Chapter 1

The Sewing Bound

The problem of interest in this book is the study of differential equations driven by irregular functions (more specifically: continuous but not differentiable). This will be achieved through the powerful and elegant theory of rough paths. A key motivation comes from stochastic differential equations driven by Brownian motion, but the goal is to develop a general theory which does not rely on probability.

This first chapter is dedicated to an elementary but fundamental tool, the Sewing Bound, that will be applied extensively throughout the book. It is a general Höldertype bound for functions of two real variables that can be understood by itself, see Theorem 1.9 below. To provide motivation, we present it as a natural a priori estimate for solutions of differential equations.

Notation. We fix a time horizon $T>0$ and two dimensions $k, d \in \mathbb{N}$. We use "path" as a synonymous of "function defined on $[0, T]$ " with values in \mathbb{R}^{d}. We denote by $|\cdot|$ the Euclidean norm. The space of linear maps from \mathbb{R}^{d} to \mathbb{R}^{k}, identified by $k \times d$ real matrices, is denoted by $\mathbb{R}^{k} \otimes\left(\mathbb{R}^{d}\right)^{*} \simeq \mathbb{R}^{k \times d}$ and is equipped with the HilbertSchmidt norm $|\cdot|$ (i.e. the Euclidean norm on $\left.\mathbb{R}^{k \times d}\right)$. For $A \in \mathbb{R}^{k} \otimes\left(\mathbb{R}^{d}\right)^{*}$ and $v \in \mathbb{R}^{d}$ we have $|A v| \leqslant|A||v|$.

1.1. CONTROLLED DIFFERENTIAL EQUATION

Consider the following controlled ordinary differential equation (ODE): given a continuously differentiable path $X:[0, T] \rightarrow \mathbb{R}^{d}$ and a continuous function $\sigma: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k} \otimes$ $\left(\mathbb{R}^{d}\right)^{*}$, we look for a differentiable path $Z:[0, T] \rightarrow \mathbb{R}^{k}$ such that

$$
\begin{equation*}
\dot{Z}_{t}=\sigma\left(Z_{t}\right) \dot{X}_{t}, \quad t \in[0, T] . \tag{1.1}
\end{equation*}
$$

By the fundamental theorem of calculus, this is equivalent to

$$
\begin{equation*}
Z_{t}=Z_{0}+\int_{0}^{t} \sigma\left(Z_{s}\right) \dot{X}_{s} \mathrm{~d} s, \quad t \in[0, T] . \tag{1.2}
\end{equation*}
$$

In the special case $k=d=1$ and when $\sigma(x)=\lambda x$ is linear (with $\lambda \in \mathbb{R}$), we have the explicit solution $Z_{t}=z_{0} \exp \left(\lambda\left(X_{t}-X_{0}\right)\right)$, which has the interesting property of being well-defined also when X is non differentiable.

For any dimensions $k, d \in \mathbb{N}$, if we assume that $\sigma(\cdot)$ is Lipschitz, classical results in the theory of ODEs guarantee that equation (1.1)-(1.2) is well-posed for any continuously differentiable path X, namely for any $Z_{0} \in \mathbb{R}^{k}$ there is one and only one solution Z (with no explicit formula, in general).

Our aim is to extend such a well-posedness result to a setting where X is continuous but not differentiable (also in cases where $\sigma(\cdot)$ may be non-linear). Of course, to this purpose it is first necessary to provide a generalized formulation of (1.1)-(1.2) where the derivative of X does not appear.

1.2. CONTROLLED DIFFERENCE EQUATION

Let us still suppose that X is continuously differentiable. We deduce by (1.1)-(1.2) that for $0 \leqslant s \leqslant t \leqslant T$

$$
\begin{equation*}
Z_{t}-Z_{s}=\sigma\left(Z_{s}\right)\left(X_{t}-X_{s}\right)+\int_{s}^{t}\left(\sigma\left(Z_{u}\right)-\sigma\left(Z_{s}\right)\right) \dot{X}_{u} \mathrm{~d} u \tag{1.3}
\end{equation*}
$$

which implies that Z satisfies the following controlled difference equation:

$$
\begin{equation*}
Z_{t}-Z_{s}=\sigma\left(Z_{s}\right)\left(X_{t}-X_{s}\right)+o(t-s), \quad 0 \leqslant s \leqslant t \leqslant T \tag{1.4}
\end{equation*}
$$

because $u \mapsto \sigma\left(Z_{u}\right)$ is continuous and $u \mapsto \dot{X}_{u}$ is (continuous, hence) bounded on $[0, T]$.
Remark 1.1. (Uniformity) Whenever we write $o(t-s)$, as in (1.4), we always mean uniformly for $0 \leqslant s \leqslant t \leqslant T$, i.e.

$$
\begin{equation*}
\forall \varepsilon>0 \exists \delta>0: \quad 0 \leqslant s \leqslant t \leqslant T, \quad t-s \leq \delta \quad \text { implies } \quad|o(t-s)| \leq \varepsilon(t-s) \tag{1.5}
\end{equation*}
$$

This will be implicitly assumed in the sequel.
Let us make two simple observations.

- If X is continuously differentiable we deduced (1.4) from (1.1), but we can easily deduce (1.1) from (1.4): in other terms, the two equations (1.1) and (1.4) are equivalent.
- If X is not continuously differentiable, equation (1.4) is still meaningful, unlike equation (1.1) which contains explicitly \dot{X}.

For these reasons, henceforth we focus on the difference equation (1.4), which provides a generalized formulation of the differential equation (1.1) when X is continuous but not necessarily differentiable.

The problem is now to prove well-posedness for the difference equation (1.4). We are going to show that this is possible assuming a suitable Hölder regularity on X, but non trivial ideas are required. In this chapter we illustrate some key ideas, showing how to prove uniqueness of solutions via a priori estimates (existence of solutions will be studied in the next chapters). We start from a basic result, which ensures the continuity of solutions; more precise result will be obtained later.

Lemma 1.2. (Continuity of solutions) Let X and σ be continuous. Then any solution Z of (1.4) is a continuous path, more precisely it satisfies

$$
\begin{equation*}
\left|Z_{t}-Z_{s}\right| \leqslant C\left|X_{t}-X_{s}\right|+o(t-s), \quad 0 \leqslant s \leqslant t \leqslant T \tag{1.6}
\end{equation*}
$$

for a suitable constant $C<\infty$ which depends on Z.

Proof. Relation (1.6) follows by (1.4) with $C:=\|\sigma(Z)\|_{\infty}=\sup _{0 \leqslant t \leqslant T}\left|\sigma\left(Z_{t}\right)\right|$, renaming $|o(t-s)|$ as $o(t-s)$. We only have to prove that $C<\infty$. Since σ is continuous by assumption, it is enough to show that Z is bounded.

Since $o(t-s)$ is uniform, see (1.5), we can fix $\bar{\delta}>0$ such that $|o(t-s)| \leqslant 1$ for all $0 \leqslant s \leqslant t \leqslant T$ with $|t-s| \leqslant \bar{\delta}$. It follows that Z is bounded in any interval $[\bar{s}, \bar{t}]$ with $|\bar{t}-\bar{s}| \leqslant \bar{\delta}$, because by (1.4) we can bound

$$
\sup _{t \in[\bar{s}, \bar{t}]}\left|Z_{t}\right| \leqslant\left|Z_{\bar{s}}\right|+\left|\sigma\left(Z_{\bar{s}}\right)\right| \sup _{t \in[\bar{s}, \bar{t}]}\left|X_{t}-X_{\bar{s}}\right|+1<\infty .
$$

We conclude that Z is bounded in the whole interval $[0, T]$, because we can write $[0, T]$ as a finite union of intervals $[\bar{s}, \bar{t}]$ with $|\bar{t}-\bar{s}| \leqslant \bar{\delta}$.

