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Chapter 1
The Sewing Lemma

Given two continuous functions X;Y : [0; T ]!R, the integralZ
0

T

Yr dXr (1.1)

can be defined as
R
0

T
YrX_r dr when X is differentiable or, more generally,

as a Lebesgue integral when X is of bounded variation (so that dX is a
signed measure). The key question we want to address is: how to define the
integral when X is neither differentiable nor of bounded variation? This is
an example of a more general problem: given a distribution X_ and a non-
smooth function Y , how to define their product YX_ ?

A motivation is given by X=B with (Bt)t�0 a Brownian motion. In this
special case, one can use probability theory to answer the question and define
the integral in (1.1), but one sees that there are several possible definitions:
for example Itô, Stratonovich, etc.

We are going to present the alternative answer provided by the theory of
Rough Paths, originally introduced by Terry Lyons. This provides a robust
construction of the integral in (1.1) and sheds a new �pathwise� light on
stochastic integration.

The approach we follow is based on the Sewing Lemma, to which this
chapter is devoted. In particular, we will show in Section 2.2 that the integral
in (1.1) has a canonical definition (Young integral) when Y andX are Hölder
continuous, under a constraint on their Hölder exponents. Going beyond
this constraint requires Rough Paths, which will be studied in Chapter 5.

1.1. Local approximation

If X is of class C1, we can define the integral function

It :=
Z
0

t

YrX_ r dr; t2 [0; T ]:

Then we have I0=0 and for 06 s6 t6T

It¡ Is¡Ys (Xt¡Xs)=
Z
s

t

(Yr¡Ys)X_r dr= o(t¡ s)

as t¡ s! 0, because X_ is bounded and jYr¡Ysj= o(1) as jr¡ sj! 0. Thus
the integral function It satisfies

I0=0; It¡ Is=Ys (Xt¡Xs)+ o(t¡ s); 06 s6 t6T : (1.2)
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Remarkably, this relation characterizes (It)t2[0;T ]. Indeed, if I1 and I2 sat-
isfy (1.2) with the same functions X;Y , their difference �:= I1¡ I2 satisfies

j�t¡�sj= o(t¡ s); 06 s6 t6T ;

which implies d
dt�t� 0 and then �t=�0=0. This simple result deserves

to be stated in a separate

Lemma 1.1. Given any functions X;Y : [0; T ]!R, there can be at most one
function I : [0; T ]!R satisfying ( 1.2).

The formulation (1.2) is interesting also because the derivative X_ of X
does not appear. Therefore, if we can find a function I: [0; T ]!R which
satisfies (1.2), such a function is unique and we can take it as a definition
of the integral (1.1).

We will see in Section 2.2 that this program can be accomplished whenX
and Y satisfy suitable Hölder regularity assumptions. In order to get there,
in the next sections we will look at a more general problem.

Remark 1.2. Whenever we write o(t¡ s) we always mean uniformly for
06 s6 t6T , i.e.

8�> 0 9� > 0: 06 s6 t6T ; t¡ s� � implies jo(t¡ s)j � �(t¡ s) :

This will be implicitly assumed in the sequel.

1.2. A general problem

Let us generalise the problem (1.2). If we define for n> 1

[0; T ]6n := f(t1; : : : ; tn): 06 t16 � � �6 tn6T g;

A: [0; T ]62 !R; Ast :=Ys (Xt¡Xs) ; 06 s6 t6T ; (1.3)

we can decouple (1.2) in two relations

I0=0; It¡ Is=Ast+Rst ; (1.4)

R: [0; T ]62 !R; Rst= o(t¡ s) : (1.5)

The general problem is, given any continuous A: [0; T ]62 !R, to find a pair
of functions (I ;R) satisfying (1.4)-(1.5). We call

� A: [0; T ]62 !R the germ,

� I : [0; T ]!R the integral ,

� R: [0; T ]62 !R the remainder .

We are going to present conditions which allow to solve this problem.

8 The Sewing Lemma



Note that we always have uniqueness. Indeed, given (I1;R1) and (I2;R2)
which solve (1.4)-(1.5) for the same A, by the same arguments which lead
to Lemma 1.1 we have d

dt (It
1¡ It2)� 0, hence I1= I2 and then R1=R2 by

(1.4). We record this as

Lemma 1.3. Given any germ A, there can be at most one pair of functions
(I ;R) satisfying ( 1.4)-( 1.5).

We are going to work with continuous functions, so we define for k � 1

Ck := fF : [0; T ]6k !R : F is continuousg:

We will actually only need the spaces C1; C2; C3.

1.3. An algebraic look

We first focus on relation (1.4) alone. For a fixed germ A, this equation
has infinitely many solutions (I ; R), because given any I we can simply
define R so as to fulfill (1.4). Interestingly, all solutions admit an algebraic
characterization in terms of R alone.

Lemma 1.4. Fix a function A2C2.

1. If a pair (I ;R)2C1�C2 satisfies ( 1.4), then R satisfies

Rst¡Rsu¡Rut=¡(Ast¡Asu¡Aut); 806 s6u6 t6T : (1.6)

2. Viceversa, given any function R2C2 which satisfies ( 1.6), if we set
It :=A0t+R0t, the pair (I ;R)2C1�C2 satisfies ( 1.4).

Proof. Relation (1.4) clearly implies (1.6), simply because

(It¡ Is)¡ (Is¡ Iu)¡ (It¡ Iu)= 0 : (1.7)

Viceversa, given R satisfying (1.6), we can define Lst :=Ast+Rst so that

Lst¡Lsu¡Lut=0:

Applying this formula to (s0;u0; t 0)=(0; s; t), we obtain that It :=L0t satisfies

It¡ Is=L0t¡L0s=Lst=Ast+Rst
and the proof is complete because I0 :=A00+R00=0, which follows by (1.6)
for s=u=0. �

Relations (1.4) and (1.6) contain operators which deserve an explicit
definition:

�:C1!C2; �fst := ft¡ fs ; (1.8)

�:C2!C3; �Fsut :=Fst¡Fsu¡Fut : (1.9)

1.3 An algebraic look 9



Remark 1.5. We note that the maps

C1¡!
�
C2¡!

�
C3 (1.10)

satisfy � � �=0, see (1.7). Moreover, for F 2C2, the function �F 2C3 mea-
sures how much F differs from being the increment �f of some f 2 C1.
Indeed, we have �F �0 if and only if F = �f for some f 2C1 (in other words,
(1.10) defines an exact cochain complex). The proof of this fact, essentially
contained in the proof of Lemma 1.4, is left as an exercise.

We can now rephrase Lemma 1.4 as follows.

Proposition 1.6. Fix A 2C2. Finding a pair (I ; R)2C1�C2 satisfying
( 1.4) is equivalent to finding R2C2 such that

�Rsut=¡�Asut ; 8 06 s6u6 t6T : (1.11)

In the special case Ast=Ys �Xst with X;Y 2C1 as in ( 1.3), we have

�Asut=¡�Ysu �Xut : (1.12)

Proof. We only need to prove (1.12). When Ast=Ys �Xst we have

�Asut=Ys (Xt¡Xs)¡Ys (Xu¡Xs)¡Yu (Xt¡Xu)
=Ys (Xt¡Xu)¡Yu (Xt¡Xu)=¡(Yu¡Ys) (Xt¡Xu);

which completes the proof. �

1.4. Enters analysis: the Sewing Lemma

So far we have analyzed (1.4). We now let (1.5) enter the game, i.e. we
look for a pair of functions (I ; R)2C1�C2 which fulfills (1.4)-(1.5), given
a (general) germ A2C2.

We stress that condition (1.5) is essential to ensure uniqueness: without
it, equation (1.4) admits infinitely many solutions, as discussed before
Lemma 1.4. When we couple (1.4) with (1.5), uniqueness is guaranteed by
Lemma 1.3, but existence is no longer obvious. This is what we now focus on.

We start with a simple necessary condition.

Lemma 1.7. For ( 1.4)-( 1.5) to admit a solution, it is necessary that the
germ A satisfies

j�Asutj= o(t¡ s); for 06 s6u6 t6T : (1.13)

Proof. If (1.4) admits a solution, by Proposition 1.6 we have j�Asutj =
j�Rsutj. If furthermore R satisfies (1.5), we must have

j�Rsutj � jRstj+ jRsuj+ jRutj= o(t¡ s)+ o(u¡ s)+ o(t¡u)

10 The Sewing Lemma



and the conclusion follows since jt¡uj+ ju¡ sj= jt¡ sj. �

Remark 1.8. Choosing u=s in (1.13) we obtain that ¡Ass=o(t¡s), which
means that Ass=0. Therefore a necessary condition for (1.4)-(1.5) to admit
a solution is that A vanishes on the diagonal of �T

2 .

Remarkably, the necessary condition in Lemma 1.7 is close to being
sufficient: it is enough to upgrade o(x) in O(x�) for some � > 1. This is the
content of the celebrated Sewing Lemma, which we next present. We first
introduce some notation.

We denote by k�k1 the usual supremum norm:

kF k1 := sup
x2[0;T ]6k

jFxj for F 2Ck :

We recall the following notation: for F ;G2Ck and F ;G� 0 we write

F .G () 9C 2R+: Fx6CGx; 8x2 [0; T ]6k :

Next, given �2 (0;1), we define the following norms for F 2C2 and G2C3:

kF k� := sup
(s;t)2[0;T ]62 : s=/ t

jFstj
jt¡ sj� ; kGk� := sup

(s;u;t)2[0;T ]63 : s=/ t

jGsutj
jt¡ sj� ; (1.14)

and we introduce the corresponding function spaces:

C2
� := fF 2C2: kF k�<1g ; C3

� := fG2C3: kGk�<1g :

It can be easily shown that C2
� and C3

� endowed with j�j� are Banach spaces.
A finite sequence of ordered points P=fa= t0<t1<:::<tk= bg is called

partition of the interval [a; b]. The cardinality of a partition #P = k is the
number of intervals, while its mesh jP j :=maxi=1; : : : ;#P jti¡ ti¡1j is the
largest interval size.

We are now ready to state the Sewing Lemma (Gubinelli [3], Feyel-de La
Pradelle [1]). This gives an explicit sufficient condition for the solvability of
(1.4)-(1.5) in terms of a key property, that we call coherence.

Definition 1.9. (Coherence) A germ A 2C2 is called coherent if, for
some � > 1, it satisfies �A2C3

�, i.e. k�Ak�<1. More explicitly

9� 2 (1;1): j�Asutj. jt¡ sj� ; 06 s6u6 t6T : (1.15)

Theorem 1.10. (Sewing Lemma) If a germ A 2 C2 is coherent, i.e. it
satisfies ( 1.15) for some � > 1, then there exists a unique pair (I ; R) 2
C1�C2 such that

I0=0; It¡ Is=Ast+Rst ; Rst= o(t¡ s) :

1.4 Enters analysis: the Sewing Lemma 11



Moreover:

� The integral I 2C1 is the limit of Riemann sums of the germ

It := lim
jPj!0

X
i=0

#P¡1

Atiti+1 (1.16)

along arbitrary partitions P of [0; t] with vanishing mesh jP j! 0.

� The remainder R2C2, given by

Rst := It¡ Is¡Ast ; (1.17)

satisfies jRstj. jt¡ sj�. More precisely

kRk��K�k�Ak� ; where K� := (1¡ 21¡�)¡1 : (1.18)

The Sewing Lemma is a cornerstone of the theory of Rough Paths, to be
introduced in Chapter 5. We will already see in Chapter 2.2 an interesting
application to Young integrals. The (instructive) proof of Theorem 1.10 is
postponed to Section 1.6.

Remark 1.11. For a fixed partition P of [0; t] we have by (1.17)

It=
X
i=0

#P¡1

Atiti+1+
X
i=0

#P¡1

Rtiti+1:

Therefore, (1.16) is equivalent to

lim
jP j!0

X
i=0

#P¡1

Rtiti+1=0

which is the reason why one wants the remainder R to be small close to
the diagonal. The information Rst= o(jt¡ sj) is not enough in general to
obtain the existence of (I ;R), while a sufficient condition is the quantitative
estimate jRstj. jt¡ sj�.

1.5. The Sewing Map

Given a coherent germ A, by Theorem 1.10 we can find an integral I and a
remainder R which solve (1.4)-(1.5). We now look closer at the remainder R.

Lemma 1.12. In the setting of Theorem 1.10, the remainder R is a function
of �A: given two coherent germs A; A0 with �A = �A0, the corresponding
remainders R;R0 coincide. Moreover, the map �A 7!R is linear.

12 The Sewing Lemma



Proof. By Proposition 1.6 we have �(R¡R0)=�(A¡A0)=0, henceR¡R0=
�f for some f 2 C1 (see Remark 1.5). Both jRstj and jRst0 j are o(jt ¡ sj)
by (1.5), hence jft¡ fsj= o(jt¡ sj). Then f must be constant and R=R0.
Linearity of the map �A 7!R is easy. �

Since R is a function of �A, we introduce a specific notation for this map:

R=¡�(�A)

with minus sign for later convenience. Let us describe more precisely this
map �. Throughout the following discussion, we fix arbitrarily � 2 (1;1).

� Domain. The map � is defined on �A for coherent germs A, see
Definition 1.9. The domain of � is then C3

� \ �C2, where we denote
by �C2�C3 the image of the space C2 under the operator � in (1.9).

� Codomain. The map � sends �A to ¡R, and we have jRstj. jt¡ sj�,
see (1.18). A natural choice of codomain for � is then C2

�.

� Characterization. In view of Proposition 1.6 and Lemma 1.3, the
function ¡R=�(�A) is characterized by the properties

�(¡R)sut= �A ; jRstj= o(jt¡ sj) :

The second condition is already enforced by our choice C2
� of codomain

for �, which yields jRstj. jt¡sj�. The first relation can be rewritten
as �(�(B)) =B for all B in the domain of �, that is � � � is the
identity map.

In conclusion, we have proved the following result.

Theorem 1.13. (Sewing Map) Let �2 (1;1). There exists a unique map

�:C3
�\ �C2¡!C2

�;

called the Sewing Map, such that � ��= id is the identity on C3
�\ �C2.

� The map � is linear and satisfies

k�(B)k�6K�kBk� 8B 2C3
�\ �C2 ; (1.19)

where K� is the same constant as in ( 1.18).

� Given a coherent germ A2C2, i.e. �A2C3
�, the unique solution (I ;

R) of ( 1.4)-( 1.5) is obtained by R :=¡�(�A) and It :=A0t+R0t.

1.6. Proof of the Sewing Lemma

We prove Theorem 1.10.

Proof. We follow [2], page 6.

1.6 Proof of the Sewing Lemma 13



Step 1: construction of I. Let us fix 06 s < t6 T . For a partition P =
fs= t0<t1< : : : < tn= tg of [s; t] with n points, we define

IP :=
X
i=0

n¡1

Atiti+1 :

If there are n� 2 intervals in P , there must exist i2f1; : : : ; n¡ 1g such that
jti+1¡ ti¡1j � 2

n¡ 1 jt¡ sj. Indeed, if this is not the case, we must have

2 jt¡ sj �
X
i=1

n¡1

jti+1¡ ti¡1j>
X
i=1

n¡1
2

n¡ 1 jt¡ sj=2 jt¡ sj :

Removing the point ti from P yields a partition P 0 of n¡ 1 intervals, for
which

jIP¡ IP 0j = jAti¡1ti+Atiti+1¡Ati¡1ti+1j= j�Ati¡1titi+1j

6 k�Ak�
2 jt¡ sj�
(n¡ 1)� : (1.20)

Iterating this argument, until we arrive at the trivial partition fs; tg, we get

jIP¡Astj �C� k�Ak� jt¡ sj� ; with C� :=
X
m�1

2
m� <1 ; (1.21)

because � > 1. Similarly, if Q�P is another partition of [s; t],

jIQ¡ IPj �
X
i=0

#P¡1

jIQ\[ti;ti+1]¡Atiti+1j �C� k�Ak�
X
i=0

#P¡1

jti+1¡ tij�

�C� k�Ak� jP j�¡1
X
i=0

#P¡1

jti+1¡ tij �C� k�Ak� T jP j�¡1 :

Finally, if P and P 0 are arbitrary partitions, setting Q :=P[P 0 and applying
the triangle inequality yields jIP 0¡ IPj � 2C� k�Ak� T jP j�¡1. This means
that the family IP is Cauchy ( for every � > 0 there exists ��> 0 such that
jP j; jP 0j � �� implies jIP 0 ¡ IPj � �), hence it admits a limit as jP j ! 0,
that we call Jst. We note that Jst is only defined for 0� s< t�T .

We now define It :=J0t. We claim that

It¡ Is= Jst for all 0� s< t�T :

Indeed, if we consider partitions P 0 on [0; s] and P of [s; t], so that P 00 :=
P [P 0 is a partition of [0; t], then IP 00¡ IP 0= IP and taking the limit of
vanishing mesh we get the claim. Taking the limit of relation (1.21), since
IP! It¡ Is, we obtain

jRstj �C� k�Ak� jt¡ sj� ; Rst := �Ist¡Ast ; 06 s< t6T :

Therefore (1.18) holds, with K� replaced by the worse constant C�. This is
because the estimate (1.21) holds for arbitrary partitions.
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Step 2: Sewing bound with optimal constant. If we choose the sequence
of dyadic partitions Pn := ftin := s+ i

2n
(t¡ s): 0� i� 2ng of [s; t] of order

n, the arguments above give the sewing bound with the better constant
K�=(1¡21¡�)¡1 instead of C�. Indeed, let again s<t. If we remove all the
�odd points� t2j+1n with 0� j �2n¡1¡1 from Pn, we obtain Pn¡1. Then, in
analogy with (1.20), we have for n� 1

jIPn¡ IPn¡1j �
X
j=0

2n¡1¡1

j�At2jn t2j+1n t2j+2
n j � 2n¡1 k�Ak�;[s;t]

�
2 jt¡ sj
2n

��
=2¡(�¡1)(n¡1)k�Ak�;[s;t] jt¡ sj� ;

where we set (also for future use)

k�Ak�;[s;t] := sup
a;b;c2[s;t]: a6b6c;a<c

j�Aabcj
jc¡ aj� : (1.22)

Since P0= fs; tg, we have IP0=Ast and we obtain for any k 2N

jIPk¡Astj = jIPk¡ IP0j

�
X
n=1

k

jIPn¡ IPn¡1j

6 k�Ak�;[s;t] jt¡ sj�
X
n=1

k

2¡(�¡1)(n¡1)

6 (1¡ 21¡�)¡1 k�Ak�;[s;t] jt¡ sj� ;

because
P
n=1
1 2¡(�¡1)(n¡1)=(1¡21¡�)¡1. For k!1 we have IPk! It¡ Is

and

j�Ist¡Astj6 (1¡ 21¡�)¡1 k�Ak�;[s;t] jt¡ sj�; s < t: (1.23)

Since k�Ak�;[s;t]6 k�Ak�, (1.18) is proven. �

1.7. Norms and distances

We collect here all the main definitions and properties of the different norms
and distances we use in what follows. We fix T >0 and k; d2N and we work
on function spaces

Ck := fF : [0; T ]6k !Rd:F is continuousg:

For the convenience of the reader, we recall here some definitions already
given in the previous sections. We consider for F 2Ck

kF k1 := sup
x2[0;T ]6k

jFxj:
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Next, given � 2 (0;1), we define for G2C2 and H 2C3

kGk� := sup
(s;t)2[0;T ]62 : s=/ t

jGstj
jt¡ sj� ; kHk� := sup

(s;u;t)2[0;T ]63 : s=/ t

jHsutj
jt¡ sj� ;

and corresponding function spaces

C2
� := fG2C2: kGk�<1g ; C3

� := fH 2C3: kH k�<1g :

Now, we fix � > 0 and we introduce modified versions of the norms defined
above: we set, for F 2Ck, G2C2

� and H 2C3
�,

kF k1;� := sup
x=(x1; : : : ;xk)2[0;T ]6k

exp
�
¡xk
�

�
jFxj

kGk�;� := sup
06s6t6T

1(0<jt¡sj6�) exp
�
¡ t
�

� jGstj
jt¡ sj� ;

kH k�;� := sup
06s6u6t6T

1(0<jt¡sj6�) exp
�
¡ t
�

� jHsutj
jt¡ sj� :

Note in particular that

lim
�!+1

kF k1;�=kF k1; lim
�!+1

kGk�;�=kGk�; lim
�!+1

kHk�;�=kHk�:

Also note that k�k1;� is a norm on Ck, and we have the equivalence of norms

k�k1;�6k�k16 e
T

�k�k1;�: (1.24)

On the other hand, k�k�;� is only a semi-norm on Ck
� if � <T ; we have at least

k�k�;� 6 k�k�6 e
T

�

�
k�k�;�+

1
� �
k�k1;�

�
: (1.25)

However, if � �T we have again equivalence of norms

k�k�;� 6 k�k�6 e
T

� k�k�;� ; � �T : (1.26)

Remark 1.14. The norms k�k�;� are very useful to transform local results in
global results: indeed, using the norms k�k� requires sometimes the size T >0
of the time interval [0; T ] to be small , which can be annoying. The norms
k�k�;� allow to keep T > 0 arbitrary by choosing a sufficiently small � > 0.

We now relate the different norms introduced so far.

Lemma 1.15. For G2Ck and k2f2; 3g we have

kGk�;� 6 (� ^T )�
0¡�kGk� 0;� ; � 0� �: (1.27)
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Moreover for G2C1 we have

kGk16 jG0j+T �k�Gk�; � > 0; (1.28)

kGk1;� 6 jG0j+3(� ^T )�k�Gk�;� ; � > 0: (1.29)

Proof. Let us first prove (1.27). For G2C2
�, we have

kGk�;�= sup
06s<t6T

1(0<jt¡sj6�) exp
�
¡ t
�

�
jt¡ sj� 0¡� jGstj

jt¡ sj� 0

6(T ^ �)� 0¡�kGk� 0;�:

The case G2C3
� is analogous. Let us prove now (1.28): for any G2C1 and

for t2 ]0; T ] we have

jGtj6 jG0j+ jGt¡G0j= jG0j+ t�
jGt¡G0j

t�
6 jG0j+T �k�Gk�:

The proof of (1.29) is slightly more complicated. If t2 ]0; � ^T ], then

e
¡ t

�jGtj6 jG0j+ t� e¡
t

�
jGt¡G0j

t�
6 jG0j+(� ^T )� k�Gk�;�:

Suppose now that � < t6 T and let N :=min fn 2N: n� � tg � 2, so that
t

N
6 � . We set tk= k

t

N
, k � 0, so that tN = t. Then

e
¡ t

�jGtj6jG0j+
X
k=0

N¡1

e
¡
t¡tk+1

� e
¡
tk+1
�
jGtk+1¡Gtkj
(tk+1¡ tk)�

(tk+1¡ tk)�

6jG0j+(� ^T )�k�Gk�;�
X
k=0

N¡1

e
¡
t¡tk+1

� :

By definition of N we have (N ¡ 1)� < t; since � < t we obtain N� < 2t and
therefore t

N�
� 1

2
. Since t¡ tk+1=(N ¡k¡1) tN , renaming ` :=N ¡k¡1 we

obtain X
k=0

N¡1

e
¡
t¡tk+1

� =
X
`=0

N¡1

e
¡` t

N� = 1¡ e¡
t

�

1¡ e¡
t

N�

6 1

1¡ e¡
1
2

6 3:

The proof is complete. �

Lemma 1.16. If Fst=GsHst with G2C1 and F ;H 2C2,

kF k�;� 6 kGk1;� kH k�; (Fst=GsHst): (1.30)

Analogously, if Fsut=GsuHut with G;H 2C2 and F 2C3,

kF k�;� 6 kGk1;� kHk�; (Fsut=GsuHut); (1.31)

kF k� 0+�;� 6 kGk� 0;� kHk�; (Fsut=GsuHut): (1.32)
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Proof. For Fst=GsHst, we have

kF k�= sup
06s<t6T

1(0<jt¡sj6�) exp
�
¡ t
�

�jGsHstj
jt¡ sj�

6
�

sup
s2[0;T ]

exp
�
¡s
�

�
jGsj

�"
sup

06s<t6T

jHstj
jt¡ sj�

#
= kGk1;� kH k�:

The other cases are analogous. �

We have a version of the estimate (1.19) for the Sewing map in our
weighted spaces. We recall that k�k�;� is a semi-norm rather than a norm.

Lemma 1.17. Let � > 1 and � > 0. For all B 2C3
�\ �C2

k�Bk�;� 6K�kBk�;� : (1.33)

Proof. Fix s; t2 [0;T ] with s6 t. We know that j�Bstj6K�kBk�;[s;t]jt¡sj�
by (1.23). Let us suppose that t¡ s6 � , then

e
¡ t

�
j�Bstj
jt¡ sj� 6 e

¡ t

�K�kBk�;[s;t]6K�kBk�;� :

The proof is complete. �
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Chapter 2

The Young integral

We can finally come back to the problem we explained at the beginning of
Chapter 1: given two continuous functions X; Y : [0; T ]!R, we look for a
function I: [0; T ]!R satisfying

I0=0; It¡ Is=Ys (Xt¡Xs)+ o(t¡ s); 06 s6 t6T : (2.1)

This is equivalent to look for a pair of functions (I ;R) satisfying

I0=0; It¡ Is=Ast+Rst ; (2.2)

R: [0; T ]62 !R; Rst= o(t¡ s) : (2.3)

with the germ Ast= Ys �Xst. Recalling that �Asut=¡�Ysu �Xut by (1.12),
we have for any �; � > 0

j�Asutj= jYu¡YsjjXt¡Xuj =) k�Ak�+�6 k�Xk�k�Y k� : (2.4)

2.1. Hölder functions

In order to fulfill condition the condition (1.15) of the Sewing Lemma, it is
natural to assume that the estimate (2.4) holds for �; � 2 ]0; 1] such that
�+ � > 1. We remark here that the space

C� := ff : [0; T ]!R: k�f k�<1g; �2 ]0; 1];

where k�f k�= sup
0�s<t�T

jft¡ fsj
jt¡ sj� ;

is the classical space of Hölder functions with exponent �. For �=1 we have
the usual space of Lipschitz functions. Moreover we recall that for �>1 the
only functions f 2C1 such that k�f k�<+1 are constant. Indeed we have
the elementary

Lemma 2.1. If f : [0; T ]!R and for some c> 0 the bound

jft¡ fsj � cjt¡ sj�, s; t2 [0; T ];

holds for some � > 1, then f is constant. More generally, if jft ¡ fsj =
o(jt¡ sj) uniformly as jt¡ sj! 0, then f is constant.
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Proof. By assumption, for every �>0 there exists � >0 such that jt¡sj� �
implies jf(t)¡ f(s)j � �jt¡ sj. Fix [a; b]� [0; T ]. If a= t0<t1< : : : < tn= b
is a partition of [a; b] with (ti+1¡ ti)� �, then jf(ti+1)¡ f(ti)j� �jti+1¡ tij
and we can write

jf(b)¡ f(a)j �
X
i=0

n¡1

jf(ti+1)¡ f(ti)j � �
X
i=0

n¡1

jti+1¡ tij= �(b¡a)

and sending �! 0 we get f(b) = f(a). Since [a; b]� [0; T ] was arbitrary, f
is constant. �

The standard norm on C� is

kf kC� := kf k1+ k�f k�: (2.5)

Let us denote by C1 the space of infinitely differentiable functions. Note
that C1�C� for every �2 (0; 1), but C1 is not dense in C�.

