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CHAPTER 1
THE SEWING LEMMA

Given two continuous functions X,Y:[0,7] — R, the integral
T
/ Y, dX, (1.1)
0

can be defined as f OT Y, X, dr when X is differentiable or, more generally,
as a Lebesgue integral when X is of bounded variation (so that dX is a
signed measure). The key question we want to address is: how to define the
integral when X is neither differentiable nor of bounded variation? This is
an example of a more general problem: given a distribution X and a non-
smooth function Y, how to define their product YX ?

A motivation is given by X = B with (B¢);>¢ a Brownian motion. Then
one can use probability theory to answer the question and define the integral
n (1.1), but one sees that there are several possible definitions: for example
It6, Stratonovich, etc.

We are going to present the alternative answer provided by the theory of
Rough Paths, originally introduced by Terry Lyons. This provides a robust
construction of the integral in (1.1) and sheds a new “pathwise” light on
stochastic integration.

The approach we follow is based on the Sewing Lemma, to which this
chapter is devoted. In particular, we will show in Section 2.2 that the integral
in (1.1) has a canonical definition ( Young integral) when Y and X are Holder
continuous, under a constraint on their Holder exponents. Going beyond
this constraint requires Rough Paths, which will be studied in Chapter 5.

1.1. LOCAL APPROXIMATION

If X is of class C!, we can define the integral function
I, :/OtY;XTdr, te[0,77).
Then we have Ip=0 and for 0 <s<t<T
I —I,—Y, (X, — X,) :/t(y,,.—YS)X,.drzo(t —5)

as t —s— 0, because X is bounded and |Y; — Y;| =o(1) as |r — s| — 0. (For

s>t we adopt the usual convention f: ...:=—/7...). Thus the integral
function I; satisfies
1y=0, L —IL,=Y;(X;— X5)+o(t —s), 0<s<t<T. (1.2)
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Remarkably, this relation characterizes (It);cjo,)- Indeed, if I' and I? sat-
isfy (1.2) with the same functions X, Y, their difference A:=I'— I? satisfies

A — A =o(t —s), 0<s<t<T,

which implies %At =0 and then A;=Ay=0. This simple result deserves
to be stated in a separate

LEMMA 1.1. Given any functions X,Y:[0,T] =R, there can be at most one
function I:[0,T] — R satisfying (1.2).

The formulation (1.2) is interesting also because the derivative X of X
does not appear. Therefore, if we can find a function I: [0, T] — R which
satisfies (1.2), such a function is unique and we can take it as a definition
of the integral (1.1).

We will see in Section 2.2 that this program can be accomplished when X
and Y satisfy suitable Holder regularity assumptions. In order to get there,
in the next sections we will look at a more general problem.

Remark 1.2. Whenever we write o(t — s) we always mean uniformly for
0<s<t<T, ie.

Ve >0 36 > 0: 0<s<t<T, t—s<d implies [o(t—s)|<e|t—s].

This will be implicitly assumed in the sequel.

1.2. A GENERAL PROBLEM
Let us generalise the problem (1.2). If we define for n > 1

[OﬂT]%: (tla"~;tn>:0<t1<"'gtngT},

A:[0, T2 - R, Ag =Y, (X — Xy), 0<s<t<T, (1.3)

we can decouple (1.2) in two relations
Io=0,  Ii—I,=Ay+ Ry, (1.4)
R:[0,T)2 — R, Rgt=o(t —s). (1.5)

The general problem is, given any continuous A: [0, T]2< — R, to find a pair
of functions (I, R) satisfying (1.4)-(1.5). We call

o A:[0, T]Qg — R the germ,

e I:[0,7] =R the integral,

e R:[0,T)% — R the remainder.

We are going to present conditions which allow to solve this problem.

Note that we always have uniqueness. Indeed, given (I', R') and (12, R?)
which solve (1.4)-(1.5) for the same A, by the same arguments which lead
to Lemma 1.1 we have % (I} — I?) =0, hence I' =I? and then R'= R? by
(1.4). We record this as
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LEMMA 1.3. Given any germ A, there can be at most one pair of functions
(I, R) satisfying (1.4)-(1.5).
We are going to work with continuous functions, so we define for k> 1

Cr:={F:[0,T] -R: F is continuous}.

We will actually only need the spaces C1, Cs, Cs.

1.3. AN ALGEBRAIC LOOK

We first focus on relation (1.4) alone. For a fixed germ A, this equation
has infinitely many solutions (I, R), because given any I we can simply
define R so as to fulfill (1.4). Interestingly, all solutions admit an algebraic
characterization in terms of R alone.

LEMMA 1.4. Fiz a function A € Cs.
1. If a pair (I, R) € Cy x Cy satisfies (1.4), then R satisfies
Ryt~ Ryu— Rur=—(Ag— Agu— Auy),  YVO<s<u<t<T. (1.6)
2. Viceversa, if a function R € Cy satisfies (1.6), then, setting I;:=
Rot — Roo, the pair (I, R) € Cy x Cy satisfies (1.4).
Proof. Relation (1.4) clearly implies (1.6), simply because
(I— L) — (I, — 1) — (I, — 1) =0. (1.7)
Viceversa, given R satisfying (1.6), we can define Lg;:= At + Rst so that
Lst — Lsy — Ly =0.
Applying this formula to (s',u’,t")=(0, s,t), we obtain that I:= Lot — Log
satisfies
It — Is= Lot — Los = Lst = Ast + Rt
and the proof is complete. [l

Relations (1.4) and (1.6) contain operators which deserve an explicit
definition:

0:Cy — Oy, Ofse:=fi—fs, (1-8)
0:Cy— Cs, OF gyt =Fst — Foyy— Fur . (19)

Remark 1.5. We note that the maps

C1L>CQL>C'3 (1.10)

satisfy 00 =0, see (1.7). Moreover, for F € Cs, the function 0F € C5 mea-
sures how much F' differs from being the increment §f of some f € Cj.
Indeed, we have 6F =0 if and only if F =4f for some f € C; (in other words,
(1.10) defines an exact cochain complex). The proof of this fact, essentially
contained in the proof of Lemma 1.4, is left as an exercise.
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We can now rephrase Lemma 1.4 as follows.
PROPOSITION 1.6. Fiz A € Cs. Finding a pair (I, R) € C1 x Cy satisfying
(1.4) is equivalent to finding R € Cs such that
ORsut = —0Asut, VOo<s<u<t<T. (1.11)
In the special case Ast=Y;0Xst with X, Y € Cy as in (1.3), we have
0Agut = —0Y5u, 0 X0 . (1.12)

Proof. We only need to prove (1.12). When Ay, =Y; 6 X, we have

5Asut :Y; (Xt - Xs) - Y; (Xu - Xs) - Yu (Xt - Xu)
=Y (X — Xoy) = Yo (Xi — Xo) = — (Yo — Y5) (X — X)),

which completes the proof. O

1.4. ENTERS ANALYSIS: THE SEWING LEMMA

So far we have analyzed (1.4). We now let (1.5) enter the game, i.e. we
look for a pair of functions (I, R) € Cy x Cy which fulfills (1.4)-(1.5), given
a (general) germ A € Co.

We stress that condition (1.5) is essential to ensure uniqueness: without
it, equation (1.4) admits infinitely many solutions, as discussed before
Lemma 1.4. When we couple (1.4) with (1.5), uniqueness is guaranteed by
Lemma 1.3, but ezistence is no longer obvious. This is what we now focus on.

We start with a simple necessary condition.

LEMMA 1.7. For (1.4)-(1.5) to admit a solution, it is necessary that the

germ A satisfies

|0 Asut] =o(t —s), for 0<s<u<t<T. (1.13)

Proof. If (1.4) admits a solution, by Proposition 1.6 we have [0Agy:| =
|0Rsye|. If furthermore R satisfies (1.5), we must have

[0Rsut| < |Rst| + |Rou| + |Rut| =0(t — 5) + 0o(s — u) + o(t — u)
and the conclusion follows since [t —u|+ |u—s|=|t —s]|. O

Remark 1.8. Choosing u=s in (1.13) we obtain that —Ass=o0(t — s), which
means that Ass=0. Therefore a necessary condition for (1.4)-(1.5) to admit
a solution is that A vanishes on the diagonal of A%.

Remarkably, the necessary condition in Lemma 1.7 is close to being
sufficient: it is enough to upgrade o(x) in O(z") for some 1> 1. This is the
content of the celebrated Sewing Lemma, which we next present. We first
introduce some notation.
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We denote by ||| the usual supremum norm:

|F|loo:= sup |Fy for FeCy.
QEE[O,T]’%

We recall the following notation: for F',G € Cy and F', G >0 we write
F<G <= 3CeRy: F,<CG,, VYze|0,T|E.
Next, given 7 € (0,00), we define the following norms for F' € Cy and G € Cs:

|Gsut|
K

IFlly=  sup 2

[Glln:= sup
(s,t)€[0,T)%: s#t |t75 !

(1.14)
(s,u,t)E[O,T]%: s#t |t ]

I’

and we introduce the corresponding function spaces:
C:={FeCy |F|,<o0}, CJ:={GeCs: |G|,<o0}.

It can be easily shown that C'J and C§ endowed with |-|,, are Banach spaces.

A finite sequence of ordered points P={a=to<t1<...<tp=b} is called
partition of the interval [a,b]. The cardinality of a partition #P =k is the
number of intervals, while its mesh |P|:=max;=1 ... up |t —ti—1] is the
largest interval size.

We are now ready to state the Sewing Lemma (Gubinelli [3], Feyel-de La
Pradelle [1]). This gives an explicit sufficient condition for the solvability of
(1.4)-(1.5), that we call coherence.

sy

DEFINITION 1.9. (COHERENT GERM) A germ A € Cy is called coherent if,
for some n>1, it satisfies A€ Cd, i.e. ||0A], <oo. More explicitly

dn € (1, 00): [0Asue| STE—s|7, 0<s<u<t<T. (1.15)

THEOREM 1.10. (SEWING LEMMA) If a germ A € Cy is coherent, i.e. it
satisfies (1.15) for some n > 1, then there exists a unique pair (I, R) €
C1 x Cq such that

IQZO, It_ls:Ast+Rst7 RstZO(t—S).
Moreover:
e The integral I € C1 is the limit of Riemann sums of the germ

#P—1
ItZ: lim Atiti+1 (116)
i=0

along arbitrary partitions P of [0,t] with vanishing mesh |P|— 0.
e The remainder R € Cs, given by
Ryi=1,— I, — Ay, (1.17)
satisfies |Rst| S|t — s|™. More precisely
IRl < KolldAlly,  where  Kpi=(0-2)71.  (L1§)
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The Sewing Lemma is a cornerstone of the theory of Rough Paths, to be
introduced in Chapter 5. We will already see in Chapter 2.2 an interesting
application to Young integrals. The (instructive) proof of Theorem 1.10 is
postponed to Section 1.6.

Remark 1.11. For a fixed partition P of [0,¢] we have by (1.17)

4P—1 #P—1

Ii= Z Aty + Z Ryt ps
i=0 i=0

Therefore, (1.16) is equivalent to

#P-1
lim Rtiti =0
At & e
which is the reason why one wants the remainder R to be small close to
the diagonal. The information Rs:=o(|t — s|) is not enough in general to
obtain the existence of (I, R), while a sufficient condition is the quantitative
estimate |Rg:| S|t — s|m.

1.5. THE SEWING MAP

Given a coherent germ A, by Theorem 1.10 we can find an integral I and a
remainder R which solve (1.4)-(1.5). We now look closer at the remainder R.

LEMMA 1.12. In the setting of Theorem 1.10, the remainder R is a function
of 0A: given two coherent germs A, A" with A =0A’, the corresponding
remainders R, R’ coincide. Moreover, the map dA— R is linear.

Proof. By Proposition 1.6 we have 6(R—R’)=0(A— A")=0, hence R— R'=
df for some f € Cy (see Remark 1.5). Both |Ry| and |R%;| are o(|t — s|)
by (1.5), hence | ft — fs|=o0(|t — s|). Then f must be constant and R=R'.
Linearity of the map dA+— R is easy. O

Since R is a function of § A, we introduce a specific notation for this map:
R=—-A(0A)

with minus sign for later convenience. Let us describe more precisely this
map A. Throughout the following discussion, we fix arbitrarily n € (1, co).

e Domain. The map A is defined on §A for coherent germs A, see
Definition 1.9. The domain of A is then C’g N §C5, where we denote
by dC5 C C3 the image of the space C; under the operator § defined
in (1.9).

e Codomain. The map A sends dA to —R, and we have |Rg| S|t — s|",
see (1.18). A natural choice of codomain for A is then CJ.



1.6 PROOF OF THE SEWING LEMMA 13

e Characterization. In view of Lemmas 1.6 and 1.3, the function —R =
A(8A) is characterized by the properties

S(~R)sur =04,  |Ru|=o(]t—s]).

The second condition is already enforced by our choice C of codomain
for A, which yields |Rs:| < |t — s|". The first relation can be rewritten
as (A(B)) =B for all B in the domain of A, that is o A is the
identity map.

In conclusion, we have proved the following result.
THEOREM 1.13. (SEWING MAP) Let € (1,00). There exists a unique map
A:CIN6Cy, — CF,
called the Sewing Map, such that 6 o A =id is the identity on C5 NdCs.
e The map A is linear and satisfies
IAB)|ly < Eyl|Bll, VB eC{NICy, (1.19)

where K, is the same constant as in (1.18).

e Given a coherent germ A€ Cy, i.e. JA€CY, the unique solution (I,
R) of (1.4)-(1.5) is obtained by R:=—A(0A) and I;:= Ao+ Ro.

1.6. PROOF OF THE SEWING LEMMA
We prove Theorem 1.10.

Proof. We follow [2], page 6.
Step 1: construction of I. Let us fix 0 < s <t<7T. For a partition P =
{s=to<ti<...<t,=t} of [s,t] with n points, we define

n—1
I’p = Z Atiti+1 .
=0

If there are n > 2 intervals in P, there must exist ¢ € {1,...,n — 1} such that
[tivz1—ti1] < %hﬁ — s|. Indeed, if this is not the case, we must have

n—1

n—1
2
20t —s|>> " [t —tia|> ) ——lt—s|=2]t—s|.
=1 =1

Removing the point ¢; from P yields a partition P’ of n — 1 intervals, for
which

|I'P_I77/| = |Ati—1ti+Atiti+1_Ati—lti+1|:|6Ati—1titi+1|

t—s|"
< [l6Af =2l

Oy (1.20)



14 THE SEWING LEMMA

Iterating this argument, until we arrive at the trivial partition {s,t}, we get

Ip = Al <Cy Al = 5|7, with  Cp= 3" —<oo,  (12)

m>1

because n > 1. Similarly, if Q D P is another partition of [s, ],

#P—1 #P -1
To—Ip| < > Honftut) = At SCI6AlL, D Jtia — 6]
1=0 =0

#P—1
<Cy 6AN P71 > Jtig1 =t <Cy |6A[|, T P71,
=0

Finally, if P and P’ are arbitrary partitions, setting Q:=PUP’ and applying
the triangle inequality yields |Ip/ — Ip| <2C, ||6A||, T|P|7~*. This means
that the family Ip is Cauchy (for every e >0 there exists J. > 0 such that
|P|, |P'| <6, implies |Ip: — Ip| <€), hence it admits a limit as |P|— 0,
that we call J;;. We note that Jg; is only defined for 0 <s <t <T.

We now define I;:= Jo;. We claim that

I —I,=Jgy forall 0<s<t<T.

Indeed, if we consider partitions P’ on [0, s] and P of [s, t], so that P":=
PUP’ is a partition of [0,¢], then Ip» — Ip, = Ip and taking the limit of
vanishing mesh we get the claim. Taking the limit of relation (1.21), since
Ip — I; — I, we obtain

IRot| <CyI8A|n |t — 5|7, Ry:=6ly— Ay,  0<s<t<T.
n n

Therefore (1.18) holds, with K, replaced by the worse constant C;,. This is
because the estimate (1.21) holds for arbitrary partitions.

