}^{\gamma-1}}\right\} \leqslant D,$$

and we consider starting points $Z_0, \overline{Z}_0 \in \mathbb{R}^d$ and driving paths $X, \overline{X} \in \mathcal{C}^{\alpha}$ with

$$\max\left\{ |\sigma(Z_0)|, |\sigma(\bar{Z}_0)| \right\} \leqslant M_0, \qquad \max\left\{ \|\delta X\|_{\alpha}, \|\delta \bar{X}\|_{\alpha} \right\} \leqslant M, \tag{2.32}$$

then the corresponding solutions $Z = (Z_s)_{s \in [0,T]}$, $\overline{Z} = (\overline{Z}_s)_{s \in [0,T]}$ of (2.3) satisfy

$$\|Z - \bar{Z}\|_{\infty,\tau} + \|\delta Z - \delta \bar{Z}\|_{\alpha,\tau} \leq \mathfrak{C}_M |Z_0 - \bar{Z}_0| + 6 M_0 \|\delta X - \delta \bar{X}\|_{\alpha}, \tag{2.33}$$

provided $0 < \tau \land T \leq \hat{\tau}$ for a suitable $\hat{\tau} = \hat{\tau}_{\alpha,\gamma,T,D,M_0,M} > 0$, where we set

$$\mathfrak{C}_M := 2\left(\|\nabla \sigma\|_{\infty} M + 1 \right) \leq 2\left(D M + 1 \right).$$

Proof. Let us define the constant

$$\mathbf{c}_M := \|\nabla \sigma\|_{\infty} M \leqslant D M.$$
(2.34)

We fix two solutions Z and \overline{Z} of (2.3) with respective driving paths X and \overline{X} . If we define $Y := Z - \overline{Z}$, we can rewrite our goal (2.33) as

$$\|Y\|_{\infty,\tau} + \|\delta Y\|_{\alpha,\tau} \leq 6 M_0 \|\delta X - \delta \bar{X}\|_{\alpha} + 2(\mathfrak{c}_M + 1) |Y_0|.$$
(2.35)

Let us introduce the shorthand

$$\varepsilon := (\tau \wedge T)^{\alpha}$$

and let us agree that, whenever we write for ε small enough we mean for $0 < \varepsilon \leq \varepsilon_0$ for a suitable $\varepsilon_0 > 0$ which depends on α, T, M_0, M, D . By (2.5), for ε small enough,

$$\|Y\|_{\infty,\tau} \leqslant |Y_0| + \varepsilon \|\delta Y\|_{\alpha,\tau} \leqslant |Y_0| + \frac{1}{5} \|\delta Y\|_{\alpha,\tau}, \qquad (2.36)$$

hence to prove (2.35) we can focus on $\|\delta Y\|_{\alpha,\tau}$.

Recalling (2.4), let us define $Y^{[2]} := Z^{[2]} - \overline{Z}^{[2]}$. We are going to establish the following two relations, for ε small enough:

$$\frac{4}{5} \|\delta Y\|_{\alpha,\tau} \leq 2 M_0 \|\delta X - \delta \bar{X}\|_{\alpha} + \mathfrak{c}_M |Y_0| + \|Y^{[2]}\|_{\alpha,\tau}, \qquad (2.37)$$

$$\|Y^{[2]}\|_{\alpha,\tau} \leq M_0 \|\delta X - \delta \bar{X}\|_{\alpha} + \frac{1}{2}|Y_0| + \frac{1}{5} \|\delta Y\|_{\alpha,\tau}.$$
(2.38)

Plugging (2.38) into (2.37) and applying (2.36), we obtain (2.35).

