CHAPTER 1 The Sewing Bound

The problem of interest in this book is the study of differential equations driven by *irregular functions* (more specifically: continuous but not differentiable). This will be achieved through the powerful and elegant theory of *rough paths*. A key motivation comes from stochastic differential equations driven by Brownian motion, but the goal is to develop a general theory which does not rely on probability.

This first chapter is dedicated to an elementary but fundamental tool, the *Sewing Bound*, that will be applied extensively throughout the book. It is a general Höldertype bound for functions of two real variables that can be understood by itself, see Theorem 1.9 below. To provide motivation, we present it as a natural a priori estimate for solutions of differential equations.

Notation. We fix a time horizon T > 0 and two dimensions $k, d \in \mathbb{N}$. We use "path" as a synonymous of "function defined on [0, T]" with values in \mathbb{R}^d . We denote by $|\cdot|$ the Euclidean norm. The space of linear maps from \mathbb{R}^d to \mathbb{R}^k , identified by $k \times d$ real matrices, is denoted by $\mathbb{R}^k \otimes (\mathbb{R}^d)^* \simeq \mathbb{R}^{k \times d}$ and is equipped with the Hilbert-Schmidt norm $|\cdot|$ (i.e. the Euclidean norm on $\mathbb{R}^{k \times d}$). For $A \in \mathbb{R}^k \otimes (\mathbb{R}^d)^*$ and $v \in \mathbb{R}^d$ we have $|Av| \leq |A| |v|$.

1.1. CONTROLLED DIFFERENTIAL EQUATION

Consider the following controlled ordinary differential equation (ODE): given a continuously differentiable path $X: [0,T] \to \mathbb{R}^d$ and a continuous function $\sigma: \mathbb{R}^k \to \mathbb{R}^k \otimes (\mathbb{R}^d)^*$, we look for a differentiable path $Z: [0,T] \to \mathbb{R}^k$ such that

$$\dot{Z}_t = \sigma(Z_t) \, \dot{X}_t \,, \qquad t \in [0, T]. \tag{1.1}$$

By the fundamental theorem of calculus, this is equivalent to

$$Z_t = Z_0 + \int_0^t \sigma(Z_s) \, \dot{X}_s \, \mathrm{d}s \,, \qquad t \in [0, T].$$
(1.2)

In the special case k = d = 1 and when $\sigma(x) = \lambda x$ is linear (with $\lambda \in \mathbb{R}$), we have the explicit solution $Z_t = z_0 \exp(\lambda (X_t - X_0))$, which has the interesting property of being well-defined also when X is non differentiable.

For any dimensions $k, d \in \mathbb{N}$, if we assume that $\sigma(\cdot)$ is Lipschitz, classical results in the theory of ODEs guarantee that equation (1.1)-(1.2) is well-posed for any continuously differentiable path X, namely for any $Z_0 \in \mathbb{R}^k$ there is one and only one solution Z (with no explicit formula, in general). Our aim is to extend such a well-posedness result to a setting where X is continuous but not differentiable (also in cases where $\sigma(\cdot)$ may be non-linear). Of course, to this purpose it is first necessary to provide a generalized formulation of (1.1)-(1.2) where the derivative of X does not appear.

1.2. Controlled difference equation

Let us still suppose that X is continuously differentiable. We deduce by (1.1)-(1.2) that for $0 \leq s \leq t \leq T$

$$Z_t - Z_s = \sigma(Z_s) \left(X_t - X_s \right) + \int_s^t \left(\sigma(Z_u) - \sigma(Z_s) \right) \dot{X}_u \, \mathrm{d}u, \qquad (1.3)$$

which implies that Z satisfies the following controlled difference equation:

$$Z_t - Z_s = \sigma(Z_s) \left(X_t - X_s \right) + o(t - s), \qquad 0 \leqslant s \leqslant t \leqslant T,$$

$$(1.4)$$

because $u \mapsto \sigma(Z_u)$ is continuous and $u \mapsto \dot{X}_u$ is (continuous, hence) bounded on [0, T].

Remark 1.1. (UNIFORMITY) Whenever we write o(t - s), as in (1.4), we always mean *uniformly for* $0 \le s \le t \le T$, i.e.

$$\forall \varepsilon > 0 \ \exists \delta > 0: \quad 0 \leqslant s \leqslant t \leqslant T, \ t - s \le \delta \quad \text{implies} \quad |o(t - s)| \le \varepsilon \left(t - s\right). \tag{1.5}$$

This will be implicitly assumed in the sequel.

Let us make two simple observations.

- If X is continuously differentiable we deduced (1.4) from (1.1), but we can easily deduce (1.1) from (1.4): in other terms, the two equations (1.1) and (1.4) are *equivalent*.
- If X is not continuously differentiable, equation (1.4) is still meaningful, unlike equation (1.1) which contains explicitly \dot{X} .

For these reasons, henceforth we focus on the difference equation (1.4), which provides a generalized formulation of the differential equation (1.1) when X is continuous but not necessarily differentiable.

The problem is now to prove *well-posedness* for the difference equation (1.4). We are going to show that this is possible assuming a suitable *Hölder regularity* on X, but non trivial ideas are required. In this chapter we illustrate some key ideas, showing how to prove uniqueness of solutions via a priori estimates (existence of solutions will be studied in the next chapters). We start from a basic result, which ensures the continuity of solutions; more precise result will be obtained later.

LEMMA 1.2. (CONTINUITY OF SOLUTIONS) Let X and σ be continuous. Then any solution Z of (1.4) is a continuous path, more precisely it satisfies

$$|Z_t - Z_s| \leqslant C |X_t - X_s| + o(t - s), \qquad 0 \leqslant s \leqslant t \leqslant T,$$

$$(1.6)$$

for a suitable constant $C < \infty$ which depends on Z.

Proof. Relation (1.6) follows by (1.4) with $C := \|\sigma(Z)\|_{\infty} = \sup_{0 \le t \le T} |\sigma(Z_t)|$, renaming |o(t-s)| as o(t-s). We only have to prove that $C < \infty$. Since σ is continuous by assumption, it is enough to show that Z is *bounded*.