Step 2: Sewing bound with optimal constant. If we choose the sequence
of dyadic partitions P, :={t]':=s+ 2% (t—s):0<i<2"} of [s,t] of order
n, the arguments of step 1 give the sewing bound with the better constant
K. Indeed, let again s <t. If we remove all the “odd points” t3;,; with
0<j<2"1—1 from P,, we obtain P, _1. Then, in analogy with (1.20), we
have for n>1

2n—1-1
- t—s\"
|Ipn7],Pn,—l|§ Z |5At§jt§j+1t§j+2|§2n ! ||6A||777[57t]<| on |>
=0

=27 DY |5 A g5, [t = 8|7,

where we set (also for future use)

|6Aabc|

||5AH777[57,5] = sup |c—a|"7'

a,b,c€[s,t]: a<b<c,a<c

(1.22)
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Since Py={s,t}, we have Ip,= As; and we obtain for any k£ € N

lIp, — Ast] = |Ip, — Ipy|

k
S Z |I,P”7],Pn71|
n=1
k
< H6A|“f7,[s,t] |t75|nz 2—71(77—1)—1

n=1

< (2"=2)716A Iy s [t = 57,
because 2;0;12771(7771)71: (27 —2)~L. For k— oo we have Ip, — I; — I, and
|00 — Ase] < (27— 2)H|0A ], 15,9 |t — 57, s<t. (1.23)

Since [|0A]],, (s, < [|6A[l, (1.18) is proven. O

1.7. NORMS AND DISTANCES

We collect here all the main definitions and properties of the different norms
and distances we use in what follows. We fix T'>0 and k,d € N and we work
on function spaces

Cj:={F:[0,T]% —R®% Fis continuous}.

For the convenience of the reader, we recall here some definitions already
given in the previous sections. We consider for F' € Cy,

IFlloi= sup |l
z€[0,T]%

Next, given 1 € (0,00), we define for G€ Cy and H € Cj

H,
||G||.,7:: sup |G5t|n7 HH”’V]:: sup | sut|n)
(s,t)G[O,T]%: s#t |t - 3| (s,u,t)E[OyT]ﬁ'gz st |t — S|

and corresponding function spaces
Cy:={GeCs: |G|, <0}, Cg:={HeCs:||H|, <oo}.

Now, we fix 7> 0 and we set for F'€ Cy, G€Cy and H € CY

X
IFlcri= s exp(=E)|F]
o=(z1,...,21)€[0,T]% T
t |Gst|
Gllp,r:= sup  Loo<p—s|< exp(——) ,
Gy, o Locl—sl<n) ) Te—sp
t\ | Hsutl
||HH7777:: sup 1(0<‘t,s|<7)exp(f;) |t j;w

0<s<uktLT
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Note in particular that
Hm ([ Flloo, 7= || oc, lim (|Gl =G, lim (| H [, =|[H [|-
T— +00 T— 400 T—+00
Note that |||/, is a norm on C, and we have the equivalence of norms
T
[[-lloe, = <I-llo0 < 7| [l oo, - (1.24)

On the other hand, ||-||,,,~ is only a semi-norm on C}! if 7 <T'; we have at least

r 1
2o <y < (2 Ml ) (1.25)
On the other hand, if 7 >7T we have again equivalence of norms

T

lln-<l-ln<er -l 72T, (1.26)

Remark 1.14. The norms ||-||,,~ are very useful to transform local results
in global results: indeed, using the norms ||-||,, requires sometimes the size
T >0 of the time interval [0, 7] to be small, which can be annoying. Using
the norms |-||,),~ allows to keep 7> 0 arbitrary by choosing a sufficiently
small 7> 0.

LEMMA 1.15. For G € Cy, and k € {2,3} we have
1Glln.r <(TAT)" =G llyrr, 0" 2. (1.27)
Moreover for G € Cy we have
[Glleo <1Gol + TG |y, 1>0, (1.28)
|Glloo.r <|Gol +3(r AT)"[6G ly,7,  n>0. (1.29)

Proof. Let us first prove (1.27). For G € CJ, we have

LY fo— s LGl

IGly,-= sup 1(0<\t_s|<7)exp(—; |t —s|™

0<s<tLT
STATD)T Gy 7

The case G € Cy is analogous. Let us prove now (1.28): for any G € Cy and
for t € )0, T] we have

— Gyl

G
Gil <16Gul +1G: — Gol =|al + 1S B < G+ T

The proof of (1.29) is slightly more complicated. If ¢ € ]0,7 AT, then

—2 ]G = Gl

t
e 7|Ge < |Go| +t"e 7

<|Gol + (T AT)T[6G 5, -
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Suppose now that 7 <t < T and let N:=min{n €N:n7 >t} >2, so that
%gr We set tk:kiN, k >0, so that ¢ty =t. Then

_t Tttt
€ 7—|G(t|<|6:0|—’— Z € T € T |Gtk+1_Gtk|
k=0

N-1

Ct—tpgn

<IGol + (AT 6G s 30 €7
k=0

By the definition of N we have (N —1)7 <t; since 7 <t we obtain N7 <2t

and therefore % > % We obtain
N-—1 —— N-—1 . - %
e T = eikﬁflet\ 11<3
k=0 k=0 l—e ™ 1-e 2
The proof is complete. O
LEMMA 1.16. If Fs;=Gs Hg with GeCy and F, H € Co,
||F||77,T< ||G||oo,THH||'r7a (Fst:GsHst)- (1-30)
Analogously, if Fsyy= Ggy Hyy with G, H € Cy and F € Cs,
HF|’I7,T<HGHOO,T ”H”m (Fsut:GsuHut)a (1'31)
1E{ln4n,r NGl e 1H [y, (Fsut = GsuHut) (1.32)
Proof. For F,;=G4Hg;, we have
t\|GsHstl
[Flly= " sup 1<o<|t—s|<r>exp(*;> it s

0Ls<tLT

S H.
< s ew(-2)c|| s G =16 I,
s€[0,T] T o<s<t<T |t =8|

The other cases are analogous. (|

We have a version of the estimate (1.19) for the Sewing map in our
weighted spaces. We recall that |||, - is a semi-norm rather than a norm.

LEMMA 1.17. Let n>1 and 7> 0. For all B€ CJNdCy
[AB Iy, < Kyl Blln,r- (1.33)

Proof. Fix s,t€[0,7] with s <t. We know that |ABy| < K[| B||,, (5,0t — 5]
by (1.23). Let us first suppose that |t — s| <7. Then

—t |ABst _t
P < Bl <K Bl lt—sl<

The proof is complete. O






CHAPTER 2

THE YOUNG INTEGRAL

We can finally come back to the problem we explained at the beginning of
Chapter 1: given two continuous functions X,Y:[0,7] — R, we look for a
function I:[0,7T] — R satisfying

Ip=0, L—-L=Y,(X:— X,)+o(t—s), 0<s<t<T. (2.1)
This is equivalent to look for a pair of functions (I, R) satisfying

Iry=0, I — Is= Ast + Rst, (2.2)

R:[0,T)%2 - R, Rsi=o(t —s). (2.3)

with the germ Ay =Y; X, Recalling that §Asy: = —0Y5, 0 Xy by (1.12),
we have for any a, 5 >0

040t = [Yu Vil X~ Xl = [04llass <X [0V ]l5.  (24)

2.1. HOLDER FUNCTIONS

In order to fulfill condition the condition (1.15) of the Sewing Lemma, it is
natural to assume that the estimate (2.4) holds for «, 3 € ]0, 1] such that
a+ B>1. We remark here that the space

Co:={f:10,T]—=R: |6f]la<oc0}, a€0,1],
| fe — £

where 0flla= sup Lo—=,
o<s<t<T |t =8|

is the classical space of Holder functions with exponent «. For =1 we have
the usual space of Lipschitz functions. Moreover we recall that for o > 1 the
only functions f € Cy such that ||§f]|o < +oo are constant. Indeed we have
the elementary

LEMMA 2.1. If f:]0,T] = R and for some ¢=0 the bound
| fo— fo| <clt —s]|%, s,t€[0,T],
holds for some o> 1, then f is constant. More generally, if |fi— fs| =

o(|t — s|) uniformly as |t —s| — 0, then f is constant.

19
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Proof. By assumption, for every e >0 there exists d > 0 such that [t —s|<d
implies | f(t) — f(s)| <elt —s|. Fix [a,b] C[0,T]. f a=to<t1<...<tp=0b
is a partition of [a, b] with (ti+1 — tz) S 6, then |f(tz+1) — f(tl)| S €|ti+1 — t1|
and we can write

FB) = F@I1< Y [f(tisn) = FE) <eS Jia— til =c(b—a)
1=0 1=0

and sending € — 0 we get f(b) = f(a). Since [a,b] C[0,T] was arbitrary, f
is constant. d

The standard norm on C¢ is
[ fllce =1 flloo + |0 a- (2.5)

Let us denote by C'°° the space of infinitely differentiable functions. Note
that C>° C C* for every a € (0, 1), but C* is not dense in C°.

THEOREM 2.2. The closure of C* in C'* is the subset C§ defined by

C§ ={f:|ft) = f(s)|=o0(t — s|*) uniformly as |t —s|—0}.

Note that f e C§ if and only if
Ve>0 36.>0: [f(t)— f(s)| <elt—s|® for |t —s| <. (2.6)

Also note that the closure of C! in C® is again C§, simply because C* C
clccg.

A key tool for Theorem 2.2 is the following classical approximation result.

LEMMA 2.3. For any continuous f:[0,T] — R there is a sequence f, € C™
such that || fn,— fllec = 0. One can take f, with the same modulus of con-
tinuity as f, that is:

men” 10— 11

where h() is arbitrary. It follows that ||0fu|la <||0f|le for all n € N and
ae(0,1).

<h(t—s) Vs,te[0,T],
ShEt—sg vneN,Vs, te[0,T], (2.7)

Remark 2.4. Lemma 2.3 holds with no change for functions f:[0,7]— R,
where R is an arbitrary Banach space. One only needs a notion of integral
f OT fs ds when f is continuous, and for this one can take the Riemann inte-
gral, i.e. the limit of Riemann sums ). f(;) (t;+1 —t;) along partitions (;)
of [0, T] with vanishing mesh max; |t;11— ;| — 0 (one can check that such
Riemann sums form a Cauchy family). This integral satisfies the key usual

properties: f»—»fOTdes is linear, |f0Tf5ds|§fOT|f5|ds and fOTf;ds:fofO.
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We stress that C{ is strictly included in C'*, but what is left out is not
so large.

Exercise 2.1. C*T<C C§ C C? for any € >0 (inclusions are strict).

2.2. THE YOUNG INTEGRAL

As a corollary of Theorem 1.10, we obtain the existence of the Young integral,
which provides a consistent definition of the integral (1.1) in this setting.

THEOREM 2.5. (YOUNG INTEGRAL) Fiz a, 8 € ]0,1] with a+ 3> 1. For
every (X,Y)€CYx CP there is a (necessarily unique) function I:[0,T] — R
which satisfies (1.2), i.e.

Iy=0, L —L,=Y;(X;— Xs)+o(Jt —s]) . (2.8)
The functon I is called the Young integral and is denoted I; = ngdX.
The remainder Rgp:=1I;— I —Y; (X: — X;) satisfies the bound
[Rllats < Katpsl0X || ll6Y -
It follows that I € C*, more precisely

167 o < (I lloc + KatsT?1|0Y [|g) [[6X [la- (2.9)

Proof. We recall that §Asyu: = —0Ysy 0 Xyt by (1.12). Therefore by (2.4),
dA € Cy with n=a+ 3>1 and we can apply Theorem 1.10. In order to
prove (2.9) we note that

67lla < l[Alla+ 1 Rlla <Y [lol0X o+ TP Rllaxt s
< Y floolldX fla+ T Kot 16X [|o [16Y |6-

This concludes the proof. [l

Remark 2.6. The setting of Theorem 2.5 provides a natural example of a
germ Ag:=Y; 0 X, which is not in CJ for any n> 1 (excluding the trivial
case when Y =0 on the intervals where X is not constant, hence A=0), but
it satisfies 04 € C with n=a+ > 1.

Remark 2.7. It is natural to wonder what happens in Theorem 2.5 for
(X,Y)eC*xCP with o+ 3<1. In this case, there might be no solution to

(1.4)-(1.5), because the necessary condition (1.13) in Lemma 1.7 can fail.
For instance, if we consider X;=t* and Y; =t”, t € [0, T|, we note that for

s=0 and u:% we have by (1.12)
(e (52w

which is not o(|t — s|) =o(t) for a+ 8 < 1.

16 Asue| = [5A ’(syoé

OX:,

0§t| =
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In order to define a notion of integral (1.1) when o+ 3 <1, we are going
to relax condition (1.2) in Definition 5.1. This will lead to the notion of
Rough Paths, described in Chapter 5.

2.3. PROPERTIES OF THE YOUNG INTEGRAL

The Young integral, defined in Theorem 2.5, enjoys several properties which
are similar to those of the classical Riemann-Lebesgue integral. One of them
is an integration by parts formula, which follows by the uniqueness of the
solution for the problem (1.4)-(1.5), recall Lemma 1.3.

PROPOSITION 2.8. (INTEGRATION BY PARTS) Fiz o, € ]0,1] with a+ 3> 1.
For all (X,Y)€C®xC” the Young integral satisfies

t t
/XdY—f—/YdX:Xth—XOYO. (2.11)
0 0

Proof. Let us set d. By the property (2.8) we have
I}~ =Y, (X, — Xo)+ X, (Yi— Y2) +ollt — 1)

Ast

Next we set I := X;Y; — Xp Yy and note that, by direct computation,

I I/ =Y (X~ X) + X, (Yo~ Yo) + (X, — X,) (V- Vi),
Ast Rst

where |Rei| <||0X ||o |0Y |5 |t — s|*T# =o0(|t — 5]). By Lemma 1.3, for any
germ A, there is at most one function I which satisfies (1.4)-(1.5), hence
r=r.

The Young integral also satisfies another property of the classical Rie-
mann-Lebesgue integral: the so-called chain rule.

PROPOSITION 2.9. (CHAIN RULE) Fiz aw€ ]1/2,1] and v € ]0,1] such that
v>1/(1+a). Let X €C* and let p: R — R be differentiable with ¢’ € C7(R).
Then ¢’ o X € C* and

t

(X)) — p(Xo) = /O (X)dX . (2.12)

Proof. It is easy to see that ¢’o g€ C*?. Then the right-hand side of (2.12)
is well-defined as a Young integral. We see now that (2.12) is equivalent to

[p(Xp) — 0(Xs) = ¢(Xs) (Xe = X)| S|t —s]*TF
By the classical Lagrange theorem, if say X;> X, then
p(X1) — o(Xs) = ' (Xo) (Xi— Xo) = (¢'(§) — /(X)) (Xe — X)
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with £ € | X, X;[. Therefore since ¢’ of class C7
[p(X1) = o(Xs) = @' (Xe) (X = Xo)[ SI1Xy = X ST S — 5[0 H

and o+ -y >1 by assumption, we can apply the Sewing Lemma and the
proof is complete. O

More generally, we have

COROLLARY 2.10. Let X € C* with € |1/2,1]. Then for all s<t
p(X1) — o(Xs) = ¢'(Xs) (Xi — Xo) + Lt(W(XT) - ¢'(Xs))dX,.  (213)
Proof. It is enough to note that
P - o) = [P,

t
— XXX+ [ ()~ /(X)) X,
where all integrals are in the Young sense. (|
In particular, for X € C* and av>1/2

X X _
2 2

t
X, (X — X,)+ / (X, — X,)dX,. (2.14)
S
Moreover we have obviously

¢ 2 2 v 2
/%&—&széﬁﬁtwu&—&bgi§@= (2.15)

Exercise 2.2. Show that Proposition 2.9 still holds if F: R— R is differentiable but

the derivative F’ is only locally Lipschitz (that is, for every compact interval [—M,

M] there exists Cpy < oo such that |F'(z) — F'(w)| < C |z —w]| for all z,w € [-M, M]).

Exercise 2.3. Show that Proposition 2.9 still holds if F:IR— R is diffiarentiable but
—«

the derivative F’ is only (locally) Hélder of exponent 7, provided n > .

@

We conclude with a simple but important formula.

LEMMA 2.11. Let (X,Y)€C*xCP? as in Theorem 2.5, with o, 3 € (0,1),
a+6>1, and I;:= fOtY;L dX, the Young integral. If we set R€ Cy

RStI:It*IS*}/;(Xt*XS), 0<8<t<T,

then we have the explicit formula
t
Rst:/ (Y, - Y,) dX,, 0<s<tLT, (2.16)
S

where the integral in the RHS is in the Young sense.
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Proof. Note that the (constant) function [s, ] 3 u—Y; trivially belongs to
C#. By uniqueness of the Young integral, we obtain

t
/stXu:Ys(Xt—Xs).