It remains to prove (2.37) and (2.38). We record some useful bounds. Let us set

$$\bar{\varepsilon} = \bar{\varepsilon}_{\alpha,D,M} := \frac{1}{2(K_{2\alpha} + 3)DM}.$$
(2.39)

We exploit the a priori estimate (2.13) from Theorem 2.7: by (2.32), we have

for
$$\varepsilon = (\tau \wedge T)^{\alpha} \leqslant \overline{\varepsilon}$$
: $\max\{\|\delta Z\|_{\alpha,\tau}, \|\delta \overline{Z}\|_{\alpha,\tau}\} \leqslant 2 M_0 M,$ (2.40)

therefore

$$\|\delta\sigma(Z)\|_{\alpha,\tau} \leq \|\nabla\sigma\|_{\infty} \|\delta Z\|_{\alpha,\tau} \leq 2 \|\nabla\sigma\|_{\infty} M_0 M = 2 M_0 \mathfrak{c}_M, \qquad (2.41)$$

and applying (2.5) and (2.32) we get, for ε small enough,

$$\|\sigma(Z)\|_{\infty,\tau} \leq |\sigma(Z_0)| + 3\varepsilon \|\delta\sigma(Z)\|_{\alpha,\tau} \leq M_0 (1 + 6\mathfrak{c}_M\varepsilon) \leq 2M_0 .$$
(2.42)

We can now prove (2.37). Defining $Y^{[2]} := Z^{[2]} - \bar{Z}^{[2]}$, we obtain from (2.4)

$$\delta Y_{st} = \delta Z_{st} - \delta \bar{Z}_{st} = \sigma(Z_s) \, \delta X_{st} - \sigma(\bar{Z}_s) \, \delta \bar{X}_{st} + Y_{st}^{[2]} = \sigma(Z_s) \, (\delta X - \delta \bar{X})_{st} + (\sigma(Z_s) - \sigma(\bar{Z}_s)) \, \delta \bar{X}_{st} + Y_{st}^{[2]},$$

hence by (2.7) we can bound

$$\|\delta Y\|_{\alpha,\tau} \leqslant \|\sigma(Z)\|_{\infty,\tau} \|\delta X - \delta \bar{X}\|_{\alpha} + \|\delta \bar{X}\|_{\alpha} \|\sigma(Z) - \sigma(\bar{Z})\|_{\infty,\tau} + \|Y^{[2]}\|_{\alpha,\tau}.$$

$$(2.43)$$

Let us look at the second term in the RHS of (2.43): by (2.5)

$$\begin{aligned} \|\sigma(Z) - \sigma(\bar{Z})\|_{\infty,\tau} &\leqslant \|\nabla\sigma\|_{\infty} \|Z - \bar{Z}\|_{\infty,\tau} \\ &\leqslant \|\nabla\sigma\|_{\infty} (|Y_0| + 3\varepsilon \|\delta Y\|_{\alpha,\tau}). \end{aligned}$$
(2.44)

Hence by (2.32) and (2.34) we get, for ε small enough,

$$\|\delta \bar{X}\|_{\alpha} \|\sigma(Z) - \sigma(\bar{Z})\|_{\infty,\tau} \leq \mathfrak{c}_M |Y_0| + \frac{1}{5} \|\delta Y\|_{\alpha,\tau}.$$

$$(2.45)$$

Plugging this into (2.43) we then obtain, by (2.42),

$$\frac{4}{5} \|\delta Y\|_{\alpha,\tau} \leq 2 M_0 \|\delta X - \delta \bar{X}\|_{\alpha} + \mathfrak{c}_M |Y_0| + \|Y^{[2]}\|_{\alpha,\tau},$$
(2.46)

which proves (2.37).

We finally prove (2.38). Since $Y_{st}^{[2]} = Z_{st}^{[2]} - \bar{Z}_{st}^{[2]} = o(t-s)$, see (2.4), the weighted Sewing Bound (1.41) and (2.6) give

$$\|Y^{[2]}\|_{\alpha,\tau} \leqslant \varepsilon^{\gamma-1} \|Y^{[2]}\|_{\gamma\alpha,\tau} \leqslant K_{\gamma\alpha} \varepsilon^{\gamma-1} \|\delta Y^{[2]}\|_{\gamma\alpha,\tau} .$$

$$(2.47)$$

To estimate $\delta Y^{[2]} = \delta Z^{[2]} - \delta \bar{Z}^{[2]}$, note that by (2.4) and (1.32) we can write