Remark 1.3. (Counterexamples) The weaker requirement that (1.4) holds for any fixed $s \in[0, T]$ as $t \downarrow s$ is not enough for our purposes, since in this case Z needs not be continuous. An easy conterexample is the following: given any continuous path $X:[0,2] \rightarrow \mathbb{R}$, we define $Z:[0,2] \rightarrow \mathbb{R}$ by

$$
Z_{t}:=\left\{\begin{array}{lll}
X_{t} & \text { if } & 0 \leqslant t<1, \\
X_{t}+1 & \text { if } & 1 \leqslant t \leqslant 2 .
\end{array}\right.
$$

Note that $Z_{t}-Z_{s}=X_{t}-X_{s}$ when either $0 \leqslant s \leqslant t<1$ or $1 \leqslant s \leqslant t \leqslant 2$, hence Z satisfies the difference equation (1.4) with $\sigma(\cdot) \equiv 1$ for any fixed $s \in[0,2)$ as $t \downarrow s$, but not uniformly for $0 \leqslant s \leqslant t \leqslant 2$, since Z is discontinuous at $t=1$.

For another counterexample, which is even unbounded, consider

$$
Z_{t}:=\left\{\begin{array}{lll}
\frac{1}{1-t} & \text { if } & 0 \leqslant t<1 \\
0 & \text { if } & 1 \leqslant t \leqslant 2
\end{array}\right.
$$

which satisfies (1.4) as $t \downarrow s$ for any fixed $s \in[0,2]$, for $X_{t} \equiv t$ and $\sigma(z)=z^{2}$.

1.3. Some useful function spaces

For $n \geqslant 1$ we define the simplex

$$
\begin{equation*}
[0, T]_{\leqslant}^{n}:=\left\{\left(t_{1}, \ldots, t_{n}\right): \quad 0 \leqslant t_{1} \leqslant \cdots \leqslant t_{n} \leqslant T\right\} \tag{1.7}
\end{equation*}
$$

(note that $\left.[0, T]_{\leqslant}^{1}=[0, T]\right)$. We then write $C_{n}=C\left([0, T]_{\leqslant}^{n}, \mathbb{R}^{k}\right)$ as a shorthand for the space of continuous functions from $[0, T]_{\leqslant}^{n}$ to \mathbb{R}^{k} :

$$
\begin{equation*}
C_{n}:=C\left([0, T]_{\leqslant}^{n}, \mathbb{R}^{k}\right):=\left\{F:[0, T]_{\leqslant}^{n} \rightarrow \mathbb{R}^{k}: F \text { is continuous }\right\} . \tag{1.8}
\end{equation*}
$$

We are going to work with functions of one $\left(f_{s}\right)$, two $\left(F_{s t}\right)$ or three ($G_{s u t}$) ordered variables in $[0, T]$, hence we focus on the spaces C_{1}, C_{2}, C_{3}.

- On the spaces C_{2} and C_{3} we introduce a Hölder-like structure: given any $\eta \in(0, \infty)$, we define for $F \in C_{2}$ and $G \in C_{3}$

$$
\begin{equation*}
\|F\|_{\eta}:=\sup _{0 \leqslant s<t \leqslant T} \frac{\left|F_{s t}\right|}{(t-s)^{\eta}}, \quad\|G\|_{\eta}:=\sup _{\substack{0 \leqslant s \leqslant u \leqslant t \leqslant T \\ s<t}} \frac{\left|G_{s u t}\right|}{(t-s)^{\eta}}, \tag{1.9}
\end{equation*}
$$

and we denote by C_{2}^{η} and C_{3}^{η} the corresponding function spaces:

$$
\begin{equation*}
C_{2}^{\eta}:=\left\{F \in C_{2}:\|F\|_{\eta}<\infty\right\}, \quad C_{3}^{\eta}:=\left\{G \in C_{3}:\|G\|_{\eta}<\infty\right\}, \tag{1.10}
\end{equation*}
$$

which are Banach spaces endowed with the norm $\|\cdot\|_{\eta}$ (exercise).

- On the space C_{1} of continuous functions $f:[0, T] \rightarrow \mathbb{R}^{k}$ we consider the usual Hölder structure. We first introduce the increment δf by

$$
\begin{equation*}
(\delta f)_{s t}:=f_{t}-f_{s}, \quad 0 \leqslant s \leqslant t \leqslant T \tag{1.11}
\end{equation*}
$$

and note that $\delta f \in C_{2}$ for any $f \in C_{1}$. Then, for $\alpha \in(0,1]$, we define the classical space $\mathcal{C}^{\alpha}=\mathcal{C}^{\alpha}\left([0, T], \mathbb{R}^{k}\right)$ of α-Hölder functions

$$
\begin{equation*}
\mathcal{C}^{\alpha}:=\left\{f:[0, T] \rightarrow \mathbb{R}^{k}: \quad\|\delta f\|_{\alpha}=\sup _{0 \leq s<t \leq T} \frac{\left|f_{t}-f_{s}\right|}{(t-s)^{\alpha}}<\infty\right\} \tag{1.12}
\end{equation*}
$$

(for $\alpha=1$ it is the space of Lipschitz functions). Note that $\|\delta f\|_{\alpha}$ in (1.12) is consistent with (1.11) and (1.9).

Remark 1.4. (HÖLDER SEMI-NORM) We stress that $f \mapsto\|\delta f\|_{\alpha}$ is a semi-norm on \mathcal{C}^{α} (it vanishes on constant functions). The standard norm on \mathcal{C}^{α} is

$$
\begin{equation*}
\|f\|_{\mathcal{C}^{\alpha}}:=\|f\|_{\infty}+\|\delta f\|_{\alpha}, \tag{1.13}
\end{equation*}
$$

where we define the standard sup norm

$$
\begin{equation*}
\|f\|_{\infty}:=\sup _{t \in[0, T]}\left|f_{t}\right| . \tag{1.14}
\end{equation*}
$$

For $f:[0, T] \rightarrow \mathbb{R}^{k}$ we can bound $\|f\|_{\infty} \leq|f(0)|+T^{\alpha}\|\delta f\|_{\alpha}$ (see (1.39) below), hence

$$
\begin{equation*}
\|f\|_{\mathcal{C}^{\alpha}} \leq|f(0)|+\left(1+T^{\alpha}\right)\|\delta f\|_{\alpha} \tag{1.15}
\end{equation*}
$$

This explains why it is often enough to focus on the semi-norm $\|\delta f\|_{\alpha}$.
Remark 1.5. (Hölder exponents) We only consider the Hölder space \mathcal{C}^{α} for $\alpha \in(0,1]$ because for $\alpha>1$ the only functions in \mathcal{C}^{α} are constant functions (note that $\|\delta f\|_{\alpha}<\infty$ for $\alpha>1$ implies $\dot{f}_{t}=0$ for every $\left.t \in[0, T]\right)$.