S

Then by linearity of the Young integral we obtain

t t t
It—Is—Ys(Xt—Xs):/Yuqu—/stXu:/ (Y, — Y;) dX,,.
S S S

The proof is complete. O

2.4. UNIQUENESS OF THE YOUNG INTEGRAL

If X is continuous and Y € C'! is continuously differentiable, the classical
integral Ig'assical :fOth Y, ds satisfies (2.8), as we already remarked. As
a consequence, we can view the Young integral (X,Y) — I,/°"" built in
Theorem 2.5 as a continuous extension to C* x C” of the map (X,Y)+—
I¢tassical defined on C* x C1, for any fixed o, 3€ (0,1) with a4+ 8> 1. Tt
would be tempting to state that I,;°"¢ is the unique continuous extension
of I§tassical Lyt this is not true because C'* € C? is not dense in CP.

A way to circumvent this difficulty is to note that C' is dense in C°
with respect to the topology of CP', for any 3’ < 3 (observe that C% c C?").
Therefore, if we fix a € (0,1), we can state that (X,Y) — I°"™8 is the unique
continuous extension to C¢ x Uﬁe(ka,ncﬁ of the map (X,Y) s [{lassical
defined on C* x O, provided we agree that convergence in Uﬁe(l_a 1)05
means convergence in some C”. 7

In order to make this precise, we introduce a weaker notion of conver-
gence. The Young integral turns out to be continuous with respect to this
notion of convergence.

DEFINITION 2.12. Fiz o € (0,1). Given a sequence fy, f:10,T] = R, with
n €N, we write

fn~af = lfrn—flloo—0 and sup ||0fp|la<oo. (2.17)
neN

In other terms, fn~>q f if and only if f,, — [ in the sup-norm and f, is

bounded i C°.

Exercise 2.4. Fix a €(0,1). Prove the following.
1. If fn~a f, then f € C%; more precisely ||0f]a <supnenN [|0fn]la < oco.
2. If fr~~q f, then fr,— f in C for any o’ < o, but not necessarily f, — f in C°.
3. If fp~~qf and F: R— R is Lipschitz, then F(f,)~q F(f).
4. In the definition (2.17) of f,~~>4 f, one can replace uniform convergence || f,, —
flloo — 0 by pointwise convergence, i.e. fn(t) — f(t) for every t € [0,T].
This notion of convergence provides the following characterization of the
Young integral.
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THEOREM 2.13. Fiz o, f€(0,1) with a4+ 3 >1. The Young integral I(f,
9)= [,/ dg is the only operator I:C* x CB — CB which, for g€ C', is defined
by :

10.9)= [ fgtds (2.18)
and such that ¢

fa~a fand gn ~3g = I(fm gn) Wﬁj(f’g> . (2'19)

Proof. We start by proving the desired continuity property. Let f,~+, fand
gn~pg and choose o' < o, 5’ < 3 such that we still have o’ + 3’ > 1. By
Exercise 2.4 we know that f, — f in C* and g, — g in C7".

The Young integral is a continuous bilinear operator I: C*' x C# — C#’,
thus one has I( fn, gn) — I(f,g) in C?" and, in particular, ||I(fn, gn) — I(f,
9)|loc — 0. Moreover by (2.9)

sup [|1(fn, gn)llp <sup (| falloo + Cat s T (|0fnlla) | gnlls < 00
n n

As far as uniqueness is concerned assume that J: C* x C® — CP coincides
with I for g€ C' and verifies (2.19). Given f € C® and g € C” we construct
a sequence (gn) C C* with [|gn — glleo—0 and [[guls < |g]]s. Then

I(f,g)=1i7§nf(f,gn)=li7§nJ(f,gn)=J(f,g)

where the limit has to be intended, for instance, in the || - ||oo norm. O

2.5. TWO PROOFS
It remains to prove Theorem 2.2 and Lemma 2.3.

Proof of Lemma 2.3. We extend f:[0,7] — R as a constant function
in (—o0,0] and [T, 00) (that is f(x):= f(0) for <0 and f(x):= f(T)
for > T). Let us fix an arbitrary probability density ¢: R — [0, 0c0) with
compact support, say in [—1,1]. Then ¢,(z):=n¢(nzx) is again a density,
for any n € N, and we set

ful@) :=(f * dn)(x /fac—v ¢n(v dv—/fx—— w)dw.
Note that, for every z € R,
@)= F@I< [ 1a=2)= @) ow) duw < [ w2 o) dw <ar()
R
where wy(9) :=supn|<s | f(t +h) — f(t)] is the modulus of continuity of f,

and the last inequality holds because ¢ is a density supported in [—1, 1].
Note that ws(d) — 0 as 6 — 0 (because f is uniformly continuous), hence

[fn = flloo =0
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It remains to prove (2.7), but this is easy:

(@) = fuly)] < /ﬂﬂmfvyfﬂy—vn¢amdv
R
< h(a:fy)Agbn(v)dv:h(zfy).

The proof is complete. O

Proof of Theorem 2.2. First we show that C{ is closed in C'*. Given f,
in C§ and f € C® such that || f,, — f||lo — 0, we have to show that f € C§,
that is (2.6) holds. For s <t and for every n € N we can write

/() = f(s)] _ [ fa(t) = fn(s)]

Fix n =1, such that [|§fa, — df[la <5 Since fs, € C§, relation (2.6) holds
for fs., so we can fix dc >0 such that for |t — s| <J the last term in (2.20)
is S% and we are done.

It remains to show that, for any f € C{, there is a sequence f, € C°° such
that || fn— flleo+ |0fn— 0f || — 0. We take the sequence f,, € C* provided
by Lemma 2.3, so we only need to show that ||df, —df|le — 0.

Since f € C§, the inequality (2.6) holds. The same inequality holds
replacing f by f,, uniformly for n € N, thanks to relation (2.7). This means
that for any e >0, for all 0 < s <t < T with |t — s| <4, and for any n €
N, we can write

(fa= DO = a= DO _ 1fald) = fals)] | LFE) = £(5)
(t—s)e ST s T s P

We now fix i > 0 such that || fr, — f|lec <€ (de)* for all n > 7. Then for
[t —s| >0
(Fa= O = (a= D) _ 2 fu=Fle _,
(t—s)" GO E

Altogether, for n > 7. we have ||0f, — 0f||o < 2¢. This shows that ||df, —
5f|la— 0. O

€.




CHAPTER 3

FINITE DIFFERENCE EQUATIONS IN THE
YOUNG CASE

3.1. DIFFERENTIAL VERSUS INTEGRAL EQUATIONS
In the theory of ordinary differential equations (ODEs), one can give two

equivalent formulations of such an equation:

¢
Ty =b(xy), xt:onr/ b(xs) ds, t>0, (3.1)
0

the equivalence being of course a consequence of the fundamental theorem
of calculus.

We are interested also in studying solutions Y: [0, 7] — R to an ordinary
differential equation controlled by a smooth function X:[0, 7] — R¢

Yi=o(¥) Xe, (3.2)
which is equivalent to the integral equation
t .
Yi=Yo+ / o(¥:) X, ds, (3.3)
0
where o: RF — RF @ R? is sufficiently smooth. Because of the fundamental
theorem of calculus, (3.2) and (3.3) are the same equation.

Let us rewrite (3.3), for s <t,

t. t .
Y,-Y, = /Y}dr:/a(YT)err:

V)X~ X+ [ (o07) = o) Xrdr
— o(Y))(Xs— Xs) + R (3.4)

If o is at least continuous, then by uniform continuity of r— o(Y;.) we can
see that

Rsi=o(t —s)

in the uniform sense of Remark 1.2.
Suppose now that X: [0, 7] — R? is of class C*. We would like to give
an analog of the controlled equation (3.2). For that, we define

06X,y =Xi— X, [0Xu|<|t—s|o, 0<s<t<T.
Taking inspiration from (3.4) we look for y: [0, 7] — R¢ such that

6yst =0(ys) 0Xse+o(t —s), 0<s<t<T, (3-5)

27
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recall Remark 1.2.

DEFINITION 3.1. Let a>1/2 and X € C*([0,T); R?%). A solution to (3.5)
is a y € C*([0,T); R¥) such that for some ¢ >1

V3 =0y —0(ye) 6 Xe, V2SIt —slS  0<s<t<T, (3.6)
namely yQGC'QC.

From the computation done in (3.4), we see that this definition extends
the classical equation (3.3) which holds in the case of a differentiable driving
path X:[0,7T] — R% namely we have the following

PROPOSITION 3.2. Let X:[0,T] —R? of class C' and o locally of class C?
with § € (0,1). If y: [0, T] — R? satisfies (3.3), then y also satisfies (3.6)
with ( =14+ 9.

Proof. By the Taylor expansion in time (3.4) we have (3.6) with (=1404. O

By the Sewing Lemma, if y2 satisfies (3.6) then it actually satisfies the
same property with ¢ =2a.

LEMMA 3.3. Let y be a solution to (3.5) as in Definition 3.1. Then y?2
defined by (3.6) also satisfies y>€C3%, namely

Iy Slt—s>  0<s<t<T. (3.7)

Proof. Since jod =0, by (3.6) and (1.12) we have
Y3t =00 (¥)su 0Xue = (0(yu) = 0(ys)) 0Xuz. (3.8)

By (3.8) we obtain that §y2 € C5%, so that, by the Sewing Lemma, A(dy2) €
C3%. Then y2 — A(8y2) € C5" % and 6(y2 — A(8y2)) =0, which implies that
y2— A(0y2) =0 by the uniqueness statement of Lemma 1.3. O

We first state a local existence result.

PROPOSITION 3.4. Let yo € R% and o is of class C* and globally Lipschitz,
namely ||Vo|le < 4+00. There exists Ty, p.o >0 such that, for oll T € (0,
T Do) and X € CY([0,T]; R?) such that |6 X ||o < M, there exists a solution
y to (3.6) on the interval [0,T] such that yo=yo and

[¥lla <120 (yo)[ 06X o (3.9)

The proof of this Proposition is not based on the Sewing Lemma but on
a discretization argument. For the reader’s convenience, it is postponed to
section 3.6 below.
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3.2. UNIQUENESS

Let us suppose that o: R* — R* ® R%is of class C?, without any boundedness
assumption. We want to show that this implies uniqueness of solutions to
(3.6).

We first have an elementary but fundamental estimate, which is the main
technical tool of this chapter, together with the Sewing Lemma. For any U:
RF — R™ we introduce the notation

Cy r:=sup{|¥(z)|: z e R¥, |z| < R}. (3.10)

LEMMA 3.5. Let ¢: RF = R*F @ RY of class C?. Then for all z,Z,y,j € R*
with norm less than R we have

[¥(2) = ¢(y)] = (@) — (Gl <
<Cvy.rl(x—y) = (@ =Y+ Cv2y rlle —y|+ |2 —g)le—z|.  (3.11)

Proof. Note that for z,z,y, g € R

V@) - s@ =) e-a) - [ V(4 ule - 7)) du.

Therefore

b, 2) = Py, 5) = P, 2) = ¥y, 2) + Py, ) — D (y, 7).
We can argue now as for ¢ (z) — ¢(Z) and write

'(/)(.I‘,j) - @(ya'f) = ’(/)($, yv-f) ($ - y)a

and similarly for ¢(y,Z) — ¢(y, 7). Therefore (3.11) follows by using the
notation (3.10). O

Now we can prove our uniqueness result.

THEOREM 3.6. (UNIQUENESS) Let a>1/2 and X:[0,T] — R< of class C°.
If o:RF - R*¥ @ R4 is of class C2, then for every yo € R? there exists at most
one solution y to (3.6).

Proof. If y and y are two solutions, set z:=y —y. We want to show that,
for 7 € ]0,1] small enough, [|z]|ec,r < 2|2¢|. First, we know by (1.29) that

12lloo,~ < [zl + 37|07l - (3.12)
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We set as in (3.6)

25 = Y2 — V2= 025 — (0(ys) — 0(35)) 6 X (3.13)
Using the notation in (3.10) we set L:=Cvos,|ly|.ov|y]: Lhen
lo(y) = o(3)lloo.r <L |2]lc0,7»
Therefore by (3.13) and (3.7) we obtain
[0z]lar,» < L [|z]l oo, 74 7(|2%[ 20, - (3.14)

We estimate now ||z2||2q,-- By (3.13) and (3.8) we have
5Z§ut - (60(Y)su - 60(y)su) 0 Xyt
Therefore by (3.11) there is a constant Cy 3, x > 0 such that
1622[l20.,7 <6 X [la[|60(Y) = 6(F)lla,» < Cy,5,x (1 2lloc, + (167l 7)-
Therefore by the Sewing estimate in weighted spaces (1.33)
122|260, 7 K20 [107°[ |20, < K2aCy. 3, x ([[2]lo0, 7472|201, 7)-

By choosing 7 >0 small enough, we obtain ||z2||2q,r < 2K2,Cy, 5, x 2] 0,7
so that by (3.14)

102]|a,» < (2K2aCy,5,x + L) |2l oo, 7-
Then by (3.12)

120, < [20] 4 37|62

a7 < |20l +37%(2K2aCy 5, x + L) |2 007

and by choosing 7> 0 even smaller if necessary, we obtain ||z||eo, < 2|20].
In particular, if zo=0, then z=0.

3.3. A PRIORI ESTIMATES

In this section we suppose that o is of class C! and globally Lipschitz, namely
IV |loo < +00 (without boundedness assumptions on o). We fix

D=|Vo|s.
LEMMA 3.7. Let M >0. There exists a constant Cyr,p such that for any X
such that ||6X ||o < M, any solution to (3.6) satisfies
[¥2[l2a,7 < Crr, D[yl

where y2 is defined as in (3.6). Moreover there is enr,p >0 such that, if
(tAT)*<epm,p, then

[16y]

a,r <2[|6X [lalo(yo)l- (3.15)

Proof. Since
H&T(Y)”a-,f < HVUHOOHCSYHQ-,T
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we obtain by (3.8)
1652 uill20r,» < IV lloolld X [l 0¥ (o, -
By the Sewing estimate in weighted spaces (1.33)
[¥2ll20,7 < Koa [ Vollool |6 X [la [[6Y]]a, 7

which proves the first assertion with Cys p = K2 D M.
Let us now prove the second assertion. We set e := (7 AT)“. Since

105 lla,r SN0 X lallo(¥)lloo, +€lly?2a,~

and by (1.29)
llo(¥) oo, < |o(yo)| +3De |0y ||a, 7

we have for ¢ € 10, 1]
[0y]la,r <[16X [la(lo(yo)| + 3Dz |6y la,7) + K20 D M ||6Y |l o,
and for e <ep,p:= (2D M (Kao+3)) " we obtain

[0y lla.r <216 X [|alo(yo)l-
The proof is complete. O

3.4. GLOBAL EXISTENCE AND UNIQUENESS
Let us suppose that o: R¥ — R* @ R? is of class C? with ||V o e < +00.

THEOREM 3.8. If 0: RF - R¥ @ R? is of class C? with ||V o | < +00 then
for every yo € R and T >0 there is a unique solution (ye)teo,m) to (3.6).

Proof. By Theorem 3.6 we have at most one solution. We now construct
a solution on an arbitrary finite interval [0,7]. We define A C [0, 7] as the
set of all s such that there is a solution (y;):c[o,s] to (3.6). By Proposition
3.4, A is an open subset of [0,7] and contains 0. By the a priori estimates
of Lemma 3.7, A is a closed subset of [0,T]. Therefore A=[0,T]. O

3.5. CONTINUITY OF THE SOLUTION MAP

We consider now the map RY x C®3 (yg, X) —y = ®(yo, X) € C%, where
y is the unique solution to (3.6) constructed in Theorem 3.8. We want to
show that this map, called the solution map, is continuous. This property
is highly non-trivial, since y solves (3.3) when X is of class C!, and this
equation is based on the derivative in time X of X. We shall see in the next
chapters that this property can be proved also in more complex situations,
where @ <1/2 and which cover the case of X a Brownian motion and y the
solution to a SDE.
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We suppose in this section that o is of class C?, with || Vo ||eo + || V20 || oo <
+00 (without boundedness assumptions on o). We fix

D> Vo oo+ [|V%0 .

