CHAPTER 1

THE SEWING BOUND

The problem of interest in this book is the study of differential equations driven by
irreqular functions (more specifically: continuous but not differentiable). This will be
achieved through the powerful and elegant theory of rough paths. A key motivation
comes from stochastic differential equations driven by Brownian motion, but the
goal is to develop a general theory which does not rely on probability.

This first chapter is dedicated to an elementary but fundamental tool, the Sewing
Bound, that will be applied extensively throughout the book. It is a general Holder-
type bound for functions of two real variables that can be understood by itself,
see Theorem 1.9 below. To provide motivation, we present it as a natural a priori
estimate for solutions of differential equations.

Notation. We fix a time horizon 7" > 0 and two dimensions k,d € N. We use “path”
as a synonymous of “function defined on [0, T]” with values in R%. We denote by ||
the Euclidean norm. The space of linear maps from R? to R”, identified by k x d
real matrices, is denoted by R* @ (R%)* ~ R**¢ and is equipped with the Hilbert-
Schmidt norm || (i.e. the Euclidean norm on R**?). For A € R*® (R?%)* and v € R?
we have |Av|<|A] |v].

1.1. CONTROLLED DIFFERENTIAL EQUATION

Consider the following controlled ordinary differential equation (ODE): given a con-
tinuously differentiable path X:[0,7] — R% and a continuous function o: R¥ — R* ®
(RY)* , we look for a differentiable path Z:[0,T] — R* such that

Zi=0(Z)X,, tel0,T]. (1.1)

By the fundamental theorem of calculus, this is equivalent to
t
Zt:Zo+/ 0(Zs) Xsds, tel0,7]. (1.2)
0

In the special case k=d=1 and when o(z) = Az is linear (with A € R), we have
the explicit solution Z; = zpexp(A (X; — Xj)), which has the interesting property of
being well-defined also when X is non differentiable.

For any dimensions k,d € N, if we assume that o(-) is Lipschitz, classical results
in the theory of ODEs guarantee that equation (1.1)-(1.2) is well-posed for any
continuously differentiable path X, namely for any Z, € IR* there is one and only one
solution Z (with no explicit formula, in general).
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14 THE SEWING BOUND

Our aim is to extend such a well-posedness result to a setting where X is contin-
uous but not differentiable (also in cases where o(-) may be non-linear). Of course,
to this purpose it is first necessary to provide a generalized formulation of (1.1)-(1.2)
where the derivative of X does not appear.

1.2. CONTROLLED DIFFERENCE EQUATION

Let us still suppose that X is continuously differentiable. We deduce by (1.1)-(1.2)
that for 0<s<t<T

Zi-2=0(2) (X=X + (0(2,) - 0(2)) X, du, (13)

which implies that Z satisfies the following controlled difference equation:
Zy—Zs=0(Zs) (X — X) +o(t —s), 0<s<t<T, (1.4)
because ui— o (Z,) is continuous and u+— X, is (continuous, hence) bounded on [0, 77.

Remark 1.1. (UNIFORMITY) Whenever we write o(t — s), as in (1.4), we always
mean uniformly for 0 <s<t<T, ie.

Ve>036>0: 0<s<t<T, t—s<6 implies |o(t—s)|<e(t—s). (1.5)

This will be implicitly assumed in the sequel.

Let us make two simple observations.

e If X is continuously differentiable we deduced (1.4) from (1.1), but we can
easily deduce (1.1) from (1.4): in other terms, the two equations (1.1) and
(1.4) are equivalent.

e If X is not continuously differentiable, equation (1.4) is still meaningful,
unlike equation (1.1) which contains explicitly X.

For these reasons, henceforth we focus on the difference equation (1.4), which pro-
vides a generalized formulation of the differential equation (1.1) when X is continuous
but not necessarily differentiable.

The problem is now to prove well-posedness for the difference equation (1.4).
We are going to show that this is possible assuming a suitable Hélder reqularity on
X, but non trivial ideas are required. In this chapter we illustrate some key ideas,
showing how to prove uniqueness of solutions via a priori estimates (existence of
solutions will be studied in the next chapters). We start from a basic result, which
ensures the continuity of solutions; more precise result will be obtained later.