On the other hand, the spaces C_{2}^{η} and C_{3}^{η} in (1.10) are interesting for any exponent $\eta \in(0, \infty)$. For instance, the condition $\|F\|_{\eta}<\infty$ for a function $F \in C_{2}$ means that $\left|F_{s t}\right| \leqslant C(t-s)^{\eta}$, which does not imply $F \equiv 0$ when $\eta>1$ (unless $F=\delta f$ is the increment of some function $f \in C_{1}$).

In our results below we will have to assume that the non-linearity $\sigma: \mathbb{R}^{k} \rightarrow$ $\mathbb{R}^{k} \otimes\left(\mathbb{R}^{d}\right)^{*}$ belongs to classes of Hölder functions, in the following sense.

Definition 1.6. Let $\gamma>0$. A function $F: \mathbb{R}^{k} \rightarrow \mathbb{R}^{N}$ is said to be globally γ-Hölder (or globally of class \mathcal{C}^{γ}) if

- for $\gamma \in(0,1]$ we have

$$
[F]_{\mathcal{C}^{\gamma}}:=\sup _{x, y \in \mathbb{R}^{k}, x \neq y} \frac{|F(x)-F(y)|}{|x-y|^{\gamma}}<+\infty
$$

- for $\gamma \in(n, n+1]$ and $n=\{1,2, \ldots\}, F$ is n times continuously differentiable and

$$
\left[D^{(n)} F\right]_{\mathcal{C}^{\gamma}}:=\sup _{x, y \in \mathbb{R}^{k}, x \neq y} \frac{\left|D^{(n)} F(x)-D^{(n)} F(y)\right|}{|x-y|^{\gamma-n}}<+\infty
$$

where $D^{(n)}$ is the n-fold differential of F.
Moreover $F: \mathbb{R}^{k} \rightarrow \mathbb{R}^{N}$ is said to be locally γ-Hölder (or locally of class \mathcal{C}^{γ}) if

- for $\gamma \in(0,1]$ we have for all $R>0$

$$
\sup _{\substack{x, y \in \mathbb{R}^{k}, x \neq y \\|x|,|y| \leqslant R}} \frac{|F(x)-F(y)|}{|x-y|^{\gamma}}<+\infty
$$

- for $\gamma \in(n, n+1]$ and $n=\{1,2, \ldots\}, F$ is n times continuously differentiable and

$$
\sup _{\substack{x, y \in \mathbb{R}^{k}, x \neq y \\|x|,|y| \leqslant R}} \frac{\left|D^{(n)} F(x)-D^{(n)} F(y)\right|}{|x-y|^{\gamma-n}}<+\infty
$$

We stress that in the previous definition we do not assume F of $D^{(n)} F$ to be bounded. The case $\gamma=1$ corresponds to the classical Lipschitz condition.

1.4. Local Uniqueness of solutions

We prove uniqueness of solutions for the controlled difference equation (1.4) when $X \in \mathcal{C}^{\alpha}$ is an Hölder path of exponent $\alpha>\frac{1}{2}$. For simplicity, we focus on the case when $\sigma: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k} \otimes\left(\mathbb{R}^{d}\right)^{*}$ is a linear application: $\sigma \in\left(\mathbb{R}^{k} \otimes\left(\mathbb{R}^{d}\right)^{*}\right) \otimes\left(\mathbb{R}^{k}\right)^{*}$, and we write σZ instead of $\sigma(Z)$ (we discuss non linear $\sigma(\cdot)$ in Chapter 2).

Theorem 1.7. (Local uniqueness of solutions, linear case) Fix a path $X:[0, T] \rightarrow \mathbb{R}^{d}$ in \mathcal{C}^{α}, with $\left.\left.\alpha \in\right] \frac{1}{2}, 1\right]$, and a linear map $\sigma: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k} \otimes\left(\mathbb{R}^{d}\right)^{*}$. If $T>0$ is small enough (depending on X, α, σ), then for any $z_{0} \in \mathbb{R}^{k}$ there is at most one path $Z:[0, T] \rightarrow \mathbb{R}^{k}$ with $Z_{0}=z_{0}$ which solves the linear controlled difference equation (1.4), that is (recalling (1.11))

$$
\begin{equation*}
\delta Z_{s t}-\left(\sigma Z_{s}\right) \delta X_{s t}=o(t-s), \quad 0 \leqslant s \leqslant t \leqslant T . \tag{1.16}
\end{equation*}
$$

Proof. Suppose that we have two paths $Z, \bar{Z}:[0, T] \rightarrow \mathbb{R}^{k}$ satisfying (1.16) with $Z_{0}=\bar{Z}_{0}$ and define $Y:=Z-\bar{Z}$. Our goal is to show that $Y=0$.

Let us introduce the function $R \in C_{2}=C\left([0, T]^{2}, \mathbb{R}^{k}\right)$ defined by

$$
\begin{equation*}
R_{s t}:=\delta Y_{s t}-\left(\sigma Y_{s}\right) \delta X_{s t}, \quad 0 \leqslant s \leqslant t \leqslant T \tag{1.17}
\end{equation*}
$$

and note that by (1.16) and linearity we have

$$
\begin{equation*}
R_{s t}=o(t-s) . \tag{1.18}
\end{equation*}
$$

Recalling (1.9), we can estimate

$$
\|\delta Y\|_{\alpha} \leqslant|\sigma|\|Y\|_{\infty}\|\delta X\|_{\alpha}+\|R\|_{\alpha}
$$

and since $R_{s t}=o(t-s)=o\left((t-s)^{\alpha}\right)$, we have $\|R\|_{\alpha}<+\infty$ and therefore $\|\delta Y\|_{\alpha}<$ $+\infty$. Since $Y_{0}=0$, we can bound

$$
\|Y\|_{\infty} \leqslant\left|Y_{0}\right|+\sup _{0 \leqslant t \leqslant T}\left|Y_{t}-Y_{0}\right| \leqslant T^{\alpha}\|\delta Y\|_{\alpha} .
$$

Since $1 \leqslant T^{\alpha}(t-s)^{-\alpha}$ for $0 \leqslant s<t \leqslant T$, we can also bound

$$
\|R\|_{\alpha} \leqslant T^{\alpha}\|R\|_{2 \alpha},
$$

so that

$$
\|\delta Y\|_{\alpha} \leqslant T^{\alpha}\left(|\sigma|\|\delta Y\|_{\alpha}\|\delta X\|_{\alpha}+\|R\|_{2 \alpha}\right) .
$$

Suppose we can prove that, for some constant $C=C(X, \alpha, \sigma)<\infty$,

$$
\begin{equation*}
\|R\|_{2 \alpha} \leqslant C\|\delta Y\|_{\alpha} . \tag{1.19}
\end{equation*}
$$

Then we obtain

$$
\|\delta Y\|_{\alpha} \leqslant T^{\alpha}\left(|\sigma|\|\delta X\|_{\alpha}+C\right)\|\delta Y\|_{\alpha} .
$$

If we fix T small enough, so that $T^{\alpha}\left(|\sigma|\|\delta X\|_{\alpha}+C\right)<1$, we get $\|\delta Y\|_{\alpha}=0$, hence $\delta Y \equiv 0$. This means that $Y_{t}=Y_{s}$ for all $s, t \in[0, T]$, and since $Y_{0}=0$ we obtain $Y \equiv 0$, namely our goal $Z \equiv \bar{Z}$. This completes the proof assuming the estimate (1.19) (where the hypothesis $\alpha>\frac{1}{2}$ will play a key role).

