
Chapter 1

The Sewing Bound

The problem of interest in this book is the study of differential equations driven by
irregular functions (more specifically: continuous but not differentiable). This will be
achieved through the powerful and elegant theory of rough paths. A key motivation
comes from stochastic differential equations driven by Brownian motion, but the
goal is to develop a general theory which does not rely on probability.

This first chapter is dedicated to an elementary but fundamental tool, the Sewing
Bound , that will be applied extensively throughout the book. It is a general Hölder-
type bound for functions of two real variables that can be understood by itself,
see Theorem 1.9 below. To provide motivation, we present it as a natural a priori
estimate for solutions of differential equations.

Notation. We fix a time horizon T > 0 and two dimensions k, d∈N. We use “path”
as a synonymous of “function defined on [0, T ]” with values in Rd. We denote by |·|
the Euclidean norm. The space of linear maps from Rd to Rk, identified by k× d
real matrices, is denoted by Rk⊗ (Rd)∗$Rk×d and is equipped with the Hilbert-
Schmidt norm |·| (i.e. the Euclidean norm on Rk×d). For A∈Rk⊗ (Rd)∗ and v∈Rd

we have |Av |! |A| |v |.

1.1. Controlled differential equation

Consider the following controlled ordinary differential equation (ODE): given a con-
tinuously differentiable path X : [0, T ]→Rd and a continuous function σ:Rk→Rk⊗
(Rd)∗ , we look for a differentiable path Z: [0, T ]→Rk such that

Żt=σ(Zt) Ẋt , t∈ [0, T ]. (1.1)

By the fundamental theorem of calculus, this is equivalent to

Zt=Z0+

∫

0

t

σ(Zs) Ẋsds , t∈ [0, T ]. (1.2)

In the special case k=d=1 and when σ(x)=λx is linear (with λ∈R), we have
the explicit solution Zt= z0 exp(λ (Xt−X0)), which has the interesting property of
being well-defined also when X is non differentiable.

For any dimensions k, d∈N, if we assume that σ(·) is Lipschitz, classical results
in the theory of ODEs guarantee that equation ( 1.1)-( 1.2) is well-posed for any
continuously differentiable path X, namely for any Z0∈Rk there is one and only one
solution Z (with no explicit formula, in general).
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Our aim is to extend such a well-posedness result to a setting where X is contin-
uous but not differentiable (also in cases where σ(·) may be non-linear). Of course,
to this purpose it is first necessary to provide a generalized formulation of (1.1)-(1.2)
where the derivative of X does not appear.

1.2. Controlled difference equation

Let us still suppose that X is continuously differentiable. We deduce by (1.1)-(1.2)
that for 0! s! t!T

Zt−Zs=σ(Zs) (Xt−Xs)+

∫

s

t

(σ(Zu)−σ(Zs)) Ẋu du, (1.3)

which implies that Z satisfies the following controlled difference equation:

Zt−Zs=σ(Zs) (Xt−Xs)+ o(t− s), 0! s! t!T , (1.4)

because u '→σ(Zu) is continuous and u '→Ẋu is (continuous, hence) bounded on [0,T ].

Remark 1.1. (Uniformity) Whenever we write o(t− s), as in (1.4), we always
mean uniformly for 0! s! t!T , i.e.
∀ε> 0 ∃δ> 0: 0! s! t!T , t− s≤ δ implies |o(t− s)|≤ ε (t− s) . (1.5)

This will be implicitly assumed in the sequel.

Let us make two simple observations.

• If X is continuously differentiable we deduced (1.4) from (1.1), but we can
easily deduce (1.1) from (1.4): in other terms, the two equations (1.1) and
(1.4) are equivalent .

• If X is not continuously differentiable, equation (1.4) is still meaningful ,
unlike equation (1.1) which contains explicitly Ẋ.

For these reasons, henceforth we focus on the difference equation (1.4), which pro-
vides a generalized formulation of the differential equation (1.1) whenX is continuous
but not necessarily differentiable.

The problem is now to prove well-posedness for the difference equation (1.4).
We are going to show that this is possible assuming a suitable Hölder regularity on
X, but non trivial ideas are required. In this chapter we illustrate some key ideas,
showing how to prove uniqueness of solutions via a priori estimates (existence of
solutions will be studied in the next chapters). We start from a basic result, which
ensures the continuity of solutions; more precise result will be obtained later.