LEMMA 1.2. (CONTINUITY OF SOLUTIONS) Let X and o be continuous. Then any
solution Z of (1.4) is a continuous path, more precisely it salisfies

Z,— 2 <C X — Xy +o(t—s), 0<s<t<T, (1.6)

for a suitable constant C' < oo which depends on Z.
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Proof. Relation (1.6) follows by (1.4) with C :=|0(Z)|le = supo<i<r |0(Z4)],
renaming |o(t — s)| as o(t —s). We only have to prove that C' < oco. Since o is
continuous by assumption, it is enough to show that Z is bounded.

Since ot — s) is uniform, see (1.5), we can fix § >0 such that |o(t — s)| <1 for
all 0 < s<t<T with |t —s|<d. It follows that Z is bounded in any interval [3,7]
with |[f — 5| <6, because by (1.4) we can bound

sup |Zy| <|Zs| + |o(Z5)| sup | X;— X5 +1<o0.
te(s,1] te(s, )

We conclude that Z is bounded in the whole interval [0, 7], because we can write
[0, 7] as a finite union of intervals [5,#] with |t — 5| <. O

Remark 1.3. (COUNTEREXAMPLES) The weaker requirement that (1.4) holds for
any fived s € 10,T] as t]s is not enough for our purposes, since in this case Z needs

not be continuous. An easy conterexample is the following: given any continuous
path X:[0,2] — R, we define Z:]0,2] — R by

X if 0<t<l,
Tl OX 41 i 1<t<2.

Note that Z; — Z,= X; — X, when either 0 <s<t<1lor 1 <s<t<2, hence Z satisfies
the difference equation (1.4) with o(-)=1 for any fized s €[0,2) as t|s, but not
uniformly for 0 <s<t<2, since Z is discontinuous at t = 1.

For another counterexample, which is even unbounded, consider

1
if 0<t«l1
A if 0<t<l,
0 if 1<t<2,

which satisfies (1.4) as t|s for any fixed s € [0,2], for X;=t and o(z) = 2%

1.3. SOME USEFUL FUNCTION SPACES

For n>1 we define the simplex
0,T)%:={(t1,... . tn): 0<t<-- <t,<T} (1.7)

(note that [0,7]%=[0,T]). We then write C,,=C([0,7]%, R¥) as a shorthand for the
space of continuous functions from [0, T]% to RF:

Cn:=C([0,T)%, RF):={F:[0,T]2 —R": F is continuous}. (1.8)

We are going to work with functions of one ( f;), two (Fy) or three (Gy,:) ordered
variables in [0, 7], hence we focus on the spaces Cy, Cy, Cs.

e On the spaces (5 and C5 we introduce a Holder-like structure: given any
n € (0,00), we define for F '€ Cy and G € Cs

Fy Gsut
1Plyi= sip B o ap Gl
0<s<t<T (t—s) 0<s<u<t<T (t—s)
s<t

(1.9)
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and we denote by C3 and C4 the corresponding function spaces:
Cy:={FeCy [F|,<oo}, Cy:={GeCs [G],<oo}, (1.10)
which are Banach spaces endowed with the norm |||, (exercise).

e On the space C| of continuous functions f: [0, 7] — R* we consider the usual
Holder structure. We first introduce the increment 6 f by

(0f)st:= fe—fs, 0<s<t<T, (1.11)

and note that §f € Cy for any f € C). Then, for « € (0, 1], we define the
classical space C*=C*([0, T], R¥) of a-Hélder functions

com{pomome porl= sy F=Heol 0

(for a« =1 it is the space of Lipschitz functions). Note that [[0f ||, in (1.12)
is consistent with (1.11) and (1.9).

Remark 1.4. (HOLDER SEMI-NORM) We stress that f+ ||0f||, is a semi-norm on
C (it vanishes on constant functions). The standard norm on C® is

[ Fllce:=[1f lloo + 116l (1.13)
where we define the standard sup norm
[ flloo:= sup |fi. (1.14)
te[0,T

For f:[0,T] —R* we can bound | £[lo < [ £(0)] +T 15|l (sce (1.39) below),
hence

[ llea <[FO) +A+T) 0 f]|a- (1.15)

This explains why it is often enough to focus on the semi-norm |6 f ||, -

Remark 1.5. (HOLDER EXPONENTS) We only consider the Holder space C* for
a € (0,1] because for a>1 the only functions in C* are constant functions (note that
16f||la < oo for &> 1 implies f,=0 for every ¢ [0,7]).