Since o(t-s) is uniform, see (1.5), we can fix $\delta > 0$ such that $|o(t-s)| \leq 1$ for all $0 \leq s \leq t \leq T$ with $|t-s| \leq \overline{\delta}$. It follows that Z is bounded in any interval $[\overline{s}, \overline{t}]$ with $|\overline{t} - \overline{s}| \leq \overline{\delta}$, because by (1.4) we can bound

$$\sup_{t\in[\bar{s},\bar{t}]} |Z_t| \leqslant |Z_{\bar{s}}| + |\sigma(Z_{\bar{s}})| \sup_{t\in[\bar{s},\bar{t}]} |X_t - X_{\bar{s}}| + 1 < \infty$$

We conclude that Z is bounded in the whole interval [0, T], because we can write [0, T] as a finite union of intervals $[\bar{s}, \bar{t}]$ with $|\bar{t} - \bar{s}| \leq \bar{\delta}$.

Remark 1.3. (COUNTEREXAMPLES) The weaker requirement that (1.4) holds for any fixed $s \in [0, T]$ as $t \downarrow s$ is not enough for our purposes, since in this case Z needs not be continuous. An easy conterexample is the following: given any continuous path $X: [0, 2] \to \mathbb{R}$, we define $Z: [0, 2] \to \mathbb{R}$ by

$$Z_t := \begin{cases} X_t & \text{if } 0 \leqslant t < 1, \\ X_t + 1 & \text{if } 1 \leqslant t \leqslant 2. \end{cases}$$

Note that $Z_t - Z_s = X_t - X_s$ when either $0 \leq s \leq t < 1$ or $1 \leq s \leq t \leq 2$, hence Z satisfies the difference equation (1.4) with $\sigma(\cdot) \equiv 1$ for any fixed $s \in [0, 2)$ as $t \downarrow s$, but not uniformly for $0 \leq s \leq t \leq 2$, since Z is discontinuous at t = 1.

For another counterexample, which is even unbounded, consider

$$Z_t := \begin{cases} \frac{1}{1-t} & \text{if } 0 \leqslant t < 1, \\ 0 & \text{if } 1 \leqslant t \leqslant 2, \end{cases}$$

which satisfies (1.4) as $t \downarrow s$ for any fixed $s \in [0, 2]$, for $X_t \equiv t$ and $\sigma(z) = z^2$.

1.3. Some useful function spaces

For $n \ge 1$ we define the simplex

$$[0,T]_{\leqslant}^{n} := \{(t_{1},\ldots,t_{n}): \quad 0 \leqslant t_{1} \leqslant \cdots \leqslant t_{n} \leqslant T\}$$

$$(1.7)$$

(note that $[0,T]^1_{\leq} = [0,T]$). We then write $C_n = C([0,T]^n_{\leq}, \mathbb{R}^k)$ as a shorthand for the space of *continuous functions from* $[0,T]^n_{\leq}$ to \mathbb{R}^k :

$$C_n := C([0,T]^n_{\leqslant}, \mathbb{R}^k) := \{F : [0,T]^n_{\leqslant} \to \mathbb{R}^k : F \text{ is continuous}\}.$$
(1.8)

We are going to work with functions of one (f_s) , two (F_{st}) or three (G_{sut}) ordered variables in [0, T], hence we focus on the spaces C_1, C_2, C_3 .

• On the spaces C_2 and C_3 we introduce a Hölder-like structure: given any $\eta \in (0, \infty)$, we define for $F \in C_2$ and $G \in C_3$

$$\|F\|_{\eta} := \sup_{0 \le s < t \le T} \frac{|F_{st}|}{(t-s)^{\eta}}, \qquad \|G\|_{\eta} := \sup_{\substack{0 \le s \le u \le t \le T\\s < t}} \frac{|G_{sut}|}{(t-s)^{\eta}}, \tag{1.9}$$

and we denote by C_2^{η} and C_3^{η} the corresponding function spaces:

$$C_2^{\eta} := \{ F \in C_2 : \|F\|_{\eta} < \infty \}, \qquad C_3^{\eta} := \{ G \in C_3 : \|G\|_{\eta} < \infty \}, \qquad (1.10)$$

which are Banach spaces endowed with the norm $\|\cdot\|_{\eta}$ (exercise).

• On the space C_1 of continuous functions $f:[0,T] \to \mathbb{R}^k$ we consider the usual Hölder structure. We first introduce the *increment* δf by

$$(\delta f)_{st} := f_t - f_s , \qquad 0 \leqslant s \leqslant t \leqslant T , \qquad (1.11)$$

and note that $\delta f \in C_2$ for any $f \in C_1$. Then, for $\alpha \in (0, 1]$, we define the classical space $\mathcal{C}^{\alpha} = \mathcal{C}^{\alpha}([0, T], \mathbb{R}^k)$ of α -Hölder functions

$$\mathcal{C}^{\alpha} := \left\{ f : [0,T] \to \mathbb{R}^{k} : \quad \|\delta f\|_{\alpha} = \sup_{0 \le s < t \le T} \frac{|f_{t} - f_{s}|}{(t-s)^{\alpha}} < \infty \right\}$$
(1.12)

(for $\alpha = 1$ it is the space of Lipschitz functions). Note that $\|\delta f\|_{\alpha}$ in (1.12) is consistent with (1.11) and (1.9).

Remark 1.4. (HÖLDER SEMI-NORM) We stress that $f \mapsto \|\delta f\|_{\alpha}$ is a semi-norm on \mathcal{C}^{α} (it vanishes on constant functions). The standard norm on \mathcal{C}^{α} is

$$\|f\|_{\mathcal{C}^{\alpha}} := \|f\|_{\infty} + \|\delta f\|_{\alpha}, \qquad (1.13)$$

where we define the standard sup norm

$$\|f\|_{\infty} := \sup_{t \in [0,T]} |f_t|.$$
(1.14)

For $f: [0,T] \to \mathbb{R}^k$ we can bound $||f||_{\infty} \leq |f(0)| + T^{\alpha} ||\delta f||_{\alpha}$ (see (1.39) below), hence

$$\|f\|_{\mathcal{C}^{\alpha}} \le |f(0)| + (1+T^{\alpha}) \|\delta f\|_{\alpha}.$$
(1.15)

This explains why it is often enough to focus on the semi-norm $\|\delta f\|_{\alpha}$.

Remark 1.5. (HÖLDER EXPONENTS) We only consider the Hölder space C^{α} for $\alpha \in (0, 1]$ because for $\alpha > 1$ the only functions in C^{α} are constant functions (note that $\|\delta f\|_{\alpha} < \infty$ for $\alpha > 1$ implies $\dot{f}_t = 0$ for every $t \in [0, T]$).