Lemma 1.2. (Continuity of solutions) Let X and σ be continuous. Then any
solution Z of ( 1.4) is a continuous path, more precisely it satisfies

|Zt−Zs|!C |Xt−Xs|+ o(t− s) , 0! s! t!T , (1.6)

for a suitable constant C <∞ which depends on Z.
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Proof. Relation (1.6) follows by (1.4) with C := ‖σ(Z)‖∞ = sup0!t!T |σ(Zt)|,
renaming |o(t − s)| as o(t − s). We only have to prove that C <∞. Since σ is
continuous by assumption, it is enough to show that Z is bounded .

Since o(t− s) is uniform, see (1.5), we can fix δ̄ > 0 such that |o(t− s)|! 1 for
all 0! s! t! T with |t− s|! δ̄. It follows that Z is bounded in any interval [s̄, t̄]
with |t̄ − s̄|! δ̄, because by (1.4) we can bound

sup
t∈[s̄,t̄]

|Zt|! |Zs̄|+ |σ(Zs̄)| sup
t∈[s̄,t̄]

|Xt−Xs̄|+1<∞ .

We conclude that Z is bounded in the whole interval [0, T ], because we can write
[0, T ] as a finite union of intervals [s̄, t̄] with |t̄ − s̄|! δ̄. "

Remark 1.3. (Counterexamples) The weaker requirement that (1.4) holds for
any fixed s∈ [0, T ] as t↓s is not enough for our purposes, since in this case Z needs
not be continuous. An easy conterexample is the following: given any continuous
path X: [0, 2]→R, we define Z: [0, 2]→R by

Zt :=

{
Xt if 0! t< 1,
Xt+1 if 1! t! 2.

Note that Zt−Zs=Xt−Xs when either 0!s! t<1 or 1!s! t!2, hence Z satisfies
the difference equation (1.4) with σ(·)≡ 1 for any fixed s ∈ [0, 2) as t↓s, but not
uniformly for 0! s! t! 2, since Z is discontinuous at t=1.

For another counterexample, which is even unbounded, consider

Zt :=






1
1− t if 0! t < 1,

0 if 1! t! 2,

which satisfies (1.4) as t↓s for any fixed s∈ [0, 2], for Xt≡ t and σ(z)= z2.

1.3. Some useful function spaces
For n# 1 we define the simplex

[0, T ]!n := {(t1, . . . , tn): 0! t1! · · ·! tn!T } (1.7)

(note that [0, T ]!1 =[0, T ]). We then write Cn=C([0, T ]!n ,Rk) as a shorthand for the
space of continuous functions from [0, T ]!n to Rk:

Cn :=C([0, T ]!n ,Rk) := {F : [0, T ]!n→Rk : F is continuous}. (1.8)

We are going to work with functions of one (fs), two (Fst) or three (Gsut) ordered
variables in [0, T ], hence we focus on the spaces C1, C2, C3.

• On the spaces C2 and C3 we introduce a Hölder-like structure: given any
η ∈ (0,∞), we define for F ∈C2 and G∈C3

‖F ‖η := sup
0!s<t!T

|Fst|
(t− s)η , ‖G‖η := sup

0!s!u!t!T
s<t

|Gsut|
(t− s)η , (1.9)
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and we denote by C2
η and C3

η the corresponding function spaces:

C2
η := {F ∈C2: ‖F ‖η<∞} , C3

η := {G∈C3: ‖G‖η<∞} , (1.10)

which are Banach spaces endowed with the norm ‖·‖η (exercise).
• On the space C1 of continuous functions f : [0, T ]→Rk we consider the usual

Hölder structure. We first introduce the increment δf by

(δf)st := ft− fs , 0! s! t!T , (1.11)

and note that δf ∈ C2 for any f ∈ C1. Then, for α ∈ (0, 1], we define the
classical space Cα= Cα([0, T ],Rk) of α-Hölder functions

Cα :=
{
f : [0, T ]→Rk: ‖δf ‖α= sup

0≤s<t≤T

|ft− fs|
(t− s)α <∞

}
(1.12)

(for α=1 it is the space of Lipschitz functions). Note that ‖δf ‖α in (1.12)
is consistent with (1.11) and (1.9).