On the other hand, the spaces CJ and CY in (1.10) are interesting for any
exponent 1 € (0, 00). For instance, the condition ||F|, < oo for a function F' € Cy
means that |Fy| < C (t — )", which does not imply /'=0 when 7> 1 (unless F'=4§f
is the increment of some function f € ().

In our results below we will have to assume that the non-linearity o: R* —
R* @ (R%)* belongs to classes of Holder functions, in the following sense.

DEFINITION 1.6. Let v>0. A function F:RF— R" is said to be globally v-Hélder
(or globally of class C7) if
o forvye(0,1] we have
F(x)-F
[Flev:= |F(2) (v)]

sup
z,yeRF z#y |‘T— y”y
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o forye(n,n+1] andn={1,2,...}, Fisn times continuously differentiable and

[D™F(x) — D™F(y)|

D™F)ev:=  sup
| ] lz —y|7"

z,yeRF £y
where D™ is the n-fold differential of F.
Moreover F:RF— RY is said to be locally y-Hélder (or locally of class C) if
o forye(0,1] we have for all R>0

<400

z,yeRF z+y ‘$ - y|
lz],ly|<R

o forye(n,n+1] andn={1,2,...}, Fisn times continuously differentiable and

|D™F(x) - D™F(y)|

=y s

sup

z,y€RF x4y
lz|,ly|<R

We stress that in the previous definition we do not assume F of D™F to be
bounded. The case v =1 corresponds to the classical Lipschitz condition.

1.4. LOCAL UNIQUENESS OF SOLUTIONS

We prove uniqueness of solutions for the controlled difference equation (1.4) when
X €C® is an Hélder path of exponent o > % For simplicity, we focus on the case
when o: RF— RF® (RY)* is a linear application: o € (R* ® (R%)*) ® (R¥)*, and we
write o Z instead of o(Z) (we discuss non linear o(-) in Chapter 2).

THEOREM 1.7. (LOCAL UNIQUENESS OF SOLUTIONS, LINEAR CASE) Fiz a path
X:[0,T] —R? in C*, with a € ]%, 1], and a linear map o: RF—RF® (RY)*. If T >0
is small enough (depending on X, a, ), then for any z € R* there is at most one
path Z:10, T) — R with Zy= 2z, which solves the linear controlled difference equation
(1.4), that is (recalling (1.11))

0Zgy—(02)0Xg=0(t—s), 0<s<t<T. (1.16)
Proof. Suppose that we have two paths Z, Z: [0, T| — RF satisfying (1.16) with

Zo=Zy and define Y :=Z — Z. Our goal is to show that Y =0.
Let us introduce the function R € Co=C([0,T)%, R*) defined by

Ry :=0Yy— (0Ys) 60X, 0<s<t<T, (1.17)
and note that by (1.16) and linearity we have
Ry=o(t—s). (1.18)
Recalling (1.9), we can estimate

16Y [la <o 1Y lloo 16X Jla+ | B]la
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and since Ry =o(t — s) =o((t — s)*), we have ||R||, < +oo and therefore ||§Y ||, <
400. Since Yy=0,we can bound

1Y {loe < [¥o| + sup [Yi=Yo[ T [[0Y o

0<I<T
Since 1 <T*(t —s) * for 0< s <t < T, we can also bound
[Rllo <T* [ Rl|2a

so that
[0Y [la ST (lo] [[0Y [[a 10X o+ [ ]]24)-

Suppose we can prove that, for some constant C'=C(X,«a,0) < o0,

|Rl2a < C |6Y ||a- (1.19)
Then we obtain
[6Y [la <T (lo][[0X [[a+C) [[6Y [[a-

If we fix T small enough, so that 7% (|o|[|0.X ||« +C) <1, we get ||§Y ||o =0, hence
dY =0. This means that Y; =Y, for all s,¢€ [0, 7], and since Yp=0 we obtain Y =0,
namely our goal Z = Z. This completes the proof assuming the estimate (1.19)
(where the hypothesis « >% will play a key role). O

To actually complete the proof of Theorem 1.7, it remains to show that the
inequality (1.19) holds. This is performed in the next two sections:

e in Section 1.5 we present a fundamental estimate, the Sewing Bound, which
applies to any function Ry =o(t —s) (recall (1.18));

e in Section 1.6 we apply the Sewing Bound to Ry in (1.17) and we prove the
desired estimate (1.19) for a >% (see the assumptions of Theorem 1.7).