$$\delta Y_{sut}^{[2]} = \delta \sigma(Z)_{su} \left(\delta X - \delta \bar{X} \right)_{ut} + \left(\delta \sigma(Z) - \delta \sigma(\bar{Z}) \right)_{su} \delta \bar{X}_{ut} , \qquad (2.48)$$

hence by (2.8)

$$\|\delta Y^{[2]}\|_{\gamma\alpha,\tau} \leq \|\delta\sigma(Z)\|_{(\gamma-1)\alpha,\tau} \|\delta X - \delta\bar{X}\|_{\alpha} + \|\delta\bar{X}\|_{\alpha} \|\delta\sigma(Z) - \delta\sigma(\bar{Z})\|_{(\gamma-1)\alpha,\tau}.$$
 (2.49)

The first term is easy to control: by (2.41), for ε small enough,

$$K_{\gamma\alpha}\varepsilon^{\gamma-1} \|\delta\sigma(Z)\|_{(\gamma-1)\alpha,\tau} \|\delta X - \delta\bar{X}\|_{\alpha} \leqslant M_0 \|\delta X - \delta\bar{X}\|_{\alpha}.$$
(2.50)

Let us now focus on the second term. By (2.19) we have, see also (2.28),

$$\left|\delta\sigma(Z)_{su} - \delta\sigma(\bar{Z})_{su}\right| \leq \left\|\nabla\sigma\right\|_{\infty} \left|\delta Y_{su}\right| + \left[\nabla\sigma\right]_{\mathcal{C}^{\gamma-1}} \left\{\left|\delta Z_{su}\right|^{\gamma-1} + \left|\delta\bar{Z}_{su}\right|^{\gamma-1}\right\} \left|Y_{s}\right|.$$

We apply (2.9) for $H = \delta Z$, g = Y and $\bar{\tau} = (\bar{\varepsilon})^{1/\alpha}$ from (2.39):

$$\begin{aligned} \|\delta\sigma(Z) - \delta\sigma(\bar{Z})\|_{(\gamma-1)\alpha,\tau} &\leq \|\nabla\sigma\|_{\infty} \|\delta Y\|_{(\gamma-1)\alpha,\tau} + \\ &+ [\nabla\sigma]_{\mathcal{C}^{\gamma-1}} e^{\frac{T}{\bar{\tau}}} (\|\delta Z\|_{\alpha,\bar{\tau}}^{\gamma-1} + \|\delta \bar{Z}\|_{\alpha,\bar{\tau}}^{\gamma-1}) \|Y\|_{\infty,\tau} \\ &\leq D \|\delta Y\|_{\alpha,\tau} + 2 (2M_0 M)^{\gamma-1} e^{\frac{T}{\bar{\tau}}} D \|Y\|_{\infty,\tau}, \end{aligned}$$
(2.51)

where we applied (2.40). Hence by (2.51), recalling (2.32), for ε small enough we obtain

$$K_{\gamma\alpha}\varepsilon^{\gamma-1} \|\delta\bar{X}\|_{\alpha} \|\delta\sigma(Z) - \delta\sigma(\bar{Z})\|_{(\gamma-1)\alpha,\tau} \leq \frac{1}{10} \|\delta Y\|_{\alpha,\tau} + \frac{1}{2} \|Y\|_{\infty,\tau},$$
(2.52)

and since $||Y||_{\infty,\tau} \leq |Y_0| + \frac{1}{5} ||\delta Y||_{\alpha,\tau}$, see (2.36), we obtain

$$K_{\gamma\alpha}\varepsilon^{\gamma-1} \|\delta\bar{X}\|_{\alpha} \|\delta\sigma(Z) - \delta\sigma(\bar{Z})\|_{(\gamma-1)\alpha,\tau} \leqslant \frac{1}{2}|Y_0| + \frac{1}{5} \|\delta Y\|_{\alpha,\tau}.$$

Finally, plugging this bound and (2.50) into (2.49) and (2.47), we obtain

$$\|Y^{[2]}\|_{\alpha,\tau} \leqslant M_0 \|\delta X - \delta \bar{X}\|_{\alpha} + \frac{1}{2}|Y_0| + \frac{1}{5} \|\delta Y\|_{\alpha,\tau}$$

which proves (2.38) and completes the proof.