We also introduce the seminorm

. G
HGHS,OTEXP = sup 1(o<\t—s\<7)%, GeCy (3.16)
0<s<t<T | 5|

to be compared with the definitions of [-||,,,» in Section 1.7. We have

N T
2P < 6|l (3.17)

<7

[RIFRES

Then by (3.11) we have for f, f € C*([0,T]; R¥)

160 (f) =80 (Plla.r <o, 5,5 (1 = Flloo,r+16f = 6F llar), (3.18)

where

No-ex: 7 || No-ex
Co, 1, 5= DS o™ + 10 [0 7P +1) .

PROPOSITION 3.9. Let M >0 and max {|a(yo)|, |0 X || |o(F0)]; [|0 X ||} <
M. Then for every T >0 there are Tar,p, 7, Cyv,p,7 >0 such that for T € 10,
™M, D,T)]

a,r <Cu,p.1([yo — Yol+ [[0X = 0X ||a).

Iy = Flloo,r + |0y — 7]

Proof. If y and y are two solutions, set z:=y —y. First, we know by (1.29)
that

12|00, < |20] + 37|02 - (3.19)
Let us set z2:=y2 —§2, so that by (3.6)

22, = 025 — 0(ys)0Xa + 0(7s) 0 X4
= 025t — (0(ys) — 0(75)) 6 X5t — 0(7) (6X — 6X ).

By (3.8) we have
022, =0(0(y) — 0(F))su 0 Xut + 60 (F) 50 (6X — X )it (3.20)
By Lemma 3.7 we know that for (ras,p)®=en,p we have
16y
and by (3.17) we obtain the bound

@, TM, D + ||6y||a,TM,D < 4M2,

T
No-exp + ||(S}_f ||No—exp <e™,D 4M2

o, TM, D «,TM, D Y

[y
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By (3.18) we have for 7 <7 p

160 (y) = 60 (3)lla,7 + 002(y) = d02(F) o+ <
<D(lI8yllar s, + 167 e e, + 1) [zl oo, + (182l )

Q,TM, D

<Cp,m,7(||2l|oo, + 17|

By (3.20) we obtain

a,7)-

1022120, < Cp at, 7 (12l 00, + 102l 7) + DI[0F || r, 7 | 0X = 0X |-
Therefore by the Sewing estimate in weighted spaces (1.33) and by (3.14)
12|20, < K20 1022120, Sat, 0.7 2]l 00,7 + 79|22 |20, 46X = 0X o

By choosing 7 € (0,757, p) small enough, we obtain ||22||2a.,r Sar, 0,7 7] 00.r +
|6X —6X ||, so that by (3.14)

162]l,7 < 12lloo,r + 06X = 0X | (3.21)
Then by (3.12)
1zlloc. » < |20] + 37102 ]la, + Sar, p.7 20| + 74|2]| 00, +H|0X = 0X [
and there exists Tas p,7 <7ar,p such that, for 7 € |0, 7ar, p, 7], we obtain
1Zll0,r Sar,p,7 20| + [0 X = 6X ||
Finally by (3.21) we obtain
102]|a,r Sar, D7 |20] + [0 X — 6X |la

The proof is complete. O

3.6. EULER SCHEME AND LOCAL EXISTENCE

In this section we prove the local existence result of Proposition 3.4, using
a discretization in time argument. We stress that no results of this section
rely on the material of the preceding sections, and it is only for the reader’s
convenience that we have postponed the proof of Proposition 3.4. In partic-
ular, this section and the next do not use the Sewing Lemma.

We suppose now that o is of class C! and globally Lipschitz, namely
[Vol|lso < +00 (without boundedness assumptions on o). We recall that
ac }%, 1]. To construct a solution to (4.13) in the sense of Def. 3.1, we fix
T>0,n€N and we set ti::%, i1 >0. Then we set

Yit1=Yi+0(Yi) 0 X, 41, i 0. (3.22)
We set D :=||Vo||w and

OYij = Yj — Yir Héyl\a::nak_i‘lg T%’ Aij=0(yi) 0Xy,u,.
i<j<n

The main technical estimate is the following
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LEMMA 3.10. Let M >0. There exists Thr,p,o >0 such that, for all T € (0,
Ti.p.o) and X € CY([0,T); RY) such that ||0X ||o <M, we have

[0y lla <4lo(yo)| M, (3.23)

[k —i]

[0yir — Aik| Sm,D,a |0(y0)|< -

2c
) . 0<i<k<nT.  (3.24)

Proof. We want to obtain, setting

2DM ||6y]|a
L(y) :=—1_21”;ZL‘ ; (3.25)

that

1\ 2«
|6yir — Air| < L(y) ('k—n”> , VO<i<k<nT. (3.26)

Note that (3.26) holds if k€ {i,i+1}. Let m >1 and suppose that (3.26)
holds for all i, kK < nT such that 0 <k —7<m. We want to show that
(3.26) holds for all i,k <nT such that k —i=m+ 1; for such i, k, we set

j:iﬂ%} so that 0<j —i <At <mand 0<kh —j - 1< <m.

Now, since 2 > 1, we have

|j =i+ [k — g — 1P <212 [k — i[>
We set
A= Agx — Ay — Ajy.
Since Aj(j4+1)=yj+1— y;, we obtain
[6yir — Aix| < |0Aijk| +[0yi; — Aij| + [0y — Aji|
< [6Aijk] +10yi5 — Aijl + 104G+ 1kl + 10y + 1)k — Ajvax]

a1\ 2«
< |5Az-jk|+|5Aj(j+1)k|+L(y>212a<|kn1|> ’

where we have used the recurrence assumption in the third inequality. Now

k _Z 2a
A= (000 0(5)) X414 10501 < [V X oo ( 1)
and analogously for dA;(;41)x. Therefore

o —2«
v~ Al (L) <20 ) 2 = L),

so that (3.26) is proved. Note now that for i <nT
lo(ya)l < lo(yo) + o (yi) — o (yo)| <o (yo) + IV [l 1y [l T
Now we obtain by (3.25) and (3.26)

o |0yij — Aij| +[Asj]
[0ylla < n®  sup e <
o<i<j<nT |J —l|

< L(y) T+ (lo(yo)| +D[0yla T) M.
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For T*< (2DM)~!, we obtain

ADM |[6y||a
1— 217204

and, if T*< (1 —2'72%)(8DM)~!, we obtain finally

16y lla <2L(y) T+ 2 |0 (yo) M < T+ 2o(yo)| M

8DM?|o
oyl <tlo(uo M, Liy) < 2DAITWll .

and by (3.26)

s 2a
[0yir — o (yi) 0 Xt ] SK(%) , Vo<i<k<nT.

Now we can prove Proposition 3.4 above.

Proof of Proposition 3.4. We call y»:[0,7] —R? the continuous function
which is affine on each interval %, Z;—nl} and such that y" =y;, 0<e<2"T.
Then we have by (3.23) "

[y lla <3llylla <120 (yo)| 0X ||a-

In particular the sequence (y7), is compact in C([0,T]) and we call y one
of its limit points. By (3.24), for all s,t€ {2% 0<i< QHT} we have

|5y$t - U(Ys) 5Xst| N |t - 5|2a'

By the density of dyadic numbers, we obtain that y is indeed a solution to
(3.6). O

3.7. ERROR ESTIMATE IN THE EULER SCHEME

We suppose in this section that o is of class C? with ||V o |s + || V0|00 <
+00.

THEOREM 3.11. The Euler scheme converges at speed n?®~1.

Proof. Let us set z :=0y;/dyo, where (y;)i>0 is defined by (3.22). Then

z,-+1:z,-+Va(y,-) ZiéXtit ’LZO

1417

This shows that the pair (y;, z;)i>0 satisfies a recurrence which is similar
to (3.22) with a map ¥ of class C! and therefore we can apply the above
results to obtain that |z;| < const. In particular the map yo— yy is Lipschitz-
continuous, uniformly over k> 0.

Let us call, for k>0, (zlﬁ’“))é% as the sequence which satisfies (3.22) but
has initial value z,gk) =y(t). Since (y(t))t>0 is a solution to (3.6), we have

k _
|28, — y(tr1)| Sn2e.
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Since the map yo— yy is Lipschitz-continuous uniformly over k£ > 0, we have

0 S sl S, ke
Therefore
-1 , .
0 ‘ k k+1 ‘
lye—y(to)| = |2" = 27| <3 |4 = A Sz = — 0
k=0
as ty is bounded and n — oo. O

3.8. INTEGRAL FORMULATION

In this section we explain why we call (3.6) a Young equation. In fact, we
can interpret the finite difference equation (3.6) as an integral equation,
using the Young integral of section 2.2.

PROPOSITION 3.12. Let y € C%([0,T]; R%) with « >%. Then y satisfies (3.6)
if and only if

vmyot [o)aX,  tefo.1) (3.27)
where the integral is in the Young sense.
Proof. We consider the germ Ag;:=0(y,) 0Xst, 0<s<t<T. By (2.4)
0Asutl = o (yu) =0 (v:)[IXe = Xu| = [|6A]J2a <[[VO [|ocl|0X [|a [0y ]a -

Therefore arguing as in Lemma 3.3 we obtain that (3.6) is equivalent to (2.8)
above. O

3.9. LOCAL EXISTENCE VIA CONTRACTION

As an application of the estimates on the Young integral of Theorem 2.5, we
want to give a local existence result for equation (3.6) which does not rely
on compactness and which can be therefore used also in infinite dimension.

Let yo€R and X €C® be given, 0: R — R smooth and the unknown y: [0,
T]— R is such that o(y) €C and 2a: > 1, so that the right-hand side of (3.27)
can be interpreted as a Young integral. We want now to show the following

THEOREM 3.13. (CONTRACTION FOR YOUNG DIFFERENTIAL EQUATIONS)
Let o:R— R be of class C? with Vo and Vo' bounded. Let o€ ]1/2,1]
and X € C® fized. It T >0 is small enough, then for any yo€ R there exists
a unique y € C* which satisfies (3.27).

Proof. For all f€C* we have
lo(fe) —a(f)l <[Vl | fe— [l
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so that
l6o(f)lla<NVolloolldfla-
By (2.9) with a = we obtain for all f € C?* satisfying (3.27)
[0 flla < (lo(fo)| + (1+ K20) T*IVolloclld flla) 110 X ||a

since
lo(Nlloe <lo(fo)l + T 60 (f)a-
Therefore, if T satisfies

1 1
T <
2 (1+ K20) [[Volooll0 X o

then we have the following a priori estimate on solutions to (3.27)

16 ¥lla<2lo(yo) [ 16X |[a-
We fix such T and we set C*(yq) :={f €C* fo=v0, |10 f |« < 2|0 (y0)| |0 X ||}
Then we define A:C*— C® given by

t
A(f):h, ht:yO—f—/OO'(fé)dXé, tE[O,T]

It is easy to see, arguing as above, that A acts on C*(y,), namely A:C*(yq) —
C*(yp). Note that the map C*(yq) x C*(yo) 3 (a,b) — ||da — b]|o defines a
distance on C*(y,) which induces the same topology as ||-||ca. We want to
show that A is a contraction for this distance if 7" is small enough. By (2.9)
we have for a= (3

16A(a) = 5A(b)la <(lo(a) = o(b)lloc + Koa T*[|60(a) —60(b)]la) [0.X o -
ST(1 4 K20) [|6X ||« |60 (a) = 00 (D) | -
We now need to estimate ||do(a) — 00 ()|« By Lemma 3.5
l60(a) =0 (b)lla < IVollsllda —dbllatVZ o llco(lldallat]db]la) lla — bllso-
Since, as usual, ||a — bljco <T||da — §b]|«, We obtain
16 (a) =00 (B)llo < (VO [+ T V20 [loo(lI0alla+160]la) |60 — db]la-  (3.28)
Therefore, for all a,be€ C*(y,)
[6A(a) =6 AD)|o <Crllda—6b]a,

where O :=T*(1 + Kau) [|[0X ||a (V0 |l cotT?||V 20 ||ccd|o (y0)| |6 X ||o)- Tt
is now enough to consider T small enough so that Cp < 1. O






CHAPTER 4

FINITE DIFFERENCE EQUATIONS IN THE
ROUGH CASE

The initial motivation for rough integration was to give a robust theory of
stochastic integration and stochastic differential equations (SDE). A SDE is
in fact written as an integral equation of the form

¢
xt:x0+/ o(xs)dBs (4.1)
0

with (B;);>0 a d-dimensional standard Brownian motion, xo € R¥, o: RF —
R* ® R?, and the integral is in the Ito sense (see ??? below). It is common
in stochastic analysis to use the differential notation

dl’t:O'(.I‘t) dBt (42)

but this is just intended as another notation for the integral version (4.1). We
note that the SDE (4.1) is an extension of the controlled ODE to a setting
where the control X is replaced by the non smooth function B.

A rough differential equation is an equation which generalises and includes
all equations above, however for a driving path X which is deterministic
(unlike the Brownian motion B) and typically non-smooth. Neither classical
nor Itd integration are available in this case, and are replaced by the rough
integral of Chapter 8, namely by an extensive use of the Sewing Lemma 1.10.

4.1. TAYLOR EXPANSION TO SECOND ORDER

If ae }%, %], then we have to modify the argument we used in chapter 3 for
the smooth controlled equation

Y, =0(Y;) X:. (4.3)
We suppose for the moment that X € C1([0, T]; R%). We rewrite, for s <t,

t-
Yi-Y, = /ndr

t .
= / o(Y,) X, dr

[<U(Y;) +[% (U(Yu))dv>X,,.dr

= o0t x0+ [ ([ atv o) K00 ) X, ar

39
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We next expand, for s <r,

/ VoY) oY) Xy dv=

/;(VJ(Y;)J(Y;) +/SU%(VJ(YUJ) J(Yw))dw> X, dv
—Vo(¥s) oY) (X, — X) + / O(fu - 5]) X, dv
V(%) 0(%) (X, — X,) +O(fr — 5]2),
hence
Y -Y,=
o (X=X + [ VooV (X=X & Xedrt [ Ol =) Xor

S
t .
=0 () (Xt — X;) + 02(Y5) / (X, — X) @ X, dr +O(|t — s]?), (4.4)
S
where, for z,y € R?, we define z ® y € R4*4 by
Ty = (Tiyj)i<i,j<d;

and where we introduce the notation oq: R¥ — R* @ R? @ R
k
oa(y):=Vo(y)oly),  [o2(y)]"™:=> " Vaa'(y) o™ (y).
a=1

Here we introduce the notations X': [0, 7% —R?, X2[0,7]2 —R?® R?
X=X, - X,, X3, = /t(X, - X,)® X,.dr, 0<s<t<T. (4.5)
We note now the following interesting formula
X5 -XZ2, - X5 =X, 90Xy, 0<s<u<t<T, (4.6)
which follows from
X3 -XE =X = [ (6= X8 K dr= (6~ X0 © (X - X,)

Moreover
Xl St —sl, X2 St — s (4.7)

The controlled equation (4.3) can be rewritten therefore

Yi—Y, =o(Y)) XL +0o(Y)) X5+ 0(t—s?),  0<s<t<T.  (4.8)
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Note that we have, in coordinates,

[ra(y)] 9 (X5,) ™

(02(3/) th)i =

HM:“ %M:‘

k
PR wm(y) (X2)™.

4.2. FINITE DIFFERENCE EQUATIONS

Suppose now that X:[0,7] — R? is of class C* with a € (%,%] We would
like to give an analog of the controlled equation (4.3). In order to do so, one
can use a generalisation of (4.4). For that, we define again

XL =X — X, XL <)t - 5|, (4.9)

but the definition of X2in (4.5) does not make sense anymore.
We are going to show in this chapter that, remarkably, it is always
possible to construct a robust theory for the controlled equation (4.3) with

X of class C* with av € ( ) provided we choose a function X% [0,7]% —
R?® R? satisfying for 0 < s < u<t<T

th_XEu Xut_Xiu(@Xuta |X t| S |t_3|2a (410)
recall (4.6)-(4.7). The existence of such a choice will be proved below.

DEFINITION 4.1. Let a€(1/3,1/2], d€N and X € C%([0, T];R?). A d
dimensional a-rough path over X is a pair X = (X!, X?) with X*: [0, T]Qg
R?, X210, T]Qg —RI@R? satisfying for 0<s<u<t<T
X;t::thXsa X?tkagu Xut*Xiu(&Xuta (411)
IXal St —slo X2 S — s
We call Ra.a(X) the set of d-dimensional a-rough paths over X and Ra.d
the set of all d-dimensional a-rough paths.