1.5. THE SEWING BOUND

Let us fix an arbitrary function R € Co=C([0,T)%, R¥) with Ry, =o(t — s). Our goal
is to bound |R,| for any given 0<a<b<T.

We first show that we can express R, via “Riemann sums” along partitions
P={a=tog<ti<...<t,=0b} of [a,b]. These are defined by

#P
IP(R> ::Z Rti—lti7 (120)
i=1

where we denote by #P :=m the number of intervals of the partition P. Let us
denote by |P|:=maxi<;<m (t; — ti—1) the mesh of P.

LEMMA 1.8. (RIEMANN SUMS) Given any R € Cy with Ry =o0(t —s), for any 0<
a<b<T and for any sequence (Py)n>0 of partitions of [a,b] with vanishing mesh
lim,, 00 |Pp| =0 we have

lim Ip, (R)=0.

n—oo
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If furthermore Py={a,b} is the trivial partition, then we can write

oo

Ruy=>_ (Ip(R)—1Ip,,,(R), 0<a<b<T. (1.21)

n=0

Proof. Writing P,={a=1t{ <t{ <...<tl}p, =b}, we can estimate

nogn| K max TIn in N i Yi—=1)
Pn X £ ti_ati =1, “p, (tj _ j—l) J j—1

j=1
hence |Ip,(R)| — 0 as n— o0, because the final sum equals b — a and the bracket

vanishes (since Rq=o0(t —s) and |P,| =maxi <xp, (t} —t7—1) —0).
We deduce relation (1.21) by the telescopic sum

N-1
Ipy(R) = Ipy(R) =Y (Ip,(R) = Ip, ,(R)),
n=0
because limy_. I'py(R) =0 while Ip,(R) = Ry, for Py={a,b}. O

If we remove a single point ¢; from a partition P ={tg<t1 < ... <t,,}, we obtain
a new partition P’ for which, recalling (1.20), we can write

]P’(R) - IP<R) = Rti—lti+1 - Rti—lti - Rtiti+1 : (122)

The expression in the RHS deserves a name: given any two-variables function F' € Cj,
we define its increment F' € C3 as the three-variables function

0F s :=Fgy— Fo— Fuy, 0<s<ugt«T. (1.23)
We can then rewrite (1.22) as
Ipi(R) — Ip(R) =0R:,_\t;t:\1, (1.24)
and recalling (1.9) we obtain the following estimate, for any 7 > 0:
[Ip/(R) — Ip(R)| < [|0R]]y [tis1 — tia|". (1.25)

We are now ready to state and prove the Sewing Bound.

THEOREM 1.9. (SEWING BOUND) Given any R € Cy with Ry =o(t — s), the fol-
lowing estimate holds for any n € (1,00) (recall (1.9)):

R, < K, ||0R]], where K,:=(1-=2"7""1, (1.26)

Proof. Fix R e (), such that [[0R|, < oo for some 1> 1 (otherwise there is nothing
to prove). Also fix 0 <a<b<T and consider for n >0 the dyadic partitions P, :=
{tF:=a+ 2% (b—a): 0<i<2"} of [a,b]. Since Py={a,b} is the trivial partition, we
can apply (1.21) to bound

o0

|[Ratl <Y 1Ip,(R) = Ip,.,(R)| - (1.27)

n=0
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If we remove from P, all the “odd points” tgjﬂl, with 0 < j <2"—1, we obtain
P,.. Then, iterating relations (1.24)-(1.25), we have
2n—1

Ip(R) = I o (R)| < 3 1Rgengss i)
j=0

2542

2(b—a)\"
< 2 for, (292 )

= 2=V I5R||, (b—a)". (1.28)

Plugging this into (1.27), since > 271" = (1 —21=7)~1 we obtain
|Rop| < (1 =271 |0R|], (b —a)", 0<a<b<T, (1.29)
which proves (1.26). O

Remark 1.10. Recalling (1.11) and (1.23), we have defined linear maps

SRR (1.30)
which satisfy § o9 =0. Indeed, for any f € C; we have

00 )sur = (fr = fs) = (fu—fs) = (fe = fu) =0.