On the other hand, the spaces C_2^{η} and C_3^{η} in (1.10) are interesting for any exponent $\eta \in (0, \infty)$. For instance, the condition $||F||_{\eta} < \infty$ for a function $F \in C_2$ means that $|F_{st}| \leq C (t-s)^{\eta}$, which does not imply $F \equiv 0$ when $\eta > 1$ (unless $F = \delta f$ is the increment of some function $f \in C_1$).

In our results below we will have to assume that the non-linearity $\sigma \colon \mathbb{R}^k \to \mathbb{R}^k \otimes (\mathbb{R}^d)^*$ belongs to classes of Hölder functions, in the following sense.

DEFINITION 1.6. Let $\gamma > 0$. A function $F: \mathbb{R}^k \to \mathbb{R}^N$ is said to be globally γ -Hölder (or globally of class \mathcal{C}^{γ}) if

• for $\gamma \in (0,1]$ we have

$$[F]_{\mathcal{C}^{\gamma}} := \sup_{x,y \in \mathbb{R}^k, x \neq y} \frac{|F(x) - F(y)|}{|x - y|^{\gamma}} < +\infty$$

• for $\gamma \in (n, n+1]$ and $n = \{1, 2, ...\}$, F is n times continuously differentiable and

$$[D^{(n)}F]_{\mathcal{C}^{\gamma}} := \sup_{x,y \in \mathbb{R}^{k}, x \neq y} \frac{|D^{(n)}F(x) - D^{(n)}F(y)|}{|x - y|^{\gamma - n}} < +\infty$$

where $D^{(n)}$ is the n-fold differential of F.

Moreover $F: \mathbb{R}^k \to \mathbb{R}^N$ is said to be locally γ -Hölder (or locally of class \mathcal{C}^{γ}) if

• for $\gamma \in (0, 1]$ we have for all R > 0

$$\sup_{\substack{y \in \mathbb{R}^k, x \neq y \\ |x|, |y| \leqslant R}} \frac{|F(x) - F(y)|}{|x - y|^{\gamma}} < +\infty$$

• for $\gamma \in (n, n+1]$ and $n = \{1, 2, ...\}$, F is n times continuously differentiable and

$$\sup_{\substack{x,y \in \mathbb{R}^k, x \neq y \\ |x|, |y| \leq R}} \frac{|D^{(n)}F(x) - D^{(n)}F(y)|}{|x-y|^{\gamma-n}} < +\infty.$$

We stress that in the previous definition we do not assume F of $D^{(n)}F$ to be bounded. The case $\gamma = 1$ corresponds to the classical *Lipschitz* condition.

1.4. Local uniqueness of solutions

We prove uniqueness of solutions for the controlled difference equation (1.4) when $X \in C^{\alpha}$ is an Hölder path of exponent $\alpha > \frac{1}{2}$. For simplicity, we focus on the case when $\sigma: \mathbb{R}^k \to \mathbb{R}^k \otimes (\mathbb{R}^d)^*$ is a linear application: $\sigma \in (\mathbb{R}^k \otimes (\mathbb{R}^d)^*) \otimes (\mathbb{R}^k)^*$, and we write σZ instead of $\sigma(Z)$ (we discuss non linear $\sigma(\cdot)$ in Chapter 2).

THEOREM 1.7. (LOCAL UNIQUENESS OF SOLUTIONS, LINEAR CASE) Fix a path $X: [0,T] \to \mathbb{R}^d$ in \mathcal{C}^{α} , with $\alpha \in \left]\frac{1}{2}, 1\right]$, and a linear map $\sigma: \mathbb{R}^k \to \mathbb{R}^k \otimes (\mathbb{R}^d)^*$. If T > 0 is small enough (depending on X, α, σ), then for any $z_0 \in \mathbb{R}^k$ there is at most one path $Z: [0,T] \to \mathbb{R}^k$ with $Z_0 = z_0$ which solves the linear controlled difference equation (1.4), that is (recalling (1.11))

$$\delta Z_{st} - (\sigma Z_s) \,\delta X_{st} = o(t-s), \qquad 0 \leqslant s \leqslant t \leqslant T. \tag{1.16}$$

Proof. Suppose that we have two paths $Z, \overline{Z}: [0, T] \to \mathbb{R}^k$ satisfying (1.16) with $Z_0 = \overline{Z}_0$ and define $Y := Z - \overline{Z}$. Our goal is to show that Y = 0.

Let us introduce the function $R \in C_2 = C([0, T]^2_{\leq}, \mathbb{R}^k)$ defined by

$$R_{st} := \delta Y_{st} - (\sigma Y_s) \,\delta X_{st} \,, \qquad 0 \leqslant s \leqslant t \leqslant T \,, \tag{1.17}$$

and note that by (1.16) and linearity we have

$$R_{st} = o(t-s) \,. \tag{1.18}$$

Recalling (1.9), we can estimate

$$\|\delta Y\|_{\alpha} \leq |\sigma| \|Y\|_{\infty} \|\delta X\|_{\alpha} + \|R\|_{\alpha}$$

and since $R_{st} = o(t-s) = o((t-s)^{\alpha})$, we have $||R||_{\alpha} < +\infty$ and therefore $||\delta Y||_{\alpha} < +\infty$. Since $Y_0 = 0$, we can bound

$$\|Y\|_{\infty} \leq |Y_0| + \sup_{0 \leq t \leq T} |Y_t - Y_0| \leq T^{\alpha} \|\delta Y\|_{\alpha}.$$

Since $1 \leq T^{\alpha} (t-s)^{-\alpha}$ for $0 \leq s < t \leq T$, we can also bound

$$\|R\|_{\alpha} \leqslant T^{\alpha} \|R\|_{2\alpha}$$

so that

$$\|\delta Y\|_{\alpha} \leqslant T^{\alpha} (|\sigma| \|\delta Y\|_{\alpha} \|\delta X\|_{\alpha} + \|R\|_{2\alpha}).$$

Suppose we can prove that, for some constant $C = C(X, \alpha, \sigma) < \infty$,

$$\|R\|_{2\alpha} \leqslant C \,\|\delta Y\|_{\alpha}.\tag{1.19}$$

Then we obtain

$$\|\delta Y\|_{\alpha} \leqslant T^{\alpha} \left(|\sigma| \|\delta X\|_{\alpha} + C \right) \|\delta Y\|_{\alpha}.$$

If we fix T small enough, so that $T^{\alpha}(|\sigma| \|\delta X\|_{\alpha} + C) < 1$, we get $\|\delta Y\|_{\alpha} = 0$, hence $\delta Y \equiv 0$. This means that $Y_t = Y_s$ for all $s, t \in [0, T]$, and since $Y_0 = 0$ we obtain $Y \equiv 0$, namely our goal $Z \equiv \overline{Z}$. This completes the proof assuming the estimate (1.19) (where the hypothesis $\alpha > \frac{1}{2}$ will play a key role).