Theorem 2.2. The closure of C1 in C� is the subset C0� defined by

C0
� :=ff : jf(t)¡ f(s)j= o(jt¡ sj�) uniformly as jt¡ sj! 0g :

Note that f 2C0� if and only if

8�> 0 9��> 0: jf(t)¡ f(s)j � �jt¡ sj� for jt¡ sj � �� : (2.6)

Also note that the closure of C1 in C� is again C0�, simply because C1�
C1�C0�.

A key tool for Theorem 2.2 is the following classical approximation result.

Lemma 2.3. For any continuous f : [0; T ]!R there is a sequence fn2C1
such that kfn¡ f k1! 0. One can take fn with the same modulus of con-
tinuity as f, that is:

if jf(t)¡ f(s)j�h(t¡ s) 8s; t2 [0; T ];
then jfn(t)¡ fn(s)j�h(t¡ s) 8n2N;8s; t2 [0; T ]; (2.7)

where h(�) is arbitrary. It follows that k�fnk�� k�f k� for all n 2N and
�2 (0; 1).

Remark 2.4. Lemma 2.3 holds with no change for functions f : [0; T ]!R,
where R is an arbitrary Banach space. One only needs a notion of integralR
0

T
fs ds when f is continuous, and for this one can take the Riemann inte-

gral, i.e. the limit of Riemann sums
P
i f(ti) (ti+1¡ ti) along partitions (ti)

of [0; T ] with vanishing mesh maxi jti+1¡ tij! 0 (one can check that such
Riemann sums form a Cauchy family). This integral satisfies the key usual

properties: f 7!
R
0

T
fs ds is linear, j

R
0

T
fsdsj�

R
0

T jfsjds and
R
0

T
fs
0 ds= fT ¡ f0.
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We stress that C0� is strictly included in C�, but what is left out is not
so large.

Exercise 2.1. C�+��C0��C� for any �> 0 (inclusions are strict).

2.2. The Young integral

As a corollary of Theorem 1.10, we obtain the existence of theYoung integral ,
which provides a consistent definition of the integral (1.1) in this setting.

Theorem 2.5. (Young integral) Fix �; � 2 ]0; 1] with �+ � > 1. For
every (X;Y )2C��C� there is a (necessarily unique) function I : [0; T ]!R
which satisfies ( 1.2), i.e.

I0=0; It¡ Is=Ys (Xt¡Xs)+ o(jt¡ sj) : (2.8)

The functon I is called the Young integral and is denoted It=
R
0

t
Y dX.

The remainder Rst := It¡ Is¡Ys (Xt¡Xs) satisfies the bound

kRk�+��K�+� k�Xk� k�Y k� :

It follows that I 2C�, more precisely

k�Ik�� (kY k1 + K�+�T
� k�Y k�) k�Xk� : (2.9)

Proof. We recall that �Asut=¡�Ysu �Xut by (1.12). Therefore by (2.4),
�A 2C3

� with � = �+ � > 1 and we can apply Theorem 1.10. In order to
prove (2.9) we note that

k�Ik� 6 kAk�+ kRk�6 kY k1k�Xk�+T �kRk�+�
6 kY k1k�Xk�+T �K�+� k�Xk� k�Y k� :

This concludes the proof. �

Remark 2.6. The setting of Theorem 2.5 provides a natural example of a
germ Ast := Ys �Xst which is not in C2

� for any � > 1 (excluding the trivial
case when Y �0 on the intervals where X is not constant, hence A�0), but
it satisfies �A2C3

� with �=�+ � > 1.

Remark 2.7. It is natural to wonder what happens in Theorem 2.5 for
(X;Y )2C��C� with �+ � � 1. In this case, there might be no solution to
( 1.4)-( 1.5), because the necessary condition (1.13) in Lemma 1.7 can fail.
For instance, if we consider Xt= t� and Yt= t�, t2 [0; T ], we note that for
s=0 and u= t

2
we have by (1.12)

j�Asutj= j�A0 t
2
tj=

�������Y0 t
2

�������������Xt

2
t

������=� t
2

�
�
�
t�¡

�
t
2

���
& t�+� ; (2.10)

which is not o(jt¡ sj)= o(t) for �+ � � 1.
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In order to define a notion of integral (1.1) when �+ � �1, we are going
to relax condition (1.2) in Definition 5.1. This will lead to the notion of
Rough Paths, described in Chapter 5.

2.3. Properties of the Young integral

The Young integral, defined in Theorem 2.5, enjoys several properties which
are similar to those of the classical Riemann-Lebesgue integral. One of them
is an integration by parts formula, which follows by the uniqueness of the
solution for the problem (1.4)-(1.5), recall Lemma 1.3.

Proposition 2.8. (Integration by parts) Fix �; �2 ]0;1] with �+ �>1.
For all (X;Y )2C��C� the Young integral satisfiesZ

0

t

X dY +
Z
0

t

Y dX = XtYt¡X0Y0 : (2.11)

Proof. Let us set d. By the property (2.8) we have

It
0¡ Is0=Ys (Xt¡Xs)+Xs (Yt¡Ys)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

Ast

+ o(jt¡ sj) :

Next we set It00 :=XtYt¡X0Y0 and note that, by direct computation,

It
00¡ Is00=Ys (Xt¡Xs)+Xs (Yt¡Ys)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

Ast

+(Xt¡Xs) (Yt¡Ys)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
Rst

;

where jRstj6 k�Xk� k�Y k� jt¡ sj�+�= o(jt¡ sj). By Lemma 1.3, for any
germ A, there is at most one function I which satisfies (1.4)-(1.5), hence
I 0= I 00. �

The Young integral also satisfies another property of the classical Rie-
mann-Lebesgue integral: the so-called chain rule.

Proposition 2.9. (Chain rule) Fix �2 ]1/2; 1] and  2 ]0; 1] such that
>1/(1+�). Let X 2C� and let ':R!R be differentiable with '02C(R).
Then '0 �X 2C� and

'(Xt)¡ '(X0)=
Z
0

t

'0(X) dX : (2.12)

Proof. It is easy to see that '0� g2C�. Then the right-hand side of (2.12)
is well-defined as a Young integral. We see now that (2.12) is equivalent to

j'(Xt)¡ '(Xs)¡ '0(Xs) (Xt¡Xs)j. jt¡ sj�+�

By the classical Lagrange theorem, if say Xt>Xs, then

'(Xt)¡ '(Xs)¡ '0(Xs) (Xt¡Xs)= ('0(�)¡ '0(Xs)) (Xt¡Xs)
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with � 2 ]Xs; Xt[. Therefore since '0 of class C

j'(Xt)¡ '(Xs)¡ '0(Xs) (Xt¡Xs)j. jXt¡Xsj+1. jt¡ sj�+�

and �+ �  > 1 by assumption, we can apply the Sewing Lemma and the
proof is complete. �

More generally, we have

Corollary 2.10. Let X 2C� with �2 ]1/2; 1]. Then for all s6 t

'(Xt)¡ '(Xs)= '0(Xs) (Xt¡Xs)+
Z
s

t

('0(Xr)¡ '0(Xs))dXr : (2.13)

Proof. It is enough to note that

'(Xt)¡ '(Xs) =
Z
s

t

'0(Xr)dXr

= '0(Xs)(Xt¡Xs)+
Z
s

t

('0(Xr)¡ '0(Xs))dXr ;

where all integrals are in the Young sense. �

In particular, for X 2C� and �> 1/2

Xt
2

2
¡ Xs

2

2
=Xs (Xt¡Xs)+

Z
s

t

(Xr¡Xs)dXr: (2.14)

Moreover we have obviouslyZ
s

t

(Xr¡Xs)dXr=
Xt
2

2
¡ Xs

2

2
¡Xs (Xt¡Xs)=

(Xt¡Xs)2
2

: (2.15)

Exercise 2.2. Show that Proposition 2.9 still holds if F :R!R is differentiable but
the derivative F 0 is only locally Lipschitz (that is, for every compact interval [¡M;

M ] there exists CM<1 such that jF 0(z)¡F 0(w)j�C jz¡w j for all z;w2 [¡M;M ]).

Exercise 2.3. Show that Proposition 2.9 still holds if F :R!R is differentiable but
the derivative F 0 is only (locally) Hölder of exponent �, provided � >

1¡�
�

.

We conclude with a simple but important formula.

Lemma 2.11. Let (X; Y )2 C��C� as in Theorem 2.5, with �; � 2 (0; 1),
�+ � > 1, and It :=

R
0

t
YudXu the Young integral. If we set R2C2

Rst := It¡ Is¡Ys (Xt¡Xs); 06 s6 t6T ;

then we have the explicit formula

Rst=
Z
s

t

(Yu¡Ys)dXu; 06 s6 t6T ; (2.16)

where the integral in the RHS is in the Young sense.
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Proof. Note that the (constant) function [s; t]3u 7!Ys trivially belongs to
C�. By uniqueness of the Young integral, we obtainZ

s

t

YsdXu=Ys (Xt¡Xs):

Then by linearity of the Young integral we obtain

It¡ Is¡Ys (Xt¡Xs)=
Z
s

t

Yu dXu¡
Z
s

t

YsdXu=
Z
s

t

(Yu¡Ys)dXu:

The proof is complete. �

2.4. Uniqueness of the Young integral
If X is continuous and Y 2C1 is continuously differentiable, the classical
integral Itclassical : =

R
0

t
Xs Y_s ds satisfies (2.8), as we already remarked. As

a consequence, we can view the Young integral (X; Y ) 7! It
Young built in

Theorem 2.5 as a continuous extension to C�� C� of the map (X; Y ) 7!
It
classical defined on C��C1, for any fixed �; � 2 (0; 1) with �+ � > 1. It

would be tempting to state that It
Young is the unique continuous extension

of Itclassical, but this is not true because C1�C� is not dense in C�.
A way to circumvent this difficulty is to note that C1 is dense in C�

with respect to the topology of C� 0, for any � 0< � (observe that C��C� 0).
Therefore, if we fix �2 (0;1), we can state that (X;Y ) 7!It

Young is the unique
continuous extension to C��

S
�2(1¡�;1) C

� of the map (X; Y ) 7! It
classical

defined on C��C1, provided we agree that convergence in
S
�2(1¡�;1) C

�

means convergence in some C�.
In order to make this precise, we introduce a weaker notion of conver-

gence. The Young integral turns out to be continuous with respect to this
notion of convergence.

Definition 2.12. Fix � 2 (0; 1). Given a sequence fn; f : [0; T ]!R, with
n2N, we write

fn � f () kfn¡ f k1! 0 and sup
n2N

k�fnk�<1 : (2.17)

In other terms, fn � f if and only if fn! f in the sup-norm and fn is
bounded in C�.

Exercise 2.4. Fix �2 (0; 1). Prove the following.
1. If fn � f , then f 2C�; more precisely k�f k�� supn2N k�fnk�<1.

2. If fn �f , then fn! f inC�
0
for any �0<�, but not necessarily fn! f inC�.

3. If fn � f and F :R!R is Lipschitz, then F (fn) �F (f).

4. In the definition (2.17) of fn �f , one can replace uniform convergence kfn¡
f k1! 0 by pointwise convergence, i.e. fn(t)! f(t) for every t2 [0; T ].

This notion of convergence provides the following characterization of the
Young integral.
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Theorem 2.13. Fix �; � 2 (0; 1) with �+ � > 1. The Young integral I(f ;
g)=

R
0

�
f dg is the only operator I:C��C�!C� which, for g2C1, is defined

by :

I(f ; g)=
Z
a

�
fs gs

0 ds (2.18)

and such that

fn � f and gn � g =) I(fn; gn) � I(f ; g) : (2.19)

Proof. We start by proving the desired continuity property. Let fn �fand
gn � g and choose �0<�, � 0< � such that we still have �0+ � 0> 1. By
Exercise 2.4 we know that fn! f in C�

0
and gn! g in C� 0.

The Young integral is a continuous bilinear operator I:C�
0�C� 0!C�

0
,

thus one has I(fn; gn)! I(f ; g) in C� 0 and, in particular, kI(fn; gn)¡ I(f ;
g)k1! 0. Moreover by (2.9)

sup
n

kI(fn; gn)k�6 sup
n

(kfnk1+ c�+�T�k�fnk�)kgnk�<1

As far as uniqueness is concerned assume that J :C��C�!C� coincides
with I for g2C1 and verifies (2.19). Given f 2C� and g2C� we construct
a sequence (gn)�C1 with kgn¡ gk1! 0 and kgnk�6 kgk�. Then

I(f ; g)= lim
n
I(f ; gn)= lim

n
J(f ; gn)=J(f ; g)

where the limit has to be intended, for instance, in the k � k1 norm. �

2.5. Two proofs

It remains to prove Theorem 2.2 and Lemma 2.3.

Proof of Lemma 2.3. We extend f : [0; T ]!R as a constant function
in (¡1; 0] and [T ;1) (that is f(x) := f(0) for x � 0 and f(x) := f(T )
for x� T ). Let us fix an arbitrary probability density �:R! [0;1) with
compact support, say in [¡1; 1]. Then �n(x) := n�(nx) is again a density,
for any n2N, and we set

fn(x) := (f � �n)(x)=
Z
R

f(x¡ v) �n(v)dv=
Z
R

f(x¡ w

n
) �(w) dw :

Note that, for every x2R,

jfn(x)¡ f(x)j�
Z
R

jf(x¡ w

n
)¡ f(x)j �(w) dw�

Z
R

!f(jwn j)�(w) dw�!f(
1

n
) ;

where !f(�) := supjhj�� jf(t+ h)¡ f(t)j is the modulus of continuity of f ,
and the last inequality holds because � is a density supported in [¡1; 1].
Note that !f(�)! 0 as �! 0 (because f is uniformly continuous), hence
kfn¡ f k1! 0.

2.5 Two proofs 25



It remains to prove (2.7), but this is easy:

jfn(x)¡ fn(y)j 6
Z
R

jf(x¡ v)¡ f(y¡ v)j �n(v)dv

6 h(x¡ y)
Z
R

�n(v) dv=h(x¡ y) :

The proof is complete. �

Proof of Theorem 2.2. First we show that C0� is closed in C�. Given fn
in C0� and f 2C� such that kfn¡ f k�! 0, we have to show that f 2C0�,
that is (2.6) holds. For s< t and for every n2N we can write

jf(t)¡ f(s)j
(t¡ s)� �k�f ¡ �fnk�+

jfn(t)¡ fn(s)j
(t¡ s)� : (2.20)

Fix n= n�� such that k�fn��¡ �f k�<
�

2
. Since fn��2C0�, relation (2.6) holds

for fn��, so we can fix ��> 0 such that for jt¡ sj � � the last term in (2.20)
is � �

2
and we are done.

It remains to show that, for any f 2C0�, there is a sequence fn2C1 such
that kfn¡ f k1+ k�fn¡ �f k�! 0. We take the sequence fn2C1 provided
by Lemma 2.3, so we only need to show that k�fn¡ �f k�! 0.

Since f 2 C0�, the inequality (2.6) holds. The same inequality holds
replacing f by fn, uniformly for n2N, thanks to relation (2.7). This means
that for any � > 0, for all 06 s < t6 T with jt¡ sj6 ��, and for any n 2
N, we can write

j(fn¡ f)(t)¡ (fn¡ f)(s)j
(t¡ s)� 6 jfn(t)¡ fn(s)j

(t¡ s)� + jf(t)¡ f(s)j
(t¡ s)� 6 2 � :

We now fix n��> 0 such that kfn¡ f k16 � (��)� for all n � n��. Then for
jt¡ sj>��

j(fn¡ f)(t)¡ (fn¡ f)(s)j
(t¡ s)� 6 2kfn¡ f k1

(��)�
6 � :

Altogether, for n � n�� we have k�fn¡ �f k�6 2�. This shows that k�fn¡
�f k�! 0. �
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Chapter 3
Finite difference equations in the
Young case

3.1. Differential versus integral equations
In the theory of ordinary differential equations (ODEs), one can give two
equivalent formulations of such an equation:

x_ t= b(xt); xt=x0+
Z
0

t

b(xs) ds; t� 0; (3.1)

the equivalence being of course a consequence of the fundamental theorem
of calculus.

We are interested also in studying solutions Y : [0; T ]!Rk to an ordinary
differential equation controlled by a smooth function X: [0; T ]!Rd

Y_t=�(Yt)Xt
_ ; (3.2)

which is equivalent to the integral equation

Yt=Y0+
Z
0

t

�(Ys)Xs_ ds; (3.3)

where �:Rk!Rk
Rd is sufficiently smooth. Because of the fundamental
theorem of calculus, (3.2) and (3.3) are the same equation.

Let us rewrite (3.3), for s< t,

Yt¡Ys =
Z
s

t

Y_r dr=
Z
s

t

�(Yr)X_r dr=

= �(Ys)(Xt¡Xs)+
Z
s

t

(�(Yr)¡�(Ys))X_ r dr

= �(Ys)(Xt¡Xs)+Rst: (3.4)

If � is at least continuous, then by uniform continuity of r 7! �(Yr) we can
see that

Rst= o(t¡ s)
in the uniform sense of Remark 1.2.

Suppose now that X : [0; T ]!Rd is of class C�. We would like to give
an analog of the controlled equation (3.2). For that, we define

�Xst :=Xt¡Xs; j�Xstj. jt¡ sj�; 06 s6 t6T :

Taking inspiration from (3.4) we look for y: [0; T ]!Rd such that

�yst =�(ys) �Xst+ o(t¡ s); 06 s6 t6T ; (3.5)
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recall Remark 1.2.

Definition 3.1. Let �> 1/2 and X 2C�([0; T ];Rd). A solution to ( 3.5)
is a y2C�([0; T ];Rk) such that for some � > 1

yst2 := �yst¡�(ys) �Xst; jyst2 j. jt¡ sj� ; 06 s6 t6T ; (3.6)

namely y22C2
�.

From the computation done in (3.4), we see that this definition extends
the classical equation (3.3) which holds in the case of a differentiable driving
path X: [0; T ]!Rd, namely we have the following

Proposition 3.2. Let X : [0; T ]!Rd of class C1 and � locally of class C�

with � 2 (0; 1). If y: [0; T ]!Rd satisfies ( 3.3), then y also satisfies ( 3.6)
with � =1+ �.

Proof. By the Taylor expansion in time (3.4) we have (3.6) with �=1+�. �

By the Sewing Lemma, if y2 satisfies (3.6) then it actually satisfies the
same property with � =2�.

Lemma 3.3. Let y be a solution to ( 3.5) as in Definition 3.1. Then y2

defined by ( 3.6) also satisfies y22C22�, namely

jyst2 j. jt¡ sj2�; 06 s6 t6T : (3.7)

Proof. Since � � �=0, by (3.6) and (1.12) we have

�ysut2 = ��(y)su �Xut=(�(yu)¡�(ys)) �Xut: (3.8)

By (3.8) we obtain that �y22C32�, so that, by the Sewing Lemma, �(�y2)2
C2
2�. Then y2¡�(�y2)2C2

�^(2�) and �(y2¡�(�y2))=0, which implies that
y2¡�(�y2)= 0 by the uniqueness statement of Lemma 1.3. �

We first state a local existence result.

Proposition 3.4. Let y02Rd and � is of class C1 and globally Lipschitz,
namely kr�k1<+1. There exists TM;D;�> 0 such that, for all T 2 (0;
TM;D;�) and X 2C�([0;T ];Rd) such that k�Xk�6M, there exists a solution
y to ( 3.6) on the interval [0; T ] such that y0= y0 and

kyk�6 12 j�(y0)j k�Xk�: (3.9)

The proof of this Proposition is not based on the Sewing Lemma but on
a discretization argument. For the reader's convenience, it is postponed to
section 3.6 below.
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3.2. Uniqueness

Let us suppose that �:Rk!Rk
Rd is of class C2, without any boundedness
assumption. We want to show that this implies uniqueness of solutions to
(3.6).

We first have an elementary but fundamental estimate, which is the main
technical tool of this chapter, together with the Sewing Lemma. For any 	:
Rk!Rm we introduce the notation

C	;R := sup fj	(x)j: x2Rk; jxj6Rg: (3.10)

Lemma 3.5. Let  :Rk!Rk
R` of class C2. Then for all x; x�; y; y�2Rk

with norm less than R we have

j[ (x)¡  (y)]¡ [ (x�)¡  (y�)]j6
6Cr ;Rj(x¡ y)¡ (x�¡ y�)j+Cr2 ;R(jx¡ y j+ jx�¡ y�j)jx¡x�j: (3.11)

Proof. Note that for x; x�; y; y�2Rk

 (x)¡  (x�)=  ̂(x; x�) (x¡x�);  ̂(x; x�) :=
Z
0

1

r (x�+u(x¡x�)) du:

Therefore

[ (x)¡  (y)]¡ [ (x�)¡  (y�)]=  ̂(x; x�) (x¡x�)¡ ̂(y; y�) (y¡ y�)=

= ̂(y; y�)[(x¡ y)¡ (x�¡ y�)]+ ( ̂(x; x�)¡ ̂(y; y�)) (x¡x�):

Now

 ̂(x; x�)¡  ̂(y; y�)=  ̂(x; x�)¡  ̂(y; x�)+  ̂(y; x�)¡  ̂(y; y�):

We can argue now as for  (x)¡  (x�) and write

 ̂(x; x�)¡  ̂(y; x�)=  ̂̂(x; y;x�) (x¡ y);

and similarly for  ̂(y; x�)¡  ̂(y; y�). Therefore (3.11) follows by using the
notation (3.10). �

Now we can prove our uniqueness result.

Theorem 3.6. (Uniqueness) Let �> 1/2 and X: [0; T ]!Rd of class C�.
If �:Rk!Rk
Rd is of class C2, then for every y02Rd there exists at most
one solution y to ( 3.6).

Proof. If y and y� are two solutions, set z:=y¡ y�. We want to show that,
for � 2 ]0; 1] small enough, kzk1;� 6 2jz0j. First, we know by (1.29) that

kzk1;� 6 jz0j+3��k�zk�;�: (3.12)
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We set as in (3.6)

zst2 := yst2 ¡y�st2 = �zst¡ (�(ys)¡�(y�s)) �Xst: (3.13)

Using the notation in (3.10) we set L :=Cr�;kyk1_ky�k1. Then

k�(y)¡�(y�)k1;� 6L kzk1;� ;

Therefore by (3.13) and (3.7) we obtain

k�zk�;� 6L kzk1;�+��kz2k2�;� : (3.14)

We estimate now kz2k2�;� . By (3.13) and (3.8) we have

�zsut2 =(��(y)su¡ ��(y�)su) �Xut:

Therefore by (3.11) there is a constant Cy;y�;X> 0 such that

k�z2k2�;� 6 k�Xk�k��(y)¡ ��(y�)k�;� 6Cy;y�;X(kzk1;� + k�zk�;�):

Therefore by the Sewing estimate in weighted spaces (1.33)

kz2k2�;�6K2� k�z2k2�;� 6K2�Cy;y�;X(kzk1;�+��kz2k2�;�):

By choosing � > 0 small enough, we obtain kz2k2�;� 6 2K2�Cy;y�;Xkzk1;� ,
so that by (3.14)

k�zk�;� 6 (2K2�Cy;y�;X+L)kzk1;� :
Then by (3.12)

kzk1;� 6 jz0j+3��k�zk�;� 6 jz0j+3��(2K2�Cy;y�;X+L)kzk1;�

and by choosing � > 0 even smaller if necessary, we obtain kzk1;� 6 2jz0j.
In particular, if z0=0, then z�0. �

3.3. A priori estimates

In this section we suppose that � is of class C1 and globally Lipschitz, namely
kr�k1<+1 (without boundedness assumptions on �). We fix

D�kr�k1:

Lemma 3.7. Let M > 0. There exists a constant CM;D such that for any X
such that k�Xk�6M, any solution to ( 3.6) satisfies

ky2k2�;� 6CM;Dk�yk�;� ;

where y2 is defined as in ( 3.6). Moreover there is "M;D > 0 such that, if
(� ^T )�6 "M;D, then

k�yk�;� 6 2 k�Xk�j�(y0)j: (3.15)

Proof. Since

k��(y)k�;� 6 kr�k1k�yk�;�
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we obtain by (3.8)

k�ysut2 k2�;� 6 kr�k1k�Xk�k�yk�;� :

By the Sewing estimate in weighted spaces (1.33)

ky2k2�;� 6K2�kr�k1k�Xk�k�yk�;� ;

which proves the first assertion with CM;D=K2�DM .
Let us now prove the second assertion. We set " := (� ^T )�. Since

k�yk�;� 6 k�Xk�k�(y)k1;� + "ky2k2�;�

and by (1.29)

k�(y)k1;� 6 j�(y0)j+3D" k�yk�;� ;

we have for "2 ]0; 1]

k�yk�;� 6 k�Xk�(j�(y0)j+3D" k�yk�;�)+ "K2�DM k�yk�;�

and for "6 "M;D := (2DM(K2�+3))¡1 we obtain

k�yk�;� 6 2 k�Xk�j�(y0)j:
The proof is complete. �

3.4. Global existence and uniqueness

Let us suppose that �:Rk!Rk
Rd is of class C2 with kr�k1<+1.

Theorem 3.8. If �:Rk!Rk
Rd is of class C2 with kr�k1<+1 then
for every y02Rd and T > 0 there is a unique solution (yt)t2[0;T ] to ( 3.6).