Remark 1.4. (Hölder semi-norm) We stress that f '→‖δf ‖α is a semi-norm on
Cα (it vanishes on constant functions). The standard norm on Cα is

‖f ‖Cα := ‖f ‖∞+ ‖δf ‖α , (1.13)

where we define the standard sup norm

‖f ‖∞ := sup
t∈[0,T ]

|ft|. (1.14)

For f : [0, T ]→Rk we can bound ‖f ‖∞≤ |f(0)|+ T α ‖δf ‖α (see (1.39) below),
hence

‖f ‖Cα≤ |f(0)|+(1+T α) ‖δf ‖α . (1.15)

This explains why it is often enough to focus on the semi-norm ‖δf ‖α .

Remark 1.5. (Hölder exponents) We only consider the Hölder space Cα for
α∈ (0,1] because for α>1 the only functions in Cα are constant functions (note that
‖δf ‖α<∞ for α> 1 implies ḟt=0 for every t∈ [0, T ]).

On the other hand, the spaces C2
η and C3

η in (1.10) are interesting for any
exponent η ∈ (0,∞). For instance, the condition ‖F ‖η<∞ for a function F ∈C2
means that |Fst|!C (t− s)η, which does not imply F ≡ 0 when η> 1 (unless F = δf
is the increment of some function f ∈C1).

In our results below we will have to assume that the non-linearity σ:Rk→
Rk⊗ (Rd)∗ belongs to classes of Hölder functions, in the following sense.

Definition 1.6. Let γ > 0. A function F :Rk→RN is said to be globally γ-Hölder
(or globally of class Cγ) if
• for γ ∈ (0, 1] we have

[F ]Cγ := sup
x,y∈Rk,x=/ y

|F (x)−F (y)|
|x− y |γ <+∞
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• for γ∈(n,n+1] and n={1,2,...}, F is n times continuously differentiable and

[D(n)F ]Cγ := sup
x,y∈Rk,x=/ y

|D(n)F (x)−D(n)F (y)|
|x− y |γ−n <+∞

where D(n) is the n-fold differential of F.

Moreover F :Rk→RN is said to be locally γ-Hölder (or locally of class Cγ) if

• for γ ∈ (0, 1] we have for all R> 0

sup
x,y∈Rk,x=/ y
|x|,|y |!R

|F (x)−F (y)|
|x− y |γ <+∞

• for γ∈(n,n+1] and n={1,2,...}, F is n times continuously differentiable and

sup
x,y∈Rk,x=/ y
|x|,|y |!R

|D(n)F (x)−D(n)F (y)|
|x− y |γ−n <+∞.

We stress that in the previous definition we do not assume F of D(n)F to be
bounded. The case γ=1 corresponds to the classical Lipschitz condition.

1.4. Local uniqueness of solutions

We prove uniqueness of solutions for the controlled difference equation (1.4) when
X ∈ Cα is an Hölder path of exponent α> 1

2
. For simplicity, we focus on the case

when σ:Rk→Rk⊗ (Rd)∗ is a linear application: σ ∈ (Rk⊗ (Rd)∗)⊗ (Rk)∗, and we
write σZ instead of σ(Z) (we discuss non linear σ(·) in Chapter 2).

Theorem 1.7. (Local uniqueness of solutions, linear case) Fix a path
X: [0, T ]→Rd in Cα, with α∈

]1
2
, 1
]
, and a linear map σ:Rk→Rk⊗ (Rd)∗. If T > 0

is small enough (depending on X,α, σ), then for any z0∈Rk there is at most one
path Z: [0, T ]→Rk with Z0= z0 which solves the linear controlled difference equation
( 1.4), that is (recalling ( 1.11))

δZst− (σZs) δXst= o(t− s), 0! s! t!T . (1.16)

Proof. Suppose that we have two paths Z, Z̄: [0, T ]→Rk satisfying (1.16) with
Z0= Z̄0 and define Y :=Z − Z̄. Our goal is to show that Y =0.

Let us introduce the function R∈C2=C([0, T ]!2 ,Rk) defined by

Rst := δYst− (σYs) δXst , 0! s! t!T , (1.17)

and note that by (1.16) and linearity we have

Rst= o(t− s) . (1.18)

Recalling (1.9), we can estimate

‖δY ‖α! |σ | ‖Y ‖∞ ‖δX‖α+ ‖R‖α ,
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and since Rst= o(t− s) = o((t− s)α), we have ‖R‖α<+∞ and therefore ‖δY ‖α<
+∞. Since Y0=0,we can bound

‖Y ‖∞! |Y0|+ sup
0!t!T

|Yt−Y0|!T α ‖δY ‖α .