To actually complete the proof of Theorem 1.7, it remains to show that the inequality (1.19) holds. This is performed in the next two sections:

- in Section 1.5 we present a fundamental estimate, the Sewing Bound, which applies to any function $R_{st} = o(t s)$ (recall (1.18));
- in Section 1.6 we apply the Sewing Bound to R_{st} in (1.17) and we prove the desired estimate (1.19) for $\alpha > \frac{1}{2}$ (see the assumptions of Theorem 1.7).

1.5. The Sewing bound

Let us fix an arbitrary function $R \in C_2 = C([0, T]^2_{\leq}, \mathbb{R}^k)$ with $R_{st} = o(t - s)$. Our goal is to bound $|R_{ab}|$ for any given $0 \leq a < b \leq T$.

We first show that we can express R_{ab} via "Riemann sums" along partitions $\mathcal{P} = \{a = t_0 < t_1 < \ldots < t_m = b\}$ of [a, b]. These are defined by

$$I_{\mathcal{P}}(R) := \sum_{i=1}^{\#\mathcal{P}} R_{t_{i-1}t_i}, \qquad (1.20)$$

where we denote by $\#\mathcal{P} := m$ the number of intervals of the partition \mathcal{P} . Let us denote by $|\mathcal{P}| := \max_{1 \leq i \leq m} (t_i - t_{i-1})$ the mesh of \mathcal{P} .

LEMMA 1.8. (RIEMANN SUMS) Given any $R \in C_2$ with $R_{st} = o(t-s)$, for any $0 \leq a < b \leq T$ and for any sequence $(\mathcal{P}_n)_{n \geq 0}$ of partitions of [a, b] with vanishing mesh $\lim_{n\to\infty} |\mathcal{P}_n| = 0$ we have

$$\lim_{n\to\infty}I_{\mathcal{P}_n}(R)=0$$

If furthermore $\mathcal{P}_0 = \{a, b\}$ is the trivial partition, then we can write

$$R_{ab} = \sum_{n=0}^{\infty} (I_{\mathcal{P}_n}(R) - I_{\mathcal{P}_{n+1}}(R)), \qquad 0 \le a < b \le T.$$
(1.21)

Proof. Writing $\mathcal{P}_n = \{a = t_0^n < t_1^n < \ldots < t_{\#\mathcal{P}_n}^n = b\}$, we can estimate

$$|I_{\mathcal{P}_n}(R)| \leqslant \sum_{i=1}^{\#\mathcal{P}_n} |R_{t_{i-1}^n t_i^n}| \leqslant \left\{ \max_{j=1,\dots,\#\mathcal{P}_n} \frac{|R_{t_{j-1}^n t_j^n}|}{(t_j^n - t_{j-1}^n)} \right\} \sum_{j=1}^{\#\mathcal{P}_n} (t_j^n - t_{j-1}^n),$$

hence $|I_{\mathcal{P}_n}(R)| \to 0$ as $n \to \infty$, because the final sum equals b-a and the bracket vanishes (since $R_{st} = o(t-s)$ and $|\mathcal{P}_n| = \max_{1 \le j \le \#\mathcal{P}_n} (t_j^n - t_{j-1}^n) \to 0)$.

We deduce relation (1.21) by the telescopic sum

$$I_{\mathcal{P}_0}(R) - I_{\mathcal{P}_N}(R) = \sum_{n=0}^{N-1} (I_{\mathcal{P}_n}(R) - I_{\mathcal{P}_{n+1}}(R)),$$

because $\lim_{N\to\infty} I_{\mathcal{P}_N}(R) = 0$ while $I_{\mathcal{P}_0}(R) = R_{ab}$ for $\mathcal{P}_0 = \{a, b\}$.

If we remove a single point t_i from a partition $\mathcal{P} = \{t_0 < t_1 < \ldots < t_m\}$, we obtain a new partition \mathcal{P}' for which, recalling (1.20), we can write

$$I_{\mathcal{P}'}(R) - I_{\mathcal{P}}(R) = R_{t_{i-1}t_{i+1}} - R_{t_{i-1}t_i} - R_{t_i t_{i+1}}.$$
(1.22)

The expression in the RHS deserves a name: given any two-variables function $F \in C_2$, we define its increment $\delta F \in C_3$ as the three-variables function

$$\delta F_{sut} := F_{st} - F_{su} - F_{ut}, \qquad 0 \leqslant s \leqslant u \leqslant t \leqslant T.$$
(1.23)

We can then rewrite (1.22) as

$$I_{\mathcal{P}'}(R) - I_{\mathcal{P}}(R) = \delta R_{t_{i-1}t_i t_{i+1}}, \qquad (1.24)$$

and recalling (1.9) we obtain the following estimate, for any $\eta > 0$:

$$|I_{\mathcal{P}'}(R) - I_{\mathcal{P}}(R)| \leq \|\delta R\|_{\eta} |t_{i+1} - t_{i-1}|^{\eta}.$$
(1.25)

We are now ready to state and prove the Sewing Bound.

THEOREM 1.9. (SEWING BOUND) Given any $R \in C_2$ with $R_{st} = o(t - s)$, the following estimate holds for any $\eta \in (1, \infty)$ (recall (1.9)):

$$||R||_{\eta} \leq K_{\eta} ||\delta R||_{\eta}$$
 where $K_{\eta} := (1 - 2^{1 - \eta})^{-1}$. (1.26)

Proof. Fix $R \in C_2$ such that $\|\delta R\|_{\eta} < \infty$ for some $\eta > 1$ (otherwise there is nothing to prove). Also fix $0 \leq a < b \leq T$ and consider for $n \geq 0$ the dyadic partitions $\mathcal{P}_n := \{t_i^n := a + \frac{i}{2^n}(b-a): 0 \leq i \leq 2^n\}$ of [a,b]. Since $\mathcal{P}_0 = \{a,b\}$ is the trivial partition, we can apply (1.21) to bound

$$|R_{ab}| \leq \sum_{n=0}^{\infty} |I_{\mathcal{P}_n}(R) - I_{\mathcal{P}_{n+1}}(R)|.$$
 (1.27)