Proof. By Theorem 3.6 we have at most one solution. We now construct
a solution on an arbitrary finite interval [0; T ]. We define �� [0; T ] as the
set of all s such that there is a solution (yt)t2[0;s] to (3.6). By Proposition
3.4, � is an open subset of [0; T ] and contains 0. By the a priori estimates
of Lemma 3.7, � is a closed subset of [0; T ]. Therefore �= [0; T ]. �

3.5. Continuity of the solution map

We consider now the map Rd� C� 3 (y0; X) 7! y=�(y0; X) 2 C�, where
y is the unique solution to (3.6) constructed in Theorem 3.8. We want to
show that this map, called the solution map, is continuous. This property
is highly non-trivial, since y solves (3.3) when X is of class C1, and this
equation is based on the derivative in time X_ of X. We shall see in the next
chapters that this property can be proved also in more complex situations,
where �61/2 and which cover the case of X a Brownian motion and y the
solution to a SDE.
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We suppose in this section that � is of class C2, with kr�k1+kr2�k1<
+1 (without boundedness assumptions on �). We fix

D�kr�k1+ kr2�k1:

We also introduce the seminorm

kGk�;�
No-exp := sup

06s<t6T
1(0<jt¡sj6�)

jGstj
jt¡ sj� ; G2C2

� (3.16)

to be compared with the definitions of k�k�;� in Section 1.7. We have

k�k�;� 6 k�k�;�No-exp6 e
T

�k�k�;�: (3.17)

Then by (3.11) we have for f ; f�2C�([0; T ];Rk)

k��(f)¡ ��(f�)k�;� 6 c�;f ;f�(kf ¡ f�k1;�+k�f ¡ �f� k�;�); (3.18)

where

c�;f ;f�=D(k�f k�;�
No-exp+ k�f�k�;�

No-exp+1) :

Proposition 3.9. Let M > 0 and max fj�(y0)j; k�Xk�; j�(y�0)j; k� X� k�g6
M. Then for every T > 0 there are �̂M;D;T ; CM;D;T > 0 such that for � 2 ]0;
�̂M;D;T ]

ky¡ y�k1;� + k�y¡ �y�k�;� 6CM;D;T(jy0¡ y�0j+ k�X ¡ �X� k�):

Proof. If y and y� are two solutions, set z:=y¡y�. First, we know by (1.29)
that

kzk1;� 6 jz0j+3��k�zk�;� : (3.19)

Let us set z2 :=y2¡y�2, so that by (3.6)

zst2 = �zst¡�(ys)�Xst+�(y�s) �X�st
= �zst¡ (�(ys)¡�(y�s)) �Xst¡�(y�s)(�X ¡ �X�)st:

By (3.8) we have

�zsut2 = �(�(y)¡�(y�))su �Xut+ ��(y�)su (�X ¡ �X�)ut: (3.20)

By Lemma 3.7 we know that for (�M;D)�= "M;D we have

k�yk�;�M;D+ k�y�k�;�M;D6 4M2;

and by (3.17) we obtain the bound

k�yk�;�M;D

No-exp + k�y� k�;�M;D

No-exp 6 e
T

�M;D 4M2:

32 Finite difference equations in the Young case



By (3.18) we have for � 6 �M;D

k��(y)¡ ��(y�)k�;� + k��2(y)¡ ��2(y�)k�;� 6
6D(k�yk�;�M;D

No-exp + k�y� k�;�M;D

No-exp +1)(kzk1;� + k�zk�;�)
6CD;M;T(kzk1;� + k�zk�;�):

By (3.20) we obtain

k�z2k2�;� 6CD;M;T (kzk1;� + k�zk�;�)+Dk�y�k�;�k�X ¡ �X� k�:

Therefore by the Sewing estimate in weighted spaces (1.33) and by (3.14)

kz2k2�;�6K2� k�z2k2�;� .M;D;T kzk1;� + ��kz2k2�;�+k�X ¡ �X� k�:

By choosing � 2 (0; �M;D) small enough, we obtain kz2k2�;�.M;D;T kzk1;�+
k�X ¡ �X� k�, so that by (3.14)

k�zk�;� . kzk1;� + k�X ¡ �X� k�: (3.21)

Then by (3.12)

kzk1;� 6 jz0j+3��k�zk�;� .M;D;T jz0j+ ��kzk1;�+k�X ¡ �X� k�

and there exists �̂M;D;T 6 �M;D such that, for � 2 ]0; �̂M;D;T ], we obtain

kzk1;� .M;D;T jz0j+ k�X ¡ �X� k�:

Finally by (3.21) we obtain

k�zk�;� .M;D;T jz0j+ k�X ¡ �X� k�:

The proof is complete. �

3.6. Euler scheme and local existence
In this section we prove the local existence result of Proposition 3.4, using
a discretization in time argument. We stress that no results of this section
rely on the material of the preceding sections, and it is only for the reader's
convenience that we have postponed the proof of Proposition 3.4. In partic-
ular, this section and the next do not use the Sewing Lemma.

We suppose now that � is of class C1 and globally Lipschitz, namely
kr�k1<+1 (without boundedness assumptions on �). We recall that
�2

�1
2
; 1
�
. To construct a solution to (4.13) in the sense of Def. 3.1, we fix

T > 0, n2N and we set ti :=
i

n
, i> 0. Then we set

yi+1= yi+�(yi) �Xtiti+1; i> 0: (3.22)

We set D := kr�k1 and

�yij := yj¡ yi; k�yk� :=n� sup
0<i<j6nT

jyj¡ yij
jj ¡ ij� ; Aij=�(yi) �Xtitj:

The main technical estimate is the following
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Lemma 3.10. Let M > 0. There exists TM;D;�> 0 such that, for all T 2 (0;
TM;D;�) and X 2C�([0; T ];Rd) such that k�Xk�6M, we have

k�yk�6 4j�(y0)jM , (3.23)

j�yik¡Aikj .M;D;� j�(y0)j
�
jk¡ ij
n

�
2�

; 06 i6 k6nT : (3.24)

Proof. We want to obtain, setting

L(y) := 2DM k�yk�
1¡ 21¡2� ; (3.25)

that

j�yik¡Aikj6L(y)
�
jk¡ ij
n

�
2�

; 806 i6 k6nT : (3.26)

Note that (3.26) holds if k 2 fi; i+ 1g. Let m> 1 and suppose that (3.26)
holds for all i; k 6 nT such that 0 6 k ¡ i 6m. We want to show that
(3.26) holds for all i; k6 nT such that k ¡ i=m+ 1; for such i; k, we set

j = i+
j
k¡ i
2

k
, so that 06 j ¡ i6 k¡ i

2
6m and 06 k ¡ j ¡ 16 k¡ i

2
6m.

Now, since 2�> 1, we have

jj ¡ ij2�+ jk¡ j ¡ 1j2�6 21¡2� jk¡ ij2�:
We set

�Aijk :=Aik¡Aij¡Ajk:

Since Aj(j+1)= yj+1¡ yj, we obtain

j�yik¡Aikj 6 j�Aijk j+ j�yij¡Aij j+ j�yjk¡Ajkj
6 j�Aijk j+ j�yij¡Aij j+ j�Aj(j+1)kj+ j�y(j+1)k¡Aj+1kj

6 j�Aijk j+ j�Aj(j+1)kj+L(y) 21¡2�
�
jk¡ ij
n

�
2�

;

where we have used the recurrence assumption in the third inequality. Now

�Aijk=(�(yi)¡�(yj)) �Xtjtk)j�Aijkj6 kr�k1k�Xk�k�yk�
�
jk¡ ij
n

�
2�

and analogously for �Aj(j+1)k. Therefore

j�yik¡Aikj
�
jk¡ ij
n

�¡2�
6 2DM k�yk�+L(y) 21¡2�=L(y);

so that (3.26) is proved. Note now that for i6nT

j�(yi)j6 j�(y0)j+ j�(yi)¡�(y0)j6 j�(y0)j+ kr�k1 k�yk�T�:

Now we obtain by (3.25) and (3.26)

k�yk� 6 n� sup
0<i<j6nT

j�yij¡Aij j+ jAij j
jj ¡ ij� 6

6 L(y)T�+(j�(y0)j+Dk�yk� T�)M:
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For T�6 (2DM)¡1, we obtain

k�yk�6 2L(y)T�+2 j�(y0)jM 6
4DM k�yk�
1¡ 21¡2� T�+2 j�(y0)jM

and, if T�6 (1¡ 21¡2�)(8DM)¡1, we obtain finally

k�yk�6 4 j�(y0)jM; L(y)6 8DM2 j�(y0)j
1¡ 21¡2� :=K

and by (3.26)

j�yik¡�(yi) �Xtitkj6K
�
jk¡ ij
n

�
2�

; 806 i6 k6nT :
�

Now we can prove Proposition 3.4 above.

Proof of Proposition 3.4. We call yn: [0; T ]!Rd the continuous function

which is affine on each interval
h
i

2n
;
i+1

2n

i
and such that y i

2n

n = yi, 06 i62nT .
Then we have by (3.23)

kynk�6 3kyk�6 12 j�(y0)j k�Xk�:

In particular the sequence (yn)n is compact in C([0; T ]) and we call y one

of its limit points. By (3.24), for all s; t2
S
n

n
i

2n
: 06 i6 2nT

o
we have

j�yst¡�(ys) �Xstj. jt¡ sj2�:

By the density of dyadic numbers, we obtain that y is indeed a solution to
(3.6). �

3.7. Error estimate in the Euler scheme

We suppose in this section that � is of class C2 with kr�k1+ kr2�k1<
+1.

Theorem 3.11. The Euler scheme converges at speed n2�¡1.

Proof. Let us set zi :=@yi/@y0;where (yi)i>0 is defined by (3.22). Then

zi+1= zi+r�(yi) zi �Xtiti+1; i> 0:

This shows that the pair (yi; zi)i>0 satisfies a recurrence which is similar
to (3.22) with a map � of class C1 and therefore we can apply the above
results to obtain that jzij6const: In particular the map y0! yk is Lipschitz-
continuous, uniformly over k> 0.

Let us call, for k>0,
¡
z`
(k)�

`>k as the sequence which satisfies (3.22) but
has initial value zk

(k)= y(tk). Since (y(t))t>0 is a solution to (3.6), we have����zk+1(k) ¡ y(tk+1)
����.n¡2�:
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Since the map y0! yk is Lipschitz-continuous uniformly over k>0, we have����z`(k)¡ z`(k+1)����. ����zk+1(k) ¡ y(tk+1)
����.n¡2�; `> k+1:

Therefore

jy`¡ y(t`)j=
����z`(0)¡ z`(`)����6X

k=0

`¡1 ����z`(k)¡ z`(k+1)����. `
n2�

= t`
n2�¡1

! 0

as t` is bounded and n!1. �

3.8. Integral formulation

In this section we explain why we call (3.6) a Young equation. In fact, we
can interpret the finite difference equation (3.6) as an integral equation ,
using the Young integral of section 2.2.

Proposition 3.12. Let y2C�([0; T ];Rd) with �> 1

2
. Then y satisfies ( 3.6)

if and only if

yt= y0+
Z
0

t

�(ys)dXs; t2 [0; T ]; (3.27)

where the integral is in the Young sense.

Proof. We consider the germ Ast :=�(ys) �Xst, 06 s6 t6T . By (2.4)

j�Asutj= j�(yu)¡�(ys)jjXt¡Xuj =) k�Ak2�6 kr�k1k�Xk�k�yk� :

Therefore arguing as in Lemma 3.3 we obtain that (3.6) is equivalent to (2.8)
above. �

3.9. Local existence via contraction

As an application of the estimates on the Young integral of Theorem 2.5, we
want to give a local existence result for equation (3.6) which does not rely
on compactness and which can be therefore used also in infinite dimension.

Let y02R and X 2C� be given, �:R!R smooth and the unknown y: [0;
T ]!R is such that �(y)2C and 2�>1, so that the right-hand side of (3.27)
can be interpreted as a Young integral. We want now to show the following

Theorem 3.13. (Contraction for Young differential equations)
Let �:R!R be of class C2 with r� and r� 0 bounded. Let � 2 ]1/2; 1]
and X 2C� fixed. It T > 0 is small enough, then for any y02R there exists
a unique y2C� which satisfies ( 3.27).

Proof. For all f 2C� we have

j�(ft)¡�(fs)j6 kr�k1 jft¡ fsj
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so that

k��(f)k�6 kr�k1 k�f k�:

By (2.9) with �= � we obtain for all f 2C� satisfying (3.27)

k�f k�6 (j�(f0)j + (1+K2�)T�kr�k1k�f k�) k�Xk�
since

k�(f)k16 j�(f0)j+T�k��(f)k�:

Therefore, if T satisfies

T�6 1
2

1
(1+K2�) kr�k1k�Xk�

then we have the following a priori estimate on solutions to (3.27)

k� yk�6 2j�(y0)j k�Xk� :

We fix such T and we set C�(y0) :=ff 2C�: f0=y0;k�f k�62j�(y0)j k�Xk�g.
Then we define �: C�!C� given by

�(f) :=h; ht := y0+
Z
0

t

�(fs) dXs; t2 [0; T ]:

It is easy to see, arguing as above, that � acts on C�(y0), namely �:C�(y0)!
C�(y0). Note that the map C�(y0)�C�(y0)3 (a; b) 7! k�a¡ �bk� defines a
distance on C�(y0) which induces the same topology as k�kC�. We want to
show that � is a contraction for this distance if T is small enough. By (2.9)
we have for �= �

k��(a)¡ ��(b)k�6(k�(a)¡�(b)k1 + K2�T� k��(a)¡ ��(b)k�) k�Xk� :
6T� (1 + K2�) k�Xk� k��(a)¡ ��(b)k� :

We now need to estimate k��(a)¡ ��(b)k�. By Lemma 3.5

k��(a)¡ ��(b)k�6 kr�k1k�a¡ �bk�+kr2�k1(k�ak�+k�bk�) ka¡ bk1:

Since, as usual, ka¡ bk16T�k�a¡ �bk�, we obtain

k��(a)¡��(b)k�6(kr�k1+T�kr2�k1(k�ak�+k�bk�))k�a¡�bk�: (3.28)

Therefore, for all a; b2C�(y0)

k��(a)¡ ��(b)k�6CT k�a¡ �bk�;

where CT :=T�(1 + K2�) k�Xk� (kr�k1+T�kr 2�k14j�(y0)j k�Xk�). It
is now enough to consider T small enough so that CT < 1. �
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Chapter 4
Finite difference equations in the
rough case

The initial motivation for rough integration was to give a robust theory of
stochastic integration and stochastic differential equations (SDE). A SDE is
in fact written as an integral equation of the form

xt=x0+
Z
0

t

�(xs)dBs (4.1)

with (Bt)t�0 a d-dimensional standard Brownian motion, x02Rk, �:Rk!
Rk
Rd, and the integral is in the Itô sense (see ??? below). It is common
in stochastic analysis to use the differential notation

dxt=�(xt)dBt (4.2)

but this is just intended as another notation for the integral version (4.1). We
note that the SDE (4.1) is an extension of the controlled ODE to a setting
where the control X is replaced by the non smooth function B.

A rough differential equation is an equation which generalises and includes
all equations above, however for a driving path X which is deterministic
(unlike the Brownian motion B) and typically non-smooth. Neither classical
nor Itô integration are available in this case, and are replaced by the rough
integral of Chapter 8, namely by an extensive use of the Sewing Lemma 1.10.

4.1. Taylor expansion to second order
If �2

�1
3
;
1

2

�
, then we have to modify the argument we used in chapter 3 for

the smooth controlled equation

Y_t=�(Yt)Xt
_ : (4.3)

We suppose for the moment that X 2C1([0; T ];Rd). We rewrite, for s< t,

Yt¡Ys =
Z
s

t

Y_r dr

=
Z
s

t

�(Yr)X_ r dr

=
Z
s

t
�
�(Ys)+

Z
s

r d
dv

(�(Yv)) dv
�
X_ r dr

= �(Ys)(Xt¡Xs)+
Z
s

t
�Z

s

r

r�(Yv)�(Yv)X_v dv
�
X_ r dr:
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We next expand, for s< r,Z
s

r

r�(Yv) �(Yv)X_v dv=

=
Z
s

r
�
r�(Ys)�(Ys)+

Z
s

v d
dw

(r�(Yw)�(Yw)) dw
�
X_v dv

=r�(Ys)�(Ys) (Xr¡Xs)+
Z
s

r

O(jv¡ sj)X_v dv

=r�(Ys)�(Ys) (Xr¡Xs)+O(jr¡ sj2);

hence

Yt¡Ys=

=�(Ys)(Xt¡Xs)+
Z
s

t

r�(Ys)�(Ys) (Xr¡Xs)
X_rdr+
Z
s

t

O(jr¡sj2)X_rdr

=�(Ys)(Xt¡Xs)+�2(Ys)
Z
s

t

(Xr¡Xs)
X_ r dr+O(jt¡ sj3); (4.4)

where, for x; y 2Rd, we define x
 y 2Rd�d by

x
 y := (xi yj)16i;j6d ;

and where we introduce the notation �2:Rk!Rk
Rd
Rd

�2(y) :=r�(y)�(y); [�2(y)]ijm :=
X
a=1

k

ra�ij(y) �am(y):

Here we introduce the notations X1: [0; T ]62 !Rd, X2: [0; T ]62 !Rd
Rd

Xst
1 :=Xt¡Xs; Xst

2 :=
Z
s

t

(Xr¡Xs)
X_ r dr; 06 s6 t6T : (4.5)

We note now the following interesting formula

Xst
2 ¡Xsu

2 ¡Xut
2 =Xsu

1 
Xut
1 ; 06 s6u6 t6T ; (4.6)

which follows from

Xst
2 ¡Xsu

2 ¡Xut
2 =

Z
u

t

(Xu¡Xs)
X_r dr=(Xu¡Xs)
 (Xt¡Xu):

Moreover

jXst
1 j. jt¡ sj; jXst

2 j. jt¡ sj2: (4.7)

The controlled equation (4.3) can be rewritten therefore

Yt¡Ys =�(Ys)Xst
1 +�2(Ys)Xst

2 +O(jt¡ sj3); 06 s6 t6T : (4.8)
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Note that we have, in coordinates,

(�2(y)Xst
2 )i =

X
j;m=1

d

[�2(y)]ijm (Xst
2 )mj

=
X
j;m=1

d X
a=1

k

ra�ij(y) �am(y) (Xst
2 )mj:

4.2. Finite difference equations

Suppose now that X : [0; T ]!Rd is of class C� with �2
¡ 1
3
;
1

2

�
. We would

like to give an analog of the controlled equation (4.3). In order to do so, one
can use a generalisation of (4.4). For that, we define again

Xst
1 :=Xt¡Xs; jXst

1 j. jt¡ sj�; (4.9)

but the definition of X2 in (4:5) does not make sense anymore.
We are going to show in this chapter that, remarkably, it is always

possible to construct a robust theory for the controlled equation (4.3) with
X of class C� with �2

¡ 1
3
;
1

2

�
, provided we choose a function X2: [0; T ]62 !

Rd
Rd satisfying for 06 s6u6 t6T

Xst
2 ¡Xsu

2 ¡Xut
2 =Xsu

1 
Xut
1 ; jXst

2 j. jt¡ sj2�; (4.10)

recall (4.6)-(4.7). The existence of such a choice will be proved below.

Definition 4.1. Let � 2 (1/3; 1/2]; d 2N and X 2C�([0; T ];Rd). A d-
dimensional �-rough path over X is a pair X=(X1;X2) with X1: [0; T ]62 !
Rd, X2: [0; T ]62 !Rd
Rd satisfying for 06 s6u6 t6T

Xst
1 :=Xt¡Xs; Xst

2 ¡Xsu
2 ¡Xut

2 =Xsu
1 
Xut

1 ; (4.11)
jXst

1 j. jt¡ sj�; jXst
2 j. jt¡ sj2�:

We call R�;d(X) the set of d-dimensional �-rough paths over X and R�;d
the set of all d-dimensional �-rough paths.

In the Young case �> 1

2
, the smooth controlled equation (3.2) was refor-

mulated as the finite difference equation (3.5). In the case � > 1

3
, taking

inspiration from (4.8) we look for y: [0; T ]!Rd such that

�yst=�(ys)Xst
1 +�2(ys)Xst

2 + o(t¡ s); 06 s6 t6T : (4.12)

This equation expresses a generalised Taylor expansion of the solution y
with respect to the rough path X. More precisely, we give the following

Definition 4.2. Let � > 1/3 and X 2R�;d a rough path. A solution to
( 4.12) is a y2C�([0; T ];Rk) such that for some � > 1

jyst3 j. jt¡ sj� ; yst3 = �yst¡�(ys)Xst
1 ¡�2(ys)Xst

2 : (4.13)
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This definition extends the classical one in the case of differentiable dri-
ving path X : [0; T ]!Rd. By the Sewing Lemma, if y3 satisfies (4.13) then
it actually satisfies the same property with � =3�.

Lemma 4.3. Let y be a solution to ( 4.13) as in Definition 4.2. Then y3
defined by ( 4.13) also satisfies

jyst3 j. jt¡ sj3�; 06 s6 t6T :

Proof. Since � � �=0, by (4.11) and (4.13) we have, analogously to (3.8),

�ysut3 =(�(yu)¡�(ys)¡�2(ys)Xsu
1 )Xut

1 +(�2(yu)¡�2(ys))Xut
2 : (4.14)

By (3.8) we obtain that �y32C33�, so that, by the Sewing Lemma, �(�y3)2
C2
3�. Then y3¡�(�y3)2C2

�^(2�) and �(y3¡�(�y3))=0, which implies that
y3¡�(�y3)= 0 by the uniqueness statement of Lemma 1.3. �

Proposition 4.4. Let X: [0; T ]!Rd of class C1 and let us consider the
canonical rough path X= (X1;X2) defined in ( 4.5). If Y : [0; T ]!Rd is a
solution to ( 4.3), then y :=Y satisfies ( 4.13) for any �< 1.

Proof. By a Taylor expansion in time we have (4.13) for any �< 1. �

As in Proposition 3.4 below for Young equations, we first state a local
existence result.

Proposition 4.5. Let y02Rd. We suppose that � and �2 are of class C1

and globally Lipschitz, namely kr�k1+ kr�2k1<+1. Let D :=max f1;
kr�k1; kr�2k1g and M > 0.

There exists TM;D;�> 0 such that, for all T 2 (0; TM;D;�) and X=(X1;

X2) 2 R�;d such that kX1k� + kX2k2� 6M, there exists a solution y to
( 4.13) on the interval [0; T ] such that y0= y0 and

kyk�6 15M(j�(y0)j+ j�2(y0)j): (4.15)

The proof of this Proposition is not based on the Sewing Lemma but on
a discretization argument. For the reader's convenience, it is postponed to
section 4.8 below.

4.3. Main technical tool

In Chapter 3 the main tool to study the Young equation (3.6), besides the
Sewing Lemma, was the Lipschitz estimate of Lemma 3.5. In this chapter,
these tools are still crucial, but an additional ingredient is needed. This is
provided by the next elementary
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Lemma 4.6. Let y1; y22Rd and x2Rk. If � is of class C1, then denoting
�y := y2¡ y1, we have

�(y2)¡�(y1)¡�2(y1)x= (4.16)

=r�(y1)(�y¡�(y1)x)+
Z
0

1

[r�(y1+ r�y)¡r�(y1)]dr�y;

and

�(y2)¡�(y1)¡�2(y1)x =
Z
0

1

(�2(y1+u�y)¡�2(y1))dux+ (4.17)

+
Z
0

1

r�(y1+u�y)du (�y¡�(y1)x)+

¡
Z
0

1

r�(y1+u�y)
Z
0

u

r�(y1+ v�y)dv du�yx:

Proof. The first formula is based on elementary manipulations and on the
fact that

�(y2)¡�(y1)=
Z
0

1

r�(y1+ r�y) dr�y:

For the second formula we start with the same remark, we write

�(y2)¡�(y1)=
Z
0

1

r�(y1+ r�y) dr�y=

=
Z
0

1

r�(y1+u�y)du (�y¡�(y1)x)+
Z
0

1

r�(y1+u�y)du�(y1)x|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
A

and then

A =
Z
0

1

�2(y1+u�y)dux¡
Z
0

1

r�(y1+u�y) (�(y1+u�y)¡�(y1)) dux|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
B

:

Finally

B =
Z
0

1

r�(y1+u�y)
Z
0

u

r�(y1+ v�y)dv du�yx

and (4.16) follows easily. �

We'll see below that (4.16) is very useful for the comparison between
two solutions, as in the proofs of uniqueness (Theorem 4.7) and continuity
of the solution map (Theorem 4.10), while (4.16) is well suited for a priori
estimates on a single solution (Lemma 4.8) or on a discretization scheme
(Lemma 4.11).
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4.4. Uniqueness

Let us suppose that �:Rk!Rk
Rd is of class C3, without any boundedness
assumption. We show that this implies uniqueness of solutions to (4.13).

Theorem 4.7. (Uniqueness) Let �>1/3 and X=(X1;X2)2R�;d a rough
path. If � is of class C3, then for every y0 2Rd there exists at most one
solution y to ( 4.13).

Proof. If y and y� are two solutions, set z:=y¡ y�. We want to show that,
for � 2 ]0; 1] small enough, kzk1;� 6 2jz0j. We recall that by (4.14) for 06
s6u6 t6T

�ysut3 =(�(yu)¡�(ys)¡�2(ys)Xsu
1 )||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

Bsu

Xut
1 +(��2(y))suXut

2 ;

and analogously for �y�3. By (4.16) we have for 06 s6 t6T

Bst = r�(ys) yst2||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
Est

+
Z
0

1
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Fst

with analogous notations forB�st;etc. We set z2 as in (3.13) and zst3 :=yst3 ¡y�st3

as in (4.13). By (4.14) we have

�zsut3 =(Bsu¡B�su)Xut
1 +(��2(y)¡ ��2(y�))suXut

2 :

Using the notation in (3.10) we set

R := kyk1+ ky�k1; L :=Cr�;R+Cr2�;R+Cr3�;R:

We want to estimate k�z3k3�;� . We use a number of times the elementary
estimate

jab¡ cdj= jab¡ ac+ac¡ cdj6 jaj jb¡ cj+ jcj ja¡ dj

for a; b; c; d2R. We start by estimating

kE ¡E�k2�;� 6 L(kz2k2�;� + ky2k2�kzk1;�):

Now, by (3.11)

j(r�(ys+ r�yst)¡r�(ys))¡r�(y�s+ r�y�st)¡r�(y�s)j
6L(j�zstj+(j�ystj+ j�y�stj)jzsj);

so that

kF ¡F�k2�;� 6 L (k�yk�+ k�y�k�)(k�yk�kzk1;� + k�zk�;�):

Moreover by (3.11)

k��2(y)¡ ��2(y�)k�;� 6 L(k�zk�;� +(k�yk�+ k�y�k�)kzk1;�):
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Therefore there is a constant Cy;y�> 0 such that

k�z3k3�;� 6MLCy;y�(kzk1;� + k�zk�;� + kz2k2�;�)

where M := kX1k�+ kX2k2�. By the Sewing estimate in weighted spaces
(1.33)

kz3k3�;� 6K3�k�z3k3�;� 6 K3�MLCy;y�(kzk1;� + k�zk�;� + kz2k2�;�):

We estimate now kzk1;�+k�zk�;�+kz2k2�;� . First, we know by (1.29) that

kzk1;� 6 jz0j+3��k�zk�;� : (4.18)

Now, note that

k�(y)¡�(y�)k1;� + k�2(y)¡�2(y�)k1;� 6Lkzk1;� :

By (4.13) this implies

k�zk�;� 6LM kzk1;�+�2�kz3k3�;�: (4.19)

By the definitions of y2 and y3

jzst2 j= jyst2 ¡ y�st2 j 6 jzst3 j+ j(�2(ys)¡�2(y�s))j jXst
2 j;

so that

kz2k2�;� 6 LM kzk1;� + ��kz3k3�;� :

Therefore there exists a constant CM;L;y;y� such that

kz3k3�;� 6 CM;L;y;y� (kzk1;� +(��+ �2�)kz3k3�;� ):

By choosing �>0 small enough, we have kz3k3�;�62CM;L;y;y� kzk1;� . Using
(4.18) and (4.19) we have now for another constant CM;L;y;y�

0 > 0

kzk1;� 6 jz0j+ ��CM;L;y;y�
0 kzk1;�

and by choosing if necessary � > 0 even smaller, we have kzk1;� 6 2jz0j. In
particular, if z0=0, then z�0. �

4.5. A priori estimate

In this section we suppose that � and �2 are of class C1 and globally Lip-
schitz, namely kr�k1+kr�2k1<+1 (without boundedness assumptions
on � and �2). We fix

D�kr�k1+ kr�k12 + kr�2k1:

Lemma 4.8. LetM>0 and X=(X1;X2)2R�;d such that kX1k�+kX2k2�6
M. There there is "M;D > 0 such that, if (� ^ T )�6 "M;D, then any solu-
tion to ( 4.13) satisfies

k�yk�;� + ky2k2�;� 6 4M(j�(y0)j+ j�2(y0)j) (4.20)
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and

k��(y)¡�2(y)X2k2�;� 6 4M(M _ 1)D(j�(y0)j+ j�2(y0)j): (4.21)

Proof. We recall that by (4.14) for 06 s6u6 t6T

�ysut3 =(�(yu)¡�(ys)¡�2(ys)Xsu
1 )||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

Bsu

Xut
1 +(��2(y))suXut

2 :

By (4.16), for 06 s6u6T

Bsu =
Z
0

1

(�2(ys+u�ysu)¡�2(ys))duXsu
1 +

Z
0

1

r�(ys+u�ysu)du ysu2

¡
Z
0

1

r�(ys+u�ysu)
Z
0

u

r�(ys+ v�ysu) dv du�ysuXsu
1 ;

so that

kBk2�;� 6M(kr�2k1+ kr�k12 )k�yk�;� + kr�k1ky2k2�;�:

By (4.14) we obtain

k�y3k3�;� 6M(M +1)D (k�yk�;� + ky2k2�;�); (4.22)

and by the Sewing estimate in weighted spaces (1.33)

ky3k3�;� 6CM;D(k�yk�;� + ky2k2�;�);

where CM;D>0 is an explicit constant whose value can vary from a line to
the next. Since y2= y3+�2(y)X2, we have denoting " := (� ^T )�

ky2k2�;� 6M k�2(y)k1;� + "CM;D(k�yk�;� + ky2k2�;�);

and since �y=y2+�(y)X1

k�yk�;� 6M k�(y)k1;� +M"k�2(y)k1;� + "2CM;D(k�yk�;� + ky2k2�;�):

Since by (1.29)

k�(y)k1;� + k�2(y)k1;� 6 j�(y0)j+ j�2(y0)j+3"Dk�yk�;� ;

we have

k�yk�;� + ky2k2�;� 6 (1+ ")M(j�(y0)j+ j�2(y0)j)+
+CM;D ("+ "2) (k�yk�;� + ky2k2�;�):

If "= "M;D2 (0;1) is such that CM;D("+"2)6 1

2
, then if (� ^T )�2 (0; "M;D)

we obtain

k�yk�;� + ky2k2�;� 6 4M(j�(y0)j+ j�2(y0)j):

Finally we obtain (4.21) since

kBk2�;� 6 4M(M _ 1)D(j�(y0)j+ j�2(y0)j):
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The proof is complete. �

4.6. Global existence and uniqueness

Let us suppose that �:Rk!Rk
Rd is of class C3 with kr�k1+kr�2k1<
+1.