Remark 2.13. An explicit choice for $\hat{\tau}$ in Theorem 2.12 is

$$\hat{\tau}^{\alpha} := \frac{e^{-\frac{T}{\bar{\tau}}}}{10(K_{2\alpha}+3)(1+M_0)(1+D(M+M^2))},$$
(2.53)

with $\bar{\tau} = \bar{\tau}_{\alpha,D,M}$ defined in (2.39). This is obtained by tracking all the points in the proof of Theorem 2.12 where $\varepsilon = (\tau \wedge T)^{\alpha}$ was assumed to be *small enough*: see Section 2.8 for the details.

2.6. EULER SCHEME AND LOCAL/GLOBAL EXISTENCE

In this section we discuss global existence of solutions, under the assumption that σ is globally γ -Hölder with $\gamma \in \left(\frac{1}{\alpha} - 1, 1\right]$, i.e. $[\sigma]_{\mathcal{C}^{\gamma}} < \infty$ (again with no boundedness assumption on σ). We also state a result of *local existence of solutions* for equation (2.3), where we only assume that σ is *locally* γ -Hölder with $\gamma \in \left(\frac{1}{\alpha} - 1, 1\right]$ (with no boundedness assumption on σ).

We fix $X: [0,T] \to \mathbb{R}^d$ of class \mathcal{C}^{α} with $\alpha \in \left]\frac{1}{2}, 1\right]$ and a starting point $z_0 \in \mathbb{R}^k$. We split the proof in two parts: we first assume that $\sigma: \mathbb{R}^k \to \mathbb{R}^k \otimes (\mathbb{R}^d)^*$ is globally γ -Hölder, then we consider the case when σ is locally γ -Hölder.

First part: globally Hölder case.

We consider a finite set $\mathbb{T} = \{0 = t_1 < \cdots < t_{\#\mathbb{T}}\} \subset \mathbb{R}_+$ and we define an approximate solution $Z = Z^{\mathbb{T}} = (Z_t)_{t \in \mathbb{T}}$ through the *Euler scheme*

$$Z_0 := z_0, \qquad Z_{t_{i+1}} := Z_{t_i} + \sigma(Z_{t_i}) \,\delta X_{t_i, t_{i+1}} \qquad \text{for } 1 \le i \le \# \mathbb{T} - 1.$$
(2.54)

Let us define the "remainder"

$$R_{st} := \delta Z_{st} - \sigma(Z_s) \,\delta X_{st} \qquad \text{for } s < t \in \mathbb{T}.$$

$$(2.55)$$

We assume that σ is globally γ -Hölder, namely $[\sigma]_{\mathcal{C}^{\gamma}} < \infty$, with $\gamma \in \left(\frac{1}{\alpha} - 1, 1\right]$. We set

$$\hat{\varepsilon}_{\alpha,\gamma,X,\sigma} := \frac{1}{2\left(C_{(\gamma+1)\alpha} + 5\right) \|\delta X\|_{\alpha} [\sigma]_{\mathcal{C}^{\gamma}}},\tag{2.56}$$

where the constant C_{η} is defined in (1.45). We prove the following *a priori estimates* on the Euler scheme (2.54), which are analogous to those in Theorem 2.7.