To actually complete the proof of Theorem 1.7, it remains to show that the inequality (1.19) holds. This is performed in the next two sections:

- in Section 1.5 we present a fundamental estimate, the Sewing Bound, which applies to any function $R_{s t}=o(t-s)$ (recall (1.18));
- in Section 1.6 we apply the Sewing Bound to $R_{s t}$ in (1.17) and we prove the desired estimate (1.19) for $\alpha>\frac{1}{2}$ (see the assumptions of Theorem 1.7).

1.5. The Sewing bound

Let us fix an arbitrary function $R \in C_{2}=C\left([0, T]_{\leqslant}^{2}, \mathbb{R}^{k}\right)$ with $R_{s t}=o(t-s)$. Our goal is to bound $\left|R_{a b}\right|$ for any given $0 \leqslant a<b \leqslant T$.

We first show that we can express $R_{a b}$ via "Riemann sums" along partitions $\mathcal{P}=\left\{a=t_{0}<t_{1}<\ldots<t_{m}=b\right\}$ of $[a, b]$. These are defined by

$$
\begin{equation*}
I_{\mathcal{P}}(R):=\sum_{i=1}^{\# \mathcal{P}} R_{t_{i-1} t_{i}} \tag{1.20}
\end{equation*}
$$

where we denote by $\# \mathcal{P}:=m$ the number of intervals of the partition \mathcal{P}. Let us denote by $|\mathcal{P}|:=\max _{1 \leqslant i \leqslant m}\left(t_{i}-t_{i-1}\right)$ the mesh of \mathcal{P}.

Lemma 1.8. (Riemann sums) Given any $R \in C_{2}$ with $R_{s t}=o(t-s)$, for any $0 \leqslant$ $a<b \leqslant T$ and for any sequence $\left(\mathcal{P}_{n}\right)_{n \geqslant 0}$ of partitions of $[a, b]$ with vanishing mesh $\lim _{n \rightarrow \infty}\left|\mathcal{P}_{n}\right|=0$ we have

$$
\lim _{n \rightarrow \infty} I_{\mathcal{P}_{n}}(R)=0 .
$$

If furthermore $\mathcal{P}_{0}=\{a, b\}$ is the trivial partition, then we can write

$$
\begin{equation*}
R_{a b}=\sum_{n=0}^{\infty}\left(I_{\mathcal{P}_{n}}(R)-I_{\mathcal{P}_{n+1}}(R)\right), \quad 0 \leqslant a<b \leqslant T . \tag{1.21}
\end{equation*}
$$

Proof. Writing $\mathcal{P}_{n}=\left\{a=t_{0}^{n}<t_{1}^{n}<\ldots<t_{\# \mathcal{P}_{n}}^{n}=b\right\}$, we can estimate

$$
\left|I_{\mathcal{P}_{n}}(R)\right| \leqslant \sum_{i=1}^{\# \mathcal{P}_{n}}\left|R_{t_{-1}^{n} t_{i}^{n}}\right| \leqslant\left\{\max _{j=1, \ldots, \# \mathcal{P}_{n}} \frac{\left|R_{t_{j-1}^{n} t_{j}^{n}}\right|}{\left(t_{j}^{n}-t_{j-1}^{n}\right)}\right\} \sum_{j=1}^{\# \mathcal{P}_{n}}\left(t_{j}^{n}-t_{j-1}^{n}\right),
$$

hence $\left|I_{\mathcal{P}_{n}}(R)\right| \rightarrow 0$ as $n \rightarrow \infty$, because the final sum equals $b-a$ and the bracket vanishes (since $R_{s t}=o(t-s)$ and $\left|\mathcal{P}_{n}\right|=\max _{1 \leqslant j \leqslant \# \mathcal{P}_{n}}\left(t_{j}^{n}-t_{j-1}^{n}\right) \rightarrow 0$).

We deduce relation (1.21) by the telescopic sum

$$
I_{\mathcal{P}_{0}}(R)-I_{\mathcal{P}_{N}}(R)=\sum_{n=0}^{N-1}\left(I_{\mathcal{P}_{n}}(R)-I_{\mathcal{P}_{n+1}}(R)\right),
$$

because $\lim _{N \rightarrow \infty} I_{\mathcal{P}_{N}}(R)=0$ while $I_{\mathcal{P}_{0}}(R)=R_{a b}$ for $\mathcal{P}_{0}=\{a, b\}$.
If we remove a single point t_{i} from a partition $\mathcal{P}=\left\{t_{0}<t_{1}<\ldots<t_{m}\right\}$, we obtain a new partition \mathcal{P}^{\prime} for which, recalling (1.20), we can write

$$
\begin{equation*}
I_{\mathcal{P}^{\prime}}(R)-I_{\mathcal{P}}(R)=R_{t_{i-1} t_{i+1}}-R_{t_{i-1} t_{i}}-R_{t_{i} t_{i+1}} . \tag{1.22}
\end{equation*}
$$

The expression in the RHS deserves a name: given any two-variables function $F \in C_{2}$, we define its increment $\delta F \in C_{3}$ as the three-variables function

$$
\begin{equation*}
\delta F_{s u t}:=F_{s t}-F_{s u}-F_{u t}, \quad 0 \leqslant s \leqslant u \leqslant t \leqslant T . \tag{1.23}
\end{equation*}
$$

We can then rewrite (1.22) as

$$
\begin{equation*}
I_{\mathcal{P}^{\prime}}(R)-I_{\mathcal{P}}(R)=\delta R_{t_{i-1} t_{i} t_{i+1}}, \tag{1.24}
\end{equation*}
$$

and recalling (1.9) we obtain the following estimate, for any $\eta>0$:

$$
\begin{equation*}
\left|I_{\mathcal{P}^{\prime}}(R)-I_{\mathcal{P}}(R)\right| \leqslant\|\delta R\|_{\eta}\left|t_{i+1}-t_{i-1}\right|^{\eta} . \tag{1.25}
\end{equation*}
$$

We are now ready to state and prove the Sewing Bound.
Theorem 1.9. (Sewing Bound) Given any $R \in C_{2}$ with $R_{s t}=o(t-s)$, the following estimate holds for any $\eta \in(1, \infty)$ (recall (1.9)):

$$
\begin{equation*}
\|R\|_{\eta} \leqslant K_{\eta}\|\delta R\|_{\eta} \quad \text { where } \quad K_{\eta}:=\left(1-2^{1-\eta}\right)^{-1} \text {. } \tag{1.26}
\end{equation*}
$$

Proof. Fix $R \in C_{2}$ such that $\|\delta R\|_{\eta}<\infty$ for some $\eta>1$ (otherwise there is nothing to prove). Also fix $0 \leqslant a<b \leqslant T$ and consider for $n \geqslant 0$ the dyadic partitions $\mathcal{P}_{n}:=$ $\left\{t_{i}^{n}:=a+\frac{i}{2^{n}}(b-a): 0 \leq i \leq 2^{n}\right\}$ of $[a, b]$. Since $\mathcal{P}_{0}=\{a, b\}$ is the trivial partition, we can apply (1.21) to bound

$$
\begin{equation*}
\left|R_{a b}\right| \leqslant \sum_{n=0}^{\infty}\left|I_{\mathcal{P}_{n}}(R)-I_{\mathcal{P}_{n+1}}(R)\right| . \tag{1.27}
\end{equation*}
$$