Intuitively, 0F € C3 measures how much a function F' € (5 differs from being the
increment df of some f € Cy, because dF =0 if and only if F=0f for some f e Cy
(it suffices to define f;:= Fy; and to check that 0 fo = 0Fys + For = Fp).

Remark 1.11. The assumption Ry =o0(t —s) in Theorem 1.9 cannot be avoided:
if R:=4f for a non constant f € Cy, then 6R =0 while ||R||, > 0.

1.6. END OF PROOF OF UNIQUENESS

In this section, we apply the Sewing Bound (1.26) to the function Ry defined in
(1.17), in order to prove the estimate (1.19) for a > %

We first determine the increment JR through a simple and instructive computa-
tion: by (1.17), since 6(0Z) =0 (see Remark 1.10), we have

ORsur = Rg— Reu— Rt
= -Y)-Y.-Y)-¥-Y,)
—(0Y) (Xi = Xo) + (0 Y)) (Xu — X)) + (0 Vo) (Xi — Xa)
= [o (Ya—Y)] (X — Xu). (1.31)
Recalling (1.9), this implies
10R ][0 < 1o [ [|6Y[|a [[0X [|a-

We next note that if « >% (as it is assumed in Theorem 1.7) we can apply the
Sewing Bound (1.26) for n=2a >1 to obtain

||R||2a< KQa ||5R||2a < KQa |0| ||6Y||a ||6X||a
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This is precisely our goal (1.19) with C=C(X,a,0) := K, |o|[|0X | a-

Summarizing: thanks to the Sewing bound (1.26), we have obtained the estimate
(1.19) and completed the proof of Theorem 1.7, showing uniqueness of solutions to

the difference equation (1.4) for any X € C* with v € ]%, 1] In the next chapters we
extend this approach to non-linear ¢ () and to situations where X € C* with o < %

Remark 1.12. For later purpose, let us record the computation (1.31) withouth o
given any (say, real) paths X and Y, if

Ast:K5X5t7 VO<S<t<T7
then

1.7. WEIGHTED NORMS

We conclude this chapter defining weighted versions ||-||,, - of the norms ||-||, intro-
duced in (1.9): given F' € Cy and G € C3, we set for 1,7 € (0, 00)

_% |F5t‘

Fl, .:= Ligct—s<r , 1.33

115, S Lo<ssn® T (1.33)
_t Gsut|

Gllp-:= sup 1 _s<rr€ T |—, 1.34

1G], <ot {0<t—s<7} (t—s)n (1.34)

where Cy and Cj are the spaces of continuous functions from [0, 7|2 and [0, T2 to
R*, see (1.8). Note that as 7— oo we recover the usual norms:

H'HUZTILIEOH'HW’T' (1.35)

Remark 1.13. (NORMS VS. SEMI-NORMS) While |||, is a norm, ||||,,,- is a norm

for 7> T but it is only a semi-norm for T <T (for instance, | F||, =0 for F € C,

implies Fy; =0 only for t — s <7: no constraint is imposed on Fj; for t — s> 7).
However, if F'=4f, that is F,;= f; — fs for some f € C}, we have the equivalence

T\ T
1571 < 7 < (1 ) 1071 (1.36)

The first inequality is clear. For the second one, given 0 < s <t <T, we can write
s=ty<ti<---<ty=t with ¢;, —t,_1 <7 and Nél%—; (for instance, we can
consider t; = s + i *=° where N := (t;sb; we then obtain ¢ fy = vazl Oft,_yt, and

N

16f1, el <UIOF g €T (ti—ti1)" < ||6f ||.r €7/7 (t — 5)7, which yields (1.36).
Remark 1.14. (FROM LOCAL TO GLOBAL) The weighted semi-norms [|-||,,,» will
be useful to transform local results in global results. Indeed, using the standard
norms ||-||, often requires the size "> 0 of the time interval [0, 7] to be small, as

in Theorem 1.7, which can be annoying. Using ||-||, - will allow us to keep T'>0
arbitrary, by choosing a sufficiently small 7 > 0.
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Recalling the supremum norm || f || of a function f € Cj, see (1.14), we define
the corresponding weighted version