LEMMA 2.14. If σ is globally γ -Hölder, namely $[\sigma]_{\mathcal{C}^{\gamma}} < \infty$, with $\gamma \in (\frac{1}{\alpha} - 1, 1]$, then

$$\|R\|_{(\gamma+1)\alpha}^{\mathbb{T}} \leqslant C_{(\gamma+1)\alpha} [\sigma]_{\mathcal{C}^{\gamma}} (\|\delta Z\|_{\alpha}^{\mathbb{T}})^{\gamma} \|\delta X\|_{\alpha},$$
(2.57)

and for
$$\tau^{\gamma \alpha} \leq \hat{\varepsilon}_{\alpha,\gamma,X,\sigma}$$
: $\|\delta Z\|_{\alpha}^{\mathbb{T}} \leq 1 \lor (2 |\sigma(z_0)| \|\delta X\|_{\alpha}).$ (2.58)

Proof. Since $\delta R_{sut} = (\sigma(Z_s) - \sigma(Z_u)) \delta X_{ut}$, recall (1.32), and since $R_{t_i t_{i+1}} = 0$ by (2.54), we can apply the discrete Sewing Bound (1.45) with $\eta = (\gamma + 1)\alpha > 1$ to get

$$\|R\|_{(\gamma+1)\alpha,\tau}^{\mathbb{T}} \leqslant C_{(\gamma+1)\alpha} \|\delta R\|_{(\gamma+1)\alpha,\tau}^{\mathbb{T}} \leqslant C_{(\gamma+1)\alpha} [\sigma]_{\mathcal{C}^{\gamma}} (\|\delta Z\|_{\alpha,\tau}^{\mathbb{T}})^{\gamma} \|\delta X\|_{\alpha}.$$
(2.59)

We have proved (2.57).

We next prove (2.58). Recalling (2.55) we can bound, by (2.6) for $\|\cdot\|_{\gamma\alpha,\mathbb{T}_n}$,

$$\|\delta Z\|_{\alpha,\tau}^{\mathbb{T}} \leq \|\sigma(Z)\|_{\infty,\tau}^{\mathbb{T}} \|\delta X\|_{\alpha} + \tau^{\gamma\alpha} \|R\|_{(\gamma+1)\alpha,\tau}^{\mathbb{T}}.$$

By (1.47)

$$\|\sigma(Z)\|_{\infty,\tau}^{\mathbb{T}} \leq |\sigma(z_0)| + 5\tau^{\gamma\alpha} \|\delta\sigma(Z)\|_{\gamma\alpha,\tau}^{\mathbb{T}} \leq |\sigma(z_0)| + 5\tau^{\gamma\alpha} [\sigma]_{\mathcal{C}^{\gamma}} (\|\delta Z\|_{\alpha,\tau}^{\mathbb{T}})^{\gamma}.$$

We thus obtain, combining the previous bounds,

$$\|\delta Z\|_{\alpha,\tau}^{\mathbb{T}} \leq |\sigma(z_0)| \|\delta X\|_{\alpha} + \{\tau^{\gamma\alpha} (C_{\gamma\alpha} + 5) [\sigma]_{\mathcal{C}^{\gamma}} \|\delta X\|_{\alpha}\} (\|\delta Z\|_{\alpha,\tau}^{\mathbb{T}})^{\gamma}$$

Now if $\|\delta Z\|_{\alpha,\tau}^{\mathbb{T}} \leq 1$ then (2.58) is proved, otherwise $(\|\delta Z\|_{\alpha,\tau}^{\mathbb{T}})^{\gamma} \leq \|\delta Z\|_{\alpha,\tau}^{\mathbb{T}}$ and then for τ as in (2.56) the term in brackets is less than $\frac{1}{2}$ and we obtain (2.58).

We can now prove the following

THEOREM 2.15. (GLOBAL EXISTENCE) Let X be of class C^{α} , with $\alpha \in \left[\frac{1}{2}, 1\right]$, and let σ be globally γ -Hölder with $\gamma \in \left(\frac{1}{\alpha} - 1, 1\right]$, i.e. $[\sigma]_{C^{\gamma}} < \infty$. For every $z_0 \in \mathbb{R}^k$, with no restriction on T > 0, there exists a solution $(Z_t)_{t \in [0,T]}$ of (2.3) with $Z_0 = z_0$. **Proof.** Given $n \in \mathbb{N}$, we construct an approximate solution $Z^n = (Z_t^n)_{t \in \mathbb{T}_n}$ of (2.3) defined in the discrete set of times $\mathbb{T}_n := (\{i2^{-n}: i = 0, 1, ...\} \cap [0, T]) \cup \{T\}$ through the *Euler scheme* (2.54).