If we remove from \mathcal{P}_{n+1} all the "odd points" t_{2j+1}^{n+1} , with $0 \leq j \leq 2^n - 1$, we obtain \mathcal{P}_n . Then, iterating relations (1.24)-(1.25), we have

$$|I_{\mathcal{P}_{n}}(R) - I_{\mathcal{P}_{n+1}}(R)| \leqslant \sum_{j=0}^{2^{n}-1} |\delta R_{t_{2j}^{n+1}t_{2j+1}^{n+1}t_{2j+2}^{n+1}}| \leqslant 2^{n} ||\delta R||_{\eta} \left(\frac{2(b-a)}{2^{n+1}}\right)^{\eta} = 2^{-(\eta-1)n} ||\delta R||_{\eta} (b-a)^{\eta}.$$
(1.28)

Plugging this into (1.27), since $\sum_{n=0}^{\infty} 2^{-(\eta-1)n} = (1-2^{1-\eta})^{-1}$, we obtain

$$|R_{ab}| \leq (1 - 2^{1 - \eta})^{-1} \|\delta R\|_{\eta} (b - a)^{\eta}, \qquad 0 \leq a < b \leq T,$$
(1.29)

which proves (1.26).

Remark 1.10. Recalling (1.11) and (1.23), we have defined linear maps

$$C_1 \xrightarrow{\delta} C_2 \xrightarrow{\delta} C_3 \tag{1.30}$$

which satisfy $\delta \circ \delta = 0$. Indeed, for any $f \in C_1$ we have

$$\delta(\delta f)_{sut} = (f_t - f_s) - (f_u - f_s) - (f_t - f_u) = 0.$$

Intuitively, $\delta F \in C_3$ measures how much a function $F \in C_2$ differs from being the increment δf of some $f \in C_1$, because $\delta F \equiv 0$ if and only if $F = \delta f$ for some $f \in C_1$ (it suffices to define $f_t := F_{0t}$ and to check that $\delta f_{st} = \delta F_{0st} + F_{st} = F_{st}$).

Remark 1.11. The assumption $R_{st} = o(t-s)$ in Theorem 1.9 cannot be avoided: if $R := \delta f$ for a non constant $f \in C_1$, then $\delta R = 0$ while $||R||_{\eta} > 0$.

1.6. END OF PROOF OF UNIQUENESS

In this section, we apply the Sewing Bound (1.26) to the function R_{st} defined in (1.17), in order to prove the estimate (1.19) for $\alpha > \frac{1}{2}$.

We first determine the increment δR through a simple and instructive computation: by (1.17), since $\delta(\delta Z) = 0$ (see Remark 1.10), we have

$$\delta R_{sut} := R_{st} - R_{su} - R_{ut}$$

$$= (Y_t - Y_s) - (Y_u - Y_s) - (Y_t - Y_u)$$

$$-(\sigma Y_s) (X_t - X_s) + (\sigma Y_s) (X_u - X_s) + (\sigma Y_u) (X_t - X_u)$$

$$= [\sigma (Y_u - Y_s)] (X_t - X_u). \qquad (1.31)$$

Recalling (1.9), this implies

$$\|\delta R\|_{2\alpha} \leq |\sigma| \|\delta Y\|_{\alpha} \|\delta X\|_{\alpha}.$$

We next note that if $\alpha > \frac{1}{2}$ (as it is assumed in Theorem 1.7) we can apply the Sewing Bound (1.26) for $\eta = 2\alpha > 1$ to obtain

$$||R||_{2\alpha} \leqslant K_{2\alpha} ||\delta R||_{2\alpha} \leqslant K_{2\alpha} |\sigma| ||\delta Y||_{\alpha} ||\delta X||_{\alpha}$$

This is precisely our goal (1.19) with $C = C(X, \alpha, \sigma) := K_{2\alpha} |\sigma| ||\delta X||_{\alpha}$.

Summarizing: thanks to the Sewing bound (1.26), we have obtained the estimate (1.19) and completed the proof of Theorem 1.7, showing uniqueness of solutions to the difference equation (1.4) for any $X \in \mathcal{C}^{\alpha}$ with $\alpha \in \left[\frac{1}{2}, 1\right]$. In the next chapters we extend this approach to non-linear $\sigma(\cdot)$ and to situations where $X \in \mathcal{C}^{\alpha}$ with $\alpha \leq \frac{1}{2}$.

Remark 1.12. For later purpose, let us record the computation (1.31) withouth σ : given any (say, real) paths X and Y, if

$$A_{st} = Y_s \, \delta X_{st}, \qquad \forall 0 \leqslant s \leqslant t \leqslant T \,,$$

then

$$\delta A_{sut} = -\delta Y_{su} \,\delta X_{ut} \,, \qquad \forall 0 \leqslant s \leqslant u \leqslant t \leqslant T \,. \tag{1.32}$$

1.7. Weighted Norms

We conclude this chapter defining weighted versions $\|\cdot\|_{\eta,\tau}$ of the norms $\|\cdot\|_{\eta}$ introduced in (1.9): given $F \in C_2$ and $G \in C_3$, we set for $\eta, \tau \in (0, \infty)$

$$\|F\|_{\eta,\tau} := \sup_{0 \le s \le t \le T} \mathbb{1}_{\{0 < t-s \le \tau\}} e^{-\frac{t}{\tau}} \frac{|F_{st}|}{(t-s)^{\eta}},$$
(1.33)

$$||G||_{\eta,\tau} := \sup_{0 \le s \le u \le t \le T} \mathbb{1}_{\{0 < t - s \le \tau\}} e^{-\frac{t}{\tau}} \frac{|G_{sut}|}{(t - s)^{\eta}},$$
(1.34)

where C_2 and C_3 are the spaces of continuous functions from $[0, T]^2_{\leq}$ and $[0, T]^3_{\leq}$ to \mathbb{R}^k , see (1.8). Note that as $\tau \to \infty$ we recover the usual norms:

$$\|\cdot\|_{\eta} = \lim_{\tau \to \infty} \|\cdot\|_{\eta,\tau}. \tag{1.35}$$

Remark 1.13. (NORMS VS. SEMI-NORMS) While $\|\cdot\|_{\eta}$ is a norm, $\|\cdot\|_{\eta,\tau}$ is a norm for $\tau \ge T$ but it is only a semi-norm for $\tau < T$ (for instance, $\|F\|_{\eta,\tau} = 0$ for $F \in C_2$ implies $F_{st} = 0$ only for $t - s \le \tau$: no constraint is imposed on F_{st} for $t - s > \tau$).