In the Young case o> %, the smooth controlled equation (3.2) was refor-
mulated as the finite difference equation (3.5). In the case o > %, taking
inspiration from (4.8) we look for y:[0,7] — R¢ such that

§ys=0(ys) Xkt + 0a(ys) X2 + o(t — s), 0<s<t<T. (4.12)

This equation expresses a generalised Taylor expansion of the solution y
with respect to the rough path X. More precisely, we give the following

DEFINITION 4.2. Let a>1/3 and X € Rq.q4 a rough path. A solution to
(4.12) is a y €C*([0,T]; R¥) such that for some ¢ >1

|yzt| /S |t75|67 y‘?t:(sykstio—(yks‘) Xit*02(}7$) th (413)
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This definition extends the classical one in the case of differentiable dri-
ving path X:[0,T] — R% By the Sewing Lemma, if y3 satisfies (4.13) then
it actually satisfies the same property with ¢ =3a.

LEMMA 4.3. Let y be a solution to (4.13) as in Definition 4.2. Then y3
defined by (4.13) also satisfies

3| S[t—sP,  0<s<t<T.

Proof. Since jod =0, by (4.11) and (4.13) we have, analogously to (3.8),

83, =(0(yu) = o(ys) — 02(ys) X5u) X + (02(ya) — 02(y:)) X% (4.14)

By (3.8) we obtain that §y3 € C§%, so that, by the Sewing Lemma, A(dy3) €
C3%. Then y3 — A(dy3) € C’QCA@O‘) and 0(y3 — A(dy3)) =0, which implies that
y3 — A(0y3) =0 by the uniqueness statement of Lemma 1.3. O

PROPOSITION 4.4. Let X:[0,T] — R? of class C* and let us consider the
canonical rough path X = (X', X2) defined in (4.5). If Y:[0,T] - R% is a
solution to (4.3), then y:=Y satisfies (4.13) for any a< 1.

Proof. By a Taylor expansion in time we have (4.13) for any a < 1. O

As in Proposition 3.4 below for Young equations, we first state a local
existence result.

PROPOSITION 4.5. Let yg € R?. We suppose that o and oy are of class C*
and globally Lipschitz, namely |Vo||oo + ||V02||co < +00. Let D :=max {1,
IVO|loos [|Vo2|loo} and M >0.

There exists Ty, p,o >0 such that, for all T € (0,Ty p,a) and X= (X1,
X?%) € Ra.a such that | X! s+ ||XZ||l2a < M, there exists a solution y to
(4.18) on the interval [0,T] such that yo=yo and

[¥lla <15 M ([o(yo)| + |o2(yo))- (4.15)

The proof of this Proposition is not based on the Sewing Lemma but on
a discretization argument. For the reader’s convenience, it is postponed to
section 4.8 below.

4.3. MAIN TECHNICAL TOOL

In Chapter 3 the main tool to study the Young equation (3.6), besides the
Sewing Lemma, was the Lipschitz estimate of Lemma 3.5. In this chapter,
these tools are still crucial, but an additional ingredient is needed. This is
provided by the next elementary
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LEMMA 4.6. Let y1, y2 € R* and x € R*. If o is of class C, then denoting
oy := 1y — y1, we have

o(y2) —o(y1) —oa(y1)z = (4.16)
Vo (us) Gy~ ole) + [ [Volys+rty) — Volu)drdy,

and

o(y2) —o(y1) —o2(y)x = /01(02(y1+u5,y)—02(91))du:c+ (4.17)

+ / Vo (y1+ udy) du (6y — o () 7) +
0

1 u
—/ Va(y1+u5y)/ Vo (y1+ véy) dv dudyz.
0 0

Proof. The first formula is based on elementary manipulations and on the

fact that
1

a(yg)fa(yl):/o Vo (y1+ roy) drdy.

For the second formula we start with the same remark, we write

o(y2) —o(y1) = /(JlVa(yl +rdy) drdy =

/IVJ(lerudy)du (5yJ(yl)x)+/1VJ(y1+u5y)dua(y1)x
0 0

A
and then
1 1
A = / o2(y1 + udy) dux — / Vo(y1+uoy) (o(y1 +udy) —o(y1)) duz.
0 0
B
Finally
1 u
B = / Vo(y +u(5y)/ Vo (y1 + voy) dv dudyx
0 0
and (4.16) follows easily. O

We'll see below that (4.16) is very useful for the comparison between
two solutions, as in the proofs of uniqueness (Theorem 4.7) and continuity
of the solution map (Theorem 4.10), while (4.16) is well suited for a priori
estimates on a single solution (Lemma 4.8) or on a discretization scheme
(Lemma 4.11).

4.4. UNIQUENESS

Let us suppose that o: R* — R* ® R%is of class C?, without any boundedness
assumption. We show that this implies uniqueness of solutions to (4.13).
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THEOREM 4.7. (UNIQUENESS) Let a>1/3 and X=(X* X?2)€ R, 4 a rough
path. If o is of class C®, then for every y, € R? there exists at most one
solution y to (4.13).

Proof. If y and y are two solutions, set z:=y —y. We want to show that,
for 7 € ]0, 1] small enough, ||z|/co,r < 2|20|. We recall that by (4.14) for 0 <
s<u<t<T

6ygut = (J(Yu) - J(YS) - J2(Ys) Xiu) Xlluf + (50—2 (Y))Su X’l%tﬂ
BSU

and analogously for §3. By (4.16) we have for 0< s <t <T

1
Bst = VU(YS) ygt + / [VU(YS + T6YSt) - VU(YS)] dr6y$t
N——— 0

Es¢

Fst

with analogous notations for B_,,etc. We set z2 as in (3.13) and z3,:=y3, — 3,
as in (4.13). By (4.14) we have

5Z§ut = (Bsu— BSU) Xot+ (602(y) = 002(F))su X3
Using the notation in (3.10) we set
R:=[yllo+7locs  L:=Cvo.r+Cv26,r+Cvso re

We want to estimate [|0z3||34,-. We use a number of times the elementary
estimate

lab —cd|=|ab—ac+ac—cd|<|a||b—c|+|c||a—d]
for a,b,c,d € R. We start by estimating
HE*EHM,T < L(l|1Z%ll20,~ + 1¥2[l20 |2l 00, 7)-
Now, by (3.11)

[(Vo(ys+70ys) = Vo(ys)) = Vo(3s +765s) — Vo(3s)|
SL(162st| + 10yl + 105 5¢]) 23],

so that
IF = Fllza,r < L0yl +105a)(10¥llallzllo,r + 10z]a,r)-

Moreover by (3.11)
1605(y) — b2 ()]

Therefore there is a constant CY, >0 such that

ar < L([10z]la,r + (195l + 107 la) |2 00, 7)-

||5Z3||3a,'r < ]\4Lcy-,§7(”ZHOOJ'Jr H(sZHOz-,T+ HZ2H2a,T)
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where M := ||X!|, + [|X2||l2a. By the Sewing estimate in weighted spaces
(1.33)

1% 1307 < K30 1077|307 < K3aMLCy 5([|2]lco,r + 102]|a, 7 + [[2°]| 20, )

We estimate now ||z||oo,r + ||02||a,+ + ||22]|2a, - First, we know by (1.29) that

120, < [20] 4+ 37|02 - (4.18)
Now, note that
lo(y) = o (@)lloo.r +[lo2(y) = 02(7)[lo0,r < L2 0, -
By (4.13) this implies
107l + < LM |[2]| oo, ++72%12%]| 301, 7~ (4.19)
By the definitions of y2 and y?
23] =1y2 =52l < 128] + [(02(y,) — 02(F:)| IXZ:,
so that
12220, 7 < LM [[2]loc,r + 7%[|2%][30,7-
Therefore there exists a constant Cy, 1, v, such that
18]I, < Car,r.y.5 (I7lloo,r + (7% + 729) |2 |30, 7)-

By choosing 7>0 small enough, we have ||z3||34, <2Cr . 1,y,3 ||2]|0c, . Using
(4.18) and (4.19) we have now for another constant Cys 1, 5 >0

||ZH0<>,T < |zo| +7¢ CJ(LL,y,y ||ZHOO,T

and by choosing if necessary 7> 0 even smaller, we have ||z]/c0,r < 2|zo|. In
particular, if zp=0, then z=0.

4.5. A PRIORI ESTIMATE

In this section we suppose that ¢ and o5 are of class C'! and globally Lip-
schitz, namely || Vo || + || Vo2|loo < +00 (without boundedness assumptions
on o and o3). We fix

D> |Vo e+ [IValZ + Vol -
LEMMA 4.8. Let M >0 and X=(X',X?)e R, 4 such that | X a0+ [|X3?[|24 <

M. There there is enr,.p >0 such that, if (1 AT)*<en,p, then any solu-
tion to (4.13) satisfies

0¥ [la,r + [[y2ll20, 7 < 4M (|0 (y0)| + o2(v0)]) (4.20)

and

160(y) = 02(y) X?||20,r < 4M (M V1) D(|o (yo)| + |o2(yo)|)- (4.21)
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Proof. We recall that by (4.14) for 0<s<u<t<T

0y3ue=(0(ya) = o(ys) — 02(ys) Xiu) Xiur + (602(y))su X7
Bsu

By (4.16), for 0<s<u<T
1 1
By, = / (02(YS + U5YSu) - UQ(YS)) duxiu + / VU(YS + U5YSu) du ygu
0 0

—/OIVU(yS+u5ysu)/0uVa(ys+v6ysu) dv dudy,, XL,
so that
1B ll2a,r < M([Vorllos + Vo 285 la.r + Vo [lo[y2]| 20, r-
By (4.14) we obtain
1653130, 7 < M(M +1)D ([|0y||a+ + |¥2[|200. ) (4.22)
and by the Sewing estimate in weighted spaces (1.33)
[1¥3/l3e,7 < Cor, (116Y [l = + [[¥2[|20r,7)

where Cyy,p>0 is an explicit constant whose value can vary from a line to
the next. Since y2=7y3+ 02(y) X2, we have denoting ¢:= (7 AT)"

||y2H2a-,'r < MHJZ(Y)HOO,T JFECM.,D(H(s}’Ha,T + Hy2||2a,'r)a
and since dy =y2+o(y) X!
10V ]la,r < M ||o(¥)]|oo,r + Me||o2(y) |00, + &2 Oy, p([[0y ||~ + [[y2l|20,7)-
Since by (1.29)

lo)lloo,7 + llo2(¥)lloe,» <lo(yo)| + |o2(yo) [ + 3D [0y la.

we have

[65llev,w + [[¥2ll20,7 < (1 +)M(Jo (o)l + |o2(yo)]) +
+Cu,p (e +€%) (10 ]la,r + [y2]12a.7)-

If e=epn,p€(0,1) is such that Cyy p(e+€2) < %, then if (1 AT)*€(0,epm,p)
we obtain

165 lov,~ + 172l 20,7 < 4M (|0 (o) | + |o2(y0))-
Finally we obtain (4.21) since
[Bll2a,r <4M (M V 1) D(lo(yo)| + |o2(yo)l)-

The proof is complete. [l
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4.6. GLOBAL EXISTENCE AND UNIQUENESS

Let us suppose that o: RF— R* ® R? is of class C3 with || Vo ||eo + || Vo2l eo <
+00.

THEOREM 4.9. If o: RF—RF @ R? is of class C° with ||[Vo| e+ || Voalle <
+00 then for every yo € R* and T >0 there is a unique solution (ye)telo, )

to (4.13).

Proof. By Theorem 4.7 we have at most one solution. We now construct
a solution on an arbitrary finite interval [0,7]. We define A C [0, 7] as the
set of all s such that there is a solution (y;).c[o,s) to (4.13). By Proposition
4.5, A is an open subset of [0,7] and contains 0. By the a priori estimates
of Lemma 4.8, A is a closed subset of [0,T]. Therefore A=1[0,T]. O

4.7. CONTINUITY OF THE SOLUTION MAP

We consider now the map R% x Ry 43 (y0, X) =y = ®(yo, X) € C%, where y
is the unique solution to (3.6) constructed in Theorem 3.8 and X = (X!, X?).
We want to show that this map, called the solution map, is continuous. This
property is highly non-trivial.

We suppose in this section that o is of class C3, with || Vo ||so + || V20 || 0o +
V30 ||loo + [[Vo2llco + | V202]|0o < +00 (Without boundedness assumptions
on o and o3). We fix

D2 |Vo oo+ V2o lloo + VP [loo + Vo2l oo + [ Vo2 o

ProproSITION 4.10. Let M >0 and let us suppose that
max {|o(yo)| + o(Fo)| + lo2(Fo)l, X [la + X320, X! |a + X220} < M.

Then for every T >0 there are Tar,p, 7, Cv,p, 7> 0 such that for T € 10,
7, D7)
ly = ¥lloo,r + 110y = 63 lla,r + I¥2 = ¥2([20,7 <
< Cw,p,1 ([0 = Fol+ X = Xfo+ X2 = XZ||2q).

Proof. If y and y are two solutions, set z:=y —y. We recall that by (4.14)
for0<s<ug<t«T

83,1 = (0(yu) = o(ys) — 02(ys) Xiu) Xt + (602(y))su Xi,
BSU

and analogously for §y3 and B, In particular for 0 < s<u<t<T

5Z§ut = (Bsu - Bsu) quuf + Bsu (Xl — Xl)ut
+(602(y) — 602(¥))su Xat + 602(F)su (X2 = X2) . (4.23)
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By (4.16) we have for 0 < s<t<T

1
Bst = VU(YS) YEt + / [VU(YS + ré}’st) - va(ys)] draYst
——— 0

Est

Fst

with analogous notations for Ey; and Fl;. We set z2 as in (3.13) and z3, :=
y3, —¥3, as in (4.13).

We want to estimate ||§z3||3q,-- We use a number of times the elementary
estimate

lab —cd|=|ab—ac+ac—cd|<|a||b—c|+|c||a—d]
for a,b,c,d € R. We start by estimating
IE = Ellzar < D(I2%l2a,r + 1721205 Fl2lloo.),
where the seminorms ||-HS_’°T'exp are defined in (3.16). Now, by (3.11)
|(VU(YS + Té}’st) - VU(YS)) - VO’(}_TS + 7a(syst) - VJ(y6)|
S D(|0z6t] + (16Ys5tl + 10552l |2s]),
so that
n No-ex
IF = Fll2a,r < Dl0yllar " ey,s (I2lloo,7 + 167l a,7)-

a,T

By (3.11) we have

160 (y) = 60 (§)llav.w + [[002(y) = 602(F) [l + [0V () =0V O (F) a7 <
S Deys (IIy = § lloo, 7116y = 0¥ la, ), (4.24)

where
No-ex — |No-ex
Cy,y= (H(sYHQ,OTe Pt H(sy Ha,o're P4 1) .
In particular

[602(y) = d02(¥)[la,r < Deyg ([2lloo,r + 1167l a,7)-

By Lemma 4.8, if 75y p =&, p, then

T
No- No- — 1No- —
10510 + 52l e crar o + 165 [l < €72 80
IBl2a,r < AD(M +1)3.

Therefore there is a constant Cp ar, p > 0 such that for all 7€ (0, 7r,p)

[1023(|30, < Cr,m,D(2]lc0,~ + 102l 0,7 + [122]120,7) +
+Cr, o, p(IX = X o + X2 — X2 240).

By the definitions of y2 and y3

22 =1y2 =524 < |28l + |(02(ys) = o2(F ) XE + o2(F:) | X3 — Xy,
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The last term can be bounded as follows
o231 1X2 = X l2a,» < (lo2(yo)| + 7D 167/ 5P IX2 — X220
and therefore
12%]|2a,7 Sm.D N|2lloo,r + 71123130, ~ + X2 = X2]|20.

Therefore by the Sewing estimate in weighted spaces (1.33) and by (4.19)

123130, Sar,p, 7 ||2lloc,r + (7% + 72|23 30, X = Xl + [IXZ = XZ|20.
By choosing 7 > 0 small enough, we obtain
123130, Sn, D, 7 [[2llo0,r + X = XM o+ [[X* = X2|2q,
so that by (4.18)
2llco,r Saz,0.7 |20] + 7|2l o0, X! = X [la + X2 = X220
and there exists 7as, p,7 < 7ar, p such that, for 7 € ]0, 7ar, p 7|, we obtain

Izlloc, 7 + 1102l a7 + 12|20, Sas. 0.7 [20] + [IXF = X+ X2 = X2 0.