$$Z_0^n := z_0, \qquad Z_{t_{i+1}}^n := Z_{t_i}^n + \sigma(Z_{t_i}^n) \,\delta X_{t_i, t_{i+1}} \qquad \text{for } t_i, t_{i+1} \in \mathbb{T}_n \,. \tag{2.60}$$

Let us define the "remainder"

$$R_{st}^n := \delta Z_{st}^n - \sigma(Z_s^n) \, \delta X_{st} \qquad \text{for } s < t \in \mathbb{T}_n \,.$$

$$(2.61)$$

We fix T > 0 such that

We extend Z^n by linear interpolation to a continuous function defined on [0, T], still denoted by Z^n . Given two points $t_i \leq s < t \leq t_{i+1}$ inside the same interval $[t_i, t_{i+1}]$ of the partition \mathbb{T}_n , since $\delta Z_{st}^n = \frac{t-s}{t_{i+1}-t_i} \delta Z_{t_i t_{i+1}}^n$, we can bound for $\alpha \in (0, 1]$

$$\frac{|\delta Z_{st}^n|}{(t-s)^{\alpha}} \!=\! \left(\frac{t-s}{t_{i+1}-t_i}\right)^{1-\alpha} \frac{|\delta Z_{t_it_{i+1}}^n|}{(t_{i+1}-t_i)^{\alpha}} \!\leqslant\! \frac{|\delta Z_{t_it_{i+1}}^n|}{(t_{i+1}-t_i)^{\alpha}}$$

Given two points s < t in different intervals, say $t_i \leq s \leq t_{i+1} \leq t_j \leq t \leq t_{j+1}$ for some i < j, by the triangle inequality we can bound $|\delta Z_{st}^n| \leq |\delta Z_{st_{i+1}}^n| + |\delta Z_{t_{i+1}t_j}^n| + |\delta Z_{t_jt}^n|$. Recalling (1.9) and (1.43), we then obtain $\|\cdot\|_{\alpha} \leq 3 \|\cdot\|_{\alpha}^{\mathbb{T}_n}$, hence by (2.58) we get

$$\|\delta Z^n\|_{\alpha,\tau} \leqslant 3 \lor (6 |\sigma(z_0)| \|\delta X\|_{\alpha}).$$

$$(2.62)$$

The family $(Z^n)_{n \in \mathbb{N}}$ is equi-continuous by (2.62) and equi-bounded, since $Z_0^n = z_0$ for all $n \in \mathbb{N}$, hence by the Arzelà-Ascoli Theorem it is compact in the space $C([0,T], \mathbb{R}^k)$. Let us denote by $Z: [0,T] \to \mathbb{R}^k$ any limit point. Plugging (2.58) into (2.57), by (2.61) we can write

if
$$T^{\alpha} \leqslant \hat{\varepsilon}_{\alpha,X,\sigma}$$
: $|\delta Z_{st}^n - \sigma(Z_s^n) \, \delta X_{st}| \leqslant c(z_0) \, (t-s)^{2\alpha} \quad \forall s < t \in \mathbb{T}_n$, (2.63)

where $c(z_0) := C_{(\gamma+1)\alpha} [\sigma]_{\mathcal{C}^{\gamma}} (3 \vee (6 |\sigma(z_0)| ||\delta X||_{\alpha}))^{\gamma} ||\delta X||_{\alpha}$. Letting $n \to \infty$ and observing that $\mathbb{T}_n \subseteq \mathbb{T}_{n+1}$, we see that (2.63) still holds with Z^n replaced by Z and \mathbb{T}_n replaced by the set $\mathbb{T} := \bigcup_{\ell \in \mathbb{N}} \mathbb{T}_{2^{\ell}} = \left(\left\{\frac{i}{2^n}: i, n \in \mathbb{N}\right\} \cap [0, T]\right) \cup \{T\}$ of dyadic rationals:

$$\text{if } T^{\alpha} \leqslant \hat{\varepsilon}_{\alpha,X,\sigma} \text{:} \qquad |\delta Z_{st} - \sigma(Z_s) \, \delta X_{st}| \leqslant c(z_0) \, (t-s)^{2\alpha} \qquad \forall s < t \in \mathbb{T} \,.$$