However, if $F = \delta f$, that is $F_{st} = f_t - f_s$ for some $f \in C_1$, we have the equivalence

$$\|\delta f\|_{\eta,\tau} \leq \|\delta f\|_{\eta} \leq \left(1 + \frac{T}{\tau}\right) e^{\frac{T}{\tau}} \|\delta f\|_{\eta,\tau}.$$

$$(1.36)$$

The first inequality is clear. For the second one, given $0 \leq s < t \leq T$, we can write $s = t_0 < t_1 < \cdots < t_N = t$ with $t_i - t_{i-1} \leq \tau$ and $N \leq 1 + \frac{T}{\tau}$ (for instance, we can consider $t_i = s + i \frac{t-s}{N}$ where $N := \lceil \frac{t-s}{\tau} \rceil$); we then obtain $\delta f_{st} = \sum_{i=1}^N \delta f_{t_{i-1}t_i}$ and $|\delta f_{t_{i-1}t_i}| \leq ||\delta f||_{\eta,\tau} e^{t_i/\tau} (t_i - t_{i-1})^{\eta} \leq ||\delta f||_{\eta,\tau} e^{T/\tau} (t-s)^{\eta}$, which yields (1.36).

Remark 1.14. (FROM LOCAL TO GLOBAL) The weighted semi-norms $\|\cdot\|_{\eta,\tau}$ will be useful to transform *local* results in *global* results. Indeed, using the standard norms $\|\cdot\|_{\eta}$ often requires the size T > 0 of the time interval [0, T] to be *small*, as in Theorem 1.7, which can be annoying. Using $\|\cdot\|_{\eta,\tau}$ will allow us to *keep* T > 0*arbitrary*, by choosing a sufficiently small $\tau > 0$. Recalling the supremum norm $||f||_{\infty}$ of a function $f \in C_1$, see (1.14), we define the corresponding weighted version

$$\|f\|_{\infty,\tau} := \sup_{0 \le t \le T} e^{-\frac{t}{\tau}} |f_t|.$$
(1.37)

We stress that $\|\cdot\|_{\infty,\tau}$ is a norm equivalent to $\|\cdot\|_{\infty}$ for any $\tau > 0$, since

$$\|\cdot\|_{\infty,\tau} \leqslant \|\cdot\|_{\infty} \leqslant e^{\frac{T}{\tau}} \|\cdot\|_{\infty,\tau}.$$
(1.38)

Remark 1.15. (EQUIVALENT HÖLDER NORM) It follows by (1.36) and (1.38) that $\|\cdot\|_{\infty,\tau} + \|\cdot\|_{\alpha,\tau}$ is a norm equivalent to $\|\cdot\|_{\mathcal{C}^{\alpha}} := \|\cdot\|_{\infty} + \|\cdot\|_{\alpha}$ on the space \mathcal{C}^{α} of Hölder functions, see Remark 1.4, for any $\tau > 0$.

We will often use the Hölder semi-norms $\|\delta f\|_{\alpha}$ and $\|\delta f\|_{\alpha,\tau}$ to bound the supremum norms $\|f\|_{\infty,\tau}$, and $\|f\|_{\infty,\tau}$, thanks to the following result.

LEMMA 1.16. (SUPREMUM-HÖLDER BOUND) For any $f \in C_1$ and $\eta \in (0, \infty)$

$$||f||_{\infty} \leq |f_0| + T^{\eta} ||\delta f||_{\eta}, \qquad (1.39)$$

$$\|f\|_{\infty,\tau} \leq |f_0| + 3 \, (\tau \wedge T)^{\eta} \, \|\delta f\|_{\eta,\tau}, \qquad \forall \tau > 0.$$
(1.40)

Proof. Let us prove (1.39): for any $f \in C_1$ and for $t \in [0, T]$ we have

$$|f_t| \leq |f_0| + |f_t - f_0| = |f_0| + t^{\eta} \frac{|f_t - f_0|}{t^{\eta}} \leq |f_0| + T^{\eta} \|\delta f\|_{\eta}.$$

The proof of (1.40) is slightly more involved. If $t \in [0, \tau \wedge T]$, then

$$e^{-\frac{t}{\tau}} |f_t| \leq |f_0| + t^{\eta} e^{-\frac{t}{\tau}} \frac{|f_t - f_0|}{t^{\eta}} \leq |f_0| + (\tau \wedge T)^{\eta} \|\delta f\|_{\eta,\tau},$$

which, in particular, implies (1.40) when $\tau \ge T$. When $\tau < T$, it remains to consider $\tau < t \le T$: in this case, we define $N := \min\{n \in \mathbb{N}: n\tau \ge t\} \ge 2$ so that $\frac{t}{N} \le \tau$. We set $t_k = k \frac{t}{N}$ for $k \ge 0$, so that $t_N = t$. Then

$$e^{-\frac{t}{\tau}} |f_t| \leq |f_0| + \sum_{k=1}^N (t_k - t_{k-1})^\eta e^{-\frac{t - t_k}{\tau}} \left[e^{-\frac{t_k}{\tau}} \frac{|f_{t_k} - f_{t_{k-1}}|}{(t_k - t_{k-1})^\eta} \right]$$
$$\leq |f_0| + (\tau \wedge T)^\eta \|\delta f\|_{\eta,\tau} \sum_{k=1}^N e^{-\frac{t - t_k}{\tau}}.$$

By definition of N we have $(N-1)\tau < t$; since $\tau < t$ we obtain $N\tau < 2t$ and therefore $\frac{t}{N\tau} \ge \frac{1}{2}$. Since $t - t_k = (N-k)\frac{t}{N}$, renaming $\ell := N - k$ we obtain

$$\sum_{k=1}^{N} e^{-\frac{t-t_{k}}{\tau}} = \sum_{\ell=0}^{N-1} e^{-\ell \frac{t}{N\tau}} = \frac{1-e^{-\frac{t}{\tau}}}{1-e^{-\frac{t}{N\tau}}} \leqslant \frac{1}{1-e^{-\frac{1}{2}}} \leqslant 3.$$

The proof is complete.

We finally show that the Sewing Bound (1.26) still holds if we replace $\|\cdot\|_{\eta}$ by $\|\cdot\|_{\eta,\tau}$, for any $\tau > 0$.