_t
| flloo.r:= sup e 7|fy. (1.37)

0<t<T

We stress that ||+||oc,r @ @ norm equivalent to ||-||oo for any 7> 0, since
r
[ lloor < -lloe €™ [[-floo,7 - (1.38)

Remark 1.15. (EQUIVALENT HOLDER NORM) It follows by (1.36) and (1.38) that
locrr + - lavr s @ norm equivalent to |-¢a:=||-llso+ ||| on the space C* of Holder
functions, see Remark 1.4, for any 7> 0.

We will often use the Hélder semi-norms ||0f||, and ||6f]/s.r to bound the
supremum norms || f||oo and || f||oo,r, thanks to the following result.

LEMMA 1.16. (SUPREMUM-HOLDER BOUND) For any f € Cy and n€ (0, 00)

1 lloo < TSl T {10 f I, (1.39)
[ lloo,r <[ fol +3 (7 AT) 0 f[ln7, V7 >0. (1.40)

Proof. Let us prove (1.39): for any f € C; and for ¢t € ]0,T] we have
<ol 416 fol =1 el + 0 LTy o 2 5
The proof of (1.40) is slightly more involved. If ¢ € ]0,7 AT}, then
<l pl e PPl o e aTyr g
which, in particular, implies (1.40) when 7 >T. When 7 < T, it remains to consider

7 <t<T: in this case, we define N:=min{ne€N: n7 >t} >2 so that ziv <7. We
set ¢, = k% for k>0, so that ¢ty =t. Then

_t N Cenl u B
k=1 k k—1

N t—tg
<ol + (AT [16f g Y e 7

k=1

By definition of N we have (N —1)7 <t; since 7 <t we obtain N7 <2t and therefore

% > % Since t —tp= (N — k)%, renaming ¢ := N — k we obtain

t
t—tg

= — et l—e7 1
DT =) e e—< <3,
k=1 =0 l—e ™ 1—e

| =

The proof is complete. [l
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We finally show that the Sewing Bound (1.26) still holds if we replace ||-||,, by
[, for any 7> 0.

THEOREM 1.17. (WEIGHTED SEWING BOUND) Given any R € Cy with Rgy=o0(t —s),
the following estimate holds for any n € (1,00) and 7> 0:

|Rly <Ky l|0R];,»  where  K,:=(1-2"7)"1, (1.41)

Proof. Given 0<a<b<T, let us define

‘6Rsut|
(t=s)"

10R | fa5):=  sup (1.42)

s,u,t€la,b:

s<u<st, s<t
Following the proof of Theorem 1.9, we can replace |[0R||,, by ||[0R]y,a,5 in (1.28)
and in (1.29), hence we obtain |Re| < K, |[0R||;,[0,6) (b —a)”. Then for b —a <1 we
can estimate

b R _ b
e b—a) <e 7Ky |[0R][y (a0 < Ky [[0R ||,
and (1.41) follows taking the supremum over 0 <a<b<T with b—a <. O

1.8. A DISCRETE SEWING BOUND

We can prove a version of the Sewing Bound for functions R = (Rst)s<teT defined on
a finite set of points T:={0=t;<--- <tgr} CR; (this will be useful to construct
solutions to difference equations via Euler schemes, see Sections 2.6 and 3.9). The
condition Rs=o0(t —s) from Theorem 1.9 is now replaced by the requirement that
R vanishes on consecutive points of T, i.e. Ry, , =0 for all 1 <7 <#T.

We define versions |-||;, of the norms |-, - restricted on T for 7> 0, recall
(1.33)-(1.34):

t
_t ]A
HAHT’]]I:T = sup l{0<t—s§7}e T&, (143)
0<s<t ’t_‘9|7]
s, teT
t
_t |B
IBIZ, = sup  Lppersempe + 22l (1.44)
0<s<u<t |t — s
s,u,teT, s<t

for A:{(s,t)eT20<s<t}—R and B:{(s,u,t) eT30<s<u<t,s<t}—R.
THEOREM 1.18. (DISCRETE SEWING BOUND) If a function R=(Rst)s<teT vanishes
on consecutive points of T (i.e. Ry, =0), then for any n>1 and 7 >0 we have
Ry <Cy|I6R|7, th — Cy:=2" Lo 1.45
[R5, < Cy lI6R|5,7 we n-= Z PR ¢(n) <oo. (1.45)

n>1

Proof. We fix s,t €T with s <t and we start by proving that
Rl <C, ISRIE (t - 5)7.
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We have s =t and t =t,,,, and we may assume that m > 2 (otherwise there is
nothing to prove, since for m =1 we have R, ,,=0).