Since 1!T α (t− s)−α for 0! s< t!T , we can also bound

‖R‖α!T α ‖R‖2α ,
so that

‖δY ‖α!T α (|σ | ‖δY ‖α ‖δX‖α+ ‖R‖2α).

Suppose we can prove that, for some constant C =C(X,α, σ)<∞,

‖R‖2α!C ‖δY ‖α. (1.19)
Then we obtain

‖δY ‖α!T α (|σ | ‖δX‖α+C) ‖δY ‖α .

If we fix T small enough, so that T α (|σ | ‖δX‖α+C)< 1, we get ‖δY ‖α=0, hence
δY ≡ 0. This means that Yt=Ys for all s, t∈ [0, T ], and since Y0=0 we obtain Y ≡0,
namely our goal Z ≡ Z̄. This completes the proof assuming the estimate ( 1.19)
(where the hypothesis α> 1

2
will play a key role). "

To actually complete the proof of Theorem 1.7, it remains to show that the
inequality (1.19) holds. This is performed in the next two sections:

• in Section 1.5 we present a fundamental estimate, the Sewing Bound , which
applies to any function Rst= o(t− s) (recall (1.18));

• in Section 1.6 we apply the Sewing Bound to Rst in (1.17) and we prove the
desired estimate (1.19) for α> 1

2
(see the assumptions of Theorem 1.7).

1.5. The Sewing bound
Let us fix an arbitrary function R∈C2=C([0, T ]!2 ,Rk) with Rst=o(t− s). Our goal
is to bound |Rab| for any given 0! a< b!T .

We first show that we can express Rab via “Riemann sums” along partitions
P = {a= t0<t1< . . . < tm= b} of [a, b]. These are defined by

IP(R) :=
∑

i=1

#P

Rti−1ti , (1.20)

where we denote by #P :=m the number of intervals of the partition P . Let us
denote by |P | :=max1!i!m (ti− ti−1) the mesh of P .

Lemma 1.8. (Riemann sums) Given any R∈C2 with Rst= o(t− s), for any 0!
a< b! T and for any sequence (Pn)n"0 of partitions of [a, b] with vanishing mesh
limn→∞ |Pn|=0 we have

lim
n→∞

IPn(R)= 0.
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If furthermore P0= {a, b} is the trivial partition, then we can write

Rab=
∑

n=0

∞

(IPn(R)− IPn+1(R)), 0! a< b!T . (1.21)

Proof. Writing Pn= {a= t0
n<t1

n< . . . < t#Pn
n = b}, we can estimate

|IPn(R)|!
∑

i=1

#Pn
|Rti−1

n ti
n|!

{
max

j=1, . . . ,#Pn

|Rtj−1
n tj

n|
(tj
n− tj−1n )

}∑

j=1

#Pn
(tj
n− tj−1n ),

hence |IPn(R)|→ 0 as n→∞, because the final sum equals b− a and the bracket
vanishes (since Rst= o(t− s) and |Pn|=max1!j!#Pn (tj

n− tj−1n )→ 0).
We deduce relation (1.21) by the telescopic sum

IP0(R)− IPN(R)=
∑

n=0

N−1

(IPn(R)− IPn+1(R)),

because limN→∞ IPN(R)= 0 while IP0(R)=Rab for P0= {a, b}. "

If we remove a single point ti from a partition P ={t0<t1< .. . < tm}, we obtain
a new partition P ′ for which, recalling (1.20), we can write

IP ′(R)− IP(R)=Rti−1ti+1−Rti−1ti−Rtiti+1 . (1.22)

The expression in the RHS deserves a name: given any two-variables function F ∈C2,
we define its increment δF ∈C3 as the three-variables function

δFsut :=Fst−Fsu−Fut, 0! s!u! t!T . (1.23)

We can then rewrite (1.22) as

IP ′(R)− IP(R)= δRti−1titi+1 , (1.24)

and recalling (1.9) we obtain the following estimate, for any η> 0:

|IP ′(R)− IP(R)|! ‖δR‖η |ti+1− ti−1|η. (1.25)

We are now ready to state and prove the Sewing Bound.