If we remove from \mathcal{P}_{n+1} all the "odd points" $t_{2 j+1}^{n+1}$, with $0 \leq j \leq 2^{n}-1$, we obtain \mathcal{P}_{n}. Then, iterating relations (1.24)-(1.25), we have

$$
\begin{align*}
\left|I_{\mathcal{P}_{n}}(R)-I_{\mathcal{P}_{n+1}}(R)\right| & \leqslant \sum_{j=0}^{2^{n}-1}\left|\delta R_{t_{2 j}^{n+1} t_{2 j+1}^{n+1} t_{2 j+2}^{n+1}}\right| \\
& \leqslant 2^{n}\|\delta R\|_{\eta}\left(\frac{2(b-a)}{2^{n+1}}\right)^{\eta} \\
& =2^{-(\eta-1) n}\|\delta R\|_{\eta}(b-a)^{\eta} . \tag{1.28}
\end{align*}
$$

Plugging this into (1.27), since $\sum_{n=0}^{\infty} 2^{-(\eta-1) n}=\left(1-2^{1-\eta}\right)^{-1}$, we obtain

$$
\begin{equation*}
\left|R_{a b}\right| \leqslant\left(1-2^{1-\eta}\right)^{-1}\|\delta R\|_{\eta}(b-a)^{\eta}, \quad 0 \leqslant a<b \leqslant T, \tag{1.29}
\end{equation*}
$$

which proves (1.26).
Remark 1.10. Recalling (1.11) and (1.23), we have defined linear maps

$$
\begin{equation*}
C_{1} \xrightarrow{\delta} C_{2} \xrightarrow{\delta} C_{3} \tag{1.30}
\end{equation*}
$$

which satisfy $\delta \circ \delta=0$. Indeed, for any $f \in C_{1}$ we have

$$
\delta(\delta f)_{s u t}=\left(f_{t}-f_{s}\right)-\left(f_{u}-f_{s}\right)-\left(f_{t}-f_{u}\right)=0
$$

Intuitively, $\delta F \in C_{3}$ measures how much a function $F \in C_{2}$ differs from being the increment δf of some $f \in C_{1}$, because $\delta F \equiv 0$ if and only if $F=\delta f$ for some $f \in C_{1}$ (it suffices to define $f_{t}:=F_{0 t}$ and to check that $\delta f_{s t}=\delta F_{0 s t}+F_{s t}=F_{s t}$).

Remark 1.11. The assumption $R_{s t}=o(t-s)$ in Theorem 1.9 cannot be avoided: if $R:=\delta f$ for a non constant $f \in C_{1}$, then $\delta R=0$ while $\|R\|_{\eta}>0$.

1.6. End of PRoof of Uniqueness

In this section, we apply the Sewing Bound (1.26) to the function $R_{s t}$ defined in (1.17), in order to prove the estimate (1.19) for $\alpha>\frac{1}{2}$.

We first determine the increment δR through a simple and instructive computation: by (1.17), since $\delta(\delta Z)=0$ (see Remark 1.10), we have

$$
\begin{align*}
\delta R_{s u t}:= & R_{s t}-R_{s u}-R_{u t} \\
= & \left(Y_{t}-Y_{s}\right)-\left(Y_{u}-Y_{s}\right)-\left(Y_{t}-Y_{u}\right) \\
& -\left(\sigma Y_{s}\right)\left(X_{t}-X_{s}\right)+\left(\sigma Y_{s}\right)\left(X_{u}-X_{s}\right)+\left(\sigma Y_{u}\right)\left(X_{t}-X_{u}\right) \\
= & {\left[\sigma\left(Y_{u}-Y_{s}\right)\right]\left(X_{t}-X_{u}\right) . } \tag{1.31}
\end{align*}
$$

Recalling (1.9), this implies

$$
\|\delta R\|_{2 \alpha} \leqslant|\sigma|\|\delta Y\|_{\alpha}\|\delta X\|_{\alpha} .
$$

We next note that if $\alpha>\frac{1}{2}$ (as it is assumed in Theorem 1.7) we can apply the Sewing Bound (1.26) for $\eta=2 \alpha>1$ to obtain

$$
\|R\|_{2 \alpha} \leqslant K_{2 \alpha}\|\delta R\|_{2 \alpha} \leqslant K_{2 \alpha}|\sigma|\|\delta Y\|_{\alpha}\|\delta X\|_{\alpha} .
$$

This is precisely our goal (1.19) with $C=C(X, \alpha, \sigma):=K_{2 \alpha}|\sigma|\|\delta X\|_{\alpha}$.
Summarizing: thanks to the Sewing bound (1.26), we have obtained the estimate (1.19) and completed the proof of Theorem 1.7, showing uniqueness of solutions to the difference equation (1.4) for any $X \in \mathcal{C}^{\alpha}$ with $\left.\left.\alpha \in\right] \frac{1}{2}, 1\right]$. In the next chapters we extend this approach to non-linear $\sigma(\cdot)$ and to situations where $X \in \mathcal{C}^{\alpha}$ with $\alpha \leqslant \frac{1}{2}$.

Remark 1.12. For later purpose, let us record the computation (1.31) withouth σ : given any (say, real) paths X and Y, if

$$
A_{s t}=Y_{s} \delta X_{s t}, \quad \forall 0 \leqslant s \leqslant t \leqslant T
$$

then

$$
\begin{equation*}
\delta A_{s u t}=-\delta Y_{s u} \delta X_{u t}, \quad \forall 0 \leqslant s \leqslant u \leqslant t \leqslant T . \tag{1.32}
\end{equation*}
$$

1.7. WEIGHTED NORMS

We conclude this chapter defining weighted versions $\|\cdot\|_{\eta, \tau}$ of the norms $\|\cdot\|_{\eta}$ introduced in (1.9): given $F \in C_{2}$ and $G \in C_{3}$, we set for $\eta, \tau \in(0, \infty)$

$$
\begin{align*}
& \|F\|_{\eta, \tau}:=\sup _{0 \leqslant s \leqslant t \leqslant T} \mathbb{1}_{\{0<t-s \leqslant \tau\}} \mathrm{e}^{-\frac{t}{\tau}} \frac{\left|F_{s t}\right|}{(t-s)^{\eta}}, \tag{1.33}\\
& \|G\|_{\eta, \tau}:=\sup _{0 \leqslant s \leqslant u \leqslant t \leqslant T} \mathbb{1}_{\{0<t-s \leqslant \tau\}} \mathrm{e}^{-\frac{t}{\tau}} \frac{\left|G_{s u t}\right|}{(t-s)^{\eta}}, \tag{1.34}
\end{align*}
$$

where C_{2} and C_{3} are the spaces of continuous functions from $[0, T]_{\leqslant}^{2}$ and $[0, T]_{\leqslant}^{3}$ to \mathbb{R}^{k}, see (1.8). Note that as $\tau \rightarrow \infty$ we recover the usual norms:

$$
\begin{equation*}
\|\cdot\|_{\eta}=\lim _{\tau \rightarrow \infty}\|\cdot\|_{\eta, \tau} \tag{1.35}
\end{equation*}
$$

Remark 1.13. (NORMS VS. SEMI-NORMS) While $\|\cdot\|_{\eta}$ is a norm, $\|\cdot\|_{\eta, \tau}$ is a norm for $\tau \geqslant T$ but it is only a semi-norm for $\tau<T$ (for instance, $\|F\|_{\eta, \tau}=0$ for $F \in C_{2}$ implies $F_{s t}=0$ only for $t-s \leqslant \tau$: no constraint is imposed on $F_{s t}$ for $t-s>\tau$).