Consider the partition P ={s=1t; <tpi1<... <tpym=1t} with m intervals. Note
that for some index i€ {k+1,....,k+m — 1} we must have t;,1 —t;_1 < 2“:?,
otherwise we would get the contradiction

k+m—1 k+m—1 t—S
2(t—s)> > (si—ti)> Y =2(t—s).
i=k+1 i=k+1

Removing the point ¢; from P we obtain a partition P’ with m — 1 intervals. If we
define Ip(R):= k+m "Ry, asin (1.20), as in (1.24) we have

2 (t — s)" 16 R
|]7)(R) - IP’(R)| = |6Rti_ tit; | < oo sup _—
I G ) L o (et
u,v,weT

Iterating this argument, until we arrive at the trivial partition {s,t}, we get

S Ruvw|

I _ < — )1 M 14

|Ip(R) — Ryt| < C, (t —s) sguiligwgt o — a7 (1.46)
u,v,weT

with C,, := Zn>1 ’ < o0 because 1> 1. We finally note that Ip(R) =0 by the
assumption Ry, ., =0. Finally if t — s <7 then w —u <7 in the supremum in (1.46)

t w
and since e "< e 7 we obtain

e |Rul <C, (t —5)" [6RE
and the proof is complete. ([l

We also have an analog of Lemma 1.16. We set for f: T —R and 7 >0

”fHOOT —SuPe T|ft’

LEMMA 1.19. (DISCRETE SUPREMUM-HOLDER BOUND) For T:={0=t;<--- <
tar} CRy set

M:= max |ti—ti_1|.
i=2,..., #T
Then for all f: T—R, 7>2M and n>0
Il <[ fol +577 116 f 1,7 - (1.47)

Proof. We define 7j:=0 and for i > 1, as long as TN (7;_1,7;—1 4 7] is not empty,
we set

Ti:=maxTN(T;—1,T;—1+ 7], i=1,...,N,
so that Ty =maxT. We have by construction T; + M >T; 1+ 7 for all i1 =1,...,
N —1, and since M <3

E—EA>T—M>%.
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For i =N we have only Ty > Ty _;. Therefore fori=1,... N

5 : 2
e 7 . g -+ T —T._1)"e T e - 1k JTk—1l
| fr; | fol kz_;( k= Ti-1) [ (T =T} )7

: _Ti—Ty
< ol + 7 ISFIE Y e e
k=1

> k
< ol +77 H(Sf”%%(l—kz e_z)

< | feol 477 0f |lyr

Now for t € T\ {T;}; we have T; <t < T;;; for some i and then

(t—myre s Sl

e_;|ft| < e 7—|fT ( ) <e 7—|fT

| fol + 577 |0 |15
The proof is complete. U

1.9. EXTRA (TO BE COMPLETED)

We also introduce the usual supremum norm, for F € Cy and G € Cs:

[Flloc:="sup [|Ful,  |IGllc:=sup  |Gsul,

0<s<t<T 0<s<u<t<T

and a corresponding weighted version, for 7 € (0, 00):

_t _t
|F'||oo,r:= sup e 7|Fg, |Glloo,r:= sup e 7 |Gsu- (1.48)

0<s<t<T 0<s<<ust<T
Note that
i A Fllocr =[Flloo,  lim |Gl -=[Gll,,  lim [H],-=[H],.
T— 400 T— 400 T— 400

We have
HFHWKF< HGHOOJ HHHW ( sut — GsuHut) (149)

Note that |||, is only a semi-norm on C if 7 <T'; we have at least

T 1
e < -l < ¥ (||-||W+— ||.||oo,) . (1.50)

N

However, if 7 >T we have again equivalence of norms

||'||w<\|'||n<€f Illr, 72T (1.51)