Theorem 1.9. (Sewing Bound) Given any R ∈C2 with Rst= o(t− s), the fol-
lowing estimate holds for any η ∈ (1,∞) (recall ( 1.9)):

‖R‖η!Kη ‖δR‖η where Kη := (1− 21−η)−1 . (1.26)

Proof. Fix R∈C2 such that ‖δR‖η<∞ for some η> 1 (otherwise there is nothing
to prove). Also fix 0! a< b! T and consider for n# 0 the dyadic partitions Pn :=
{tin :=a+

i

2n
(b−a): 0≤ i≤2n} of [a, b]. Since P0={a, b} is the trivial partition, we

can apply (1.21) to bound

|Rab|!
∑

n=0

∞

|IPn(R)− IPn+1(R)| . (1.27)
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If we remove from Pn+1 all the “odd points” t2j+1n+1 , with 0≤ j ≤ 2n−1, we obtain
Pn. Then, iterating relations (1.24)-(1.25), we have

|IPn(R)− IPn+1(R)| !
∑

j=0

2n−1

|δRt2j
n+1t2j+1

n+1 t2j+2
n+1 |

! 2n ‖δR‖η
(
2(b− a)
2n+1

)η

= 2−(η−1)n ‖δR‖η (b− a)η . (1.28)

Plugging this into (1.27), since
∑

n=0
∞ 2−(η−1)n=(1− 21−η)−1, we obtain

|Rab|! (1− 21−η)−1 ‖δR‖η (b− a)η, 0! a< b!T , (1.29)

which proves (1.26). "

Remark 1.10. Recalling (1.11) and (1.23), we have defined linear maps

C1−→
δ
C2−→

δ
C3 (1.30)

which satisfy δ ◦ δ=0. Indeed, for any f ∈C1 we have

δ(δf)sut=(ft− fs)− (fu− fs)− (ft− fu)= 0.

Intuitively, δF ∈C3 measures how much a function F ∈C2 differs from being the
increment δf of some f ∈C1, because δF ≡ 0 if and only if F = δf for some f ∈C1
(it suffices to define ft :=F0t and to check that δfst= δF0st+Fst=Fst).

Remark 1.11. The assumption Rst= o(t− s) in Theorem 1.9 cannot be avoided:
if R := δf for a non constant f ∈C1, then δR=0 while ‖R‖η> 0.

1.6. End of proof of uniqueness
In this section, we apply the Sewing Bound (1.26) to the function Rst defined in
(1.17), in order to prove the estimate (1.19) for α> 1

2
.

We first determine the increment δR through a simple and instructive computa-
tion: by (1.17), since δ(δZ)= 0 (see Remark 1.10), we have

δRsut := Rst−Rsu−Rut

= (Yt−Ys)− (Yu−Ys)− (Yt−Yu)
−(σYs) (Xt−Xs)+ (σYs) (Xu−Xs)+ (σYu) (Xt−Xu)

= [σ (Yu−Ys)] (Xt−Xu). (1.31)

Recalling (1.9), this implies

‖δR‖2α! |σ | ‖δY ‖α ‖δX‖α.

We next note that if α> 1

2
(as it is assumed in Theorem 1.7) we can apply the

Sewing Bound (1.26) for η=2α> 1 to obtain

‖R‖2α!K2α ‖δR‖2α!K2α |σ | ‖δY ‖α ‖δX‖α .
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This is precisely our goal (1.19) with C =C(X,α, σ) :=K2α |σ | ‖δX‖α.

Summarizing: thanks to the Sewing bound (1.26), we have obtained the estimate
(1.19) and completed the proof of Theorem 1.7, showing uniqueness of solutions to
the difference equation (1.4) for any X ∈Cα with α∈

]1
2
,1
]
. In the next chapters we

extend this approach to non-linear σ(·) and to situations where X ∈ Cα with α! 1

2
.