However, if $F=\delta f$, that is $F_{s t}=f_{t}-f_{s}$ for some $f \in C_{1}$, we have the equivalence

$$
\begin{equation*}
\|\delta f\|_{\eta, \tau} \leqslant\|\delta f\|_{\eta} \leqslant\left(1+\frac{T}{\tau}\right) \mathrm{e}^{\frac{T}{\tau}}\|\delta f\|_{\eta, \tau} \tag{1.36}
\end{equation*}
$$

The first inequality is clear. For the second one, given $0 \leqslant s<t \leqslant T$, we can write $s=t_{0}<t_{1}<\cdots<t_{N}=t$ with $t_{i}-t_{i-1} \leqslant \tau$ and $N \leqslant 1+\frac{T}{\tau}$ (for instance, we can consider $t_{i}=s+i \frac{t-s}{N}$ where $N:=\left\lceil\frac{t-s}{\tau}\right\rceil$); we then obtain $\delta f_{s t}=\sum_{i=1}^{N} \delta f_{t_{i-1} t_{i}}$ and $\left|\delta f_{t_{i-1} t_{i}}\right| \leqslant\|\delta f\|_{\eta, \tau} \mathrm{e}^{t_{i} / \tau}\left(t_{i}-t_{i-1}\right)^{\eta} \leqslant\|\delta f\|_{\eta, \tau} \mathrm{e}^{T / \tau}(t-s)^{\eta}$, which yields (1.36).

Remark 1.14. (FROM LOCAL TO GLOBAL) The weighted semi-norms $\|\cdot\|_{\eta, \tau}$ will be useful to transform local results in global results. Indeed, using the standard norms $\|\cdot\|_{\eta}$ often requires the size $T>0$ of the time interval $[0, T]$ to be small, as in Theorem 1.7, which can be annoying. Using $\|\cdot\|_{\eta, \tau}$ will allow us to keep $T>0$ arbitrary, by choosing a sufficiently small $\tau>0$.

Recalling the supremum norm $\|f\|_{\infty}$ of a function $f \in C_{1}$, see (1.14), we define the corresponding weighted version

$$
\begin{equation*}
\|f\|_{\infty, \tau}:=\sup _{0 \leqslant t \leqslant T} \mathrm{e}^{-\frac{t}{\tau}}\left|f_{t}\right| . \tag{1.37}
\end{equation*}
$$

We stress that $\|\cdot\|_{\infty, \tau}$ is a norm equivalent to $\|\cdot\|_{\infty}$ for any $\tau>0$, since

$$
\begin{equation*}
\|\cdot\|_{\infty, \tau} \leqslant\|\cdot\|_{\infty} \leqslant \mathrm{e}^{\frac{T}{\tau}}\|\cdot\|_{\infty, \tau} \tag{1.38}
\end{equation*}
$$

Remark 1.15. (Equivalent Hölder norm) It follows by (1.36) and (1.38) that $\|\cdot\|_{\infty, \tau}+\|\cdot\|_{\alpha, \tau}$ is a norm equivalent to $\|\cdot\|_{\mathcal{C}^{\alpha}}:=\|\cdot\|_{\infty}+\|\cdot\|_{\alpha}$ on the space \mathcal{C}^{α} of Hölder functions, see Remark 1.4, for any $\tau>0$.

We will often use the Hölder semi-norms $\|\delta f\|_{\alpha}$ and $\|\delta f\|_{\alpha, \tau}$ to bound the supremum norms $\|f\|_{\infty}$ and $\|f\|_{\infty, \tau}$, thanks to the following result.

Lemma 1.16. (Supremum-Hölder bound) For any $f \in C_{1}$ and $\eta \in(0, \infty)$

$$
\begin{align*}
&\|f\|_{\infty} \leqslant\left|f_{0}\right|+T^{\eta}\|\delta f\|_{\eta} \tag{1.39}\\
&\|f\|_{\infty, \tau} \leqslant\left|f_{0}\right|+3(\tau \wedge T)^{\eta}\|\delta f\|_{\eta, \tau}, \forall \tau>0 . \tag{1.40}
\end{align*}
$$

Proof. Let us prove (1.39): for any $f \in C_{1}$ and for $\left.\left.t \in\right] 0, T\right]$ we have

$$
\left|f_{t}\right| \leqslant\left|f_{0}\right|+\left|f_{t}-f_{0}\right|=\left|f_{0}\right|+t^{\eta} \frac{\left|f_{t}-f_{0}\right|}{t^{\eta}} \leqslant\left|f_{0}\right|+T^{\eta}\|\delta f\|_{\eta} .
$$

The proof of (1.40) is slightly more involved. If $t \in] 0, \tau \wedge T]$, then

$$
\mathrm{e}^{-\frac{t}{\tau}}\left|f_{t}\right| \leqslant\left|f_{0}\right|+t^{\eta} \mathrm{e}^{-\frac{t}{\tau}} \frac{\left|f_{t}-f_{0}\right|}{t^{\eta}} \leqslant\left|f_{0}\right|+(\tau \wedge T)^{\eta}\|\delta f\|_{\eta, \tau}
$$

which, in particular, implies (1.40) when $\tau \geqslant T$. When $\tau<T$, it remains to consider $\tau<t \leqslant T$: in this case, we define $N:=\min \{n \in \mathbb{N}: n \tau \geq t\} \geq 2$ so that $\frac{t}{N} \leqslant \tau$. We set $t_{k}=k \frac{t}{N}$ for $k \geq 0$, so that $t_{N}=t$. Then

$$
\begin{aligned}
\mathrm{e}^{-\frac{t}{\tau}}\left|f_{t}\right| & \leqslant\left|f_{0}\right|+\sum_{k=1}^{N}\left(t_{k}-t_{k-1}\right)^{\eta} \mathrm{e}^{-\frac{t-t_{k}}{\tau}}\left[\mathrm{e}^{\left.-\frac{t_{k}}{\tau} \frac{\left|f_{t_{k}}-f_{t_{k-1}}\right|}{\left(t_{k}-t_{k-1}\right)^{\eta}}\right]}\right. \\
& \leqslant\left|f_{0}\right|+(\tau \wedge T)^{\eta}\|\delta f\|_{\eta, \tau} \sum_{k=1}^{N} \mathrm{e}^{-\frac{t-t_{k}}{\tau}} .
\end{aligned}
$$

By definition of N we have $(N-1) \tau<t$; since $\tau<t$ we obtain $N \tau<2 t$ and therefore $\frac{t}{N \tau} \geq \frac{1}{2}$. Since $t-t_{k}=(N-k) \frac{t}{N}$, renaming $\ell:=N-k$ we obtain

$$
\sum_{k=1}^{N} \mathrm{e}^{-\frac{t-t_{k}}{\tau}}=\sum_{\ell=0}^{N-1} \mathrm{e}^{-\ell \frac{t}{N \tau}}=\frac{1-\mathrm{e}^{-\frac{t}{\tau}}}{1-\mathrm{e}^{-\frac{t}{N \tau}}} \leqslant \frac{1}{1-\mathrm{e}^{-\frac{1}{2}}} \leqslant 3
$$

The proof is complete.

We finally show that the Sewing Bound (1.26) still holds if we replace $\|\cdot\|_{\eta}$ by $\|\cdot\|_{\eta, \tau}$, for any $\tau>0$.