Theorem 4.9. If �:Rk!Rk
Rd is of class C3 with kr�k1+kr�2k1<
+1 then for every y02Rd and T > 0 there is a unique solution (yt)t2[0;T ]
to ( 4.13).

Proof. By Theorem 4.7 we have at most one solution. We now construct
a solution on an arbitrary finite interval [0; T ]. We define �� [0; T ] as the
set of all s such that there is a solution (yt)t2[0;s] to (4.13). By Proposition
4.5, � is an open subset of [0; T ] and contains 0. By the a priori estimates
of Lemma 4.8, � is a closed subset of [0; T ]. Therefore �= [0; T ]. �

4.7. Continuity of the solution map

We consider now the map Rd�R�;d3 (y0;X) 7!y=�(y0;X)2C�, where y
is the unique solution to (3.6) constructed in Theorem 3.8 and X=(X1;X2).
We want to show that this map, called the solution map, is continuous. This
property is highly non-trivial.

We suppose in this section that � is of class C3, with kr�k1+kr2�k1+
kr3�k1+ kr�2k1+ kr2�2k1<+1 (without boundedness assumptions
on � and �2). We fix

D�kr�k1+ kr2�k1+ kr3�k1+ kr�2k1+ kr2�2k1:

Proposition 4.10. Let M > 0 and let us suppose that

max fj�(y0)j+ j�(y�0)j+ j�2(y�0)j; kX1k�+ kX2k2�; kX� 1k�+ kX� 2k2�g6M:

Then for every T > 0 there are �̂M;D;T ; CM;D;T > 0 such that for � 2 ]0;
�̂M;D;T ]

ky¡ y�k1;� + k�y¡ �y�k�;� + ky2¡ y�2k2�;� 6
6CM;D;T (jy0¡ y�0j+ kX1¡X� 1k�+ kX2¡X� 2k2�):

Proof. If y and y� are two solutions, set z:=y¡y�. We recall that by (4.14)
for 06 s6u6 t6T

�ysut3 =(�(yu)¡�(ys)¡�2(ys)Xsu
1 )||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

Bsu

Xut
1 +(��2(y))suXut

2 ;
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and analogously for �y�3 and B�su. In particular for 06 s6u6 t6T

�zsut3 = (Bsu¡B�su)Xut
1 +B�su (X1¡X� 1)ut

+(��2(y)¡ ��2(y�))suXut
2 + ��2(y�)su (X2¡X� 2)ut: (4.23)

By (4.16) we have for 06 s6 t6T

Bst = r�(ys) yst2||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
Est

+
Z
0

1

[r�(ys+ r�yst)¡r�(ys)]dr�yst||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
Fst

with analogous notations for E�st and F�st. We set z2 as in (3.13) and zst3 :=
yst3 ¡ y�st3 as in (4.13).

We want to estimate k�z3k3�;�. We use a number of times the elementary
estimate

jab¡ cdj= jab¡ ac+ac¡ cdj6 jaj jb¡ cj+ jcj ja¡ dj

for a; b; c; d2R. We start by estimating

kE ¡E�k2�;� 6 D(kz2k2�;� + ky2k2�;�
No-expkzk1;�);

where the seminorms k�k�;�
No-exp are defined in (3.16). Now, by (3.11)

j(r�(ys+ r�yst)¡r�(ys))¡r�(y�s+ r�y�st)¡r�(y�s)j
6D(j�zstj+(j�ystj+ j�y�stj)jzsj);

so that

kF ¡F�k2�;� 6 D k�yk�;�
No-expcy;y� (kzk1;� + k�zk�;�):

By (3.11) we have

k��(y)¡ ��(y�)k�;� + k��2(y)¡ ��2(y�)k�;� + k�r�(y)¡ �r�(y�)k�;� 6
6Dcy;y� (ky¡ y� k1;�+k�y¡ �y�k�;�); (4.24)

where

cy;y�=(k�yk�;�
No-exp+ k�y� k�;�

No-exp+1) :

In particular

k��2(y)¡ ��2(y�)k�;� 6 Dcy;y� (kzk1;� + k�zk�;�):

By Lemma 4.8, if �M;D
� = "M;D, then

k�yk�;�M;D

No-exp + ky2k�;�M;D

No-exp + k�y� k�;�M;D

No-exp 6 e
T

�M;D 8M2

kB�k2�;� 6 4D(M +1)3:

Therefore there is a constant CT ;M;D> 0 such that for all � 2 (0; �M;D)

k�z3k3�;� 6 CT ;M;D(kzk1;� + k�zk�;� + kz2k2�;�)+
+CT ;M;D(kX1¡X� 1k�+ kX2¡X� 2k2�):
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By the definitions of y2 and y3

jzst2 j= jyst2 ¡ y�st2 j 6 jzst3 j+ j(�2(ys)¡�2(y�s))j jXst
2 j+ j�2(y�s)j jXst

2 ¡X� st2 j:

The last term can be bounded as follows

kj�2(y�)j jX2¡X� 2jk2�;� 6 (j�2(y0)j+ ��Dk�y�k�;�
No-exp)kX2¡X� 2k2�

and therefore

kz2k2�;� .M;D kzk1;� + ��kz3k3�;� + kX2¡X� 2k2�:

Therefore by the Sewing estimate in weighted spaces (1.33) and by (4.19)

kz3k3�;�.M;D;T kzk1;� +(��+ �2�)kz3k3�;�+kX1¡X� 1k�+ kX2¡X� 2k2�:

By choosing � > 0 small enough, we obtain

kz3k3�;� .M;D;T kzk1;� + kX1¡X� 1k�+ kX2¡X� 2k2�;

so that by (4.18)

kzk1;� .M;D;T jz0j+ ��kzk1;�+kX1¡X� 1k�+ kX2¡X� 2k2�

and there exists �̂M;D;T 6 �M;D such that, for � 2 ]0; �̂M;D;T ], we obtain

kzk1;� + k�zk�;� + kz2k2�;� .M;D;T jz0j+ kX1¡X� 1k�+ kX2¡X� 2k2�:

The proof is complete. �

4.8. Milstein scheme and local existence

In this section we prove the local existence result of Proposition 4.5, under
the assumption that �; �2 are of class C1 and uniformly Lipschitz. To con-
struct a solution to (4.8), we set ti :=

i

n
, i> 0, and

yi+1= yi+�(yi)Xtiti+1
1 +�2(yi)Xtiti+1

2 ; i> 0:

We set D :=max f1; kr�k1; kr�2k1g and

�yij := yj¡ yi;

k�yk� := n� sup
0<i<j6nT

jyj¡ yij
jj ¡ ij� ;

Aij : = �(yi)Xtitj
1 +�2(yi)Xtitj

2 :

The main technical estimate is the following

Lemma 4.11. Let M > 0. There exists TM;D;�> 0 such that, for all T 2 (0;
TM;D;�) and X=(X1;X2)2R�;d such that kX1k�+ kX2k2�6M, we have

k�yk� 6 5M(j�(y0)j+ j�2(y0)j);

j�yik¡Aikj .M;D;� (j�(y0)j+ j�2(y0)j)
�
jk¡ ij
n

�
3�

; 06 i6 k6nT :
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Proof. We set

L(y) := 2
1¡ 21¡3� 2DM(M j�2(y0)j+2(DM +1) k�yk�):

We want first to obtain the following estimate

j�yik¡Aikj6L(y)
�
jk¡ ij
n

�
3�

; 806 i6 k6nT : (4.25)

Note that (4.25) holds if k 2 fi; i+ 1g. Let m> 1 and suppose that (4.25)
holds for all i; k 6 nT such that 0 6 k ¡ i 6m. We want to show that
(3.26) holds for all i; k6 nT such that k ¡ i=m+ 1; for such i; k, we set

j= i+
j
k¡ i
2

k
, so that 06 j ¡ i6 k¡ i

2
6m and 06 k¡ j ¡ 16 k¡ i

2
6m.

Now, since 3�> 1, we have

jj ¡ ij3�+ jk¡ j ¡ 1j3�6 21¡3� jk¡ ij3�:
We set

�Aijk :=Aik¡Aij¡Ajk:

Then, since Aj (j+1)¡ yj+1+ yj=0,

j�yik¡Aikj 6 j�Aijkj+ j�yij¡Aij j+ j�yjk¡Ajkj
6 j�Aijkj+ j�yij¡Aij j+ j�Aj(j+1)kj+ j�y(j+1)k¡Aj+1kj

6 j�Aijkj+ j�Aj (j+1)kj+L(y) 21¡3�
�
jk¡ ij
n

�
3�

; (4.26)

where we have used the recurrence assumption in the third inequality. Now,
analogously to (4.14)

�Aijk =
¡
�(yj)¡�(yi)¡�2(yi)Xtitj

1
�||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

Bij


Xtjtk
1 +(�2(yi)¡�2(yj))||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

Cij

Xtjtk
2 :

We want an estimate j�Aijkj.
�
jk¡ ij
n

�
3�
. For that, it is enough to obtain

jBij j.
�
jj ¡ ij
n

�
2�

and jCij j.
�
jj ¡ ij
n

��
. We set

Dij := �yij¡�(yi)Xtitj
1 ;

and by (4.16) we obtain

Bij=�(yj)¡�(yi)¡�2(yi)Xtitj
1 =

=
Z
0

1

(�2(yi+u�yij)¡�2(yi))Xtitj
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Eij

+
Z
0

1
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Fij

¡
Z
0

1

r�(yi+u�yij)(�(yi+u�yij)¡�(yi))Xtitj
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Gij

:
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First

jEij j 6 kr�2k1k�yk�kX1k�
�
jj ¡ ij
n

�
2�

6 DM k�yk�
�
jj ¡ ij
n

�
2�

:

Similarly

jGij j 6 kr�k12 k�yk�kX1k�
�
jj ¡ ij
n

�
2�

6 D2M k�yk�
�
jj ¡ ij
n

�
2�

:

By the induction hypothesis and the definition of Aij

jDij j 6 j�yij¡Aij j+ j�2(yi)Xtitj
2 j

6 (T�L(y)+ (j�2(y0)j+T�kr�2k1k�yk�)kX2k2�)
�
jj ¡ ij
n

�
2�

6 (T�L(y)+M j�2(y0)j+T�DM k�yk�)
�
jj ¡ ij
n

�
2�

:

Therefore

jFij j 6 D jDij j

6 D(T�L(y)+M j�2(y0)j+T�DM k�yk�)
�
jj ¡ ij
n

�
2�

:

Finally

jBij j 6 jEij j+ jFij j+ jGij j

6 D [M j�2(y0)j+T�L(y)+DM(2+T� )k�yk�]
�
jj ¡ ij
n

�
2�

:

Analogously

jCij j= j�2(yj)¡�2(yi)j6Dk�yk�
�
jj ¡ ij
n

��
:

Therefore

j�Aijkj6

6DM(M j�2(y0)j+T�L(y)+ (2DM +T�DM +1)k�yk�)
�
jk¡ ij
n

�
3�

;

and we have the same bound for �Aj (j+1)k. Therefore by (4.25), if T�DM6
1,

j�yik¡Aikj 6
�
jk ¡ i j
n

�
3�

[2DM (M j�2(y0)j + 2(DM + 1) k�yk�) +

(21¡3�+2T�DM )L(y) ]:
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If furthermore 2T�DM 6 1¡ 21¡3�

2
, then 21¡3�+2T�DM 6 1+21¡3�

2
and by

the definition of L(y) we obtain

j�yik¡Aikj 6
�
jk¡ ij
n

�
3�
�
1¡ 21¡3�

2
L(y)+ 1+21¡3�

2
L(y)

�
=
�
jk¡ ij
n

�
3�

L(y);

and (4.25) is proven for all n. Now we obtain by (4.25)

k�yk� 6 n� sup
0<i<j6nT

j�yij¡Aij j+ jAij j
jj ¡ ij�

6 T 2�L(y)+ (j�(y0)j+ j�2(y0)j+2DMT�k�yk�)M:

Since we have already assumed that 2DMT�6 1

2
, we obtain

k�yk�6 2T 2�L(y)+ 2M(j�(y0)j+ j�2(y0)j):

By the definition of L(y), if furthermore 8DM2(1+ 4D )

1¡ 21¡3� T 2�6 1

2
, we obtain

finally

k�yk� 6 5M(j�(y0)j+ j�2(y0)j) ;

L(y) 6 4DM2

1¡ 21¡3� (j�2(y0)j+ 10(DM +1)(j�(y0)j+ j�2(y0)j)) :=K;

and by (4.25)

j�yik¡Aikj6K
�
jk¡ ij
n

�
3�

; 806 i6 k6nT : �

Proof of Proposition 4.5. Arguing as in Proposition 3.4 we obtain the
result of local existence for equation (4.13) of Proposition 4.5. �

4.9. Integral formulation

In this section we interpret the finite difference equation (4.13) as an integral
equation. In section 3.8 we did this for the Young equation (3.6), using the
Young integral of section 2.2. In the setting �2

¡ 1
3
;
1

2

�
, the Young integral

is not adapted, since the germ Ast :=�(ys) �Xst has the property �A2C22�
and 2�6 1, so that the Sewing Lemma can not be applied. However the
equation (4.13) suggests another germ:

Ast :=�(ys)Xst
1 +�2(ys)Xst

2 ; 06 s6 t6T :

Note that A= �y¡y3, in the notation (4.13). Then by (4.22) we know that
�A2C33�. Therefore we can interpret the formula

�y=A¡�(�A)
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as

yt= y0+
Z
0

t

�(ys)dXs; 06 t6T ;

which for the moment is only a notation that will be made more precise in
chapter 8.
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Chapter 5
Rough paths

We have seen in Chapter 4 that it is possible to build a robust theory for a
controlled equation of the form Y_t=�(Yt)X_ t with X : [0; T ]!Rd of class C�

for �2
¡ 1
3
;
1

2

�
, provided we choose a functionX2: [0;T ]62 !Rd
Rd satisfying

for 06 s6u6 t6T

�Xsut
2 =Xsu

1 
Xut
1 ; jXst

2 j. jt¡ sj2�;

see (4.10), where we denote Xst
1 := �Xst, 06 s6 t6 T . In coordinates, the

former identity means

(�X2)sut
ij = �Xsui 
 �Xut

j ; j(Xst
2 )ij j. jt¡sj2�; i; j2f1;:::; dg: (5.1)

In Section 4.2 we left the problem of the existence of such a function X2

open.
We recall that, forX of class C1, we have a natural choice forX2 given by

(Xst
2 )ij :=

Z
s

t

(Xri¡Xsi)X_ r
j dr; 06 s6 t6T ;

see (4.5). In Lemma 2.11 we saw that, for �> 1

2
and X 2C�([0; T ];Rd), the

(uniquely defined) Young integral It
ij :=

R
0

t
Xi dX j satisfies

Rst
ij := It

ij¡ Is
ij¡Xsi (Xt

j¡Xs
j)=

Z
s

t

(Xri¡Xsi)dXr
j ; jRst

ij j. jt¡ sj2�;

where the integral in the right-hand side is again of the Young type and
2�> 1.

There is a clear resemblance between the two last expressions, and indeed
for �> 1

2
we show in Lemma 5.16 below that setting (Xst

2 )ij :=Rst
ij we obtain

(5.1) and this is the only possible choice.
If now �6 1

2
, neither of these formulae is well-defined, because for 2�61

we are not in the setting of the Young integral. However, we have seen in
Chapter 4 that the bound jXst

2 j. jt¡ sj2� is enough for the whole theory
of existence, uniqueness and stability of the rough equation (4.13) to work,
even if 2�6 1.

This suggests that, for every i; j 2 f1; : : : ; dg, the function (Xst
2 )ij can

be interpreted as the remainder Rij associated with an integral I ij of (X i;
X j), where we weaken our requirements with respect to the Young integral,
namely we only require that

It
ij¡ Is

ij¡Xsi (Xt
j¡Xs

j)= (Xst
2 )ij ; j(Xst

2 )ij j. jt¡ sj2�;
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and now 2�61. Therefore the choice of the rough path X=(X1;X2) over X
is equivalent to the choice of a generalised integral I=

R
0

�
X
dX 2C�([0; T ];

Rd
Rd), and in this case X2 plays the role of a generalised remainder with
respect to the germ (s; t) 7!Xs
 (Xt¡Xs).

In this chapter we explore these notions and explain them in greater
detail.

5.1. Integral beyond Young

Let us fix (X;Y )2C��C�. We saw in Theorem 2.7 that when �+ � >1 we
can define the integral It=

R
0

t
Y dX as the unique function which solves

I0=0 ; �Ist=Ys �Xst+Rst; Rst= o(jt¡ sj) : (5.2)

This was based on the observation that for the germ Ast :=Ys �Xst we have

�Asut=¡�Ysu �Xut =) k�Ak�+�6 k�Xk�k�Y k� :

Therefore if � :=�+ � > 1 we have k�Ak�<1, i.e. the germ A is coherent,
see Definition 1.9, and the Sewing Lemma can be applied, see Theorem 1.10.

We now focus on the regime � + � 6 1. As we have already seen in
(2.10) above, there exist germs A which allow no function I solving ( 5.2).
Indeed, we recall that choosing Xt= t� and Yt= t�, t2 [0; T ], then the germ
Ast :=Ys �Xst satisfies j�A0 t

2
tj& t�+�, see (2.10), and therefore the necessary

condition (1.13) in Lemma 1.7 is not satisfied.
A solution is to relax the requirement Rst= o(jt¡ sj) in (5.2), say to

9�6 1: jRstj. jt¡ sj�: (5.3)

Arguing as in 1.7, this would imply j�Rsutj. ju¡ sj� + jt ¡ uj�. On the
other hand, by 1.6 we have j�Rsutj= j�Asutj. ju¡ sj� jt¡ uj�. Choosing
ju¡ sj= jt¡uj shows that the best we can hope for in (5.3) is �=�+ �.

Summarizing, given (X; Y ) 2 C�� C� with �+ � 6 1, it is natural to
wonder whether there exists a function I which satisfies the following weak-
ening of (5.2)

I0=0 ; �Ist=Ys �Xst+Rst ; jRstj. jt¡ sj�+� : (5.4)

This would provide a �generalised notion of integral�
R
0

�
Y dX . This justifies

the following

Definition 5.1. Fix �; � 2 (0; 1) with �+ � < 1. Given (f ; g)2C��C�,
if there exists a function I: [0; T ]!R which satisfies

It¡ Is= fs (gt¡ gs)+O(jt¡ sj�+�) uniformly as jt¡ sj! 0; (5.5)

we say that I is an integral of (f ; g).
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We stress that this new definition of integral extends the previous one
(5.6), for (f ; g) 2 C��C� with �+ � > 1, because the term o(jt ¡ sj) is
actually O(jt¡sj�+�) in this case, by the key estimate for the Young integral
(or, equivalently, for the sewing map).

On the positive side, there is always existence for ( 5.4) if �+ �<1. This
is a non-trivial result, due (in a more general setting) to Lyons and Victoir.
We state this as a separate result, which is a consequence of Proposition 5.8
below.

Lemma 5.2. Let (X; Y ) 2 C�� C� with �+ � < 1. There exists (I ; R) 2
C��C2

�+� satisfying ( 5.4).

However it is an easy observation that uniqueness can not hold for ( 5.4).
Indeed, given I which solves (5.4), any function of the form It

0 := It+ht¡h0
with h2C�+� still solves (5.4). As a matter of fact, all solutions are of this
form, because given two solutions I ; I 0 of (5.4), with corresponding R;R0,
their difference h := I 0¡ I must satisfy j�hstj= jRst0 ¡Rstj. jt¡ sj�+�.

5.2. Two negative results

The Young integral It=
R
0

t
f dg, defined in Theorem 2.5 for (f ; g)2C��C�

with �+ �>1, is the unique function I: [0; T ]!R with I0=0 which satisfies

It¡ Is=fs (gt¡ gs)+ o(jt¡ sj); uniformly as jt¡ sj! 0 : (5.6)

We now turn to the regime �+ �6 1. Let us recall that
Ast := fs �gst =) �Asut=¡�fsu �gut : (5.7)

We first show that one cannot hope to find a solution of ( 5.6) for generic
(f ; g)2C��C� with �+ � < 1.

Lemma 5.3. Fix �; �2 (0;1) with �+ �61. Then there are (f ; g)2C��C�
such that there is no function I : [0; T ]!R which satisfies ( 5.6).

The proof is based on the following general result, of independent interest.

Lemma 5.4. Given I 2C1 and A2C2, define R2C2 by

It¡ Is=Ast+Rst : (5.8)

If Rst= o(jt¡ sj), uniformly as jt¡ sj! 0, then also �Asut= o(jt¡ sj).

Proof. We show that, more generally, if jRstj6 h(jt ¡ sj) for some non-
decreasing function h: [0;1)!R, then j�Asutj63h(jt¡sj). To this purpose,
note that � (� I)= 0, hence relation (5.8) implies �A=¡�R and then

j�Rsutj= jRst¡Rsu¡Rutj6 jRstj+ jRsuj+ jRutj6 3h(jt¡ sj) ;

which completes the proof. �
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Proof of Lemma 5.3. By Lemma 5.4 and relation (5.7), a necessary con-
dition for the existence of a function I which satisfies (5.6) is that for s<u<t

�fsu �gut= o(jt¡ sj) uniformly as jt¡ sj! 0 : (5.9)

Given �; � 2 (0; 1) with �+ � 6 1, it is easy to find (f ; g)2C��C� for
which (5.9) fails. For instance, fix u�2 (a; b) and define f(x) := jx¡u�j� and
g(x) := jx¡u�j�. Choosing s=u�¡ � and t=u�+ �, we have

�f(s; u�) �g(u�; t)= ju�¡ sj� jt¡u�j�= ��+�= jt¡ sj
�+�

2�+�

which is clearly not o(jt¡ sj) as jt¡ sj! 0. �

Next we show that the usual integral I(f ; g)=
R
0

t
fs gs

0 ds, when g 2C1,
cannot be extended to a continuous operator on C�

0�C� 0, when �0+ � 0<1.

Lemma 5.5. Set [0; T ] = [0; 1] and define, for �; � 2 (0; 1),

fn(t) :=
1
n�

cos (nt) ; gn(t) :=
1
n�

sin (nt) :

Then fn � 0 and gn � 0 (recall Definition 2.12), more precisely:

kfnk1! 0 ; kfnk�6 2 ; kgnk1! 0 ; kgnk�6 2 : (5.10)

(In particular, fn! 0 in C�
0
and gn! 0 in C�

0
for any �0<� and � 0< �.)

However, if we fix �+ �6 1, we have I(fn; gn)! 0, because

8t2 [0; 1]: lim
n!1

I(fn; gn)t=

8>><>>:
+1 if �+ � < 1
1

2
t if �+ �=1

0 if �+ � > 1

:

Proof. Note that kfnk1=n¡� and kfn0k1=n1¡�, hence

jfnt¡ fnsj6min fkfn0k1jt¡ sj; 2 kfnk1g6min fn1¡�jt¡ sj; 2 n¡�g :

Since min fx; yg6x y1¡, for any  2 [0; 1], choosing =� we obtain

jfn(t)¡ fn(s)j6 21¡� jt¡ sj� ;

hence kfnk�6 21¡�6 2. Similar arguments apply to gn, proving (5.10).
Next we observe that 1

2 �

R
0

2�cos2(x) dx= 1

2 �

R
0

2� sin2(x)dx= 1

2
. Then,

for fixed t > 0, as n!1Z
0

nt

cos2(x) dx=
Z
0

2�bnt
2�
c
cos2(x)dx+O(1)= 1

2
2�
j
nt
2�

k
+O(1)= t

2
n+O(1) :

It follows that

I(fn; gn)t=
n

n�+�

Z
0

t

cos2(ns) ds= 1
n�+�

Z
0

nt

cos2(x) dx� t

2
n1¡(�+�) : �
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In view of Lemma 5.3, in order to define a generalised integral
R
f dg

when (f ; g)2C��C� with �+ � < 1, we have to relax relation (5.6). We
do this replacing the term o(jt¡ sj) by O(jt¡ sj�+�). This is, in a sense,
the best we can hope for, because the example built in Lemma 5.3, together
with Lemma 5.4, shows that we cannot have O(jt¡ sj) with  > 1.

Remark 5.6. Finding an integral I of (f ; g) is equivalent to finding a
function Rst with

�Rsut= �fsu �gut ; (5.11)
Rst=O(jt¡ sj�+�) uniformly as jt¡ sj! 0 : (5.12)

Indeed, if we define A as in (5.7), relation (5.11) implies that �(A+R)=0,
hence there exists I: [0; T ]!R which satisfies �I =A+R, which is exactly
relation (5.5).

Remark 5.7. An integral I as in Definition 5.1 is necessarily of class C�

by (5.5).

We state now a result which implies Lemma 5.2 above.

Proposition 5.8. (Paraintegral) Fix �; �2 (0;1) with �+ �<1. There
exists a (non unique) bilinear and continuous map J�:C��C�!C2

�+� such
that

kJ�(f ; g)k�+�6C k�f k� k�gk� ; (5.13)

for a suitable C=C(�; �; T ), with the property that, for all s<u< t,

�J�(f ; g)sut= �fsu �gut : (5.14)

It follows that any (f ; g)2C��C� admits an integral I as in Definition 5.1.