The proof is complete. O

4.8. MILSTEIN SCHEME AND LOCAL EXISTENCE

In this section we prove the local existence result of Proposition 4.5, under
the assumption that o, o9 are of class C! and uniformly Lipschitz. To con-
struct a solution to (4.8), we set t; ::%, 120, and

yi+1:yi+0(yi> X%iti+1+o—2(yi) X%'Lti+1’ i 20.
We set D:=max {1, ||V0| s, ||Voz|le} and

5%‘;‘ = Y5 — Y

o« sup lyj — il

o<i<jsnT | —1%
Aij = o(y) Xi,p, +02(ys) X%it]“

16ylla = n

The main technical estimate is the following

LEMMA 4.11. Let M >0. There exists Thr,p,o >0 such that, for all T € (0,
Tv.p.o) and X = (X', X?) € Ry.q such that [|XY|s+ [|X3]|20 < M, we have

ovla < SMlo(u)|+ oatua))
kE—1i] \°¢ .
o~ Al S (ol o) (B=1)7 o<ichent
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Proof. We set

2
L(y) = HTMQDM(M|02@0)|+2(DM+1)HfsyHa)-

We want first to obtain the following estimate

s 3a
|6yir — Air| < L(y) ('k—n”> , VO<i<k<nT. (4.25)

Note that (4.25) holds if k€ {i,i+1}. Let m >1 and suppose that (4.25)
holds for all i,k < nT such that 0 <k —i <m. We want to show that
(3.26) holds for all i, k<nT such that k —i=m+1; for such i k: we set

]*er{ J so that 0< j —

Now, since 3a > 1, we have

|7 — i34k — j — 1P <2173 [k — 3,
We set
0Aijr = Aik — Aij — Aji-
Then, since A;j+1)— yj+1+¥y; =0,
8y — Aie| < 1640l + 10yi; — Aij| + |6y — Ajil
< |0Asjr| +16yis — Aij| +10AiG 4106 +10YG+ 1)k — Aj ikl

k—
< |6Aijk|+|5Aj(j+1)k|+L(y)21_3a<| - |) ., (4.26)

where we have used the recurrence assumption in the third inequality. Now,
analogously to (4.14)

§Aijr = (o(y) —o(y) —oa(yi) Xiy,) @ XG0, + (02(yi) — 02(y)) X7 4,
—————

Bij Cij

We want an estimate [0A4; x| S (

) For that, it is enough to obtain
(03
1Byl 5 (S)™ and [0y 5 (1

) We set

Dij = byij —o(yi) X,
and by (4.16) we obtain

Bij=0(y;) — o (ys) — 0a(ys) X1, =
1

1
:/ (02(yz'+u5yij)*02(%'))X%itjdu+/ Vo (y; +udyi;) duD;;
0 0

E; j2f

1
- / Vo (g -+ wyis) (o (i + udysy) — o () Xh o du.

G”'
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First
- . 2c
—1
Bl < I¥oalaliyllal32} (L)
. . 2a
—1
< DM|6y|a(M) |
n
Similarly
. . 2c
—1
Gl < I¥a Ryl (1)
j—il\*
< D2M||(5y||a T .

By the induction hypothesis and the definition of A;;
1Dij| < 0yij — Aij| + |oa(yi) X2,

s . 2«
< (T°Ly) + (loa(yo) | + T Vol )13y ) [X2]|20) (ljn”)

- 2c
< L)+ Mloa(w)] + 7D oyllo) (L)

Therefore
|Fij| < D|Dij| ,
< DTL()+ Ml + T*DM oyl (L11)
Finally
|Bij| < |Eij| +|Fij| +1Gijl

lj =il \*
< DIMloalun)| + T2() + D2+ T aylo] (L)

Analogously

|Gy = |oa(y;) — o2(y:)| < D |6y || o < |7 —1il ) .

n

Therefore
|6A;zx] <

. 3a
<DM(M|oa(yo)] +T° L(y) + (2DM +T°DM + ””51/”“)( o ) /

and we have the same bound for § A; ;4 1)x. Therefore by (4.25), if T*DM <
1,

k—i 3a
o= Al < (L) 2D MM loatun)] + 2001 + 1) o) +

(2132 427D M ) L(y)].
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If furthermore 2T*D M < #, then 21 =3* 4 2TD M < ﬁ and by

the definition of L(y) we obtain

k—i|\3*(1—2t-3 14213
|0yir — Air] < <| |) ( 5 L(y)—i—TL(y))

n

= (lkn;i')gaL(y),

and (4.25) is proven for all n. Now we obtain by (4.25)

o gup  19%is— Aisl +]Ais|
0<i<j<nT lj—i|*

< T*L(y) + (lo(yo) | + lo2(yo)| + 2D MT||dy||o) M.

[6ylla < n

Since we have already assumed that 2D MT* < %, we obtain

16yl < 2T2*L(y) +2M (Jo(yo)| + lo2(y0) )-

8DM?2(1+4D)
1— 2173&

By the definition of L(y), if furthermore
finally

10ylla < 5M(lo(yo)| + loa(yo)l) ,
<

2 1 .
T < 35 We obtain

L(y) 14_D2—1A{23a(|02(90)|+10(DM+1)(|0(y0)|+|02(y0)|))::K)

and by (4.25)

21\ 3«
|6yikAik|<K<|k—nZ|> , Vo<i<k<nT. O

Proof of Proposition 4.5. Arguing as in Proposition 3.4 we obtain the
result of local existence for equation (4.13) of Proposition 4.5. O

4.9. INTEGRAL FORMULATION

In this section we interpret the finite difference equation (4.13) as an integral
equation. In section 3.8 we did this for the Young equation (3.6), using the
Young integral of section 2.2. In the setting o € (%, %], the Young integral
is not adapted, since the germ A,;:=o(y,) 60X, has the property JA € C3*
and 2a <1, so that the Sewing Lemma can not be applied. However the
equation (4.13) suggests another germ:

ASt::U(Ys) X;t+02(YS) tha O<S<t<T

Note that A=4dy —y3, in the notation (4.13). Then by (4.22) we know that
§A € C3. Therefore we can interpret the formula

Sy =A—A(SA)



4.9 INTEGRAL FORMULATION 53

as

t
YtZYO+/U(YS)dXSa 0<t<T,
0

which for the moment is only a notation that will be made more precise in
chapter 8.






CHAPTER 5

ROUGH PATHS

We have seen in Chapter 4 that it is possible to build a robust theory for a
controlled equation of the form Y; = o (¥;) X; with X:[0, 7] — R¢ of class C*
for a € (%,%), provided we choose a function X?: [0, T]2< —RY® RY satisfying
for0<s<ugst«T

6X§ut:Xiu®X}Lta |X§t|§|tis|2aa

see (4.10), where we denote X!, := Xy, 0<s<t<T. In coordinates, the
former identity means

(6X2)0, =0XL,®0X5,,  |(X3)Y[S|t—sP, i je{l...d}. (5.1)

sut

In Section 4.2 we left the problem of the existence of such a function X2
open.
We recall that, for X of class C*, we have a natural choice for X2 given by

t .« o
(th)iﬂ';:/ (X! = XH X dr, 0<s<t<T,

see (4.5). In Lemma 2.11 we saw that, for a >% and X € C([0,T]; R?), the
(uniquely defined) Young integral I}7 := ngi dX7 satisfies

R =19 — 19— Xi (X} - XJ)= / (Xi— Xi)dx3,  |RH|<[t—sPe

where the integral in the right-hand side is again of the Young type and
200> 1.

There is a clear resemblance between the two last expressions, and indeed
for >% we show in Lemma 5.16 below that setting (X2,)¥ := R'J we obtain
(5.1) and this is the only possible choice.

If now a < %, neither of these formulae is well-defined, because for 2a < 1
we are not in the setting of the Young integral. However, we have seen in
Chapter 4 that the bound |X2| < |t — s[>* is enough for the whole theory
of existence, uniqueness and stability of the rough equation (4.13) to work,
even if 2o < 1.

This suggests that, for every i,j € {1,...,d}, the function (X%)¥ can
be interpreted as the remainder R¥ associated with an integral I*/ of (X,
X7), where we weaken our requirements with respect to the Young integral,
namely we only require that

Y- 17 - XU(X] - X)) =(X2)9,  [(X3)Y] St —s]>,

95
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and now 2a < 1. Therefore the choice of the rough path X = (X!, X?2) over X
is equivalent to the choice of a generalised integral I = féX ®dX eC*([0,T];
R?®R?), and in this case X2 plays the role of a generalised remainder with
respect to the germ (s,t) — X, ® (Xz — X;).

In this chapter we explore these notions and explain them in greater
detail.

5.1. INTEGRAL BEYOND YOUNG

Let us fix (X,Y)€C® x CP. We saw in Theorem 2.7 that when a+ 3> 1 we
can define the integral I, = | g YdX as the unique function which solves

I():O, 515t:}/;6Xst+Rst; Rst:O(|t*S|). (52)
This was based on the observation that for the germ Ay :=Y; § X we have
0Asu=—0Y6Xur = [0A[lasp<[[0X[all6Y 5.

Therefore if n:=a+ 3>1 we have ||[0A||, < oo, i.e. the germ A is coherent,
see Definition 1.9, and the Sewing Lemma can be applied, see Theorem 1.10.

We now focus on the regime o+ < 1. As we have already seen in
(2.10) above, there exist germs A which allow no function I solving (5.2).
Indeed, we recall that choosing X;=t* and Y; =15, t €0, T, then the germ
A=Y, 0 X, satisfies |5A0§t| >t18 see (2.10), and therefore the necessary

condition (1.13) in Lemma 1.7 is not satisfied.
A solution is to relax the requirement Ry =o(]t — s|) in (5.2), say to

In<1: |Rst| S |t — s|M. (5.3)

Arguing as in 1.7, this would imply |6 Rsue| S |u — s|" + |t — u|". On the
other hand, by 1.6 we have |§ Rgy¢| = |6 Asut| < |u — s|8|t —u|®. Choosing
|u — s| =|t —u| shows that the best we can hope for in (5.3) is n=a+ (.

Summarizing, given (X,Y) € C® x C? with o+ 3< 1, it is natural to
wonder whether there exists a function I which satisfies the following weak-
ening of (5.2)

I():O, 6[5t:}/;6Xst+R5t, |Rst|§|t*8|a+ﬁ (54)

This would provide a “generalised notion of integral” [ 6YdX . This justifies
the following

DEFINITION 5.1. Fir o, B € (0,1) with a+ B <1. Given (f,g) € C*x CF,
if there exists a function I:[0,T] — IR which satisfies

It*Is:fs (gtfgs)+0(|tis|a+ﬁ) uniformly as |t75|*>07 (55)

we say that I is an integral of (f,g).
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We stress that this new definition of integral extends the previous one
(5.6), for (f,g) € C*x CP with o+ 3> 1, because the term o(|t — s|) is
actually O(|t —s|**P) in this case, by the key estimate for the Young integral
(or, equivalently, for the sewing map).

On the positive side, there is always existence for (5.4)if a+ < 1. This
is a non-trivial result, due (in a more general setting) to Lyons and Victoir.
We state this as a separate result, which is a consequence of Proposition 5.8
below.

LEMMA 5.2. Let (X,Y)€C® x CP with a+ 3<1. There exists (I, R) €
Cox CSP satisfying (5.4).

However it is an easy observation that uniqueness can not hold for (5.4).
Indeed, given I which solves (5.4), any function of the form I{:=1I;+ h;— ho
with h € Co*P still solves (5.4). As a matter of fact, all solutions are of this
form, because given two solutions I, I’ of (5.4), with corresponding R, R’,
their difference h:=1'— I must satisfy |§he| = |Rl; — Ret| S|t — 5] TP,

5.2. TWO NEGATIVE RESULTS

The Young integral I;= fotf dg, defined in Theorem 2.5 for (f,g)€C%x C#
with a+ 3> 1, is the unique function I:[0,7] — R with Ip=0 which satisfies

I — I;=fs (gt — gs) +o(Jt — s|), uniformly as [t —s|—0. (5.6)
We now turn to the regime o+ 3 < 1. Let us recall that
Agr = fs 5gst - 0Agut = _5fsu 6gut . (57)

We first show that one cannot hope to find a solution of (5.6) for generic
(f,g)€CYx CP with a+ < 1.

LEMMA 5.3. Fiz o, 3€(0,1) with a+ B< 1. Then there are (f,g) € CYx CP
such that there is no function I:[0,T] — R which satisfies (5.6).

The proof is based on the following general result, of independent interest.
LEMMA 5.4. Given I € C; and A € Cy, define Re Cy by
Ii—I;=Ag+ Rt . (5.8)
If Rsy=o(|t — s|), uniformly as |t —s|—0, then also §Asyt=o(|t — s|).

Proof. We show that, more generally, if |Rs:| < h(|t — s|) for some non-
decreasing function h:[0,00) =R, then |0 Ag,¢| <3h(|t — s|). To this purpose,
note that § (6 I) =0, hence relation (5.8) implies §4A = —dR and then

|5Rsut| == |R5t - Rsu - Rut| g |Rst| + |R5u| + |Rut| < 3h(|t — S|) 5
which completes the proof. [l
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Proof of Lemma 5.3. By Lemma 5.4 and relation (5.7), a necessary con-
dition for the existence of a function I which satisfies (5.6) is that for s<u <t

8 fsu0gut=o(|t — s|) uniformly as |t —s|—0. (5.9)

Given a, B € (0,1) with a+ 8< 1, it is easy to find (f, g) € C® x CP for
which (5.9) fails. For instance, fix @ € (a,b) and define f(z):=|z —@|* and
g(z):=|r —u|P. Choosing s=u — ¢ and t =u+ 6, we have

[t —s|oth

= = i elalt |8 — Sa+8
0f(s,u)dg(a,t)=|a—s|*t—al|’=6*TF= 5t B

which is clearly not o(|t — s|) as [t —s| — 0. O

Next we show that the usual integral I(f, g) :fotfs glds, when g € C1,

cannot be extended to a continuous operator on C* x C#’ when o’ + 5/ < 1.

LEMMA 5.5. Set [0,7]=[0,1] and define, for o, 3€(0,1),

1 1 .
fu(?) = cos (nt), gn(t) =—gsin (nt).
Then fp~+40 and g, ~>30 (recall Definition 2.12), more precisely:

[frlle =0, [[fnlla<2; [gnllc =0, llgnlls<2. (5.10)
(In particular, f,, —0 in C*" and g, —0 in C?" for any o' <a and B’ < f3.)
However, if we fit a4+ 3<1, we have I(f,, gn) + 0, because
+oo if a+p8<1
Wel.df  lm I(fg)i=g 2t if ati-1.
0 if a+p5>1

Proof. Note that || fulloo=n"% and || f};||cc =n'~%, hence
| foy = fugl Smin {|| falloclt = 5], 2| fulloc} <min {n'=*[t —s],2 n™}.
Since min {z,y} <zYy*~7, for any v € [0, 1], choosing v =« we obtain

| fa(t) = fals)| <2079 [t — 5|,
hence || fullo <2172 < 2. Similar arguments apply to g,, proving (5.10).

5
1 02 1 2 1
Next we observe that — [ T 7 Then,

2 _ ;02 _
5 [y cos*(@)dr == [ sin®(z) dz =
for fixed t >0, as n— oo

nt 2( )do— 2m | 2%] 2( )d —l—O(l)—lQ \‘n_tJ +O(1)_£ +0(1)
: cos®(x)dx= . cos®(x) dx =52 5 =5 )

It follows that

U gn)= s [ cottns) ds= Lo [ Moty qan Lt 0
mgnt—na+ﬁ 0 _na+ﬁ 0 2 .
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In view of Lemma 5.3, in order to define a generalised integral f fdg
when (f, g) € C* x C” with a+ < 1, we have to relax relation (5.6). We
do this replacing the term o(|t — s|) by O(|t — s|*T#). This is, in a sense,
the best we can hope for, because the example built in Lemma 5.3, together
with Lemma 5.4, shows that we cannot have O(|t — s|7) with v > 1.