Theorem 1.17. (weighted sewing bound) Given any $R \in C_{2}$ with $R_{s t}=o(t-s)$, the following estimate holds for any $\eta \in(1, \infty)$ and $\tau>0$:

$$
\begin{equation*}
\|R\|_{\eta, \tau} \leqslant K_{\eta}\|\delta R\|_{\eta, \tau} \quad \text { where } \quad K_{\eta}:=\left(1-2^{1-\eta}\right)^{-1} . \tag{1.41}
\end{equation*}
$$

Proof. Given $0 \leqslant a \leqslant b \leqslant T$, let us define

$$
\begin{equation*}
\|\delta R\|_{\eta,[a, b]}:=\sup _{\substack{s, u, t \in[a, b]: \\ s \leqslant u \leqslant t, s<t}} \frac{\left|\delta R_{s u t}\right|}{(t-s)^{\eta}} . \tag{1.42}
\end{equation*}
$$

Following the proof of Theorem 1.9, we can replace $\|\delta R\|_{\eta}$ by $\|\delta R\|_{\eta,[a, b]}$ in (1.28) and in (1.29), hence we obtain $\left|R_{a b}\right| \leqslant K_{\eta}\|\delta R\|_{\eta,[a, b]}(b-a)^{\eta}$. Then for $b-a \leqslant \tau$ we can estimate

$$
e^{-\frac{b}{\tau}} \frac{\left|R_{a b}\right|}{(b-a)^{\eta}} \leqslant e^{-\frac{b}{\tau}} K_{\eta}\|\delta R\|_{\eta,[a, b]} \leqslant K_{\eta}\|\delta R\|_{\eta, \tau},
$$

and (1.41) follows taking the supremum over $0 \leqslant a \leqslant b \leqslant T$ with $b-a \leqslant \tau$.

1.8. A discrete Sewing Bound

We can prove a version of the Sewing Bound for functions $R=\left(R_{s t}\right)_{s<t \in \mathbb{T}}$ defined on a finite set of points $\mathbb{T}:=\left\{0=t_{1}<\cdots<t_{\# \mathbb{T}}\right\} \subseteq \mathbb{R}_{+}$(this will be useful to construct solutions to difference equations via Euler schemes, see Sections 2.6 and 3.9). The condition $R_{s t}=o(t-s)$ from Theorem 1.9 is now replaced by the requirement that R vanishes on consecutive points of \mathbb{T}, i.e. $R_{t_{i} t_{i+1}}=0$ for all $1 \leqslant i<\# \mathbb{T}$.

We define versions $\|\cdot\|_{\eta, \tau}^{\mathbb{T}}$ of the norms $\|\cdot\|_{\eta, \tau}$ restricted on \mathbb{T} for $\tau>0$, recall (1.33)-(1.34):

$$
\begin{align*}
& \|A\|_{\eta, \tau}^{\mathbb{T}}:=\sup _{\substack{0 \leqslant s<t \\
s, t \in \mathbb{T}}} \mathbb{1}_{\{0<t-s \leqslant \tau\}} \mathrm{e}^{-\frac{t}{\tau}} \frac{\left|A_{s t}\right|}{|t-s|^{\eta}}, \tag{1.43}\\
& \|B\|_{\eta, \tau}^{\mathbb{T}}:=\sup _{\substack{0 \leqslant s \leqslant u \leqslant t \\
s, u, t \in \mathbb{T}, s<t}} \mathbb{1}_{\{0<t-s \leqslant \tau\}} \mathrm{e}^{-\frac{t}{\tau}} \frac{\left|B_{s u t}\right|}{|t-s|^{\eta}} \tag{1.44}
\end{align*}
$$

for $A:\left\{(s, t) \in \mathbb{T}^{2}: 0 \leqslant s<t\right\} \rightarrow \mathbb{R}$ and $B:\left\{(s, u, t) \in \mathbb{T}^{3}: 0 \leqslant s \leqslant u \leqslant t, s<t\right\} \rightarrow \mathbb{R}$.
Theorem 1.18. (Discrete Sewing Bound) If a function $R=\left(R_{s t}\right)_{s<t \in \mathbb{T}}$ vanishes on consecutive points of \mathbb{T} (i.e. $R_{t_{i} t_{i+1}}=0$), then for any $\eta>1$ and $\tau>0$ we have

$$
\begin{equation*}
\|R\|_{\eta, \tau}^{\mathbb{T}} \leqslant C_{\eta}\|\delta R\|_{\eta, \tau}^{\mathbb{T}} \quad \text { with } \quad C_{\eta}:=2^{\eta} \sum_{n \geq 1} \frac{1}{n^{\eta}}=2^{\eta} \zeta(\eta)<\infty \tag{1.45}
\end{equation*}
$$

Proof. We fix $s, t \in \mathbb{T}$ with $s<t$ and we start by proving that

$$
\left|R_{s t}\right| \leqslant C_{\eta}\|\delta R\|_{\eta}^{\mathbb{T}}(t-s)^{\eta} .
$$

We have $s=t_{k}$ and $t=t_{k+m}$ and we may assume that $m \geqslant 2$ (otherwise there is nothing to prove, since for $m=1$ we have $R_{t_{i} t_{i+1}}=0$).

Consider the partition $\mathcal{P}=\left\{s=t_{k}<t_{k+1}<\ldots<t_{k+m}=t\right\}$ with m intervals. Note that for some index $i \in\{k+1, \ldots, k+m-1\}$ we must have $t_{i+1}-t_{i-1} \leq \frac{2(t-s)}{m-1}$, otherwise we would get the contradiction

$$
2(t-s) \geq \sum_{i=k+1}^{k+m-1}\left(t_{i+1}-t_{i-1}\right)>\sum_{i=k+1}^{k+m-1} \frac{2(t-s)}{m-1}=2(t-s) .
$$

Removing the point t_{i} from \mathcal{P} we obtain a partition \mathcal{P}^{\prime} with $m-1$ intervals. If we define $I_{\mathcal{P}}(R):=\sum_{i=k}^{k+m-1} R_{t_{i} t_{i+1}}$ as in (1.20), as in (1.24) we have

$$
\left|I_{\mathcal{P}}(R)-I_{\mathcal{P}}(R)\right|=\left|\delta R_{t_{i-1} t_{i} t_{i+1}}\right| \leqslant \frac{2^{\eta}(t-s)^{\eta}}{(m-1)^{\eta}} \sup _{\substack{s \leqslant u<v<w \leqslant t \\ u, v, w \in \mathbb{T}}} \frac{\left|\delta R_{u v w}\right|}{|w-u|^{\eta}}
$$