The proof of Proposition 5.8 is postponed to Section 5.9 below.

Remark 5.9. By Proposition 5.8, for all (f ; g)2C��C� with �+ � <
1 there exists an integral as in Definition 5.1. As a consequence, there
are infinitely many integrals and all of them differ by a function in C�+�.
Indeed, if I satisfies (5.5), given an arbitrary h 2 C�+� also I + h sat-
isfies (5.5). Viceversa, if I and I 0 satisfy (5.5), h := I ¡ I 0 satisfies �h=
O(jt¡ sj�+�), that is h2C�+�.

5.3. A choice

We have seen in (2.16) above that, given (X;Y )2C��C� with �+ � > 1,
we have an explicit formula for the remainder Rst= It¡ Is¡ Ys(Xt¡Xs),
given by

Rst=
Z
s

t

(Yu¡Ys)dXu; 06 s6 t6T ; (5.15)
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where It=
R
0

t
Yu dXu is the unique function given by the Young integral of

Theorem 2.5. Moreover Rst=
R
s

t(Yu¡ Ys) dXu is the unique function in C2
which satisfies

R2C2
�+�; �Rsut = �Ysu �Xut; 06 s6u6 t6T : (5.16)

In the regime �+ � < 1, the Young integral is not available anymore.
However by Proposition 5.8 we know that we can find an integral I 2C� in
the sense of Definition 5.1 by setting

�Ist :=Ys (Xt¡Xs)¡J�(X;Y )st;

where J� is the paraintegral of Proposition 5.8, see also Remark 5.6. This
shows that, in this setting, the remainder Rst= It¡ Is¡Ys (Xt¡Xs) is not
given by an explicit formula like (5.15) (which is now ill-defined), rather we
have

R=¡J�(X;Y ):

However formula (5.15) suggests that we can defineZ
s

t

(Yu¡Ys)dXu :=Rst=¡J�(X;Y )st; 06 s6 t6T : (5.17)

In other words, the left hand side of (5.17) is chosen to be equal to the
remainder R associated with the integral I as in (5.4). We recall that R=
¡J�(X;Y ) satisfies

R2C2
�+�; �Rsut = �Ysu �Xut; 06 s6u6 t6T : (5.18)

The difference between formula (5.18) and formula (5.16), is that in the
former �+ � < 1 while in the latter �+ � > 1. Accordingly, in (5.18) the
function R is not uniquely determined, while in (5.16) it is.

The comparison between formula (5.18) and formula (5.16), and the
explicit expression (5.15) in the case �+ � > 1 show that (5.17) is a rea-
sonable definition of the function (s; t) 7!

R
s

t (Yu¡ Ys) dXu in the setting
�+ �6 1.

We also stress that R in (5.18) can not be uniquely determined. Indeed,
for any h 2 C�+�, the function R0 := R + �h satisfies the same equality;
the integral associated with R0 as in (5.4) is I 0= I + h ¡ h0. In fact, all
possible solutions are of this form, because given two integrals I ; I 0 with
corresponding remainders R;R0 as in (5.4), , their difference h := I 0¡ I must
satisfy j�hstj= jRst0 ¡Rstj. jt ¡ sj�+�. In other words we have infinitely
many possible choices given by

(I 0; R0)= (I +h;R+ �h); h2C�+� ; h0=0: (5.19)
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Remark 5.10. In the special case X =Y and �= �6 1

2
, (5.2) becomes

I0=0 ; �Ist=Xs �Xst+Rst ; jRstj. jt¡ sj2� : (5.20)

Now the germ is Ast=Xs(Xt¡Xs) and we have a simple canonical solution
which does not rely on the paraintegral and is given by

It :=
1
2
(Xt2¡X0

2); Rst :=
1
2
(Xt¡Xs)2;

since
1
2
(Xt2¡Xs2)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
It¡Is

=Xs(Xt¡Xs)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
Ast

+ 1
2
(Xt¡Xs)2||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

Rst

:

As we have seen in (2.14)-(2.15), if �> 1/2 then (I ;R) is the only solution
of (5.20) and moreover

Rst=
Z
s

t

(Xr¡Xs) dXr

where the integral is in the Young sense. If �6 1

2
, then we have infinitely

many possible solutions (I 0; R0).

5.4. One-dimensional rough paths

We have seen at the beginning of this chapter that for every i; j 2f1; :: :; dg,
the function (Xst

2 )ij plays the role of the remainder Rij associated with
a generalised integral I ij of (X i; X j) in the sense of Definition 5.1 with
�= � <

1

2
: in other words the choice of X2 is equivalent to the choice of

integrals (in the sense of Definition 5.1) I ij 2C� for all i; j 2f1; : : : ; dg, such
that

I0
ij=0 ; �Ist

ij=Xsi �Xst
j +(Xst

2 )ij ; j(Xst
2 )ij j. jt¡ sj2� ;

or, in more compact notations,

I0=0 ; �Ist=Xs
Xst
1 +Xst

2 ; jXst
2 j. jt¡ sj2� : (5.21)

Existence of X2 satisfying (5.21) with �< 1

2
is therefore granted by Lemma

5.2, e.g. via the paraintegral of Theorem 5.8. We also know that in the
regime �< 1

2
we have infinitely many possible choices for (I ;X2), all of the

form (5.19) above.
Suppose first that we are in the setting d=1. Then Definition 4.1 becomes

Definition 5.11. Let � 2 ]1/3; 1/2] and X: [0; T ]!R of class C�. A �-
Rough Path over X is a pair X=(X1;X2)2C2��C22� such that

Xst
1 =Xt¡Xs; �Xsut

2 =Xsu
1 Xut

1 : (5.22)
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The reason of the restriction �>1/3 will become clear in ???. We recall
that the conditions X 2C� and X1= �X 2C2� are equivalent, and that (X1;
X2)2C2��C22� is equivalent to

jXst
1 j. jt¡ sj�; jXst

2 j. jt¡ sj2�:

We have seen in Chapter 4 that it is possible to build an integration theory
for every choice of the �-rough path X over X . In this theory we can recover
existence and uniqueness of the integral function

R
0

�
Y dX for a large class of

choices of Y . For this we have to give very different roles to the integrator
X and to the integrand Y , whereas in the case of the Young integral the
two functions play a symmetric role: X will be a component of a rough path
and Y a component of a controlled path, see Chapter 8.

We note that the algebraic condition �Xsut
2 =Xsu

1 Xut
1 is non-linear ,

which implies that �-rough paths do not form a vector subspace of C2��C22�.
For all �2

¡ 1
3
;
1

2

�
, given any real-valued path X 2C�([0; T ];R), there is

always a rough path lying above X . Indeed, It :=
1

2
Xt
2 is an integral of (X;

X) in the sense of Definition 5.1, because

�Ist=
1
2
(Xt2¡Xs2)=Xs �Xst+

1
2
(�Xst)2=Xs �Xst+O(jt¡ sj2�) :

Then, by Remark 5.10, we can define a rough path X by setting

Xst
2 = 1

2
(�Xst)2 : (5.23)

More directly, note that (5.23) satisfies the Chen relation (5.25), and clearly
X22C22�.

5.5. The vector case

Let us consider now a vector valued path X : [0; T ]!Rd, with Xt=(Xt1; : : : ;
Xt
d). We suppose that X is of class C�, namely that Xi2C� for all i=1; : : : ;

d, with �> 1/3.
We can now generalise Definition 5.11 to the vector case. The multi-

dimensional case d�2 is sensibly richer, because off-diagonal terms
R
Xi dX j

with i=/ j are integral of a function with respect to a different function.

Definition 5.12. Let � ]1/3; 1/2], d�1 and X: [0; T ]!Rd of class C�. A
�-Rough Path on Rd over X is a pair X=(X1;X2), with

� X1=(�Xi)i=1; : : : ;d2C2�([0; T ];Rd)

� X2=(Rij)i;j=1; : : : ;d2C22�([0; T ]62 ;Rd
Rd)

such that

(�Xsut
2 )ij=(Xsu

1 )i (Xut
1 )j ; (5.24)

or equivalently

Xst
2 ¡Xsu

2 ¡Xut
2 =Xsu

1 
Xut
1 : (5.25)
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We denote by R�;d the space of �-rough paths on Rd and by R�;d(X) the
set of �-rough paths over X.

The condition (5.24)-(5.25) is the first instance of the celebrated Chen
relation . As in the one-dimensional case, existence of X2 satisfying (5.24)-
(5.25) with �< 1

2
is therefore granted by Lemma 5.2, e.g. via the paraintegral

of Theorem 5.8. We also know that in the regime �< 1

2
we have infinitely

many possible choices for (I ;X2), all of the form (5.19) above.
We are going to see in Chapter 8 that it is possible to build an integration

theory for every choice of an �-rough path X. Again, we note that the
condition (5.24)-(5.25) is non-linear , which implies that �-rough paths do
not form a vector space.

The following exercise is a simple summary of the discussion at the
beginning of this chapter.

Exercise 5.1. Given a �-rough pathX=(X1;X2) overX inRd, a process I 2C�([0;
T ];Rd
Rd) satisfying (5.21) is an integral of (X;X) in the sense of Definition 5.1.

Viceversa, given X 2C�([0; T ];Rd) and an integral I 2C�([0; T ];Rd
Rd) of (X;

X), in the sense of Definition 5.1, defining X2 by (5.21) we obtain a �-rough path
X=(X1;X2) over X in Rd.

In the multi-dimensional case X 2 C�([0; T ];Rd) with d � 2, building
a rough path over X is non-trivial, because one has to define off-diagonal
integrals

R
X idX j for i=/ j. However, by the results we have proved on the

existence of the paraintegral in Proposition 5.8, we can easily deduce the
following.

Proposition 5.13. For any d2N, �2 (1
3
;
1

2
) and X 2C�([0; T ];Rd), there

is a �-rough path X which lies above X (hence, by Lemma 5.17, there are
infinitely many of them).

Proof. For any fixed i; j 2 f1; : : : ; dg, let I ij be an integral of (Xi; Xj) in
the sense of Definition 5.1, whose existence is guaranteed by the paraintegral
of Proposition 5.8. Then, by Exercise 5.1, defining X2 by (5.21) we obtain
a rough path X which lies above X. �

Let us �justify� the term rough path, even though X is a function of two
variables.

Exercise 5.2. Let X be a rough path above X. Then X is determined by the paths
(Xt¡X0;X0t

2 )t2[0;T ]. [Hint: use the Chen relation.]

We conclude with an elementary observation, that will be useful later.
By Exercise 5.1, any �-rough path X over X 2C�([0; T ];Rd) determines
an integral I of (X;X), given by (5.21). Applying the latter relation in a
telescopic fashion, we can write

It=
X

[ti;ti+1]2P
(Xti �Xtiti+1+Xtiti+1

2 ) ; (5.26)
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where P=f0= t0<t1<:::<tk= tg is an arbitrary partition of [0; t]. We will
see later ??? that a generalization of (5.26), when we also take the limit of
vanishing mesh jP j! 0, is the correct recipe for building �Riemann-sums�,
in order to define an integral of (h;X) for a wide class of functions h.

5.6. Distance on rough paths

We denote by R�;d the set of all �-rough paths in Rd. For X=(X1;X2)2
R�;d we set

kXkR�;d :=kX1k�+kX2k2�= sup
0�s<t�T

jXst
1 j

jt¡ sj�+ sup
0�s<t�T

jXst
2 j

jt¡ sj2� : (5.27)

We stress that R�;d is not a vector space, because the Chen relation (5.25)
is not linear. However, it is meaningful to define for X;X� 2R�;d

dR�;d
(X;X� ):=kX1¡X� 1k�+ kX2¡X� 2k2� : (5.28)

Exercise 5.3. dR�;d
is a distance on R�;d.

When we talk of convergence in R�;d, we mean with respect to the
distance dR�;d. Note that dR�;d is equal on R�;d to the distance induced
by the natural norm kF k�+ kGk2� for (F ; G) 2C2�� C22�. In particular
Xn= (Xn

1 ;Xn
2)!X= (X1;X2) in R�;d if and only if Xn

1!X1 in C2
� and

Xn
2!X2 in C22�.

Lemma 5.14. The metric space (R�;d; dR�;d) is complete.

Proof. Let (Xn)n2N�R�;d be a Cauchy sequence. Then, by definition
of dR�;d, for every � > 0 there is n��<1 such that for all n; m � n�� and
0� s< t�T

jXn
1(s; t)¡Xm

1 (s; t)j� �jt¡sj� ; jXn
2(s; t)¡Xm

2 (s; t)j� �jt¡sj2� : (5.29)

Note that

dR�;d
(X;X� )� kX

1¡X� 1k1
T�

+ kX
2¡X� 2k1
T 2�

:

It follows that the sequences of continuous functions (Xn
1)n2N and (Xn

2)n2N
are Cauchy in the sup-norm, hence there are continuous functions X1 and
X2 such that kXn

1 ¡X1k1! 0 and kXn
2 ¡X2k1! 0. In particular, we have

pointwise convergence Xm
1 (t)!X1(t) and Xm

2 (s; t)!X2(s; t) as m!1.
Taking this limit in (5.29) shows that dR�;d(Xn;X)� � for all n�n��. �

This allows to rephrase the continuity result of section 4.7. We fix

D�kr�k1+ kr2�k1+ kr3�k1+ kr�2k1+ kr2�2k1:

We obtain from Proposition 4.10
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Proposition 5.15. We suppose in this section that �2
¡ 1
3
;
1

2

�
and �:Rk!

Rk 
Rd is of class C3, with kr�k1+ kr2�k1 + kr3�k1 + kr�2k1 +
kr2�2k1<+1 (without boundedness assumptions on � and �2). For X2
R�;d and y02Rk we denote by y: [0;T ]!Rk the unique solution to equation
( 4.13)

jyst3 j. jt¡ sj� ; yst3 = �yst¡�(ys)Xst
1 ¡�2(ys)Xst

2 ;

for some � > 1. Then the map Rk�R�;d3 (y0;X) 7! y2C� is locally Lip-
schitz continuous.

5.7. Canonical rough paths for �>
1

2

Let 1

3
<�06 1

2
<�< 1. Then it is well known that C��C�0. Therefore, if

X 2C�([0; T ];Rd) we have in particular X 2C�0([0; T ];Rd) and therefore
there is a �0-rough pathX overX . However, is there a �-rough path overX?
Note that we have restricted Definition 5.12 to the range �2

¡ 1
3
;
1

2

�
, while

here we are discussing the existence of X2: [0; T ]62 !Rd
Rd satisfying the
Chen relation (5.25) and

jXst
2 j. jt¡ sj2�

where now �>
1

2
.

Lemma 5.16. Let �2
¡ 1
2
; 1
�
:For every X 2C�([0; T ];Rd), there is a unique

X2: [0; T ]62 !Rd
Rd satisfying the Chen relation ( 5.25) and such that
X22C22�. We have the explicit formula

Xst
2 =

Z
s

t

Xsu
1 
 dXu; Xst

1 = �Xst; 06 s6 t6T ; (5.30)

where the integral is in the Young sense. Moreover the map C�3X 7!X22
C2
2� is continuous (in particular, locally Lipschitz-continuous).

Proof. It is easy to check thatX2 in (5.30) satisfies the Chen relation (5.22),
thanks to the bi-linearity of the Young integral. Indeed, we can rewrite (5.30)
as

Xst
2 =

Z
s

t

Xu
 dXu¡Xs
 (Xt¡Xs) ; (5.31)

hence for s6u6 t we have that

(�X2)sut = ¡Xs
 (Xt¡Xs)+Xs
 (Xu¡Xs)+Xu
 (Xt¡Xu)
= ¡Xs
 (Xt¡Xu)+Xu
 (Xt¡Xu)
= �Xsu
 �Xut :

5.7 Canonical rough paths for �>
1

2
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We show now that X22C22�. We recall that the Young integral satisfies the
following key estimate, for f 2C� and g 2C� with �+ � > 1:��������Z

s

t

f dg¡ fs (gt¡ gs)
��������6c�+� jt¡ sj�+� :

Choosing f =Xi and g=X j shows that X2, given by (5.31), is O(jt¡ sj2�).
Finally, we prove the continuity of C�3X 7!X22C22�. Given X;X� 2C�and
the respective X2;X� 22C22�, we have

Xst
2 ¡X� st2 =

Z
s

t

(Xsu
1 ¡X� su1 )
 dXu+

Z
s

t

X� su1 
 d(X ¡X�)u;

with all integrals in the Young sense. Then by the Sewing Lemma

kX2¡X� 2k2� 6 K2�(k�Xk�+ k�X� k�)k�X ¡ �X� k�:

The proof is complete. �

Therefore, we could extend Definition 5.12 to �-rough paths for �2
¡ 1
3
;

1
�
. For �2

¡ 1
2
;1
�
and X 2C�([0; T ];Rd) there is a unique �-rough path over

X, which we call the canonical rough path over X .
While for �> 1

2
there is a unique rough path lying above a given path

X2C�, for �< 1

2
there are infinitely many of them, that can be characterized

explicitly.

Lemma 5.17. Let X=(X1;X2) be a �-rough path in Rd, with �< 1

2
. Then

X� = (X1;X� 2) is a �-rough path if and only if for some f 2C2�([0; T ];Rd

Rd) one has X� 2=X2+ �f, that is

X� st2 =Xst
2 + ft¡ fs; 06 s6 t6T :

Proof. By assumption X2 and X� 2 satisfy the Chen relation (5.25). If X� 2=
X2+ �f then X22C22� if and only if X� 22C22� and �X2= �X� 2. Therefore, if
X is a �-rough path then so is X� .

Viceversa, if X� is a �-rough path, then �X2= �X� 2 because both X and
X� satisfy the Chen relation (5.25) with the same X1, hence X� 2=X2+ �f

for some f . Since both X2;X� 2 belong to C22�, then also �f 2C22�, which is
the same as f 2C2�. �

Remark 5.18. We mainly work with �-Hölder rough pats for �2 (1
3
;
1

2
),

excluding the boundary case �= 1

2
for technical reasons. Let us stress that,

by doing so, we are not throwing away any rough paths, but only giving up a
tiny amount of regularity , because any rough path of exponent 1

2
is a rough

path of exponent �, for any �< 1

2
.
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To summarize, the situation is the following:

1. For �2
¡ 1
2
; 1
�
and X 2C�([0; T ];Rd) there is a unique �-rough path

over X

2. For � 2
¡ 1
3
;
1

2

�
and X 2C�([0; T ];Rd), there are infinitely many �-

rough paths over X

3. For � = 1

2
, either there is no �-rough path over X , or there are

infinitely many of them.

In the range �2
¡ 1
2
; 1
�
, the unique �-rough path X above X can be called

the canonical rough path over X. We let R1;d be the set of all canonical
rough paths over paths X 2C1 (see Lemma 5.16).

5.8. Lack of continuity
We have seen in Lemma 5.16 that, for �> 1

2
, the map C�3X 7!X22C22�

is continuous. It is a crucial fact that this continuity property can not be
extended to �6 1

2
, as shown by the next example.

For n2N consider the smooth paths Xn1; Xn2: [0; 1]!R

Xn
1(t) := 1

n
p cos (nt) ; Xn

2(t) := 1
n

p sin (nt) :

We have already shown in Lemma 5.5 that Xn1! 0 and Xn2! 0 in C�, for
all �2 (0; 1

2
). More precisely, we have shown that Xn1 1

2
0 and Xn2 1

2
0, by

showing that k�Xn1k1
2
�2, k�Xn2k1

2
�2 for all n2N and, obviously, kXn1k1!

0, kXn2k1! 0. Next we set

In
ij(t) :=

Z
0

t

Xn
i(u) dXn

j(u) ; for i; j 2f1; 2g ;

and correspondingly

(Xn
2)st
ij= (5.32)

=
Z
s

t

(Xni(u)¡Xni(s))dXn
j(u)= In

ij(t)¡ In
ij(s)¡Xni(s)(Xn

j(t)¡Xn
j(s)) :

It is not difficult to show that (Xn
2)ij! (X2)ij in C2�, for any �2 (0;1), where

we define

(X2)st
ij=

0BB@ 0 t¡ s
2

¡t¡ s
2

0

1CCA=
8>>>><>>>>:

t¡ s
2

if i=1; j=2

¡ t¡ s
2

if i=2; j=1
0 if i= j

: (5.33)

As a consequence, for any �2 (1
3
;
1

2
), we have Xn

1! 0 in C� and Xn
2!X2

in C22�, that is the canonical ls (Xn
1 ;Xn

2) converge in R�;d to the rough path
(0;X2).
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Let us prove that (Xn
2)ij! (X2)ij in C2

�, for any � 2 (0; 1). We have
already shown the pointwise (actually uniform) convergence In12(t)!

1

2
t.

With similar arguments, one shows the uniform convergence In
ij!I ij defined

by

I ij(t)=

0BB@ 0 t
2

¡ t
2

0

1CCA=
8>>>><>>>>:

t

2
if i=1; j=2

¡ t

2
if i=2; j=1

0 if i= j

:

It follows by (5.32) that we have the uniform convergence (Xn
2)st
ij! I ij(t)¡

I ij(s) = (X2)st
ij. To prove convergence in C2

�, it suffices to show a uniform
�Lipschitz-like� bound j(Xn

2)st
ij j � 2 jt¡ sj, which is easy:

j(Xn
2)st
ij j �

Z
s

t

jXni(u)¡Xni(s)j j(Xn
j)0(u)jdu

� 2 kXnik1 k(Xn
j)0k1jt¡ sj

= 2 1
n

p n

n
p jt¡ sj

= 2 jt¡ sj :

5.9. Proof of Proposition 5.8

Given continuous functions f ; g: [0; T ]!R, let us define R1; R22C2

R1(f ; g)st :=¡fs �gst ; R2(f ; g)st := gt �fst ; 06 s6 t6T ; (5.34)

and note that

Rst
2 =Rst1 + ft gt¡ fs gs :

It is easy to check that both R1 and R2 satisfy (5.11), that is

�R1(f ; g)sut= �R2(f ; g)sut= �fsu �gut : (5.35)

Note that R1 coincides with ¡A, defined in (5.7), while R2=R1+ �(fg),
hence �R2= �R1.

However, neither R1 nor R2 satisfy (5.12), because we can only estimate

kR1k�6 kf k1 k�gk� ; kR2k�6 kgk1 k�f k� : (5.36)

We are going to show that, by combining R1 and R2 in a suitable way, one
can build R which satisfies both (5.11) and (5.12). This yields the existence
of an integral.

We start with a technical approximation lemma.

Lemma 5.19. Given f 2C�, there is a sequence f~n2C1 such that

f(x)= f(0)+
X
n�0

f~n(x) ; 8x2 [0; T ] : (5.37)
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One can choose f~n so that for every n� 0

kf~nk16C k�f k� 2¡n� ; kf~n0k16C k�f k� 2n(1¡�) ; (5.38)

where C 2 (0;1) depends only on T (e.g. one can take C =2(T�+1)).

Proof. We may assume without loss of generality that f(x)=0 (it suffices
to redefine f(x) as f(x)¡ f(0), which does not change k�f k�.)

We extend f :R!R (e.g. with f(x) := f(0) for x6 0 and f(x) := f(T )
for x� T ) so that kf k� is not changed. Then we fix a probability density
�: [¡1; 1]!R with �2C1 and for n� 0 we define the rescaled density

�n(x) := 2n�(2nx) :

Next, for n� 0, we set fn(x) := (f � �n)(x), that is

fn(x) :=
Z
R

f(z) �n(x¡ z) dz=
Z
R

f(x¡ z) �n(z)dz

=
Z
R

f(x¡ z

2n
)�(z)dz : (5.39)

It is easy to check that kfn¡ f k1! 0. Next we define

f~0(x) := f0(x) ; for k � 1: f~k(x) := fk(x)¡ fk¡1(x) :

Note that
P
k=0
n

f~k = fn, hence relation (5.37) is proved (we recall that
f(0)=0).

We now prove the first relation in (5.38). Since f(0) = 0, for all x2 [0;
T ] we can write

jf~0(x)j=jf0(x)j6
Z
R

jf(x¡ z)j �(z) dz=
Z
R

jf(x¡ z)¡ f(0)j�(z) dz

6k�f k�
Z
R

jx¡ z j� �(z) dz6 (T�+1) k�f k� ;

where for the last inequality we have used (x+ y)�6x�+ y� (for �<1 and
x; y�0), x6T and

R
R
jz j� �(z) dz6

R
[¡1;1]�(z)dz=1, because � is a density

supported on [¡1; 1]. For k � 1 we estimate

jf~k(x)j = jfk(x)¡ fk¡1(x)j

6
Z
R

jf(x¡ z

2k
)¡ f(x¡ z

2k¡1
)j �(z)dz

6 2¡k� k�f k�

again because
R
R
jz j��(z) dz61. We have proved the first relation in (5.38).

We finally prove the second relation in (5.38). Note that

fn
0(x)=

Z
R

f(z) �n0 (x¡ z)dz=2n
Z
R

f(x¡ z

2n
) �0(z)dz ;
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which has the same form as fn(x), see the last integral in (5.39), just with
an extra multiplicative factor 2n and with � replaced by �0. Arguing as
before, we obtain

jf~00(x)j= jf00(x)j6 (T�+1)
�Z

[¡1;1]
j�0(z)jdz

�
k�f k� ;

jf~k0(x)j= jfk0(x)¡ fk¡10 (x)j6 2k(1¡�)
�Z

[¡1;1]
j�0(z)j dz

�
k�f k�;

for k � 1. We can choose � to be symmetric, decreasing on [0; 1], with
�(0)=1 and �(1)=0, so thatZ

[¡1;1]
j�0(z)jdz=2

Z
0

1

(¡�0(z)) dz=2 (�(0)¡ �(1))=2 ;

and this completes the proof. �

Proof of Proposition 5.8. The existence of an integral is an immediate
consequence of Remark 5.6, because if we define Rst :=J�(f ; g)st, then both
relations (5.11) and (5.12) are satisfied.