THEOREM 1.17. (WEIGHTED SEWING BOUND) Given any $R \in C_2$ with $R_{st} = o(t-s)$, the following estimate holds for any $\eta \in (1, \infty)$ and $\tau > 0$:

$$||R||_{\eta,\tau} \leq K_{\eta} ||\delta R||_{\eta,\tau}$$
 where $K_{\eta} := (1 - 2^{1-\eta})^{-1}$. (1.41)

Proof. Given $0 \leq a \leq b \leq T$, let us define

$$\|\delta R\|_{\eta,[a,b]} := \sup_{\substack{s,u,t \in [a,b]:\\s \leqslant u \leqslant t, \ s < t}} \frac{|\delta R_{sut}|}{(t-s)^{\eta}}.$$
 (1.42)

Following the proof of Theorem 1.9, we can replace $\|\delta R\|_{\eta}$ by $\|\delta R\|_{\eta,[a,b]}$ in (1.28) and in (1.29), hence we obtain $|R_{ab}| \leq K_{\eta} \|\delta R\|_{\eta,[a,b]} (b-a)^{\eta}$. Then for $b-a \leq \tau$ we can estimate

$$e^{-\frac{b}{\tau}} \frac{|R_{ab}|}{(b-a)^{\eta}} \leqslant e^{-\frac{b}{\tau}} K_{\eta} \|\delta R\|_{\eta,[a,b]} \leqslant K_{\eta} \|\delta R\|_{\eta,\tau} ,$$

and (1.41) follows taking the supremum over $0 \leq a \leq b \leq T$ with $b - a \leq \tau$.

1.8. A discrete Sewing Bound

We can prove a version of the Sewing Bound for functions $R = (R_{st})_{s < t \in \mathbb{T}}$ defined on a finite set of points $\mathbb{T} := \{0 = t_1 < \cdots < t_{\#\mathbb{T}}\} \subseteq \mathbb{R}_+$ (this will be useful to construct solutions to difference equations via Euler schemes, see Sections 2.6 and 3.9). The condition $R_{st} = o(t - s)$ from Theorem 1.9 is now replaced by the requirement that R vanishes on consecutive points of \mathbb{T} , i.e. $R_{t_i t_{i+1}} = 0$ for all $1 \leq i < \#\mathbb{T}$.

We define versions $\|\cdot\|_{\eta,\tau}^{\mathbb{T}}$ of the norms $\|\cdot\|_{\eta,\tau}$ restricted on \mathbb{T} for $\tau > 0$, recall (1.33)-(1.34):

$$\|A\|_{\eta,\tau}^{\mathbb{T}} := \sup_{\substack{0 \le s < t \\ s \ t \in \mathbb{T}}} \mathbb{1}_{\{0 < t - s \le \tau\}} e^{-\frac{t}{\tau}} \frac{|A_{st}|}{|t - s|^{\eta}},$$
(1.43)

$$||B||_{\eta,\tau}^{\mathbb{T}} := \sup_{\substack{0 \le s \le u \le t\\s,u,t \in \mathbb{T}, \, s < t}} \mathbb{1}_{\{0 < t - s \le \tau\}} e^{-\frac{t}{\tau}} \frac{|B_{sut}|}{|t - s|^{\eta}}$$
(1.44)

 $\text{for }A\text{: }\{(s,t) \in \mathbb{T}^2\text{: }0 \leqslant s < t\} \to \mathbb{R} \text{ and }B\text{: }\{(s,u,t) \in \mathbb{T}^3\text{: }0 \leqslant s \leqslant u \leqslant t, s < t\} \to \mathbb{R}.$

THEOREM 1.18. (DISCRETE SEWING BOUND) If a function $R = (R_{st})_{s < t \in \mathbb{T}}$ vanishes on consecutive points of \mathbb{T} (i.e. $R_{t_i t_{i+1}} = 0$), then for any $\eta > 1$ and $\tau > 0$ we have

$$\|R\|_{\eta,\tau}^{\mathbb{T}} \leqslant C_{\eta} \|\delta R\|_{\eta,\tau}^{\mathbb{T}} \qquad with \qquad C_{\eta} := 2^{\eta} \sum_{n \ge 1} \frac{1}{n^{\eta}} = 2^{\eta} \zeta(\eta) < \infty \,. \tag{1.45}$$

Proof. We fix $s, t \in \mathbb{T}$ with s < t and we start by proving that

$$|R_{st}| \leq C_{\eta} \|\delta R\|_{\eta}^{\mathbb{T}} (t-s)^{\eta}.$$

We have $s = t_k$ and $t = t_{k+m}$ and we may assume that $m \ge 2$ (otherwise there is nothing to prove, since for m = 1 we have $R_{t_i t_{i+1}} = 0$).

Consider the partition $\mathcal{P} = \{s = t_k < t_{k+1} < \dots < t_{k+m} = t\}$ with *m* intervals. Note that for some index $i \in \{k+1,\dots,k+m-1\}$ we must have $t_{i+1} - t_{i-1} \leq \frac{2(t-s)}{m-1}$, otherwise we would get the contradiction

$$2(t-s) \ge \sum_{i=k+1}^{k+m-1} (t_{i+1}-t_{i-1}) > \sum_{i=k+1}^{k+m-1} \frac{2(t-s)}{m-1} = 2(t-s)$$

Removing the point t_i from \mathcal{P} we obtain a partition \mathcal{P}' with m-1 intervals. If we define $I_{\mathcal{P}}(R) := \sum_{i=k}^{k+m-1} R_{t_i t_{i+1}}$ as in (1.20), as in (1.24) we have

$$|I_{\mathcal{P}}(R) - I_{\mathcal{P}'}(R)| = |\delta R_{t_{i-1}t_i t_{i+1}}| \leq \frac{2^{\eta} (t-s)^{\eta}}{(m-1)^{\eta}} \sup_{\substack{s \leq u < v < w \leq t \\ u, v, w \in \mathbb{T}}} \frac{|\delta R_{uvw}|}{|w-u|^{\eta}}$$

Iterating this argument, until we arrive at the trivial partition $\{s, t\}$, we get

$$|I_{\mathcal{P}}(R) - R_{st}| \le C_{\eta} (t-s)^{\eta} \sup_{\substack{s \le u < v \le w \le t \\ u, v, w \in \mathbb{T}}} \frac{|\delta R_{uvw}|}{|w-u|^{\eta}}, \tag{1.46}$$

with $C_{\eta} := \sum_{n \ge 1} \frac{2^{\eta}}{n^{\eta}} < \infty$ because $\eta > 1$. We finally note that $I_{\mathcal{P}}(R) = 0$ by the assumption $R_{t_i t_{i+1}} = 0$. Finally if $t - s \leqslant \tau$ then $w - u \leqslant \tau$ in the supremum in (1.46) and since $e^{-\frac{t}{\tau}} \leqslant e^{-\frac{w}{\tau}}$ we obtain

$$\mathrm{e}^{-\frac{\iota}{\tau}} |R_{st}| \leqslant C_{\eta} \, (t-s)^{\eta} \, \|\delta R\|_{\eta,\tau}^{\mathbb{T}}$$

and the proof is complete.