Iterating this argument, until we arrive at the trivial partition $\{s, t\}$, we get

$$
\begin{equation*}
\left|I_{\mathcal{P}}(R)-R_{s t}\right| \leq C_{\eta}(t-s)^{\eta} \sup _{\substack{s \leqslant u<v<w \leqslant t \\ u, v, w \in \mathbb{T}}} \frac{\left|\delta R_{u v w}\right|}{|w-u|^{\eta}}, \tag{1.46}
\end{equation*}
$$

with $C_{\eta}:=\sum_{n \geq 1} \frac{2^{\eta}}{n^{\eta}}<\infty$ because $\eta>1$. We finally note that $I_{\mathcal{P}}(R)=0$ by the assumption $R_{t_{i} t_{i+1}}=0$. Finally if $t-s \leqslant \tau$ then $w-u \leqslant \tau$ in the supremum in (1.46) and since $\mathrm{e}^{-\frac{t}{\tau}} \leqslant \mathrm{e}^{-\frac{w}{\tau}}$ we obtain

$$
\mathrm{e}^{-\frac{t}{\tau}}\left|R_{s t}\right| \leqslant C_{\eta}(t-s)^{\eta}\|\delta R\|_{\eta, \tau}^{\mathbb{T}},
$$

and the proof is complete.
We also have an analog of Lemma 1.16. We set for $f: \mathbb{T} \rightarrow \mathbb{R}$ and $\tau>0$

$$
\|f\|_{\infty, \tau}^{\mathbb{T}}:=\sup _{t \in \mathbb{T}} \mathrm{e}^{-\frac{t}{\tau}}\left|f_{t}\right|
$$

Lemma 1.19. (Discrete supremum-HöLDer bound) For $\mathbb{T}:=\left\{0=t_{1}<\cdots<\right.$ $\left.t_{\# \mathbb{T}}\right\} \subseteq \mathbb{R}_{+}$set

$$
M:=\max _{i=2, \ldots, \# \mathbb{T}}\left|t_{i}-t_{i-1}\right| .
$$

Then for all $f: \mathbb{T} \rightarrow \mathbb{R}, \tau \geqslant 2 M$ and $\eta>0$

$$
\begin{equation*}
\|f\|_{\infty, \tau}^{\mathbb{T}} \leqslant\left|f_{0}\right|+5 \tau^{\eta}\|\delta f\|_{\eta, \tau}^{\mathbb{T}} \tag{1.47}
\end{equation*}
$$

Proof. We define $T_{0}:=0$ and for $i \geqslant 1$, as long as $\mathbb{T} \cap\left(T_{i-1}, T_{i-1}+\tau\right]$ is not empty, we set

$$
T_{i}:=\max \mathbb{T} \cap\left(T_{i-1}, T_{i-1}+\tau\right], \quad i=1, \ldots, N
$$

so that $T_{N}=\max \mathbb{T}$. We have by construction $T_{i}+M>T_{i-1}+\tau$ for all $i=1, \ldots$, $N-1$, and since $M \leqslant \frac{\tau}{2}$

$$
T_{i}-T_{i-1} \geqslant \tau-M \geqslant \frac{\tau}{2}
$$

For $i=N$ we have only $T_{N}>T_{N-1}$. Therefore for $i=1, \ldots N$

$$
\begin{aligned}
\mathrm{e}^{-\frac{T_{i}}{\tau}}\left|f_{T_{i}}\right| & \leqslant\left|f_{0}\right|+\sum_{k=1}^{i}\left(T_{k}-T_{k-1}\right)^{\eta} \mathrm{e}^{-\frac{T_{i}-T_{k}}{\tau}}\left[\mathrm{e}^{-\frac{T_{k}}{\tau}} \frac{\left|f_{T_{k}}-f_{T_{k-1}}\right|}{\left(T_{k}-T_{k-1}\right)^{\eta}}\right] \\
& \leqslant\left|f_{0}\right|+\tau^{\eta}\|\delta f\|_{\eta, \tau}^{\mathbb{T}} \sum_{k=1}^{i} \mathrm{e}^{-\frac{T_{i}-T_{k}}{\tau}} \\
& \leqslant\left|f_{0}\right|+\tau^{\eta}\|\delta f\|_{\eta, \tau}^{\mathbb{T}}\left(1+\sum_{k=0}^{\infty} \mathrm{e}^{-\frac{k}{2}}\right) \\
& \leqslant\left|f_{t_{0}}\right|+4 \tau^{\eta}\|\delta f\|_{\eta, \tau}^{\mathbb{T}} .
\end{aligned}
$$

Now for $t \in \mathbb{T} \backslash\left\{T_{i}\right\}_{i}$ we have $T_{i}<t<T_{i+1}$ for some i and then

$$
\begin{aligned}
\mathrm{e}^{-\frac{t}{\tau}}\left|f_{t}\right| & \leqslant \mathrm{e}^{-\frac{t}{\tau}}\left|f_{T_{i}}\right|+\left(t-T_{i}\right)^{\eta} \mathrm{e}^{-\frac{t}{\tau}} \frac{\left|f_{t}-f_{T_{i}}\right|}{\left(t-T_{i}\right)^{\eta}} \leqslant \mathrm{e}^{-\frac{T_{i}}{\tau}}\left|f_{T_{i}}\right|+\tau^{\eta}\|\delta f\|_{\eta, \tau}^{\mathbb{T}} \\
& \leqslant\left|f_{0}\right|+5 \tau^{\eta}\|\delta f\|_{\eta, \tau}^{\mathbb{T}} .
\end{aligned}
$$

The proof is complete.

1.9. EXTRA (TO BE COMPLETED)

We also introduce the usual supremum norm, for $F \in C_{2}$ and $G \in C_{3}$:

$$
\|F\|_{\infty}:=\sup _{0 \leqslant s \leqslant t \leqslant T}\left|F_{s t}\right|, \quad\|G\|_{\infty}:=\sup _{0 \leqslant s \leqslant u \leqslant t \leqslant T}\left|G_{\text {sut }}\right|
$$

and a corresponding weighted version, for $\tau \in(0, \infty)$:

$$
\begin{equation*}
\|F\|_{\infty, \tau}:=\sup _{0 \leqslant s \leqslant t \leqslant T} \mathrm{e}^{-\frac{t}{\tau}}\left|F_{s t}\right|, \quad\|G\|_{\infty, \tau}:=\sup _{0 \leqslant s \leqslant u \leqslant t \leqslant T} \mathrm{e}^{-\frac{t}{\tau}}\left|G_{\text {sut }}\right| . \tag{1.48}
\end{equation*}
$$

Note that

$$
\lim _{\tau \rightarrow+\infty}\|F\|_{\infty, \tau}=\|F\|_{\infty}, \quad \lim _{\tau \rightarrow+\infty}\|G\|_{\eta, \tau}=\|G\|_{\eta}, \quad \lim _{\tau \rightarrow+\infty}\|H\|_{\eta, \tau}=\|H\|_{\eta} .
$$

We have

$$
\begin{equation*}
\|F\|_{\eta, \tau} \leqslant\|G\|_{\infty, \tau}\|H\|_{\eta}, \quad\left(F_{s u t}=G_{s u} H_{u t}\right) \tag{1.49}
\end{equation*}
$$

Note that $\|\cdot\|_{\eta, \tau}$ is only a semi-norm on C_{n}^{η} if $\tau<T$; we have at least

$$
\begin{equation*}
\|\cdot\|_{\eta, \tau} \leqslant\|\cdot\|_{\eta} \leqslant e^{\frac{T}{\tau}}\left(\|\cdot\|_{\eta, \tau}+\frac{1}{\tau^{\eta}}\|\cdot\|_{\infty, \tau}\right) \tag{1.50}
\end{equation*}
$$

However, if $\tau \geq T$ we have again equivalence of norms

$$
\begin{equation*}
\|\cdot\|_{\eta, \tau} \leqslant\|\cdot\|_{\eta} \leqslant e^{\frac{T}{\tau}}\|\cdot\|_{\eta, \tau}, \quad \tau \geq T . \tag{1.51}
\end{equation*}
$$