It remains to build J�. Let us write, applying Lemma 5.19,

f(x)= f(0)+
X
m�0

f~n(x) ; g(x)= g(0)+
X
n�0

g~m(x) :

Recalling (5.34), we define

J�(f ; g) :=
X

06m6n
R1(f~n; g~m)+

X
06n<m

R2(f~n; g~m) : (5.40)

We show below that the series converge uniformly. Note that
P
n�0f

~
n(x)=

f(x)¡ f(0), hence
P

n�0�f
~
n=�(f ¡ f(0))=�f , and similarly for g. Applying

(5.35), we get

� J�(f ; g)sut=
X

06m6n
(�f~n)su (�g~m)ut+

X
06n<m

(�f~n)su (�g~m)ut

=
 X
n�0

(�f~n)su

! X
m�0

(�g~m)ut

!
= �fsu �gut ;

which proves (5.14). We now prove (5.13). Note that, by (5.38),

j(�f~n)stj6 kf~n0k1 jt¡ sj6C k�f k� 2¡�n(2n jt¡ sj) ;

but at the same time, always by (5.38),

j(�f~n)stj6 jf~n(s)j+ jf~n(t)j6 2 kf~nk16 2C k�f k� 2¡�n :

Altogether, using the notation x^ y :=min fx; yg,

j(�f~n)stj6 2C k�f k� 2¡�n (2njt¡ sj ^ 1) :
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Similarly

j(�g~m)stj6 2C k�gk� 2¡�m (2mjt¡ sj ^ 1) :

Recalling (5.34) and applying again (5.38), we get

jR1(f~n; g~m)stj 6 kf~nk1 j(�g~m)stj
6 2C2 k�f k� k�gk� 2¡�n 2¡�m (2mjt¡ sj ^ 1)

and similarly

jR2(f~n; g~m)stj 6 kg~mk1 j(�f~n)stj
6 2C2 k�f k� k�gk� 2¡�n 2¡�m(2njt¡ sj ^ 1) :

These relations show that the series in (5.40) converge indeed uniformly. We
now plug these estimates into (5.40), getting

jJ�(f ; g)stj 6 2C2 k�f k� k�gk�
 X
06m6n

2¡�n 2¡�m (2mjt¡ sj ^ 1)

+
X

06n<m
2¡�n 2¡�m (2njt¡ sj ^ 1)

!
: (5.41)

Let us set for convenience

k�= k�st := log2
1

jt¡ sj ;

so that 2mjt¡ sj62 if and only if m6 k�. SincePn=m
1 2¡�n6 1

1¡ 2¡� 2
¡�m,

the first sum in (5.41) can be bounded as follows (neglecting the prefactor
(1¡ 2¡�)¡1):X
m�0

2¡(�+�)m (2mjt¡ sj ^ 1)6jt¡ sj
X

06m<k�
2(1¡�¡�)m+

X
m�k�

2¡(�+�)m

6jt¡ sj 2
(1¡�¡�)k�

21¡�¡�¡ 1
+ 2¡(�+�)k�

1¡ 2¡(�+�)

6
�

1
21¡�¡�¡ 1

+ 1
1¡ 2¡(�+�)

�
jt¡ sj�+� :

The same estimates apply to the second sum in (5.41), hence (5.13) is
proved. �
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Chapter 6

Brownian rough paths

Let us fix a probability space (
; A; P) endowed with a filtration F =
(Ft)t2[0;1]. Let B=(Bt)t2[0;T ]=(Bt1;:::;Btd)t2[0;T ] be a d-dimensional Brow-
nian motion. We set B1: [0; T ]62 !Rd and B2: [0; T ]62 !Rd
Rd,

Bst
1 :=Bt¡Bs; Bst

2 =
Z
s

t

(Br¡Bs)
 dBr; 06 s6 t6T ; (6.1)

i.e.

(Bst2 )ij=
Z
s

t

(Bri¡Bsi)dBr
j ;

where the integral is in the Itô sense. The main aim of this chapter is to
show the following

Theorem 6.1. For all �2
¡
0; 1

2

�
, almost surely B := (B1;B2) is a �-rough

path, namely B2R�;d.

It is easy to see that B a.s. satisfies for all �2
¡
0; 1

2

�
jBst1 j. jt¡ sj�

and the Chen relation (5.25)

�Bsut
2 =Bsu

1 
But
1 ; 06 s6u6 t6T :

Indeed, the former formula follows by the well-known Hölder continuity of
Brownian motion, and the latter from

�(B2)sut
ij =

Z
s

t

(Bri¡Bsi)dBr
j¡
Z
s

u

(Bri¡Bsi)dBr
j¡
Z
u

t

(Bri¡Bui ) dBr
j

=
Z
u

t

(Bui ¡Bsi)dBr
j=(Bui ¡Bsi)(Bt

j¡Bu
j);

which is a legitimate computation by the properties of the Itô integral and
the fact that the times s6u6 t are ordered.

The non-trivial missing information is the analytic estimate for Bst2 :

jBst2 j. jt¡ sj2�:

In this chapter we prove this formula with a refinement of the classical
Kolmogorov continuity criterion.
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In fact, we are going to prove a more general result. Given (f ; g) 2
C��C� with �+ � < 1, we recall that an integral of (f ; g) in the sense of
Definition 5.1 is a function I: [0; T ]!R satisfying

It¡ Is=fs(gt¡ gs)+O(jt¡ sj�+�) uniformly as jt¡ sj! 0: (6.2)

We want to show that Itô stochastic integrals with respect to Brownian
motion are almost surely integrals in this sense.

6.1. Main result

LetB=(Bt)t2[0;1] be a d-dimensional Brownian motion and let h=(ht)t2[0;1]
be a Rd-valued adapted process with continuous paths. In particularR
0

1 jhsj2 ds<1, hence the Itô integral

It :=
Z
0

t

hsdBs (6.3)

is well-defined as a local martingale. It is well-known that the process I =
(It)t2[0;1] admits a version with continuous paths, which we always fix.

For 06 s6 t6 1 we define the (random) continuous function

Rst := It¡ Is¡hs (Bt¡Bs): (6.4)

We recall that a.s. b2C� for every � < 1

2
. This is our main result.

Theorem 6.2. Assume that a.s. h2C�, for some �2 (0; 1). Then, for any
� <

1

2
, there is an a.s. finite random constant C such that

jRstj6C jt¡ sj�+� ; 806 s6 t6 1: (6.5)

In particular, a.s. the Itô integral in ( 6.3) is an integral of (h; B) in the
sense of ( 6.2).

Proof. First observation: if the claim holds under the stronger assumption
k�hk�6 c, for some deterministic c <1, then we can deduce the general
result by localization. Indeed, if we only assume that k�hk�<1 a.s., we
can define for n2N the stopping times

�n := inf ft2 [0; 1]: k�hk�;[0;t]>ng;

where k�hk�;[0;t] is the Hölder semi-norm of h restricted to [0; t] (equiva-
lently, the Hölder semi-norm of s 7! hs^t on the whole interval s 2 [0; 1]).
Let us define

hs
(n) :=hs^�n; It

(n) :=
Z
0

t

hs
(n)dBs; Rst

(n) := It
(n)¡ Is

(n)¡hs
(n)(Bt¡Bs):
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Note that k�h(n)k�6 n, by definition of �n. (Indeed, k�hk�;[0;t]6 n for all
t < �n, which means that jh(r)¡ h(s)j6 njr¡ sj� for all r; s2 [0; �n); then,
by continuity, jh(r)¡h(s)j6njr¡ sj� for all r; s2 [0; �n], which means that
k�hk�;[0;�n]= k�h(n)k�6n.) Then

jRst
(n)j6C(n)jt¡ sj�+� ; 806 s< t6 1; (6.6)

for a suitable a.s. finite random constant C(n). Let us define the events

An := f�n=1g= fk�hk�6ng

and note that h= h(n) on An. By the locality property of the stochastic
integral, I = I(n) a.s. on An,6.1 hence also R=R(n) a.s. on An. Redefining
C(n)=1 on the exceptional set fR=R(n)gc, we get by (6.6)

on the event An: jRstj6C(n)jt¡ sj�+� ; 806 s< t6 1:
Note that A :=

S
n2NAn=fk�hk�<1g, hence P(A)=1. If we define C :=

C(n) on An nAn¡1 (with A0 := ;) and C :=1 on Ac, we have C <1 a.s.
and relation (6.5) holds.

Second observation: if relation (6.5) holds for all s; t in a (deterministic)
dense subset D� [0; 1], then it holds for all s; t 2 [0; 1], because Rst is a
continuous function of snt.

In conclusion, the proof is reduced to showing (6.5) only for s; t 2D,
under the assumption that k�hk�6c<1. This technical result is formulated
as a separate lemma. �
Lemma 6.3. Assume that E[k�hk�

p]<1, for some �2(0;1) and for all p>0.
Then, for any � < 1

2
, there is an a.s. finite random constant C such that

jRstj6C jt¡ sj�+� ; 8s; t2D with s6 t: (6.7)

Equivalently, a.s. R2C2
�+�.

Next, we suppose that h is as in the statement of Theorem 6.2 and
moreover there exists another adapted process h1= (ht1)t2[0;1] with values
in Rd
Rd such that a.s.

j�hst¡hs1Bst1 j. jt¡ sj2�:
Then we define

Rst
2 :=Rst¡hs1Bst2 = �Ist¡hsBst1 ¡hs1Bst2 ;

where B2 is defined in (6.1). Then we have

Theorem 6.4. Assume that a.s. h and h1 are of class C�, for some �2 (0;
1). Then, for any � < 1

2
, there is an a.s. finite random constant C such that

jRst2 j6C jt¡ sj2�+� ; 806 s6 t6 1: (6.8)

6.1. We mean that I(n) and I are indistinguishable on An: for a.e. ! 2An one has
It
(n)
(!) = It(!) for all t 2 [0; 1] (we recall that we always fix continuous versions of the

stochastic integrals).
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Arguing as in the proof of Theorem 6.2 we see that Theorem 6.4 follows
from the following

Lemma 6.5. Assume that E[k�hk�
p + k�h¡h1B1k2�

p ]<1, for some �2 (0;
1) and for all p > 0. Then, for any � < 1

2
, there is an a.s. finite random

constant C such that

jRst2 j6C jt¡ sj2�+� ; 8s; t2D with s6 t: (6.9)

Equivalently, a.s. R22C2
2�+�.

Lemmas 6.3 and 6.5 will be proved in Section 6.4 below. First we show
in Section 6.2 that Theorems 6.2 and 6.4 allow to connect Stochastic Differ-
ential Equations (SDEs) and rough finite difference equations.

6.2. Applications to SDEs

Let us consider now a k-dimensional SDE

yt= y0+
Z
0

t

�(ys)dBs; t> 0; (6.10)

where �:Rk!Rk 
Rd and (Bt)t>0 is a d-dimensional Brownian motion.
We suppose that � is of class C3 and satisfies kr�k1<+1. We want to
show that

Theorem 6.6. The unique solution to the SDE ( 6.10) is a.s. equal to the
unique solution to the rough finite difference equation ( 4.13) associated with
the Itô rough path

Bst
1 := �Bst; Bst

2 :=
Z
s

t

Bsr
1 
dBr; 06 s6 t6T ;

where the integral defining B2 is in the Itô sense.

Proof. First we note that B is indeed a �-rough path for any �2
¡ 1
3
;
1

2

�
,

by Theorem 6.2. Indeed, setting hr :=Bsr
1 , r2 [s; T ] and Rst :=Bst

2 , then we
obtain jBst2 j. jt¡ sj2� by (6.5).

Since � is supposed to be uniformly Lipschitz, it is well known that
the SDE (6.10) satisfies existence of (probabilistically) strong solutions and
pathwise uniqueness. On the other hand, since � is of class C3, by Theorem
4.7 the rough finite difference equation (4.13) has a unique solution. There-
fore we only need to show that the solution to the SDE (6.10) is a solution
to the rough finite difference equation (4.13) associated with the Itô rough
path, namely that it satisfies

�yst=�(ys)Bst1 +�2(ys)Bst2 + o(t¡ s); 06 s6 t6T :

76 Brownian rough paths



Let us fix �2
¡ 1
3
;
1

2

�
and les us fix a sample of B of class C�. Now by the

Itô formula and (6.10)

�(yt) = �(ys)+
Z
s

tX
a=1

k

@a�(yr)dyra+
1
2

Z
s

t X
a;b=1

k

@ab�(yr)dhya; ybir

= �(ys)+
Z
s

tX
a=1

k

@a�(yr)�a�(yr)dBr+

+ 1
2

X
a;b=1

k X
c=1

d Z
s

t

(@ab� �ac�bc)(yr)dr

= �(ys)+
Z
s

t

�2(yr) dBr+
Z
s

t

pr dr:

We obtain

��(y)st¡�2(ys)Bst1 =
Z
s

t

(�2(yr)¡�2(ys))dBr+
Z
s

t

pr dr:

First we have trivially��������Z
s

t

pr dr
�������� . jt¡ sj. jt¡ sj2�:

Since a.s. y 2C�, we obtain that a.s. [s; t]3 s 7! �2(yr) is in C�; moreover
a.s. B`2C�. By Theorem 6.2 we obtain that a.s.��������Z

s

t

(�2(yr)¡�2(ys))dBr
��������. jt¡ sj2�:

Therefore

j��(y)st¡�2(ys)Bst1 j. jt¡ sj2�:

Now, if y is solution to (6.10) then

�yst¡�(ys)Bst1 ¡�2(ys)Bst2 =
Z
s

t

(��(y)sr¡�2(ys)Bsr1 )dBr:

Then by Theorem 6.4 with hr=�(yr) and hr1=�2(yr), we obtain a.s.

j�yst¡�(ys)Bst1 ¡�2(ys)Bst2 j. jt¡ sj3�:

The proof is complete. �

Note that here we are only assuming the bound kr�k1<+1, which
is weaker than the condition kr�k1+ kr�2k1<+1 needed in Theorem
4.9 for existence of a global solution on [0; T ] for the rough finite difference
equation (4.13) associated with a generic rough path.
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Let us consider now a k dimensional SDE with a non-zero drift term

yt= y0+
Z
0

t

b(ys)ds+
Z
0

t

�(ys)dBs; t> 0; (6.11)

where b:Rk!Rk, �:Rk!Rk
Rd and (Bt)t>0 is a d-dimensional Brownian
motion. We assume that � and b are of class C3 with the bound kr�k1+
krbk1<+1.

We define X : [0; T ]!Rd+1 as Xt := (Bt1; : : : ; Btd; t), t2 [0; T ]. Note that
X is a continuous semimartingale. Then we define

Xst
1 := �Xst; Xst

2 :=
Z
s

t

Xsr
1 
 dXr; 06 s6 t6T ; (6.12)

where the integral
R
s

t
Xsr
1 dXri is in the Itô sense for i2f1; : : : ; dg while for

i= d+1 we have a standard Riemann integral since dXt
d+1=dt. Moreover

we define

��:Rk!Rk
Rd+1; ��(x) := ( �(x) b(x) );

in other words ��ij=1(j6d)�ij+1(j=d+1)b
i for (i; j)2f1;:::;kg�f1;:::;d+1g.

Then the SDE (6.11) can be rewritten as follows

yt= y0+
Z
0

t

��(ys)dXs; t> 0;

where the integral is in the Itô sense, which is well-defined since X is a semi-
martingale.

Theorem 6.7. The unique solution to the SDE ( 6.11) is a.s. equal to the
unique solution to the rough finite difference equation ( 4.13) with coefficient
�� and associated with the Itô rough path X defined in ( 6.12) above.

The proof is identical to that of Theorem 6.6. Again, the assumptions
on � and b (class C3 with the bound kr�k1+ krbk1<+1) are weaker
than what would be necessary to have existence of a global solution on [0; T ]
using Theorem 4.9.

6.3. A refined Kolmogorov criterion

In this section we prepare the ground for the proof of Lemmas 6.3 and 6.5
in Section 6.4 below. Define the set D of dyadic points by

D :=
[
k�0

Dk; where Dk :=
n
di
k := i

2k

o
06i62k

: (6.13)

We equip D with a directed graph structure: given d; d~2D, we write d! d~

if and only if d= dik and d~= di+1k , for some k � 0 and 06 i6 2k¡ 1. More
explicitly, d! d~ if and only if the point d~ is consecutive to d in some layer
Dk of D.
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Remarkably, in order to prove relation (6.7), it is enough to have a
suitable control on Rd;d~ for consecutive points d!d~ (together with a global
control on �R). This is the heart of the Kolmogorov continuity criterion, but
we stress that it is a deterministic statement.

Theorem 6.8. (Kolmogorov criterion: deterministic part) Given a
function A:D<

2 !R, define the following quantities, for fixed ; �;�2 (0;1):

Q := sup
d;d~2D:d!d~

jA(d; d~)j
jd~¡ dj

; (6.14)

K�;� := sup
(s;u;t)2D<

3

j�A(s; u; t)j
ju¡ sj�jt¡uj� : (6.15)

Then there is a universal constant C <1, depending only on ; �; �, such
that

jA(s; t)j6C(Q jt¡ sj+K�;� jt¡ sj�+�); 8(s; t)2D<
2 : (6.16)

A key tool for Theorem 6.8 is the next result, proved in Section 6.4 below,
which ensures the existence of suitable short paths in the graph D.

Lemma 6.9. (Dyadic paths) For any s; t2D with s<t, there are integers
n; m � 1 and a path of (m+ n+ 1) points in D which leads from s to t,
labelled as follows:

s= sm< : : : < s1<s0= t0<t1< : : : < tn<tn= t; (6.17)

with the property that for all i2f0; : : : ;m¡ 1g and j 2f0; : : : ; n¡ 1g

si+1! si; tj! tj+1; jsi¡ si+1j<
jt¡ sj
2i

; jtj+1¡ tj j<
jt¡ sj
2j

: (6.18)

Proof of Theorem 6.8. Fix s; t2D with s < t. We use Lemma 6.9 with
the same notation. By the definition of �A, we write

A(s; t)=A(s; t0)+A(t0; t)+ �A(s; t0; t)

In the case m� 2, we can develop A(s; t0)=A(s; s0) as follows (recall that
s= sm):

A(s; s0) = A(s; s1)+A(s1; s0)+ �A(s; s1; s0)
= (A(s; s2)+A(s2; s1)+ �A(s; s2; s1))+A(s1; s0)+ �A(s; s1; s0)

= : : :=
X
i=0

m¡1

A(si+1; si)+
X
i=0

m¡2

�A(s; si+1; si):

Similarly, when n� 2, we develop

A(t0; t)=
X
j=0

n¡1

A(tj ; tj+1)+
X
j=0

n¡2

�A(tj ; tj+1; t);
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so that

A(s; t) =
X
i=0

m¡1

A(si+1; si)+
X
j=0

n¡1

A(tj ; tj+1)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
�1

+

+�A(s; t0; t)+
X
i=0

m¡2

�A(s; si+1; si)+
X
j=0

n¡2
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�2

: (6.19)

By the definition of Q, for any d! d~we can bound

jA(d; d~)j6Q jd~¡ dj:

By Lemma 6.9, this bound applies to any couple (si+1; si) and (tj ; tj+1).
Then we can estimate �1 in (6.19) as follows, exploiting the bounds in (6.18):

Q

8<:X
i=0

m¡1

jsi¡ s(i+1)j+
X
j=0

n¡1

jtj+1¡ tj j
9=;6

6Q

8<:X
i=0

1

(2¡i)+
X
j=0

1

(2¡j)

9=;jt¡ sj=
=Q

�
2

1¡ 2¡

�
jt¡ sj ;

which agrees with (6.16).
By the definition of K�;�, for all (x; y; z)2D<

3 we can write

j�A(x; y; z)j6K�;� jy¡xj�jz¡ y j�;

therefore we can estimate �2 in (6.19) by

K�;�

8<:jt0¡ sj�jt¡ t0j�+X
i=0

1

jsi+1¡ sj�jsi¡ si+1j�+
X
j=0

1

jtj+1¡ tj j�jt¡ tj+1j�
9=;:

We now use (6.18) to bound jsi¡ si+1j and jtj+1¡ tj j, while we bound all
other distances simply by jt¡ sj (recall (6.17)), to get

K�;�

8<:1+X
i=0

1

(2¡i)�+
X
j=0

1

(2¡j)�

9=;jt¡ sj�+�6
6K�;�

�
1+ 1

1¡ 2¡�
+ 1
1¡ 2¡�

�
jt¡ sj�+�:

�

As a simple consequence of Theorem 6.8, we show that suitable moment
conditions ensure the finiteness of the constant Q in (6.14), as in the clas-
sical Kolmogorov criterion.
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Proposition 6.10. (Kolmogorov criterion: probabilistic part)
Let A=(A(s; t))(s;t)2D<

2 be a stochastic process which satisfies the following
bound, for some 0; p; c2 (0;1):

E[jA(s; t)jp]6 cjt¡ sjp0; 8(st)2D<
2 :

Then, for any value of  such that

 < 0¡ 1

p
; (6.20)

the random variable Q=Q(A) defined in ( 6.14) is in Lp:

E[jQ jp]<1:
In particular, Q<1 a.s..

Proof. By definition of Q in (6.14), bounding the supremum with a sum
we can write

jQ jp6
X

d;d~2D:d!d~

 
jA(d; d~)j
jd~¡ dj

!p
=
X
k�0

X
i=0

2k¡1 jA(dik; di+1k )jp
jdi+1k ¡ dikjp

:

Let us write = 0¡ 1+ �

p
, for some �> 0. Since di+1k ¡ dik=

1

2k
we have

E[jQ jp] 6
X
k�0

X
i=0

2k¡1

cjdi+1k ¡ dikjp(0¡)

6
X
k�0

X
i=0

2k¡1
c

2(1+�)k
=
X
k�0

c

2�k
= c
1¡ 2¡� <1:

The proof is complete. �

Remark 6.11. Given a stochastic process (Xt)t2D defined on dyadic times,
if we apply Theorem 6.8 and Proposition 6.10 to (A(s; t) := �Xst=Xt¡
Xs)(s;t)2D<

2 we obtain the classical Kolmogorov continuity criterion. Note
that in this case K�;�=0 because �A=0.

6.4. Proof of technical Lemmas

Proof of Lemma 6.3. Fix � < 1

2
. We apply Theorem 6.8 to the (random)

function A(s; t)=Rst, with =�+ �, �=�, �= � and p large enough (to
be fixed later). Then relation (6.16) yields (6.7). It remains to show that
a.s. Q�+�;p<1 and K�;�<1.

We recall that Rst is defined in (6.4). In particular, for s<u< t

�Rsut=Rst¡Rsu¡Rut=(hu¡hs)(Bt¡Bu):
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Then by (6.15)

K�;�(R)6 khk�kbk�<1 a.s.;

by our assumption that khk� 2 Lp and by the fact that b is a Brownian
motion.

Next we note that, for fixed s<t, we have Rst=
R
s

t(hu¡hs)dBu a.s.. By
the Burkholder-Davies-Gundy inequality (see ???), for any p > 1 there is a
universal constant cp such that

E[jRstjp] 6 E

��Z
s

t

(hu¡hs)2du
�p
2
�

6 cpE

�
khk�

p

�Z
s

t

(u¡ s)2�du
�p
2
�

6 cpE[khk�
p] (t¡ s)p

�
�+

1
2

�
:

By Proposition 6.10, we have Q<1 a.s. for any  <�+ 1

2
¡ 1

p
. Plugging

 = � + � we get � < 1

2
¡ 1

p
, which is satisfied for p large enough, since

� <
1

2
. �

Proof of Lemma 6.5. This is the same as that of Lemma 6.3, apart from
the fact that

�Rsut
2 =(�hsu¡hs1Bsu1 )But

1 + �hsu1 But
2 ;

which implies that K2�;�(R2)<+1, and

E[jRst2 jp] 6 E

��Z
s

t

(�hus¡hs1Bsu1 )2du
�p

2
�

6 cpE

�
k�h¡h1B1k2�

p

�Z
s

t

(u¡ s)4�du
�p

2
�

6 cpE[k�h¡h1B1k2�
p ] (t¡ s)p

�
2�+

1
2

�
:

The rest of the argument is identical. �

Proof of Lemma 6.9. We refer to Figure 6.1 for a graphical representation.
Given s; t 2D with s < t, since 0< jt¡ sj6 1, we can define ` � 1 as the
unique integer such that

1
2`
< jt¡ sj6 1

2`¡1
: (6.21)

We now take the smallest k2f0; : : : ; 2`¡ 1g for which dk` >s and define

s0 := t0 := dk`:

Note that 0<dk`¡s6dk`¡dk¡1` = 1

2`
and 0<t¡dk`<t¡s, by (6.21), therefore

0<s0¡ s<
1

2`¡1
; 0<t¡ t0<

1
2`¡1

: (6.22)
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Since both s0¡ s2D and t¡ t02D, for suitable integers m� 1 and n� 1
we have

s0¡ s=
1
2q1

+ 1
2q2

+ : : :+ 1
2qm

; t¡ t0=
1
2r1

+ 1
2r2

+ : : :+ 1
2rn

;

where qm> qm¡1> : : : > q1� ` and rn> : : : > r1� `. We can thus write

s=s0¡
1
2q1
¡ 1
2q2
¡ : : :¡ 1

2qm
;

t=t0+
1
2r1

+ 1
2r2

+ : : :+ 1
2rn

:

We can finally define

si :=s0¡
1
2q1
¡ 1
2q2
¡ : : :¡ 1

2qi
for i=1; : : : ;m;

tj :=t0+
1
2r1

+ 1
2r2

+ : : :+ 1
2rj

for j=1; : : : ; n:

s0 = t0

s = 5
32

11
16 = t

s1s2 t1s3 t20 1

1
2

1
4

3
16

5
8

Figure 6.1. An instance of Lemma 6.9 with s=
5

32
and t=

11
16
. Note that `=1

(because 1

21
< jt ¡ sj= 17

32
� 1

20
, cf. (6.21)) and s0= t0=

1

2
. The points t1; : : : ;

tn are built iteratively: first take the largest 1

2r1
(i.e. the smallest r1) such that

t1 := t0+
1

2r1
� t; if t1<t, then take the largest 1

2r2
such that t2 := t1+

1

2r2
� t; and

so on, until tn= t. Similarly for s1; : : : ; sm.

Since qi and rj are strictly increasing integers with q1� ` and r1� `, we
have the bounds qi� `+(i¡1) and rj� `+(j ¡1), for all i2f0; : : : ;m¡ 1g
and j 2f0; : : : ; n¡ 1g, hence

jsi¡ si+1j=
1

2qi+1
6 1
2i

1
2`
<
jt¡ sj
2i

;

jtj+1¡ tj j=
1

2qj+1
6 1
2j

1
2`
<
jt¡ sj
2j

:

having used (6.21). This proves the bounds in (6.18).
We note that, for any integer r� `, we have the inclusion D`�Dr. Then,

given any x2D`, we have that x2Dr, hence x!x+2¡r. Since t0=dk` 2D`

and r1� `, this shows that t0! t1= t0+ 2¡r1. Proceeding inductively, we
have tj! tj+1= tj+2¡rj+1. A similar argument applies to the points si and
completes the proof of (6.18). �

6.5. B-D-G inequality

We give a proof of (half of) Burkholder-Davies-Gundy inequality for p� 2.
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Proposition 6.12. For all p� 2 there is a constant cp<1 such that for
all 06 s< t6 1

E

��Z
s

t

yudBu

�p�
6 cpE

��Z
s

t

yu
2 du

�p
2
�

for any progressively measurable process such that
R
0

1
yu
2 du<1, P-a.s..

Proof. To simplify notation we set s=0 and mt :=
R
0

t
yudBu.

In a first time we make the additional assumptions that E
�R

0

1
yu
2 du

�
<

1 and m is bounded by some deterministic constant. By the Itô formula
applied to mt, we get

djmtjp= pjmtjp¡1ytdBt+
p(p¡ 1)

2
jmtjp¡2yt2dt:

In general (
R
0

t jmujp¡1yu dBu)t is a local martingale, but under our addi-
tional assumptions it is a true martingale with zero expectation, because
E[
R
0

1jmuj2(p¡1) yu2du]<1 (recall that m is bounded). Consequently

E[jmtjp] =
p(p¡ 1)

2
E

�Z
0

t

jmujp¡2yu2 du
�
:

If we set jm� tj := supu6t jmuj, we obtain by Hölder

E[jmtjp] 6
p(p¡ 1)

2
E

�
jm� tjp¡2

Z
0

t

yu
2 du

�
6 p(p¡ 1)

2
E[jm� tjp]

1¡ 2
pE

��Z
0

t

yu
2 du

�p
2
�2
p

: (6.23)

Since (jmtj)t�0 is submartingale bounded in Lp with continuous trajectories,
by Doob Lp inequality we have: E[jm� tjp]6 ( p

p¡ 1)
pE[jmtjp]. Plugging the

above in (6.23) we conclude:

E

���������Z
0

t

yudBujp
�
6 cpE

��Z
0

t

yu
2 du

�
p/2
�
:

As far as the general case is concerned, let us define

�n= inf ft� 0: jm(t)j>ng^ inf
�
t� 0:

Z
0

t

yu
2 du>n

�
Note that �n is a non decreasing sequence of stopping times, with �n=1
for n large enough, P-a.s.. We denote ytn := y1[0;�n](t) and mt

n :=
R
0

t
yu
ndBu.