We also have an analog of Lemma 1.16. We set for $f: \mathbb{T} \to \mathbb{R}$ and $\tau > 0$

$$\|f\|_{\infty,\tau}^{\mathbb{T}} := \sup_{t \in \mathbb{T}} e^{-\frac{t}{\tau}} |f_t|.$$

LEMMA 1.19. (DISCRETE SUPREMUM-HÖLDER BOUND) For $\mathbb{T} := \{0 = t_1 < \cdots < t_{\#\mathbb{T}}\} \subseteq \mathbb{R}_+ \text{ set }$

$$M := \max_{i=2,...,\#\mathbb{T}} |t_i - t_{i-1}|.$$

Then for all $f: \mathbb{T} \to \mathbb{R}, \ \tau \ge 2M$ and $\eta > 0$

$$\|f\|_{\infty,\tau}^{\mathbb{T}} \leqslant |f_0| + 5\,\tau^{\eta} \,\|\delta f\|_{\eta,\tau}^{\mathbb{T}}.\tag{1.47}$$

Proof. We define $T_0 := 0$ and for $i \ge 1$, as long as $\mathbb{T} \cap (T_{i-1}, T_{i-1} + \tau]$ is not empty, we set

$$T_i := \max \mathbb{T} \cap (T_{i-1}, T_{i-1} + \tau], \qquad i = 1, \dots, N,$$

so that $T_N = \max \mathbb{T}$. We have by construction $T_i + M > T_{i-1} + \tau$ for all $i = 1, \ldots, N-1$, and since $M \leq \frac{\tau}{2}$

$$T_i - T_{i-1} \geqslant \tau - M \geqslant \frac{\tau}{2}.$$

For i = N we have only $T_N > T_{N-1}$. Therefore for i = 1, ..., N

$$\begin{aligned} \mathbf{e}^{-\frac{T_{i}}{\tau}} |f_{T_{i}}| &\leqslant |f_{0}| + \sum_{k=1}^{i} (T_{k} - T_{k-1})^{\eta} \mathbf{e}^{-\frac{T_{i} - T_{k}}{\tau}} \left[\mathbf{e}^{-\frac{T_{k}}{\tau}} \frac{|f_{T_{k}} - f_{T_{k-1}}|}{(T_{k} - T_{k-1})^{\eta}} \right] \\ &\leqslant |f_{0}| + \tau^{\eta} \|\delta f\|_{\eta,\tau}^{\mathbb{T}} \sum_{k=1}^{i} \mathbf{e}^{-\frac{T_{i} - T_{k}}{\tau}} \\ &\leqslant |f_{0}| + \tau^{\eta} \|\delta f\|_{\eta,\tau}^{\mathbb{T}} \left(1 + \sum_{k=0}^{\infty} \mathbf{e}^{-\frac{k}{2}} \right) \\ &\leqslant |f_{t_{0}}| + 4\tau^{\eta} \|\delta f\|_{\eta,\tau}^{\mathbb{T}}. \end{aligned}$$

Now for $t \in \mathbb{T} \setminus \{T_i\}_i$ we have $T_i < t < T_{i+1}$ for some i and then

$$e^{-\frac{t}{\tau}} |f_t| \leqslant e^{-\frac{t}{\tau}} |f_{T_i}| + (t - T_i)^{\eta} e^{-\frac{t}{\tau}} \frac{|f_t - f_{T_i}|}{(t - T_i)^{\eta}} \leqslant e^{-\frac{T_i}{\tau}} |f_{T_i}| + \tau^{\eta} \|\delta f\|_{\eta,\tau}^{\mathbb{T}}$$

$$\leqslant |f_0| + 5\tau^{\eta} \|\delta f\|_{\eta,\tau}^{\mathbb{T}}.$$

The proof is complete.

1.9. EXTRA (TO BE COMPLETED)

We also introduce the usual supremum norm, for $F \in C_2$ and $G \in C_3$:

$$||F||_{\infty} := \sup_{0 \le s \le t \le T} |F_{st}|, \qquad ||G||_{\infty} := \sup_{0 \le s \le u \le t \le T} |G_{sut}|,$$

and a corresponding weighted version, for $\tau \in (0, \infty)$:

$$\|F\|_{\infty,\tau} := \sup_{0 \le s \le t \le T} e^{-\frac{t}{\tau}} |F_{st}|, \qquad \|G\|_{\infty,\tau} := \sup_{0 \le s \le u \le t \le T} e^{-\frac{t}{\tau}} |G_{sut}|.$$
(1.48)

Note that

$$\lim_{\tau \to +\infty} \|F\|_{\infty,\tau} = \|F\|_{\infty}, \quad \lim_{\tau \to +\infty} \|G\|_{\eta,\tau} = \|G\|_{\eta}, \quad \lim_{\tau \to +\infty} \|H\|_{\eta,\tau} = \|H\|_{\eta}.$$

We have

$$\|F\|_{\eta,\tau} \leq \|G\|_{\infty,\tau} \, \|H\|_{\eta}, \qquad (F_{sut} = G_{su} \, H_{ut}), \tag{1.49}$$

Note that $\|\cdot\|_{\eta,\tau}$ is only a semi-norm on C_n^{η} if $\tau < T$; we have at least

$$\|\cdot\|_{\eta,\tau} \leqslant \|\cdot\|_{\eta} \leqslant e^{\frac{T}{\tau}} \left(\|\cdot\|_{\eta,\tau} + \frac{1}{\tau^{\eta}} \|\cdot\|_{\infty,\tau} \right).$$

$$(1.50)$$

However, if $\tau \geq T$ we have again equivalence of norms

$$\|\cdot\|_{\eta,\tau} \leqslant \|\cdot\|_{\eta} \leqslant e^{\frac{T}{\tau}} \|\cdot\|_{\eta,\tau}, \qquad \tau \ge T.$$
(1.51)