Remark 1.12. For later purpose, let us record the computation (1.31) withouth σ:
given any (say, real) paths X and Y , if

Ast=Ys δXst, ∀0! s! t!T ,
then

δAsut=−δYsu δXut , ∀0! s!u! t!T . (1.32)

1.7. Weighted norms
We conclude this chapter defining weighted versions ‖·‖η,τ of the norms ‖·‖η intro-
duced in (1.9): given F ∈C2 and G∈C3, we set for η, τ ∈ (0,∞)

‖F ‖η,τ := sup
0!s!t!T

1{0<t−s!τ } e
− t

τ
|Fst|

(t− s)η , (1.33)

‖G‖η,τ := sup
0!s!u!t!T

1{0<t−s!τ } e
− t

τ
|Gsut|
(t− s)η , (1.34)

where C2 and C3 are the spaces of continuous functions from [0, T ]!2 and [0, T ]!3 to
Rk, see (1.8). Note that as τ→∞ we recover the usual norms:

‖·‖η= lim
τ→∞

‖·‖η,τ . (1.35)

Remark 1.13. (norms vs. semi-norms) While ‖·‖η is a norm, ‖·‖η,τ is a norm
for τ # T but it is only a semi-norm for τ <T (for instance, ‖F ‖η,τ =0 for F ∈C2
implies Fst=0 only for t− s! τ : no constraint is imposed on Fst for t− s> τ).

However, if F = δf , that is Fst= ft− fs for some f ∈C1, we have the equivalence

‖δf ‖η,τ ! ‖δf ‖η!
(
1+

T
τ

)
e
T
τ ‖δf ‖η,τ . (1.36)

The first inequality is clear. For the second one, given 0! s < t! T , we can write
s = t0 < t1 < · · · < tN = t with ti− ti−1! τ and N ! 1 + T

τ
(for instance, we can

consider ti= s+ i t− s
N

where N :=
⌈ t− s

τ

⌉
); we then obtain δfst=

∑
i=1
N δfti−1ti and

|δfti−1ti|! ‖δf ‖η,τ eti/τ (ti− ti−1)η! ‖δf ‖η,τ eT /τ (t− s)η, which yields (1.36).

Remark 1.14. (from local to global) The weighted semi-norms ‖·‖η ,τ will
be useful to transform local results in global results. Indeed, using the standard
norms ‖·‖η often requires the size T > 0 of the time interval [0, T ] to be small , as
in Theorem 1.7, which can be annoying. Using ‖·‖η,τ will allow us to keep T > 0
arbitrary , by choosing a sufficiently small τ > 0.
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Recalling the supremum norm ‖f ‖∞ of a function f ∈C1, see (1.14), we define
the corresponding weighted version

‖f ‖∞,τ := sup
0!t!T

e−
t
τ |ft| . (1.37)

We stress that ‖·‖∞,τ is a norm equivalent to ‖·‖∞ for any τ > 0, since

‖·‖∞,τ ! ‖·‖∞! e
T
τ ‖·‖∞,τ . (1.38)

Remark 1.15. (Equivalent Hölder norm) It follows by (1.36) and (1.38) that
‖·‖∞,τ+‖·‖α,τ is a norm equivalent to ‖·‖Cα :=‖·‖∞+‖·‖α on the space Cα of Hölder
functions, see Remark 1.4, for any τ > 0.

We will often use the Hölder semi-norms ‖δf ‖α and ‖δf ‖α,τ to bound the
supremum norms ‖f ‖∞ and ‖f ‖∞,τ, thanks to the following result.

Lemma 1.16. (Supremum-Hölder bound) For any f ∈C1 and η ∈ (0,∞)

‖f ‖∞! |f0|+T η ‖δf ‖η , (1.39)

‖f ‖∞,τ ! |f0|+3 (τ ∧T )η ‖δf ‖η ,τ , ∀τ > 0. (1.40)

Proof. Let us prove (1.39): for any f ∈C1 and for t∈ ]0, T ] we have

|ft|! |f0|+ |ft− f0|= |f0|+ tη
|ft− f0|

tη
! |f0|+T η ‖δf ‖η.

The proof of (1.40) is slightly more involved. If t∈ ]0, τ ∧T ], then

e−
t

τ|ft|! |f0|+ tη e−
t

τ
|ft− f0|

tη
! |f0|+(τ ∧T )η ‖δf ‖η,τ ,

which, in particular, implies (1.40) when τ #T . When τ <T , it remains to consider
τ < t! T : in this case, we define N :=min {n∈N: nτ ≥ t}≥ 2 so that t

N
! τ . We

set tk= k t

N
for k≥ 0, so that tN= t. Then

e−
t

τ|ft|!|f0|+
∑

k=1

N

(tk− tk−1)η e−
t−tk
τ

[
e−

tk
τ
|ftk− ftk−1|
(tk− tk−1)η

]

!|f0|+(τ ∧T )η ‖δf ‖η,τ
∑

k=1

N

e−
t−tk
τ .