By construction, yn and mn satisfy our additional assumptions. Since mt
n=

mt^�n a.s., we have

E

���������Z
0

t^�n

yu dBujp
�
6 cpE

��Z
0

t

yu
2 1[0;�n](u)du

�
p/2
�

6 cpE

��Z
0

t

yu
2 du

�
p/2
�
:
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Finally we notice that by Fatou's Lemma

E

��Z
s

t

yudBu

�p�
= E

�
liminf
n!1

��������Z
s

t^�n

yudBujp
�

6 liminf
n!1

E

���������Z
s

t^�n

yudBujp
�

6 cpE

��Z
s

t

yu
2 du

�
p/2
�
:

The proof is complete. �
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Chapter 7
Geometric rough paths

7.1. Geometric rough paths

We recall that the set of smooth paths C1 is not dense in C�, but its closure
is quite large, because it contains C�

0
for all �0>�. The situation is different

for rough paths: the set R1;d of canonical rough paths over smooth paths is
again not dense in R�;d, but its closure is a significantly smaller set, that
we now describe.

Definition 7.1. The closure of R1;d in R�;d is denoted by R�;d
g and its

elements are called geometric rough paths.

For smooth paths f ; g 2C1, the integration by parts formula holds:Z
s

t

f(u) dg(u)= f(t)g(t)¡ f(s)g(s)¡
Z
s

t

g(u)df(u) :

It follows thatZ
s

t

(f(u)¡ f(s))dg(u)+
Z
s

t

(g(u)¡ g(s)) df(u)=(f(t)¡ f(s))(g(t)¡ g(s)) :

We have seen in Proposition 2.8 that the same formula holds if (f ; g) 2
C��C� with �+ � > 1 and the integral is in the Young sense.

Given a smooth path X 2C1, define X2 by (5.30) as an ordinary integral
(i.e. (X1;X2) is the canonical rough path over X). The previous relation for
f =Xi and g=Xj shows that

Xij
2 (s; t)+Xji

2 (s; t)=Xi
1(s; t)Xj

1(s; t) : (7.1)

This relation is called the shuffle relation : for i= j it identifies Xii
2 in terms

of Xi:

Xii
2 (s; t)= 1

2
Xi
1(s; t)2 ; (7.2)

while for i =/ j it expresses Xij
2 in terms of Xi

1; Xj
1; Xji

2 . Denoting by
Sym(X2)ij :=

1

2
(Xij

2 +Xji
2 ) the symmetric part of X2, we can rewrite the

shuffle relation more compactly as follows:

Sym(X2)= 1
2
X1
X1 : (7.3)
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Definition 7.2. Rough paths in R�;d that satisfy the shuffle relation ( 7.1)-
( 7.3) are called weakly geometric and denoted by R�;d

wg .

Exercise 7.1. For � > 1

2
we have R�;d=R�;d

wg (every rough path is weakly geo-
metric).

We can now show that the closure of R1;d in R�;d is included in R�;d
wg .

Lemma 7.3. Geometric rough paths are weakly geometric: R�;d
g �R�;d

wg for
any �2 (1

3
; 1), with a strict inclusion.

Proof. Canonical rough paths (X1;X2)2R1;d over smooth paths satisfy the
shuffle relation (7.1)-(7.3). Geometric rough paths are by definition limits in
R�;d of smooth paths in R1;d. Since convergence in R�;d implies pointwise
convergence, geometric rough paths satisfy the shuffle relation too. This
shows that R�;d

g �R�;d
wg .

To prove that the inclusion R�;d
g �R�;d

wg is strict, it suffices to consider a
weakly geometric rough path (X1;X2)2R�;d

wg which lies above a pathX 2C�
which is not in the closure of C1. Such a path is not geometric (recall that
(Xn

1 ;Xn
2)! (X1;X2) in R�;d implies Xn

1!X1 in C2�).
To prove the existence of such a rough path, in the one-dimensional

case d=1 it is enough to consider the one provided by (5.23), which is by
construction weakly geometric, since the shuffle relation reduces to �Xst

2 :=
1

2
(Xst

1 )2. �

Although the inclusion R�;d
g �R�;d

wg is strict, what is left out turns out to
be not so large. More precisely, recalling that R�;d

g is the closure of R1;d in
R�;d, we have a result which is similar to what happens for Hölder spaces,
with the important difference that the whole spaceR�;d is replaced by R�;d

wg .
The proof is non-trivial and we omit it.

Proposition 7.4. For any 1

3
<�0<�<1 one has R�;d

wg �R�0;d
g . This means

that for any X2R�;d
wg there is a sequence Xn2R1;d such that Xn!X in

R�0;d.

We stress that the notion of �weakly geometric� rough path depends
only on the function X=(X1;X2), but the notion of �geometric� rough path
depends also on the chosen spaceR�;d. Given a weakly geometric rough path
X2R�;d, even though X may fail to be geometric in R�;d, it is certainly
geometric in R�0;d for all �0<�. In this sense, every weakly geometric rough
path is a geometric rough path, of a possibly slightly lower regularity .

7.2. Non-geometric rough paths

We next consider generic rough paths. These cannot be approximated by
canonical rough paths over smooth paths. However we have
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Lemma 7.5. Given an arbitrary rough path (X1;X2)2R�;d lying above X,
there is always a weakly geometric rough path (X1;X~ 2)2R�;d

wg lying above
the same path X.

Proof. It suffice to define X~ ij2 :=Xij
2 for all i > j and use the shuffle rela-

tion to define the remaining entries of X~ 2, i.e. X~ ii2 :=
1

2
(Xi

1)2 and X~ ij2 :=
Xi
1Xj

1¡Xji
2 for all i < j. In this way (X1;X~ 2) satisfies the shuffle relation

by construction and it is easy to check that X~ 22C22�.
It remains to prove that the Chen relation (5.25) holds for (X1;X~ 2), that

is

�X~ ij2 (s; u; t)=Xi
1(s; u)Xj

1(u; t) :

If i > j this holds because X~ ij2 =Xij
2 , so we only need to consider i= j and

i< j. Note that if we define Ast := �fst �gst, for arbitrary f ; g: [a; b]!R, we
have

�Asut = �fst �gst¡ �fsu �gsu¡ �fut �gut
= (�fsu+ �fut) �gst¡ �fsu �gsu¡ �fut �gut
= �fsu �gut+ �gsu�fut:

Applying this to f =X i and g=X j yields, for i < j,

�X~ ij2 (s; u; t) = �(Xi
1Xj

1¡Xji
2 )(s; u; t)

= Xi
1(s; u)Xj

1(u; t)+Xj
1(s; u)Xi

1(u; t)¡Xj
1(s; u)Xi

1(u; t)
= Xi

1(s; u)Xj
1(u; t) :

Similarly, choosing f = g=Xi gives �X~ ii2 (s; u; t)=Xi
1(s; u)Xi

1(u; t). �

As a corollary, we obtain a useful approximation result.

Proposition 7.6. For any rough path (X1;X2)2R�;d, there is a function
f 2C2�([0; T ];Rd
Rd) and a sequence of canonical rough paths over smooth
paths (Xn

1 ;Xn
2)2R1;d such that

(Xn
1 ;Xn

2 + �f)! (X1;X2) in R�0;d ; 8�0<� :

Proof. By Lemma 7.5 there is a weakly geometric rough path (X1;X~ 2)
lying above the same path X . Then X2¡X~ 2= �f for some f 2C2�([0; T ];
Rd
Rd), by Lemma 5.17. By Proposition 7.4, there is a sequence (Xn

1 ;

Xn
2)2R1;d such that (Xn

1 ;Xn
2)! (X1;X~ 2) in R�0;d, for any �0<�. It follows

that (Xn
1 ;Xn

2 + �f)! (X1;X~ 2+ �f)= (X1;X2). �

7.3. Pure area rough paths

Given X 2C�, we denote by R�;d(X) the subset of rough paths (X1;X2)2
R�;d lying above X , i.e. such that X1= �X. Here is a special case.
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Definition 7.7. The elements of R�;d(0), i.e. those of the form X= (0;
X2), are called pure area rough paths.

Pure area rough paths are very explicit. Let us denote by (Rd�d)a the
subspace of Rd�d given by antisymmetric matrices.

Lemma 7.8. X=(0;X2) is a pure area �-rough path if and only if X2= �f,
for some f 2C2�([0; T ];Rd�d). Such rough path is weakly geometric if and
only if Xst

2 2 (Rd�d)a, i.e. is an antisymmetric matrix, for all s; t2 [0; T ]62 ;
equivalently, we can take f 2C2�([0; T ]; (Rd�d)a).

Proof. Since (0; 0) is a rough path, it follows by Lemma 5.17 that for all
(pure area) rough paths (0;X2) we have X2= �f for some f 2C2�. We may
assume that f(a) = 0 (just redefine f(t) as f(t)¡ f(0)). Since x= 0, the
shuffle relation (7.3) becomes Sym(X2) = 0, i.e. Xst

2 is an antisymmetric
matrix. Then f(t)= f(t)¡ f(0)=X0t

2 is antisymmetric too. �

Note that the set R�;d(0) of pure area rough paths is a vector space,
because the Chen relation (5.25) reduces to the linear relation �X2=0. Here
is the link with general rough paths.

Proposition 7.9. The set R�;d(X) of rough paths laying above a given path
X is an affine space, with associated vector space R�;d(0), the space of pure
area rough paths.

Proof. Given rough paths X=(X1;X2) and X� = (X1;X� 2) lying above the
same pathX, their differenceX¡X� =(0;X2¡X� 2) is a pure area rough path,
because it satisfies the Chen relation �(X2¡X� 2)=0 (since �X2=X1
X1=
�X� 2).

Alternatively, Lemma 5.17 yields X2¡X� 2= �f for some f 2C2�, hence
(0;X2¡X� 2) is a pure area rough path by Lemma 7.8. �

We have seen in Section 5.8 how pure area rough paths can arise con-
cretely.

7.4. Wong-Zakai

(to be completed)
We choose any �:R!R of class C1 such that �(x)= �(¡x) for all x2R

and
R
R
�(x) dx=1. We define, for "> 0, �":R!R by

�"(x) :=
1
"
�
�
x
"

�
; x2R:

Let (Bt)t>0 be a d-dimensional Brownian motion, extended to B:R!Rd

by setting Bt := 0 for t < 0. Then we set for "> 0

Bt
" := (B � �")(t)=

Z
R

Bs �"(t¡ s)ds; t2R:
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We set the following random ODE

yt"=y0+
Z
0

t

b(ys")ds+
Z
0

t

�(ys")B_s
" ds;

where B_s
"= d

dsBs
" which is a continous function since � is C1.

Then Wong-Zakai's result states that a.s. yt" converges to the solution yt
of

yt = y0+
Z
0

t

b(ys) ds+
Z
0

t

�(ys) �dBs

= y0+
Z
0

t

b(ys) ds+
Z
0

t

�(ys) dBs+
1
2

Z
0

t

TrRd�2(ys) ds;

where (TrRd�2(y))i :=
P
j;m=1
d (�2(y))ijm:

7.5. Doss-Sussmann

In this section we suppose that � is such that for all i2f1; : : : ; kg the d� d
matrix (�2

ijm)jm is symmetric, namely

(�2(y))ijm=(�2(y))imj ; 8y2Rk; i2f1; : : : ; kg; j ;m2f1; : : : ; dg: (7.4)

For example, if k= d=2 and we consider

�(y)=
�
y1 0
0 y2

�
; y=(y1; y2)2R2;

then

@a�ij(y)=1fi=1;j=1;a=1g+1fi=2;j=2;a=2g;

and

�2
ijm(y)=

X
a=1

2

@a�
ij(y)�am(y)=1fi=1;j=1;m=1gy1+1fi=2;j=2;m=2gy2;

which is clearly symmetric in (j ;m).
In this case, if X= (X1;X2) is a weakly geometric �-rough path, we

obtain

(�2(y)X2)i = 1
2

8<:X
a;b=1

2

�2
iab(X2)ba+

X
a;b=1

2

�2
iba(X2)ab

9=;
= 1

2

X
a;b=1

2

�2
iabf(X2)ba+(X2)abg

= 1
2

X
a;b=1

2

�2
iab(y) (X1)a(X1)b: (7.5)
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In this case the solution y to the finite difference equation is a function
of X1 alone since (4.13) is equivalent to

jyst3 j. jt¡ sj� ; yst3 = �yst¡�(ys)Xst
1 ¡�2(ys) (Xst

1 
Xst
1 ): (7.6)

It can be seen that the map (y0;X1) 7! y is continuous.

Proposition 7.10. Let M > 0 and let us suppose that X is a weakly geo-
metric rough path and � satisfies the Frobenius condition ( 7.4). If

max fj�(y0)j+ j�(y�0)j+ j�2(y�0)j; kX1k�; kX� 1k�g6M;

then for every T > 0 there are �̂M;D;T ; CM;D;T > 0 such that for � 2 ]0;
�̂M;D;T ]

ky¡ y�k1;� + k�y¡ �y�k�;� + ky2¡ y�2k2�;� 6
6CM;D;T (jy0¡ y�0j+ kX1¡X� 1k�):

Proof. The proof is identical to the proof of Proposition 4.10. �

Remark 7.11. Doss and Sussmann prove a continuity result in the sup-
norm.

7.6. Lack of continuity (again)

In section 7.5 we have seen that, under appropriate conditions on �, the map
X1 7!y is continuous if X=(X1;X2) varies in the class of weakly geometric
rough paths. In this section we show that this is not a general fact, and the
continuity result of Proposition 4.10 can not be improved in general.

More precisely, we show that, for a suitably chosen �, one has a sequence
Xn=(Xn

1 ;Xn
2) such that Xn

1! 0, Xn
2!X2=/ 0, and the associated solutions

yn converge to . . .
For y1; y22R, �:R2!R2
R2, we set

y=
�
y1
y2

�
; �(y) :=

�
y2 0
0 y1

�
:

In coordinates,

�ij(y)=1fi=1;j=1g y2+1fi=2;j=2g y1

then we compute the partial derivative,

@�ij(y)
@ym

=1fi=1;j=1;m=2g+1fi=2;j=2;m=1g

From chapter 4 we have the expression for �2 in coordinates,

�2
ijm(y)=

X
a=1

2

@a�ij(y)�am(y)=1fi=1;j=1;m=2g y2+1fi=2;j=2;m=1g y1:
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Note that �2 is not symmetric with respect to (j ;m) i.e. �2
ijm=/ �2

imj (which
means that it does not satisfy the Frobenius's condition in Doss). By taking
X2 from Section 5.8, we compute

(�2(y)X2)i=
X
a;b=1

2

�2
iab(y)(X2)ba= t¡ s

2
(1fi=2g y1¡1fi=1g y2):

Since we have already shown that X1! 0, we get

y_ = 1
2

�
0 ¡1
1 0

�
y;

we can conclude that the solution y is in the form of exponential different
from 0.
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Chapter 8

Rough integration

8.1. Controlled paths

Given a vector space V , we can canonically identify V 
Rd with the space
of linear maps from Rd to V , namely

V 
Rd=L(Rd; V ); (v
x)y= hx; yi v; v 2V ; x; y 2Rd; (8.1)

where h�; �i is the canonical scalar product on Rd. This justifies the notation
(A;B) 7!AB 2Rm
Rn where

(AB)ab=
X
k=1

d

AakBkb; A2Rm
Rd; B 2Rd
Rn: (8.2)

Note also that on Rm
Rn we have the natural scalar product hA; Bi=
Tr(ABT).

We fix �2 ]1/3;1/2], X 2C�([0; T ];Rd). We recall that fixing a �-rough
path X over X as in Definition 5.11 is equivalent to choosing a solution
(I ;X2) to (5.21), with I and X2 representing our choices of the integrals,
respectively,

It=:
Z
0

t

Xr
dXr; Xst
2 =:

Z
s

t

(Xr¡Xs)
dXr= It¡ Is¡Xs
 (Xt¡Xs):

The key point is that, having fixed a choice of X2, it is now possible to give
a canonical definition of the integral

R
0

�
Y dX for a wide class of Y 2C�([0;

T ];Rk
Rd), namely those paths Y which are controlled by X. In order to
motivate this notion, let us recall that, given X 2 C�([0; T ];Rd) and Y : [0;
T ]!Rk
Rd, we look now for J : [0; T ]!Rk and RJ: [0; T ]2!Rk such that,
in analogy with (5.4),

J0=0 ; �Jst=Ys �Xst+RstJ ; jRstJ j. jt¡ sj2� :

In order to make this operation iterable, it is natural to require that each
component of Y has an analogous property. This is exactly the motivation
for the next
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Definition 8.1. Let � 2 ]1/3; 1/2] and X = (X1;X2) an �-rough path
on Rd. A pair y = (y; y1) 2 C�([0; T ];Rk)� C�([0; T ];Rk 
Rd) is a path
controlled by X if

�yst=ys1Xst
1 +yst2 ; jyst2 j. jt¡ sj2�; (s; t)2 [0; T ]62 : (8.3)

The function y1 is called a derivative of y with respect to X and y2 is the
remainder of the couple (y; y1). Note that y2 2C22� is defined by the first
identity in ( 8.3).

For a fixed �-rough path X on Rd, we denote by DX
2�(Rk) the space of

paths controlled by X with values in Rk.

Note that in general y1 is not determined by (y;X1), so that we say that
y1 is a derivative rather than the derivative of y.

It is now clear from the definitions that, unlike rough paths, controlled
paths have a natural linear structure, in particular as a linear subspace of
C��C�.

8.2. The rough integral

Now we can finally show how to modify the germ Ys(Xt¡Xs) in order to
obtain a well-defined integration theory.

Proposition 8.2. Let �2 ]1/3; 1/2] and X=(X1;X2) a �-rough path on
Rd. If y= (y; y1) is controlled by X with values in Rk 
Rd as in Defini-
tion 8.1, then the germ

Ast= ysXst
1 +ys1Xst

2

satisfies �A2C33� with 3�> 1.
Therefore we can canonically define Jt=�

R
0

ty dX� as the unique function
J : [0; T ]!R such that J0=0 and �J¡A2C23�, namely

jJt¡ Js¡ysXst
1 ¡ ys1Xst

2 j. jt¡ sj3�:
Finally we have

Jt= lim
jPj!0

X
i=0

#P¡1

(ytiXtiti+1
1 +yti

1Xtiti+1
2 )

along arbitrary partitions P of [0; t] with vanishing mesh jP j! 0.

Proof. We compute by (5.24)

�Asut = ¡�ysuXut
1 +ys1 �Xsut

2 ¡ �ysu1 Xut
2

= ¡(�ysu¡ ys1Xsu
1 )Xut

1 ¡ �ysu1 Xut
2

= ¡ysu2 Xut
1 ¡ �ysu1 Xut

2 ; (8.4)
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where we remark that for i=1; : : : ; k

(ys1 �Xsut
2 )i =

X
a;b=1

d

(ys1)
iab(�Xsut

2 )ba

=
X
a;b=1

d

(ys1)
iab (Xsu

1 )b (Xut
1 )a

= [(ys1Xsu
1 )Xut

1 ]i:

Then by (1.32)

j�Asutj 6 ky2k2�ju¡ sj2�kX1k�jt¡uj�+k�y1k�ju¡ sj�kX2k2�jt¡uj2�

(ky2k2�kX1k�+k�y1k�kX2k2�)jt¡ sj3� (8.5)

Since �A2C33�, we can apply the Sewing Lemma and define J3:=¡�(�A)
and J: [0; T ]!R such that J0=0 and �J=A+J3 where � is the Sewing Map
of Theorem 1.13, so that

J0=0 ; �Jst= ysXst
1 +ys1Xst

2 + Jst3 ; jJst3 j. jt¡ sj3� : (8.6)

The last assertion on the convergence of the generalised Riemann sums
follows from (1.16). �

We have in particular proved by (1.19) and (8.5) that

kJ3k3� 6 K3� (ky2k2�kX1k�+k�y1k�kX2k2�); (8.7)
Jst3 = Jt¡ Js¡ysXst

1 ¡ ys1Xst
2 :

We stress that the function J depends on (y ;X), in particular on y1 as
well. We use the following notations

J := (J; y);
Z
0

t

y dX := (Jt; yt)=Jt: (8.8)

We shall see in Proposition 8.4 below that J : [0; T ]!Rk � (Rk 
Rd) is
controlled by X.

We define a norm k�kDX
2� and a seminorm [�]DX

2� on the space DX
2� of paths

controlled by X, defined as follows:

kykDX
2� := jy0j+ jy01j+[y]DX

2�; y=(y; y1) (8.9)
[y]DX

2� := k�y1k�+ ky2k2�; yst2 = �yst¡ys1Xst
1 ;

as in (8.3). Recall that we defined the standard norm kf kC�=kf k1+k�f k�
in (2.5).

Lemma 8.3. We have the equivalence of norms for all y=(y; y1)2DX
2�

kykDX
2�6 kykC�+ ky1kC�+ ky2k2�6CkykDX

2�; (8.10)
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where C > 0 is an explicit constant which depends only on (X; T ; �). In
particular, (DX

2�; k � kDX
2�) is a Banach space.

Proof. The first inequality in (8.10) is obvious by the definition of the norm
k�kC�. In order to prove the second one, first we note that by (1.24)-(1.25)
and by (1.29)

kf kC�=kf k1+ k�f k�6 jf0j+(1+T�)k�f k�
6(1+T�)(jf0j+ k�f k�):

This shows that ky1kC�.kykDX
2� for (y;y1)2DX

2�. Now, since �yst=ys1Xst
1 +

yst2 by (8.3),

k�yk�6 ky1k1kX1k�+ky2k�6CT ;�(jy01j+ k�y1k�)kX1k�+T�ky2k2�;

namely kykC�. kykDX
2� + ky2k2�. Finally ky2k2� 6 kykDX

2�. The proof is
complete. �

8.3. Continuity properties of the rough inte-
gral

We wrote before Definition 8.1 that the notion of controlled path aimed
at making the rough integral map (y; y1) 7! (J; y) iterable, where we use
the notation of Proposition 8.2. In order to make this precise, we need the
following important

Proposition 8.4. Let X be a �-rough path on Rd with �2 ]1/3; 1/2] and
y 2DX

2� a path controlled by X. Then, in the notation of ( 8.8),

� J =
R
0

�
y dX is controlled by X

� the map DX
2�3 y 7!J 2DX

2� is linear and for all y 2DX
2�

[J ]DX
2� 6 2(1+K3�)(1+ kXkR�;d)[jy01j+T�[y]DX

2�]: (8.11)

Proof. Recall first (8.6), so that in particular kJ3k3� < +1. Now
Jst2 =ys1Xst

2 + Jst3 satisfies

kJ2k2�6 ky1k1kX2k2�+kJ3k2�6 ky1k1kX2k2�+T�kJ3k3�: (8.12)

Finally �Jst= ysXst
1 + Jst2 and therefore

k�Jk�6 kyk1kX1k�+ky1k1kX2k2�+T 2�kJ3k3�:

Therefore (J; y; J2)2 C��C��C22� and we obtain that (J; y) is controlled
by X.

We prove now the second assertion. Since �yst= ys1Xst
1 + yst2 , by (1.29)

k�yk�6ky1k1kX1k�+T�ky2k2�
6(kX1k�+1)(jy01j+T�[y]DX

2�):
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Now, analogously to (8.12), again by (1.29)

kJ2k2�6ky1k1kX2k2�+kJ3k2�
6T�kJ3k3�+kX2k2�(jy01j+T�k�y1k�):

Therefore, since kX1k�+ kX2k2�= kXkR�;d, recall (5.27),

k�yk�+ kJ2k2�6T�kJ3k3�+(1+ kXkR�;d)[jy01j+T�[y]DX
2�]:

By (8.11) we obtain

[J ]DX
2� = k�yk�+ kJ2k2�
6 2 (1+ kXkR�;d)[jy01j+(1+K3�)T�[y]DX

2�]

Since J0=0 and J01=y0, we obtain

kJ kDX
2�= jy0j+[J ]DX

2�6 2(1+K3�)(1+ kXkR�;d
)[jy0j+ jy01j+T�[y]DX

2�]:

The proof is complete. �

By 8.4, the operator d is linear and continuous. In fact a much stronger
property holds: we have continuity of the map (X; y) 7!

R
0

�
y dX. In order

to prove this, we need to introduce the following space

S� := f(X; y):X is a �-rough path; y 2DX
2�g;

and the following quantity for y 2DX
2� and y�2DX�

2�

[y; y�]X;X� ;2� := k�y1¡ �y�1k�+ ky2¡ y�2k2�;

where y2=�y¡ y1X1 and y�2=�y�-y�1X� 1, recall (8.9). We endow S� with a
family of distances (see (5.28) for the definition of dR�;d)

d�((X; y); (X� ; y�))= dR�;d
(X;X� )+jy0¡ y�0j+jy01¡ y�01j+[y; y�]X;X� ;2�:

Let us note that in the case X=X� , we have

[y; y�]X;X� ;2�= [y¡ y�]DX
2�; d�((X; y); (X; y�))= ky¡ y�kDX

2�;

see the definition (8.9) of the norm k�kDX
2�. Note that [y; y�]X;X� ;2� is not a

function of y¡ y� when X=/ X� .

Proposition 8.5. (Local Lipschitz estimate) Let �2 ]1/3;1/2] . The
function d is continuous with respect to d�.