Since \mathbb{T} is dense in [0,T] and Z is continuous, this bound extends to all $0 \leq s < t \leq T$, which shows that Z is a solution of (2.3). This completes the proof.

Second part: locally Lipschitz case.

We now assume that σ is *locally* γ -*Hölder* and we fix $z_0 \in \mathbb{R}^k$. We also fix T > 0 such that $T \leq \tilde{\varepsilon}_{\alpha,X,\sigma}(z_0)$, see (2.64), and we prove that there exists a solution $Z: [0,T] \to \mathbb{R}^k$ of (2.3) with $Z_0 = z_0$.

THEOREM 2.16. (LOCAL EXISTENCE) Let X be of class C^{α} , with $\alpha \in \left[\frac{1}{2}, 1\right]$, and let σ be locally Lipschitz (e.g. of class C^1). For any $z_0 \in \mathbb{R}^k$ and for T > 0 small enough, i.e.

$$T^{\alpha} \leqslant \tilde{\varepsilon}_{\alpha,X,\sigma}(z_0) := \frac{1}{2} \frac{1}{(C_{2\alpha} + 3) \|\delta X\|_{\alpha} \{1 + \sup_{|z - z_0| \leqslant |\sigma(z_0)|} |\nabla \sigma(z)|\}},$$
(2.64)

there exists a solution $(Z_t)_{t \in [0,T]}$ of (2.3) with $Z_0 = z_0$.

Let $\tilde{\sigma}$ be a globally γ -Hölder function (depending on z_0) such that

$$\widetilde{\sigma}(z) = \sigma(z) \quad \forall |z - z_0| \leq \sigma(z_0) \quad \text{and} \quad [\widetilde{\sigma}]_{\mathcal{C}^{\gamma}} = \sup_{|z - z_0| \leq \sigma(z_0)} |\nabla \sigma(z)|.$$
(2.65)

Since $T \leq \tilde{\varepsilon}_{\alpha,X,\sigma}(z_0) \leq \hat{\varepsilon}_{\alpha,X,\sigma}$, see (2.64) and (2.56), by the first part of the proof there exists a solution Z of (2.3) with $\tilde{\sigma}$ in place of σ and $Z_0 = z_0$. We will prove that

$$|Z_t - z_0| \leqslant \sigma(z_0) \text{ for all } t \in [0, T], \qquad (2.66)$$

therefore $\tilde{\sigma}(Z_t) = \sigma(Z_t)$ for all $t \in [0, T]$, see (2.65). This means that Z is a solution of the original (2.3) with σ , which completes the proof of Theorem 2.16.

To prove (2.66), we apply the a priori estimate (2.13) with $\tau = \infty$: we note that $T \leq \tilde{\varepsilon}_{\alpha,X,\sigma}(z_0) \leq \varepsilon_{\alpha,X,\sigma}$ (see (2.64) and (2.12), and note that $C_{2\alpha} \geq K_{2\alpha}$), therefore

$$\|\delta Z\|_{\alpha} \leq 2 \|\delta X\|_{\alpha} |\sigma(z_0)|,$$

because $\tilde{\sigma}(z_0) = \sigma(z_0)$. Then for every $t \in [0, T]$ we can bound

$$|Z_t - z_0| \leqslant T^{\alpha} \|\delta Z\|_{\alpha} \leqslant 2 T^{\alpha} \|\delta X\|_{\alpha} |\sigma(z_0)| \leqslant |\sigma(z_0)|,$$

where the last inequality holds because $T^{\alpha} \leq \tilde{\varepsilon}_{\alpha,X,\sigma}(z_0) \leq (2 \|\delta X\|_{\alpha})^{-1}$, see (2.64). This completes the proof of (2.66).