By definition of N we have (N −1)τ <t; since τ <t we obtain Nτ <2t and therefore
t

Nτ
≥ 1

2
. Since t− tk=(N − k) t

N
, renaming ) :=N − k we obtain

∑

k=1

N

e−
t−tk
τ =

∑

&=0

N−1

e−&
t
Nτ =

1− e−
t
τ

1− e−
t
Nτ

! 1

1− e−
1

2

! 3.

The proof is complete. "
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We finally show that the Sewing Bound (1.26) still holds if we replace ‖·‖η by
‖·‖η,τ, for any τ > 0.

Theorem 1.17. (weighted sewing bound) Given any R∈C2 with Rst=o(t−s),
the following estimate holds for any η ∈ (1,∞) and τ > 0:

‖R‖η,τ !Kη ‖δR‖η,τ where Kη := (1− 21−η)−1 . (1.41)

Proof. Given 0! a! b!T , let us define

‖δR‖η,[a,b] := sup
s,u,t∈[a,b]:
s!u!t, s<t

|δRsut|
(t− s)η . (1.42)

Following the proof of Theorem 1.9, we can replace ‖δR‖η by ‖δR‖η,[a,b] in (1.28)
and in (1.29), hence we obtain |Rab|!Kη ‖δR‖η,[a,b] (b− a)η. Then for b− a! τ we
can estimate

e−
b
τ
|Rab|

(b− a)η ! e
−b
τKη ‖δR‖η,[a,b]!Kη ‖δR‖η,τ ,

and (1.41) follows taking the supremum over 0! a! b!T with b− a! τ . "

1.8. A discrete Sewing Bound

We can prove a version of the Sewing Bound for functions R=(Rst)s<t∈T defined on
a finite set of points T := {0= t1< · · ·<t#T}⊆R+ (this will be useful to construct
solutions to difference equations via Euler schemes, see Sections 2.6 and 3.9). The
condition Rst= o(t− s) from Theorem 1.9 is now replaced by the requirement that
R vanishes on consecutive points of T, i.e. Rtiti+1=0 for all 1! i <#T.

We define versions ‖·‖η,τT of the norms ‖·‖η,τ restricted on T for τ > 0, recall
(1.33)-(1.34):

‖A‖η,τT := sup
0!s<t
s,t∈T

1{0<t−s!τ } e
− t

τ
|Ast|
|t− s|η , (1.43)

‖B‖η,τT := sup
0!s!u!t

s,u,t∈T, s<t

1{0<t−s!τ } e
− t
τ
|Bsut|
|t− s|η (1.44)

for A: {(s, t)∈T2: 0! s< t}→R and B: {(s, u, t)∈T3: 0! s!u! t, s< t}→R.

Theorem 1.18. (Discrete Sewing Bound) If a function R=(Rst)s<t∈T vanishes
on consecutive points of T (i.e. Rti ti+1=0), then for any η> 1 and τ > 0 we have

‖R‖η,τT !Cη ‖δR‖η,τT with Cη := 2η
∑

n≥1

1
nη

=2η ζ(η)<∞ . (1.45)

Proof. We fix s, t∈T with s< t and we start by proving that

|Rst|!Cη ‖δR‖ηT (t− s)η .
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We have s= tk and t= tk+m and we may assume that m# 2 (otherwise there is
nothing to prove, since for m=1 we have Rtiti+1=0).

Consider the partition P={s= tk<tk+1< ... < tk+m= t} with m intervals. Note
that for some index i ∈ {k + 1, . . . , k +m − 1} we must have ti+1− ti−1≤ 2 (t− s)

m− 1 ,
otherwise we would get the contradiction

2 (t− s)≥
∑

i=k+1

k+m−1

(ti+1− ti−1)>
∑

i=k+1

k+m−1
2 (t− s)
m− 1 = 2 (t− s) .