More precisely, for every M � 0 there is KM;�� 0 such that for all (X;
y); (X� ; y�)2S� satisfying

1+T�+ kXkR�;d+ ky�kDX
2�6M;
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setting J :=
R
0

�
y dX and J� :=

R
0

�
y� dX� we have

d�((X;J); (X� ;J�))6
62M2(1+K3�)[dR�;d(X;X� )+jy0¡y�0j+jy01¡y�01j+T�[y; y�]X;X� ;2�]

62M3(1+K3�) d�((X; y); (X� ; y�)):

Proof. Let X= (X1;X2) and X� = (X� 1;X� 2) be �-rough paths with � 2
]1/3; 1/2] and y 2DX

2�, y�2DX�
2�. We argue as in the proof of (8.11), using

furthermore a number of times the simple estimate

jab¡a�b�j6 ja¡a�j jbj+ja�j jb¡ b�j: (8.13)

We set for notational convenience " := T�. Then, since �yst= ys1Xst
1 + yst2 ,

by (1.29)

k�y¡ �y�k�6ky1¡ y�1k1kX1k�+ ky�1k1kX1¡X� 1k�+"ky2¡ y�2k2�
6(kX1k�+1)(jy01¡ y�01j+"[y; y�]X;X� ;2�)+M2kX1¡X� 1k�;

since by assumption

ky�1k16 jy�01j+ "k�y�1k�6 (1+ ")(jy�01j+ k�y�1k�)6M2:

Now Jst2 =ys1Xst
2 + Jst3 , so that arguing similarly

kJ2¡ J�2k2�6 kJ3¡ J�3k2�+ ky1X2¡y�1X� 2k2�6
6"kJ3¡ J�3k3�+kX2k2�(jy01¡ y�01j+"k�y1¡ �y�1k�)+M2kX2¡X� 2k2�:

Therefore, since 1+ kX1k�+ kX2k2�=1+ kXkR�;d6M ,

k�y¡ �y�k�+ kJ2¡ J�2k2�6
6"kJ3¡ J�3k3�+M2(jy01¡ y�01j+"[y; y�]X;X� ;2�+ dR�;d(X;X� )):

Since ut, we can estimate in the same way

k�A¡ �A�k3� 6 ky2¡y�2k2�kX1k�+ ky�2k2�kX1¡X� 1k�+
+k�y1¡ �y�1k�kX2k2�+k�y�1k�kX2¡X� 2k2�

6 [y; y�]X;X� ;2� kXkR�;d
+[y�]DX�

2� dR�;d
(X;X� )

6 M([y; y�]X;X� ;2�+ dR�;d
(X;X� )):

By the Sewing Lemma (1.33), and since "6M ,

"kJ3¡ J�3k3�6K3�M("[y; y�]X;X� ;2�+MdR�;d(X;X� )):

We obtain

[J ;J�]X;X� ;2�=k�y¡ �y�k�+ kJ2¡ J�2k2�6
6M2(1+K3�)[jy01¡ y�01j+dR�;d(X;X� )+ "[y; y�]X;X� ;2�]:
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Since J0¡J�0=0, J01¡J�01= y0¡ y�0, we obtain

d�((X;J); (X� ;J�))= dR�;d
(X;X� )+jy0¡ y�0j+[J ;J�]X;X� ;2�

62M2(1+K3�)[jy0¡ y�0j+jy01¡ y�01j+dR�;d
(X;X� )+ "[y; y�]X;X� ;2�]:

The second estimate follows since we have assumed that 1+ "6M . �

8.4. Stochastic and rough integrals

8.5. Properties in the geometric case

We have seen in Proposition 2.8 that the Young integral satisfies the classical
integration by parts formula. We consider now a weakly geometric rough
path X and two paths f =(f ; f1); g=(g; g1) controlled by X. We set

Ft :=F0+
Z
0

t

fsdXs; Gt :=G0+
Z
0

t

gs dXs; t> 0:

We want to show that, under the assumption that X is geometric, an anal-
ogous integration by parts formula holds, namely:

FtGt = F0G0+
Z
0

t

Fs gsdXs+
Z
0

t

Gs fsdXs||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
It

:

We start by showing that (Fs gs; Fs gs1+ fsgs)s2[0;T ] is controlled by X:

Ft gt¡Fs gs = Ft �gst+ gs �Fst

= Fs �gst+ gs �Fst+�Fst �gst
= (Fs gs1+ fs gs)Xst

1 +O(jt¡ sj2�):

The same holds of course for (fsGs; Gsfs1+ fsgs)s2[0;T ]. Now we know that
It is the integral uniquely associated with the germ

Ast=(Fs gs+Gs fs)Xst
1 +(Fs gs1+Gsfs1+2fs gs)Xst

2 :

By the geometric condition, we have 2Xst
2 =(Xst

1 )2 and therefore we obtain

Ast=(Fs gs+Gs fs)Xst
1 +(Fs gs1+Gsfs1)Xst

2 + fs gs(Xst
1 )2:

Now we write

�(FG)st = �FstGt+Fs�Gst
= Gs �Fst+Fs �Gst+ �Fst �Gst
= (Fsgs+Gsfs)Xst

1 +(Fs gs1+Gsfs1)Xst
2 + �Fst�Gst+O(jt¡sj3�):

Now

�Fst �Gst = (fsXst
1 + fs

1Xst
2 )(gsXst

1 + gs
1Xst

2 )+O(jt¡ sj3�)
= fs gs(Xst

1 )2+O(jt¡ sj3�):
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Then we obtain that

�(FG)st = Ast+O(jt¡ sj3�):

Since 3�> 1, it follows that FtGt¡F0G0= It for all t> 0.

Example 8.6. It is well known that the Stratonovich stochastic integral
satisfies the above integration by parts formula. This section extends this
result to all (weakly) geometric rough paths.
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Chapter 9

Rough integral equations

In this chapter we go back to the finite difference equation (4.13) in the rough
setting, and we discute its integral formulation that we already mentioned
in Section 4.9. Now that we have studied the rough integral in Chapter 8,
we can indeed show that the equation

jyst3 j. jt¡ sj3�; yst3 = �yst¡�(ys)Xst
1 ¡�2(ys)Xst

2 ; (9.1)

recall Lemma 4.3, can be interpreted in the context of controlled paths.
Indeed, (9.1) suggests that, for any candidate solution y, the pair (y; �(y))
should be controlled by X. At the same time, in order to apply Proposi-
tion 8.2 and interpret (9.1) as an integral equation, we need existence of
h 2 C� such that (�(y); h) is controlled by X. This is guaranteed by the
following

Lemma 9.1. Let �:Rk!R` be of class C2 and f =(f; f1)2DX
2�(Rk). Set

�(f) := (�(f);r�(f) f1);

where �(f): [0; T ]!R` is defined by �(f)t := �(ft) and

r�(f) f1: [0; T ]!R`
Rd; (r�(f) f1)tab=
X
j=1

k

rj�a(ft) � (ft1)jb:

Then �(f)2DX
2�(R`).

Proof. Analogously to (4.16) we have for f = (f; f1) 2 DX
2�(Rk), setting

fst2 := �fst¡ fs1Xst
1 as in (8.3),

�(f)st2 := �(ft)¡ �(fs)¡r�(fs) fs1Xst
1 (9.2)

= r�(fs) fst2 +
Z
0

1

[r�(fs+ r�f)¡r�(fs)]dr �fst

= r�(fs) fst2 +
Z
0

1

(1¡u)r2�(fs+u�fst)du �fst
 �fst:

Then we can write using the estimate jab¡ a�b�j6 ja¡ a�j jbj+ja�j jb¡ b�j

jr�(ft) ft1¡r�(fs) fs1j 6 c�;f
(1) jft1¡ fs1j+c�;f

(2) jft¡ fsj kf1k1;

j�(f)st2 j 6 c�;f
(1) jfst2 j+c�;f

(2) j�fstj2; (9.3)

103



where

c�;f
(1) := sup

s2[0;T ]
jr�(fs)j; c�;f

(2) := sup
s;t2[0;T ];u2[0;1]

jr2�(fs+u�fst)j: (9.4)

Therefore (�(f);r�(f) f1) is controlled by X. �

This suggests that we can reinterpret the finite difference equation (9.1)
as follows: we look for y: [0; T ]!Rk such that y=(y; �(y)) is controlled by
X (namely it belongs to DX

2�(Rk)) and

yt=(y0; 0)+
Z
0

t

�(y)dX; 8 t2 [0; T ]: (9.5)

By Lemma 9.1, s(y)=(�(y);r�(y) y1), but here y1=�(y), so that

s(y)=(�(y);r�(y) �(y))= (�(y); �2(y));

where we use the notation �2:Rk!Rk
Rd
Rd

�2(y) :=r�(y)�(y); [�2(y)]ijm :=
X
a=1

k

ra�ij(y) �am(y):

By Proposition 8.2, the integral equation in (9.5) is equivalent to

jyst3 j. jt¡ sj3�; yst3 = �yst¡�(ys)Xst
1 ¡�2(ys)Xst

2 : (9.6)

Viceversa, if y2C�([0; T ];Rk) is such that y32C23�, then setting y1:=�(y)
the path y = (y; y1) is controlled by X and satisfies (9.5). Therefore, the
integral equation (9.5) is equivalent to the finite difference equation (9.6).

9.1. Localization argument

Proposition 9.2. If we can prove local existence for the rough differential
equation ( 9.6) under the assumption that � is of class C3 and �;r�;r2�;
r3� are bounded, then we can prove local existence for ( 9.6) assuming only
that � is of class C3.

Proof. Let � be of class C3. Note that � and its derivatives are bounded
on the closed unit ball B :=fz 2Rk: jz¡y0j�1g, which is a compact subset
of Rk. Then we can find a function �̂ of class C3 which is bounded with all
its derivatives up to the third on the whole Rk and coincides with � on B.
By local existence for �̂, there is a solution ŷ: [0; T ]!Rk of the RDE (9.6)
with � replaced by �̂. Since y is continuous with y02B, we can find T 0> 0
such that yt2B for all t2 [0; T 0]. Then �(yt)= �̂(yt) and �2(yt)= �̂2(yt) for
all t2 [0; T 0], so that y is a solution of the original RDE (9.6) on the shorter
time interval [0; T 0]. We have proved local existence assuming only that � is
of class C3. �
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9.2. Invariance
In this section we prepare the ground for a contraction argument to be
proved in the next section. We start with an estimate of [�(f)]DX

2�(R`) in
terms of [f ]DX

2�(Rk), under the assumption that � is of class C2 with bounded
first and second derivative. We fix D> 0 such that

D�max f kr�k1; kr2�k1g:

Lemma 9.3. Let �:Rk!Rk
Rd be of class C2 with kr�k1+kr2�k16D,
for some D<+1. Then for some C > 0 and any f =(f; f1)2DX

2�(Rk)

[�(f)]DX
2�(R`) 6 D([f ]DX

2�(Rk)+ kf1k1k�fk�+ k�fk�2 ): (9.7)

Proof. By (9.3) we have

k�(r�(f) f1)k�6D(k�f1k�+ kf1k1k�fk�);

k�(f)2k2�6D(kf2k2�+ k�fk�2 ):

Therefore, recalling (8.9),

[�(f)]DX
2�(R`) = k�(r�(f) f1)k�+ k�(f)2k2�

6 D([f ]DX
2�(Rk)+ kf1k1k�fk�+ k�fk�2 ):

where, in the last inequality, we apply (8.10). �

We define ¡:DX
2�(Rk)!DX

2�(Rk)

¡(f) := (y0; 0)+
Z
0

�
�(f) dX;

(we know that indeed ¡ maps DX
2�(Rk) into DX

2�(Rk) by Lemma 9.1). In
other words, ¡(f; f1) is equal to the only (J; J1)2DX

2� such that

J0= y0; Js1=�(fs); �Jst¡�(fs)Xst
1 ¡r�(fs) fs1Xst

2 2C23�: (9.8)

We want to construct solutions to (9.6) by a Schauder fixed point argument
for T small enough. Let M > 0 and X such that kX1k�+ kX2k2�6M and

B := ff =(f; f1)2DX
2�: (f0; f01)= (y0; �(y0)); [f ]DX

2�(Rk)6 4Cg; (9.9)

where
C := (1+M)Dk�k1: (9.10)

Lemma 9.4. If T�6 "0 given by

"0 :=
1

8(1+K3�)(1+D)(1+ k�k1)(1+M)2
; (9.11)

then ¡(B)�B. Moreover, setting

L := 2(1+M)k�k1= 2C
D
; (9.12)
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for any f =(f; f1)2B we have

max fk�fk�; kf1k1g6L:

Proof. Let f 2B. Setting " :=T�, if "6 "0 then in particular

"C 6 k�k1
8(1+K3�)(1+ k�k1)(1+M)

6 k�k1
8

:

We obtain

kf1k16 j�(y0)j+ "k�f1k�6 k�k1+ "[f ]DX
2�(Rk)6 2k�k16L:

Similarly

k�fk� 6 "kf2k2�+ kf1k1kX1k�6 "C+(k�k1+ "C)M

6 k�k1
8

(1+M)+ k�k1M 6 2(1+M)k�k1=L:

We recall that ¡(f)= (J; �(f)), where J is uniquely determined by (9.8). By
(8.11) and (9.7)

[¡(f)]DX
2�(Rk) 6 2(1+M)(jr�(y0)�(y0)j+ "(1+K3�)[�(f)]DX

2�(Rk))
6 2(1+M)(Dk�k1+ "(1+K3�)D([f ]DX

2�(Rk)+2L2)):

Now (1+M)Dk�k1=C, and

D([f ]DX
2�(Rk)+2L2)6D

�
4C+24C

2

D2

�
6 8C

�
D+ C

D

�
:

Note that

D+ C
D
=D+(1+M)k�k16 (1+M)(1+D)(1+ k�k1); (9.13)

so that

[¡(f)]DX
2�(Rk) 6 2C+2C=4C:

Therefore, ¡(f)2B. �

9.3. Local Lipschitz continuity

We suppose that � is of classC3, with k�k1+kr�k1+kr2�k1+kr3�k1<
+1 and we fix D> 0 such that

D> kr�k1+ kr2�k1+ kr3�k1:

Lemma 9.5. (Local Lipschitz estimate) We have for f ; f�2B, where B
is defined in ( 9.9), the local Lipschitz estimate

[�(f)¡�(f�)]DX
2�(Rk
Rd) 6 (2+D+ k�k1) [f ¡ f�]DX

2�(Rk) (9.14)
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Proof. By Lemma 9.4 we have for f =(f; f1); f�=(f�; f�1)

max fk�fk�; k� f�k�; kf�1k1g6L;
with L as in (9.12). Now, we want to estimate

[�(f)¡�(f�)]DX
2�(Rk
Rd)= k�(r�(f) f1¡r�(f�) f�1)k�||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

A
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B

:

We first estimate A:

j�(r�(f) f1¡r�(f�) f�1)stj=
=j�(r�(f))st ft1+r�(fs)�fst1 ¡ �(r�(f�))st f�t1¡r�(f�s)� f�st1 j
6j�(r�(f)¡r�( f�))st ft1j+ j�(r�(f�))st (ft1¡ f�t1)j+
+ j(r�(fs)¡r�(fs�))�fst1 j+ jr�( f�s)(�f¡ � f�)stj:

By Lemma 3.5 and (1.27) we have for "=T�

A 6 D[kf1k1(k�f¡ � f�k�+(k�fk�+ k� f�k�)kf¡ f�k1)+ k� f�k�kf1¡ f�1k1+
+kf¡ f�k1k�f1k�+ k�f1¡ � f�1k�]

6 D[ ( (k�fk�+ k� f�k�)kf1k1+ k�f1k�)kf¡ f�k1+ kf1k1k�f¡ � f�k�+
+(1+ "k� f�k�)k�f1¡ � f�1k�]

6 D[(2L2+ k�f1k�)kf¡ f�k1+Lk�f¡ � f�k�+(1+ "L)k�f1¡ � f�1k�]

We show now that

k�(f)2¡�(f�)2k2�6 (9.15)
6D ((kf2k2�+3k�fk�2 )kf¡ f�k1+(k�fk�+ k� f�k�)k�f¡ � f�k�+kf2¡ f�2k2�)
6D[(kf2k2�+3L2)kf¡ f�k1+2Lk�f¡ � f�k�+kf2¡ f�2k2�]:

We have by (9.2)

k�(f)2¡�(f�)2k2�6 kr�(f) f2¡r�(f�) f�2k2�+

+
Z
0

1

kr2� (f+u�f) �f
 �f¡r2� ( f�+u� f�) � f�
 � f�k2� du:

With the usual estimate jab¡ a�b�j6 ja¡ a�j jbj+ja�j jb¡ b�j we can write

kr�(f) f2¡r�(f�)f�2k2�6
6kr�(f)¡r�( f�)k1kf2k2�+ kr�(f�)k1kf2¡ f�2k2�
6kr2�k1 kf¡ f�k1kf2k2�+kr�k1 kf2¡ f�2k2�
6D(kf¡ f�k1kf2k2�+ kf2¡ f�2k2�):

For the other termZ
0

1

kr2�(f +u�f) � �f
 �f¡r2�(f�+u� f�) � � f�
 � f�k2� du6

6kr3�k1k�fk�2 (kf¡ f�k1+k�f¡� f�k1)+kr2�k1(k�fk�+k� f�k�)k�f¡� f�k�
6D(k�fk�2 (kf¡ f�k1+k�f¡ � f�k1)+ (k�fk�+ k� f�k�)k�f¡ � f�k�):
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Recalling that k�f¡ � f�k162kf¡ f�k1, we have finished the proof of (9.15).
Since f0¡ f�0=0, we have kf¡ f�k16"k�f¡ � f�k�. Summing up, we obtain

[�(f)¡�(f�)]DX
2�(Rk
Rd)=A+B

6f(3L+ "(5L2+ [f]DX
2�(Rk)))k�f¡ � f�k�+(1+ "L) [f ¡ f�]DX

2�(Rk)g:

On the other hand

k�f¡ � f�k� 6 "kf2¡ f�2k2�+ kf1¡ f�1k1kX1k�
6 "kf2¡ f�2k2�+ "M k�f1¡ � f�1k�
6 "(1+M) [f ¡ f�]DX

2�(Rk):

Therefore

[�(f)¡�(f�)]DX
2�(Rk
Rd) 6 ("(1+M)c1+ c2) [f ¡ f�]DX

2�(Rk);

where we set

c1 :=D (3L+ "([f ]DX
2�(Rk)+3L2)); c2 :=D(1+ "L):

Since [f ]DX
2�(Rk)6 4C we obtain, recalling that DL=2C by (9.12),

c1 6 D (3L+ "(4C+5L2))6 6C+ 20"C
�
D+ C

D

�
6 6C+ 20"C(1+D)(1+ k�k1)(1+M)
6 6C+3C=9C;

where we have used first (9.13) and then (9.10)-(9.11). Similarly

"(1+M)c16 9"C(1+M)= 9"Dk�k1(1+M)26 2;
and

c2=D+ "DL=D+2"C6D+ k�k1:
Therefore

"(1+M)c1+ c26 2+D+ k�k1:

The proof is finished. �

9.4. Contraction

In this section we prove local existence by means of a Banach fixed point,
assuming � to be of class C3 and bounded with its first, second and third
derivatives, namely k�k1+kr�k1+kr2�k1+kr3�k1<+1. Therefore
the assumptions are stronger than for the Schauder fixed point argument of
Section 9.2 or for the discrete approximation of Section 4.8. However this
method has the advantage of not requiring compactness of the image of ¡
and therefore this approach works also for rough equations with values in
infinite-dimensional spaces.
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Let us fix D> 0 such that

D>max fkr�k1; kr2�k1; kr3�k1g:

Recalling that B was defined in (9.9), we can now show the following

Lemma 9.6. If T� 2 ]0; "0] where "0 is as in ( 9.11), then ¡: B! B is a
contraction for k�kDX

2�.

Proof. Let f = (f; f1) and f�= (f�; f�1) be in B. Since f0= f�0 and f01= f�01, by
the definitions, see in particular (8.9),

k¡(f)¡¡(f�)kDX
2�(Rk) = [¡(f)¡¡(f�)]DX

2�(Rk):

We set " :=T�. By (8.11)

[¡(f)¡¡(f�)]DX
2�(Rk) 6 "2(1+M)(1+K3�) [�(f)¡�(f�)]DX

2�(Rk):

Now by Lemma 9.5

[�(f)¡�(f�)]DX
2�(Rk
Rd) 6 (2+D+ k�k1) [f ¡ f�]DX

2�(Rk):

Now 2+D+ k�k16 2(1+D)(1+ k�k1). Therefore

[¡(f)¡¡(f�)]DX
2�(Rk) 6 c4 [f ¡ f�]DX

2�(Rk);

with

c4= "2(1+M)(1+K3�)2(1+D)(1+ k�k1)6
1
2

by (9.11). This concludes the proof. �
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Chapter 10
Algebra

Let us recall that a d-dimensional �-rough path X= (X1;X2) with �>
1

3

is such that Xst takes values in G :=Rd� (Rd
Rd) for all 06 s6 t6 T .
We want to show that the Chen relation (5.25) has a very natural algebraic
interpretation if we endow G with a suitable group structure.

10.1. A non-commutative group

We denote in the following generic elements x 2G =Rd� (Rd
Rd) by
x = (x1; x2) with x1 2Rd and x2 2 Rd 
 Rd. We define an operation �:
G�G!G as follows: for x; y 2G with x=(x1; x2) and y=(y1; y2) we set

x � y := z=(z1; z2); z1 :=x1+ y1; z2 :=x2+ y2+x1
 y1:

It is simple to see that (G; �;1), is a group, where 1 := (0; 0). First associa-
tivity of the product:

(x � y) � z = (x1+ y1+ z1; x2+ y2+ z2+x1
 y1+(x1+ y1)
 z1)
= (x1+ y1+ z1; x2+ y2+ z2+x1
 (y1+ z1)+ y1
 z1)
= x � (y � z):

Now the fact that 1 is the neutral element is obvious. Finally the inverse is
given explicitly by

x�(¡1)=(¡x1;¡x2+x1
x1): (10.1)

Let us note that (G; �; 1) is non-commutative for d> 2, since in general
x1
 y1=/ y1
x1.

Now we want to interpret the Chen relation (5.25) in this setting. Given
a �-rough path X=(X1;X2), we write

X: [0; T ]62 !G; Xst := (Xst
1 ;Xst

2 ):

Then the Chen formula (5.25) yields

Xst=Xsu �Xut; 06 s6 t6T :
Indeed it is enough to note that for 06 s6u6 t6T

Xst
1 =Xsu

1 +Xut
1 ; Xst

2 =Xsu
2 +Xut

2 +Xsu
1 
Xut

1 :

Note that we also have, by the analytical estimates jXst
i j. jt ¡ sji� that

Xtt=1.
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10.2. Shuffle group

We can consider the subset H �G given by

H := fx=(x1; x2)2G: x2+x2T =x1
x1g;

where (a
 b)T := b
a for a; b2Rd:
We can see that H is a subgroup of G: if x; y2H then z :=x� y satisfies

z2+ z2T = x2+ y2+x1
 y1+x2T + y2
T + y1
x1

= x1
x1+ y1
 y1+x1
 y1+ y1
x1
= (x1+ y1)
 (x1+ y1)= z1
 z1:

Moreover if x2H then its inverse y=x�(¡1)2G satisfies

y2+ y2
T = ¡x2+x1
x1¡x2T +x1
x1
= ¡x1
x1+2x1
x1
= (¡x1)
 (¡x1)= y1
 y1

so that x�(¡1)2H. Finally 12H. ThereforeH is indeed a (proper) subgroup
of G. Moreover by (10.1) and the relation defining elements of H we have
the simpler expression for the inverse

x�(¡1)=(¡x1; x2T); x2H: (10.2)

Therefore we have the following

Lemma 10.1. A rough path X is weakly geometric if and only if the associ-
ated map X: [0; T ]62 !G takes values in H.

10.3. Algebra and integral

As we explained at the beginning of Chapter 5, givenX1= �X 2C2�, a choice
of X2 is equivalent to a choice of an integral It=

R
0

t
Xs
 dXs, t 2 [0; T ],

namely

I: [0; T ]!Rd
Rd; I0=0; �Ist¡Xs
 �Xst=Xst
2 ; X22C22�:

Given X=(X1;X2), we set now

X: [0; T ]!G; Xt := (Xt; It); t2 [0; T ]:

Then for 06 s6 t

Xs
�(¡1) �Xt = (¡Xs;¡Is+Xs
Xs) � (Xt;It)

= (Xt¡Xs; It¡ Is+Xs
Xs¡Xs
Xt)
= (Xst

1 ; �Ist¡Xs
 (Xt¡Xs))
= (Xst

1 ;Xst
2 )=Xst (10.3)
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again by the Chen relation (5.25).

Remark 10.2. This definition of X: [0; T ]!G is not the only possible one.
For example, if Xt: =X0t, then we also have Xs

�(¡1) �Xt=Xst.

10.4. Unordered times

Given the relation (10.3) Xs
�(¡1) �Xt=Xst for s6 t, it is natural to wonder

whether we have an expression for Xs
�(¡1)�Xt when s>t. In fact, this turns

out to be equivalent to having an expression for Xst when s> t.
The definition of Xst

1 is simple:

Xst
1 :=¡Xts

1 ; 06 t < s6T :

In particular, if X of class C� is such that X1= �X , then we obtain

Xst
1 =Xt¡Xs; jXst

1 j. jt¡ sj�; 8s; t2 [0; T ]:

We want now to extend X2 to [0; T ]2 so that for all s; u; t2 [0; T ]

�Xsut
2 =Xsu

1 
Xut
1 ; jXst

2 j. jt¡ sj2�:
We set for 06 t < s6T

Xst
2 :=¡Xts

2 +Xst
1 
Xst

1 =Xts
�(¡1)

:

Note that then we clearly have jXst
2 j. jt¡ sj2� for all s; t2 [0; T ].

With these choices, we have by (10.1)

Xst=Xts
�(¡1)

; 8s; t2 [0; T ]:

Then by (10.3), for 06 t < s6T

Xst=Xts
�(¡1)=

¡
Xt
�(¡1) �Xs

��(¡1)=Xs
�(¡1) �Xt;

namely (10.3) holds for all s; t2 [0; T ].

Now, suppose that we have a general germ A: [0; T ]2!R. We suppose
that it satisfies for some � > 1

jAst¡Asu¡Autj6CA(ju¡ sj _ jt¡uj)
�
; s; u; t2 [0; T ]:

In particular, the restriction A: [0; T ]62 !R is such that �A: [0; T ]63 !R

belongs to C3
�. By the Sewing Lemma, we have a unique choice for (I ; R)

such that

I0=0; �Ist=Ast+Rst; jRstj. jt¡ sj�; 06 s6 t6T :

We want to extend R to a function on [0; T ]2 in such a way that the previous
formula holds over [0; T ]2. We set

Rst=¡Ast¡Ats¡Rts ; 06 t6 s6T : (10.4)
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Since �Its=¡�Ist, we have for t6 s
Rst=¡Ast¡ (�Its¡Rts)¡Rts=¡Ast¡ �Its= �Ist¡Ast;

so that �I =A+R on [0; T ]2. Moreover, since Ass=0 by Remark 1.8,

jRstj6 j(�A)stsj+ jRtsj � (C�+1)CA jt¡ sj� ; 06 t6 s6T : (10.5)

10.5. An example: the Brownian case
Let consider the Itô Brownian rough paths in Rd

Bst
1 =Bt¡Bs; Bst

2 =
Z
s

t

(Br¡Bs)
dBr; 06 s6 t6T :

Then we obtain from the definitions of the previous section for 06 t<s6T
Bst
1 = Bt¡Bs;

Bst
2 = ¡

Z
t

s

(Br¡Bt)
dBr+(Bs¡Bt)
 (Bs¡Bt)

=
Z
t

s

dBr
 (Br¡Bt)+ (s¡ t)I ;

where I is the identity matrix of Rd.
Note that we can not write the latter expression as

R
t

s(Bs¡Br)
 dBr
since the integrand is not adapted to the filtration of B. Here the one-
parameter function B: [0; T ]!G such that Bst=Bs

�(¡1) �Bt is given by

Bt=
�
Bt;

Z
0

t

Bs
 dBs

�
; t> 0:

Let us consider now the Stratonovich case:

B� st1 =Bt¡Bs; B� st2 =
Z
s

t

(Br¡Bs)
�dBr; 06 s6 t6T :

Then we obtain from the definitions of the previous section for 06 t<s6T
B� st1 = Bt¡Bs;

and if one applies (10.2) then we have for 06 t< s6T

B� st2 = (B� ts2 )T =
Z
t

s

�dBr
 (Br¡Bt):

Here the one-parameter function B� : [0; T ]!G such that B� st=B� s
�(¡1) �B� t

is given by

B� t=
�
Bt;

Z
0

t

Bs
�dBs
�
; t> 0:
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