Remark 5.6. Finding an integral I of (f, g) is equivalent to finding a
function Ry with

6Rsut:6fsu 6gut; (511)
Ry =O(|t —s|**8)  uniformly as |t —s| —0. (5.12)

Indeed, if we define A as in (5.7), relation (5.11) implies that 6(A + R) =0,
hence there exists I:[0,7] — R which satisfies §I = A+ R, which is exactly
relation (5.5).

Remark 5.7. An integral I as in Definition 5.1 is necessarily of class C?
by (5.5).

We state now a result which implies Lemma 5.2 above.

PROPOSITION 5.8. (PARAINTEGRAL) Fiz o, 3€(0,1) with a4+ 8<1. There

exists a (non unique) bilinear and continuous map J~:C*x CP— C’S‘Jrﬁ such

that

<5 9o+ <ClIOfllallogls (5.13)
for a suitable C=C(«, 8,T), with the property that, for all s <u<t,
6J—<(fag)sut:6fsu59ut- (514)

It follows that any (f,g) € C® x CF admits an integral I as in Definition 5.1.
The proof of Proposition 5.8 is postponed to Section 5.9 below.

Remark 5.9. By Proposition 5.8, for all (f, g) € C% x C? with a+ <
1 there exists an integral as in Definition 5.1. As a consequence, there
are infinitely many integrals and all of them differ by a function in C*+5.
Indeed, if I satisfies (5.5), given an arbitrary h € C+# also I + h sat-
isfies (5.5). Viceversa, if I and I’ satisfy (5.5), h:=1 — I’ satisfies dh =
O(|t — s|**P), that is he C*T5.

5.3. A CHOICE

We have seen in (2.16) above that, given (X,Y) € C® x C% with a+ > 1,
we have an explicit formula for the remainder Ry = I — I — Yi( X — Xo),
given by

t
Rstz/ (Yo—Y)dX,, — 0<s<t<T, (5.15)
S
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where I; = f; Y, d X, is the unique function given by the Young integral of

Theorem 2.5. Moreover Ry = f: (Y, — Y;) dX,, is the unique function in Cs
which satisfies

ReCS™P, 0Ran=0Y0Xu,  0<s<u<t<T. (5.16)

In the regime o+ (<1, the Young integral is not available anymore.
However by Proposition 5.8 we know that we can find an integral I € C? in
the sense of Definition 5.1 by setting

st :=Y, (Xt _Xs) - J<(XaY)st,

where J. is the paraintegral of Proposition 5.8, see also Remark 5.6. This
shows that, in this setting, the remainder Ry, =I; — Is — Y, (Xy — X) is not
given by an explicit formula like (5.15) (which is now ill-defined), rather we
have

R: *J<(X,Y)

However formula (5.15) suggests that we can define
t
/(Yu—Ys)qu::Rst:—L(X,Y)St, 0<s<t<T. (5.17)
S

In other words, the left hand side of (5.17) is chosen to be equal to the
remainder R associated with the integral I as in (5.4). We recall that R=
—J<(X,Y) satisfies

ReCS™P, R =0V 0Xy,  0<s<u<t<T. (5.18)

The difference between formula (5.18) and formula (5.16), is that in the
former o+ <1 while in the latter a+ 3> 1. Accordingly, in (5.18) the
function R is not uniquely determined, while in (5.16) it is.

The comparison between formula (5.18) and formula (5.16), and the
explicit expression (5.15) in the case o+ > 1 show that (5.17) is a rea-
sonable definition of the function (s,t)— f; (Y, — Y;) dX,, in the setting
a+ <L

We also stress that R in (5.18) can not be uniquely determined. Indeed,
for any h € C**P, the function R’:= R + dh satisfies the same equality;
the integral associated with R’ as in (5.4) is I'=1+4h — hg. In fact, all
possible solutions are of this form, because given two integrals I, I’ with
corresponding remainders R, R’ as in (5.4), , their difference h:=1"— I must
satisfy |§hgs| = |R); — Ret| S|t — /TP, In other words we have infinitely
many possible choices given by

(I''R')=(I+h,R+6h), heC**P hy=0. (5.19)
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Remark 5.10. In the special case X =Y and a=( <%, (5.2) becomes
10:0, 5Ist:X36Xst+Rsta |Rst|§|t—8|2a. (520)

Now the germ is Ay = X(X: — X;) and we have a simple canonical solution
which does not rely on the paraintegral and is given by

1 1
I,:= 5(X3 - X3, Ry := §(Xt - X,)2,

since
1 1
3 (X — X2) = X (Xt — Xs) + 5(Xt - X,)2
1T, Ast R,

As we have seen in (2.14)-(2.15), if & >1/2 then (I, R) is the only solution
of (5.20) and moreover

t
Ry :/ (X, — X,) dX,

where the integral is in the Young sense. If o < %, then we have infinitely
many possible solutions (I’, R’).

5.4. ONE-DIMENSIONAL ROUGH PATHS

We have seen at the beginning of this chapter that for every i,j€{1,...,d},
the function (X%)¥ plays the role of the remainder R associated with
a generalised integral I/ of (X°, X7) in the sense of Definition 5.1 with
a=f3< %: in other words the choice of X2 is equivalent to the choice of
integrals (in the sense of Definition 5.1) I* € C* for all i, j € {1,...,d}, such
that

]éj:()’ 6153:st 5X5Jt+ (th)ij ) |(X§t)ul S |t—8|2a’
or, in more compact notations,
10:07 5Ist:Xs®Xal‘t+tha |X3t|§|tis|2a' (521)

Existence of X2 satisfying (5.21) with o < %is therefore granted by Lemma
5.2, e.g. via the paraintegral of Theorem 5.8. We also know that in the
regime « <% we have infinitely many possible choices for (I,X?), all of the
form (5.19) above.

Suppose first that we are in the setting d=1. Then Definition 4.1 becomes

DEFINITION 5.11. Let a€ ]1/3,1/2] and X:[0,T] =R of class C*. A a-
Rough Path over X is a pair X = (X!, X?) e C§ x C32% such that

X;t:Xt*Xs; 5Xfut:X3u X%&t (522)
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The reason of the restriction o> 1/3 will become clear in 77?. We recall
that the conditions X € C* and X! =§X € C% are equivalent, and that (X!,
X?) € C% x C3“ is equivalent to

|X;t|§|t*5|aa |X§t|§|t*3|2a~

We have seen in Chapter 4 that it is possible to build an integration theory
for every choice of the a-rough path X over X. In this theory we can recover
existence and uniqueness of the integral function | 6Y dX for a large class of
choices of Y. For this we have to give very different roles to the integrator
X and to the integrand Y, whereas in the case of the Young integral the
two functions play a symmetric role: X will be a component of a rough path
and Y a component of a controlled path, see Chapter 8.

We note that the algebraic condition §X2,, = XL, X!, is non-linear,
which implies that a-rough paths do not form a vector subspace of C§' x C3°.

For all o € (%,%], given any real-valued path X € C*(]0,T]; R), there is
always a rough path lying above X. Indeed, I; ::%X,? is an integral of (X,
X) in the sense of Definition 5.1, because

1 1
- :5()(,52 —X2) =X, 0Xq +5(6Xst)2 = X, 6 X5+ O(|t — 5]?).
Then, by Remark 5.10, we can define a rough path X by setting
1

More directly, note that (5.23) satisfies the Chen relation (5.25), and clearly
X2e (2o

5.5. THE VECTOR CASE

Let us consider now a vector valued path X:[0,T] — R%, with X; = (X{,...,
X&), We suppose that X is of class C%, namely that X*€C* for all i=1,...,
d, with a>1/3.

We can now generalise Definition 5.11 to the vector case. The multi-
dimensional case d > 2 is sensibly richer, because off-diagonal terms f XidXxJ
with ¢ j are integral of a function with respect to a different function.

DEFINITION 5.12. Let a]1/3,1/2], d>1 and X:[0,T] — R of class C*. A
a-Rough Path on R? over X is a pair X= (X' X2), with
o X!'=(6X%;,_1,. . .4€C8([0,T];RY)
o X?=(RY)ij-1,..,a€ O30, TG RI@RY)
such that
(0XZu0) Y = (X5u)' (Xaur), (5.24)
or equivalently

X2 - X2, - X3, = X5, @ X (5.25)
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We denote by Rq,q the space of a-rough paths on R? and by Ra,a(X) the
set of a-rough paths over X.

The condition (5.24)-(5.25) is the first instance of the celebrated Chen
relation. As in the one-dimensional case, existence of X? satisfying (5.24)-
(5.25) with « <% is therefore granted by Lemma 5.2, e.g. via the paraintegral
of Theorem 5.8. We also know that in the regime o <% we have infinitely
many possible choices for (I,X?), all of the form (5.19) above.

We are going to see in Chapter 8 that it is possible to build an integration
theory for every choice of an a-rough path X. Again, we note that the
condition (5.24)-(5.25) is non-linear, which implies that a-rough paths do
not form a vector space.

The following exercise is a simple summary of the discussion at the
beginning of this chapter.

Exercise 5.1. Given a a-rough path X = (X', X?) over X in R, a process I € C*([0,
T); RE® RY) satisfying (5.21) is an integral of (X, X) in the sense of Definition 5.1.
Viceversa, given X € C*([0,T]; R%) and an integral I € C*([0,T]; R*® R%) of (X,
X), in the sense of Definition 5.1, defining X? by (5.21) we obtain a a-rough path
X = (X' X?2) over X in R%.
In the multi-dimensional case X € C([0, T]; R?) with d > 2, building
a rough path over X is non-trivial, because one has to define off-diagonal
integrals [ X*dX7 for i # j. However, by the results we have proved on the
existence of the paraintegral in Proposition 5.8, we can easily deduce the
following.

PROPOSITION 5.13. For any deN, a € (é,%) and X € C([0,T]; RY), there
is a a-rough path X which lies above X (hence, by Lemma 5.17, there are
infinitely many of them).

Proof. For any fixed i,j €{1,...,d}, let I/ be an integral of (X;, X;) in
the sense of Definition 5.1, whose existence is guaranteed by the paraintegral
of Proposition 5.8. Then, by Exercise 5.1, defining X2 by (5.21) we obtain
a rough path X which lies above X. (|

Let us “justify” the term rough path, even though X is a function of two
variables.

Exercise 5.2. Let X be a rough path above X. Then X is determined by the paths
(Xt — Xo, X(Q)t)te[o,T]~ [Hint: use the Chen relation.]

We conclude with an elementary observation, that will be useful later.
By Exercise 5.1, any a-rough path X over X € C*([0, T]; R?) determines
an integral I of (X, X), given by (5.21). Applying the latter relation in a
telescopic fashion, we can write

I= Z (XtiaXtiti+1+X%iti+1) ) (526)

[ti,tiy1]€EP
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where P={0=tg<t1<...<tp=t} is an arbitrary partition of [0,¢]. We will
see later 777 that a generalization of (5.26), when we also take the limit of
vanishing mesh |P|— 0, is the correct recipe for building “Riemann-sums”,
in order to define an integral of (h, X) for a wide class of functions h.

5.6. DISTANCE ON ROUGH PATHS

We denote by R, q the set of all a-rough paths in R%. For X = (X!, X?2) €
Ra,a we set

X! X2
Xy = I ot K2 sup Pty g et
ogs<th| s O§s<t§T| 5|

(5.27)

We stress that Rq 4 is not a vector space, because the Chen relation (5.25)
is not linear. However, it is meaningful to define for X, X € R, 4

dr, (X, X): =X = XM o+ [IX? = X720 (5.28)
Exercise 5.3. dgr, , is a distance on R, 4-

When we talk of convergence in R, 4, we mean with respect to the
distance dr, , Note that dz, , is equal on R4 ¢ to the distance induced
by the natural norm ||F|/, + |G |l2a for (F,G) € C§ x C3*. In particular
X, = (X}, X2) —» X = (X!, X?) in R, q if and only if X} — X' in C§ and
X2 — X2 in O3

LEMMA 5.14. The metric space (Ra,a, dr, ;) is complete.

Proof. Let (X,)nen C Ra,a be a Cauchy sequence. Then, by definition
of dg,, , for every e >0 there is n. < oo such that for all n, m >n. and
0<s<t<T

IXL(s,t) = XL (s,0)| <elt—s]*, |X2(s,t) = X2 (s,1)|<e|t —s[?*. (5.29)

Note that

1
I
= T

Xos | 2= X2c

d'Ra,d(Xa X) T2a

It follows that the sequences of continuous functions (X}),en and (X2),en
are Cauchy in the sup-norm, hence there are continuous functions X' and
X2 such that || X} — X!|oo — 0 and || X2 — X2||oo — 0. In particular, we have
pointwise convergence Xp,(t) — X'(¢) and X2,(s,t) — X3(s,t) as m — 00.
Taking this limit in (5.29) shows that dg, ,(X,,X)<eforalln>n.. O

This allows to rephrase the continuity result of section 4.7. We fix
D >||Vo oo +IV?0 [loo + V30 [l + [[Vo2]loc + [[ V02 oo

We obtain from Proposition 4.10
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PROPOSITION 5.15. We suppose in this section that o € (%,%] and o: RF —
R*¥ ® RY is of class C3, with |Vo|loo + [|[V20 ||oo + || V30 |0 + [[ Vo2l +
|V202||0o < +00 (without boundedness assumptions on o and 03). For X €
Ra,a and vo € R¥ we denote by y:[0,T] — RF the unique solution to equation

(413)
|YEt| S/ |t75|<ﬂ YEt:(SYSt*U(YS) Xal*t702(y$) tha

for some ( >1. Then the map R* x Ry a3 (yo, X) —y € C* is locally Lip-
schitz continuous.

1
5.7. CANONICAL ROUGH PATHS FOR « >§

Let %< o' <%< a < 1. Then it is well known that C®c C®'". Therefore, if

X € C([0,T); R?) we have in particular X € C*'([0,T]; R%) and therefore
there is a a’-rough path X over X. However, is there a a-rough path over X7

Note that we have restricted Definition 5.12 to the range o € (%,%}, while

here we are discussing the existence of X2 [0, 7]2 — R¢® R? satisfying the
Chen relation (5.25) and

X3 <[t — s

1
where now o > 7

LEMMA 5.16. Let a € (%, 1). For every X € C*([0,T];RY), there is a unique
X2 (0,712 = R?® R? satisfying the Chen relation (5.25) and such that
X2 e C3*. We have the explicit formula

t
th:/ XL, ®dX, — XL=6X,  0<s<t<T, (5.30)

where the integral is in the Young sense. Moreover the map C*3> X — X2¢
C3% is continuous (in particular, locally Lipschitz-continuous).

Proof. It is easy to check that X2 in (5.30) satisfies the Chen relation (5.22),
thanks to the bi-linearity of the Young integral. Indeed, we can rewrite (5.30)
as

t
th:/ X, ®dX, — X, ® (X — X)), (5.31)
S

hence for s <u <t we have that
(6X2>sut == *Xs ® (Xt - Xs) + Xs ® (Xu - Xs) + Xu ® (Xt - Xu)

= —X;® (X — X))+ Xu® (X — Xu)
= X ®0Xy:.
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We show now that X2 € C3%. We recall that the Young integral satisfies the
following key estimate, for f € C® and g € CP with a4 3> 1:

<Catplt — 5|a+6 .

[fdg £ (9~ g5)

Choosing f= X" and g= X7 shows that X2, given by (5.31), is O(|t — s|>%).
Finally, we prove the continuity of C*3 X — X2€ C3®. Given X, X € C®and
the respective X2, X2 € C3%, we have

t t
X3 -X5= [ (Xou— X&) @dX,+ / XL, ®dX - X).,

S

with all integrals in the Young sense. Then by the Sewing Lemma
IX2 = X2a0 < Kaa([0X [lo + 16X [|a) [0X — 6X [o.

The proof is complete. O

Therefore, we could extend Definition 5.12 to a-rough paths for o € (%,
1]. Forae (%, 1] and X € C*([0,T]; R?) there is a unique a-rough path over
X, which we call the canonical rough path over X.

While for « >% there is a unique rough path lying above a given path

XeC fora< % there are infinitely many of them, that can be characterized
explicitly.

LEMMA 5.17. Let X = (X', X?) be a a-rough path in R?, with o <%. Then
X = (X', X2) is a a-rough path if and only if for some f € C?**([0,T];R?®
RY) one has X2=X2+§f, that is

X =X%+ fi— fs 0<s<t<T.