Removing the point ti from P we obtain a partition P ′ with m− 1 intervals. If we
define IP(R) :=

∑
i=k
k+m−1Rtiti+1 as in (1.20), as in (1.24) we have

|IP(R)− IP ′(R)|= |δRti−1titi+1|!
2η (t− s)η
(m− 1)η sup

s!u<v<w!t
u,v,w∈T

|δRuvw|
|w−u|η .

Iterating this argument, until we arrive at the trivial partition {s, t}, we get

|IP(R)−Rst|≤Cη (t− s)η sup
s!u<v<w!t
u,v,w∈T

|δRuvw|
|w−u|η , (1.46)

with Cη :=
∑

n≥1
2η

nη
<∞ because η > 1. We finally note that IP(R) = 0 by the

assumption Rti ti+1=0. Finally if t− s! τ then w−u! τ in the supremum in (1.46)

and since e−
t

τ! e−
w

τ we obtain

e−
t

τ |Rst|!Cη (t− s)η ‖δR‖η,τT ,

and the proof is complete. "

We also have an analog of Lemma 1.16. We set for f :T→R and τ > 0

‖f ‖∞,τ
T := sup

t∈T
e−

t

τ |ft| .

Lemma 1.19. (Discrete supremum-Hölder bound) For T := {0= t1< · · · <
t#T}⊆R+ set

M := max
i=2, . . . ,#T

|ti− ti−1|.

Then for all f :T→R, τ # 2M and η> 0

‖f ‖∞,τ
T ! |f0|+5 τ η ‖δf ‖η,τT . (1.47)

Proof. We define T0 := 0 and for i# 1, as long as T∩ (Ti−1, Ti−1+ τ ] is not empty,
we set

Ti :=maxT∩ (Ti−1, Ti−1+ τ ], i=1, . . . , N ,

so that TN =maxT. We have by construction Ti+M >Ti−1+ τ for all i= 1, . . . ,
N − 1, and since M ! τ

2

Ti−Ti−1# τ −M # τ
2
.
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For i=N we have only TN >TN−1. Therefore for i=1, . . .N

e−
Ti
τ |fTi| ! |f0|+

∑

k=1

i

(Tk−Tk−1)η e−
Ti−Tk
τ

[
e−

Tk
τ
|fTk− fTk−1|
(Tk−Tk−1)η

]

! |f0|+ τ η ‖δf ‖η,τT
∑

k=1

i

e−
Ti−Tk
τ

! |f0|+ τ η ‖δf ‖η,τT

(
1+
∑

k=0

∞

e−
k
2

)

! |ft0|+4τ η ‖δf ‖η,τT .

Now for t∈T\{Ti}i we have Ti<t<Ti+1 for some i and then

e−
t
τ|ft| ! e−

t
τ|fTi|+(t−Ti)η e−

t
τ
|ft− fTi|
(t−Ti)η

! e−
Ti
τ |fTi|+ τ η ‖δf ‖η,τT

! |f0|+5τ η ‖δf ‖η,τT .

The proof is complete. "

1.9. Extra (to be completed)

We also introduce the usual supremum norm, for F ∈C2 and G∈C3:

‖F ‖∞ := sup
0!s!t!T

|Fst| , ‖G‖∞ := sup
0!s!u!t!T

|Gsut| ,

and a corresponding weighted version, for τ ∈ (0,∞):

‖F ‖∞,τ := sup
0!s!t!T

e−
t

τ |Fst| , ‖G‖∞,τ := sup
0!s!u!t!T

e−
t

τ |Gsut| . (1.48)

Note that

lim
τ→+∞

‖F ‖∞,τ = ‖F ‖∞ , lim
τ→+∞

‖G‖η,τ = ‖G‖η , lim
τ→+∞

‖H‖η,τ = ‖H‖η .

We have
‖F ‖η,τ ! ‖G‖∞,τ ‖H‖η, (Fsut=GsuHut), (1.49)

Note that ‖·‖η,τ is only a semi-norm on Cn
η if τ <T ; we have at least

‖·‖η,τ ! ‖·‖η! e
T
τ

(
‖·‖η,τ +

1
τ η
‖·‖∞,τ

)
. (1.50)

However, if τ ≥T we have again equivalence of norms

‖·‖η,τ ! ‖·‖η! e
T

τ ‖·‖η,τ , τ ≥T . (1.51)
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