2.7. Error estimate in the Euler scheme

We suppose in this section that σ is of class C^2 with $\|\nabla \sigma\|_{\infty} + \|\nabla^2 \sigma\|_{\infty} < +\infty$.

THEOREM 2.17. The Euler scheme converges at speed $n^{2\alpha-1}$.

Proof. Let us set $z_i := \partial y_i / \partial y_0$, where $(y_i)_{i \ge 0}$ is defined by (2.60). Then

$$z_{i+1} = z_i + \nabla \sigma(y_i) \, z_i \, \delta X_{t_i t_{i+1}}, \qquad i \ge 0.$$

This shows that the pair $(y_i, z_i)_{i \ge 0}$ satisfies a recurrence which is similar to (2.60) with a map Σ of class C^1 and therefore we can apply the above results to obtain that $|z_i| \le \text{const.}$ In particular the map $y_0 \to y_k$ is Lipschitz-continuous, uniformly over $k \ge 0$.

Let us call, for $k \ge 0$, $(z_{\ell}^{(k)})_{\ell \ge k}$ as the sequence which satisfies (2.60) but has initial value $z_{k}^{(k)} = y(t_{k})$. Since $(y(t))_{t \ge 0}$ is a solution to (2.4), we have

$$|z_{k+1}^{(k)} - y(t_{k+1})| \lesssim n^{-2\alpha}.$$

Since the map $y_0 \rightarrow y_k$ is Lipschitz-continuous uniformly over $k \ge 0$, we have

$$|z_{\ell}^{(k)} - z_{\ell}^{(k+1)}| \lesssim |z_{k+1}^{(k)} - y(t_{k+1})| \lesssim n^{-2\alpha}, \qquad \ell \geqslant k+1.$$

Therefore

$$|y_{\ell} - y(t_{\ell})| = |z_{\ell}^{(0)} - z_{\ell}^{(\ell)}| \leq \sum_{k=0}^{\ell-1} |z_{\ell}^{(k)} - z_{\ell}^{(k+1)}| \leq \frac{\ell}{n^{2\alpha}} = \frac{t_{\ell}}{n^{2\alpha-1}} \to 0$$

as t_{ℓ} is bounded and $n \to \infty$.

2.8. EXTRA: A VALUE FOR $\hat{ au}$

We can give an explicit expression for $\hat{\tau} = \hat{\tau}_{M_0,M,T}$ in Theorem 2.12, by tracking all the points in the proof where τ is small enough, namely:

- for (2.36) we need $\tau^{\alpha} \leq \frac{1}{15}$;
- for (2.40) we need $\tau^{\alpha} \leq (\hat{\rho}_{M})^{\alpha} := (2(K_{2\alpha}+3)\mathfrak{c}_{M})^{-1};$
- for (2.42) we need $\tau^{\alpha} \leq (6 \mathfrak{c}_{M})^{-1}$, for (2.45) we need $\tau^{\alpha} \leq (15 \mathfrak{c}_{M})^{-1}$;
- for (2.50) we need $\tau^{(\gamma-1)\alpha} \leq (2 K_{\gamma\alpha} \mathfrak{c}_M)^{-1};$
- for (2.52) we need $\tau^{(\gamma-1)\alpha} \leq (10 K_{\gamma\alpha} \mathbf{c}_M)^{-1}$ (first term in the RHS) and also $\tau^{(\gamma-1)\alpha} \leq \left(K_{\gamma\alpha} e^{\frac{T}{\hat{\rho}_M}} M_0 M^2 \|\nabla^2 \sigma\|_{\infty}\right)^{-1}$ (second term in the RHS).

Since $\mathfrak{c}_M = M \|\nabla \sigma\|_{\infty}$, see (2.34), it is easy to check that all these constraints are satisfied for $0 < \tau \leq \hat{\tau}$ given by formula (2.53) in Remark 2.13.