Proof. By assumption X2 and X? satisfy the Chen relation (5.25). If X2=
X2+ 6f then X2 € C3° if and only if X2 € C3* and 0X? = §X2. Therefore, if
X is a a-rough path then so is X.

Viceversa, if X is a a-rough path, then §X2?=§X? because both X and
X satisfy the Chen relation (5.25) with the same X', hence X2 =X2+4f
for some f. Since both X2, X2 belong to C3%, then also 6f € C5%, which is
the same as f € C%®. O

Remark 5.18. We mainly work with a-Holder rough pats for o € ( )

excluding the boundary case a= L for technical reasons. Let us stress that

by doing so, we are not throwing away any rough paths, but only giving up a
1

tiny amount of regularity, because any rough path of exponent 3 is a rough

path of exponent «, for any « < =
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To summarize, the situation is the following:

1. For a € (%, 1] and X € C*([0,T]; R?) there is a unique a-rough path
over X

2. For a € (— —) and X € C%([0, T]; RY), there are infinitely many a-
rough paths over X

3. For « :%, either there is no a-rough path over X, or there are

infinitely many of them.

In the range a € (%, 1], the unique a-rough path X above X can be called
the canonical rough path over X. We let R 4 be the set of all canonical
rough paths over paths X € C! (see Lemma 5.16).

5.8. LACK OF CONTINUITY

We have seen in Lemma 5.16 that, for « > =, the map C*3 X — X% € C3°
is continuous. It is a crucial fact that this Contlnulty property can not be
extended to o < %, as shown by the next example.

For n € N consider the smooth paths X!, X2:[0,1] - R

XA(t) ::Lcos (nt), X2(t) ::Lsin (nt).

VO Vi

We have already shown in Lemma 5.5 that X} —0 and X2 — 0 in C¢, for
all a € (0, %) More precisely, we have shown that X} ~»10 and X2~-10, by
2 2

showing that ||6X,}||1 <2, [|[0X2]1 <2 for all n € N and, obviously, || X,}||ec —
2 2
0, || X2||cc — 0. Next we set

It /X u) dX; (u), for i, j € {1,2},
and correspondingly
(X2) = (5.32)
:/ (Xa(w) = X3(s)) dX(w) = LY (1) = L) (5) = Xa(s) (X3(8) = X;1(s)) -

It is not difficult to show that (X2)¥ — (X?)¥ in C4, for any 6 € (0,1), where
we define

o t=s o ifi=1,=2
X2d= 4_ (2) =1 52 ifi=2j=1" (5.33)
2 0 ifi=j

As a consequence, for any a € (%, %), we have X} — 0 in C* and X2 — X2

in C3°, that is the canonical ls (X}, X2) converge in R 4 to the rough path
(0,X3).



68 RoucH paTHS

Let us prove that (X2)¥ — (X2)¥ in CY, for any 6 € (0,1). We have
already shown the pointwise (actually uniform) convergence I}%(t) H%t.

With similar arguments, one shows the uniform convergence I'/ — I/ defined
by

o ! 5 fi=1,j=2
ri=| 2 |={ —Ltiri—g =1
-~ 0 2
2 0 ifi=j

It follows by (5.32) that we have the uniform convergence (X2)4 — I (t) —
I (s) = (X?)4. To prove convergence in CY, it suffices to show a uniform
“Lipschitz-like” bound |(X2)%| < 2|t — s|, which is easy:

(XR)] < /thﬁ;(u) — Xa(s)1(X7)"(w)] du

S

< 2[1 Xl [1(X) lloolt — 51

5.9. PROOF OF PROPOSITION 5.8

Given continuous functions f, g: [0,7] — R, let us define R', R? € Cy
RYf,9)st:=—fs0gst R2(f,9)st:= gt 6fst 0<s<t<T, (5.34)
and note that
RY=Ry+ frgi— fsgs.
It is easy to check that both R' and R? satisfy (5.11), that is
SR'(f, 9)sut=0R*(f, 9)sut =0 fsudGut - (5.35)

Note that R' coincides with —A, defined in (5.7), while R?= R+ 4§(fg),
hence §R? =R
However, neither R! nor R? satisfy (5.12), because we can only estimate

IR s < fllscllgls, IR a< Nglloo 19 la- (5.36)

We are going to show that, by combining R! and R? in a suitable way, one
can build R which satisfies both (5.11) and (5.12). This yields the existence
of an integral.

We start with a technical approximation lemma.

LEMMA 5.19. Given f € C?, there is a sequence fn € C™ such that

f@)=f0)+> fulx),  Veelo,T]. (5.37)

n>0
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One can choose fn so that for every n >0

I falle <CIoflla27, [ falloe O[3 02707, (5.38)
where C € (0,00) depends only on T (e.g. one can take C=2(T*+1)).

Proof. We may assume without loss of generality that f(x)=0 (it suffices
to redefine f(x) as f(z) — f(0), which does not change ||6f|«.)

We extend f:R—R (e.g. with f(z):= f(0) for 2 <0 and f(z):= f(T)
for £ >T) so that || f]|« is not changed. Then we fix a probability density
¢:[—1,1] = R with ¢ € C* and for n >0 we define the rescaled density

dn(z) :=2"p(2" ).
Next, for n >0, we set fn(z):=(f* ¢n)(x), that is

- A £(2) fnla — =) dz = A f(x— =) éu(z) dz
/ fa—2)6(z) dz. (5.39)
R

It is easy to check that || f, — f|lco — 0. Next we define
folw):=fo(x),  fork>1:  fu(x):= fulz) — fao1(z).

Note that 7'_, fx = fn, hence relation (5.37) is proved (we recall that

f(0)=0).
We now prove the first relation in (5.38). Since f(0) =0, for all x € [0,
T] we can write

| Fol) =1 fol |</|fx—2|¢ dZ—/If:c—z F(0)](2) dz
<||6f||a/|fc—2|" 6(2) dz < (T +1) 6/ |

where for the last inequality we have used (x4 y)*<z*+ y* (for a <1 and
z,y>0),2<T and []2]* ¢(2) dzgf[_l 1]¢>(z) dz=1, because ¢ is a density
supported on [—1,1]. For k> 1 we estimate

F@) = [fu(@) — feor(@)]
< /|fx——— I -5 6(2) dz
< 27k of

again because [ |2|*¢(z) dz <1. We have proved the first relation in (5.38).
We finally prove the second relation in (5.38). Note that

@)= [ 16 on@—dz=2" [ fo=5) ¢eaz.
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which has the same form as f,(z), see the last integral in (5.39), just with
an extra multiplicative factor 2 and with ¢ replaced by ¢’. Arguing as
before, we obtain

@l =t ([ 191 ) 15l

Fial=1gte) — i@l <20 ([ leela ) 1ol

for k > 1. We can choose ¢ to be symmetric, decreasing on [0, 1], with
»(0)=1 and ¢(1) =0, so that

1

/ ¢/(2)| dz =2 / (—¢/(2)) dz=2($(0) — H(1) =2,
[-1,1]

0

and this completes the proof. O

Proof of Proposition 5.8. The existence of an integral is an immediate
consequence of Remark 5.6, because if we define Ryt :=J<(f, g)st, then both
relations (5.11) and (5.12) are satisfied.

It remains to build J<. Let us write, applying Lemma 5.19,

f(x):f(0)+ Z J;n(x)a g(ac):g(O)—i-Z gm(m)

m>0 n>0
Recalling (5.34), we define
J<fr9)= Y R'(Jwgm)+ D R Gm)- (5.40)
o<m<n os<n<m

We show below that the series converge uniformly. Note that )" ., fn(x) =

f(x)— f(0), hence anoéfnzd(f — f(0))=0f, and similarly for g. Applying
(5.35), we get

0 J—<(fa g)sut: Z (dfn)su (6gm)ut + Z (5fn)su (6gm)ut

o<m<n os<n<m
= Z (5f~n)su Z (6§m)ut = 6fsu 6gut ’
n>0 m>0

which proves (5.14). We now prove (5.13). Note that, by (5.38),
|(8fn)stl <N Filloc It = sI < C N8 [la 27" (2" |t = s])
but at the same time, always by (5.38),
|(6Fn)stl <1 Fa(9) |+ a2 falloo <2C |18 [l 270"
Altogether, using the notation z A y :=min {z, y },
|(8fn)stl S2C 16f [la 270" (2]t — 5| A1)
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Similarly
|(0gm)stl <2C [|ogllg 277 (27t — s| A1)
Recalling (5.34) and applying again (5.38), we get

[RY (s Gndsel < [ Falloc [(8Gm)sil
2C?|0f |la |0g[lg 27" 27 (2™ [t — 5| A 1)

NN

and similarly

R (fay Gm)stl < Nl Gimlloo |(8Fn)sel

<
< 202)6f [lallogllg2om27Pm(20 [t — 5| AL).

These relations show that the series in (5.40) converge indeed uniformly. We
now plug these estimates into (5.40), getting

(. a)el < 202|5f||a|59||ﬁ< S genam (2t — s A1)

os<m<n
+ Y 2memaThmant— A1) ). (5.41)
os<n<m
Let us set for convenience

. 1
k:kst::10g2m,

so that 2™t — 5| < 2 if and only if m < k. Since S 270" - 712%* g—am

the first sum in (5.41) can be bounded as follows (neglecting the prefactor
(1-272)1);

D anetAmomi s A<t —s| Y 207 Amy N gt fm
m>0 o<m<k m>k
9(l—a—p)k 9—(a+pB)k
<t —s|

9gl—a—B_1 + 1 —9—(a+5)

1 1
< —glathB
\{21&5_1+1_2_(a+ﬁ)}|t S| .

The same estimates apply to the second sum in (5.41), hence (5.13) is
proved. U







CHAPTER 6

BROWNIAN ROUGH PATHS

Let us fix a probability space (€, A, P) endowed with a filtration F =
(Ft)iep0,1)- Let B=(By)iep0,11=(Bt,..., Bf)1e[0,7) be a d-dimensional Brow-
nian motion. We set B': [0, 7]2 — R? and B%[0,7]2 - R?®@ R4,

t

Bl,:= B; — B, Bgt:/ (Br— Bs)®dB,, 0<s<t<T, (6.1)
ie.

(@2~ [ (B~ Bl)aB].

where the integral is in the Itd sense. The main aim of this chapter is to
show the following
THEOREM 6.1. For all € (0,%), almost surely B:= (B!, B?) is a a-rough
path, namely Be R, 4.

It is easy to see that B a.s. satisfies for all o € (0,%)

B3| St — sl
and the Chen relation (5.25)
dB2,, =B, ® B, 0<s<u<t<T.

Indeed, the former formula follows by the well-known Hélder continuity of
Brownian motion, and the latter from

.. t . . . u . . . t . . .
5B, = [ (Bi-Byai- ["(Bi-pyasi- [ (Bi- BB,

t . . ) . .
/ (Bi— Bi)dB! = (Bi, - Bi)(BI - BY),

which is a legitimate computation by the properties of the It6 integral and
the fact that the times s <wu <t are ordered.
The non-trivial missing information is the analytic estimate for B2:

B3| S It — s>

In this chapter we prove this formula with a refinement of the classical
Kolmogorov continuity criterion.

73
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In fact, we are going to prove a more general result. Given (f, g) €
C® x 08 with a+ 3 < 1, we recall that an integral of (f, g) in the sense of
Definition 5.1 is a function I:[0,7] — R satisfying

Ii— Ii=f(gi— gs) + O(|t — s|**P)  uniformly as [t — 5| — 0. (6.2)

We want to show that It6 stochastic integrals with respect to Brownian
motion are almost surely integrals in this sense.

6.1. MAIN RESULT

Let B=(B).c[0,1) be a d-dimensional Brownian motion and let &= (h¢)¢eo,1]
be a R%valued adapted process with continuous paths. In particular
fol |hs|?ds < oo, hence the It6 integral

t
L= / hy dB, (6.3)
0

is well-defined as a local martingale. It is well-known that the process I =
(It)tejo,1] admits a version with continuous paths, which we always fix.
For 0 < s <t <1 we define the (random) continuous function

Rst:: It_ls_hs (Bt—Bé) (64)

We recall that a.s. be C? for every 3 < % This is our main result.

THEOREM 6.2. Assume that a.s. h€ C?, for some a €(0,1). Then, for any
ﬂ<%, there is an a.s. finite random constant C' such that

[Re| <Clt—s[*TP,  VO<s<t<L (6.5)

In particular, a.s. the Ito integral in (6.3) is an integral of (h,B) in the
sense of (6.2).

Proof. First observation: if the claim holds under the stronger assumption
[0h||o < ¢, for some deterministic ¢ < oo, then we can deduce the general
result by localization. Indeed, if we only assume that ||k, < o0 a.s., we
can define for n € N the stopping times

T :=inf {t €[0,1]: [|6R |0, > 1},

where ||6h]|a, (0,4 is the Holder semi-norm of h restricted to [0, ] (equiva-
lently, the Holder semi-norm of s+— hgay on the whole interval s € [0, 1]).
Let us define

t
W i=hopy,  IM:= / hMaB,,  RW.=1" 1" _p" (B, - B,).
0
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Note that ||6h(™)]|o <n, by definition of 7,. (Indeed, ||6hq 0,4 <7 for all
t < T, which means that |h(r) — h(s)| < n|r —s|® for all r, s € [0, 7,); then,
by continuity, |h(r) — h(s)| <n|r—s|* for all r, s €[0, 7,,], which means that
18R 00,7, = 167 ]la < 7.) Then

IR <CM|t—s]otB, vo<s<t<]1, (6.6)
for a suitable a.s. finite random constant C'™). Let us define the events
Api= {ra =0} = {|8h ]l <n)
and note that h =A™ on A,. By the locality property of the stochastic

integral, I =1 a.s. on A,,5! hence also R= R a.s. on A,. Redefining
C™ =0 on the exceptional set {R= R}, we get by (6.6)

on the event A,: |Rss| <CM|t — 5]+, VO<s<t< 1.

Note that A:={J, o An={l|0h ]|« <oo}, hence P(A)=1. If we define C:=
C™ on A, \ A,_1 (with Ag:=0) and C:=o00 on A°, we have C' < oo a.s.
and relation (6.5) holds.

Second observation: if relation (6.5) holds for all s, in a (deterministic)
dense subset D C [0, 1], then it holds for all s,t € [0, 1], because R is a
continuous function of snt.

In conclusion, the proof is reduced to showing (6.5) only for s,t €D,
under the assumption that ||6h || < ¢ < 0o. This technical result is formulated
as a separate lemma. O

LEMMA 6.3. Assume that E[||6h||%] < oo, for some a € (0,1) and for all p>0.
Then, for any <, there is an a.s. finite random constant C' such that

|Rst| <Ot — 5|25, Vs,teD with s<t. (6.7)
Equivalently, a.s. RGC’;‘W.

Next, we suppose that h is as in the statement of Theorem 6.2 and
moreover there exists another adapted process h!' = (h%)te[o,l] with values
in RY® R? such that a.s.

|Ohst — hs Bgg| S [t — s
Then we define
Rgt = Ret — h; Bgt =0l — hs Bit - hi Bgta
where B? is defined in (6.1). Then we have

THEOREM 6.4. Assume that a.s. h and h' are of class C?®, for some a € (0,
1). Then, for any <%, there is an a.s. finite random constant C such that

|RZ| <Ot —s|?*+B,  vo<s<t<1. (6.8)

6.1. We mean that 1™ and I are indistinguishable on A,: for a.e. w € A,, one has
Iin)(w) = I;(w) for all t €[0,1] (we recall that we always fix continuous versions of the
stochastic integrals).
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Arguing as in the proof of Theorem 6.2 we see that Theorem 6.4 follows
from the following

LEMMA 6.5. Assume that E[||0h||? + ||6h — h*BY||5,] < o0, for some a € (0,
1) and for all p>0. Then, for any B <5, there is an a.s. finite random
constant C' such that

|R%| < Clt —s|?*tP,  Vs,teD with s<t. (6.9)
FEquivalently, a.s. R*>€ Cgaﬂ’.

Lemmas 6.3 and 6.5 will be proved in Section 6.4 below. First we show
in Section 6.2 that Theorems 6.2 and 6.4 allow to connect Stochastic Differ-
ential Equations (SDEs) and rough finite difference equations.

6.2. APPLICATIONS TO SDES

Let us consider now a k-dimensional SDE
t
yt:yo+/ o(ys) dBs, t>0, (6.10)
0

where o: RF — R¥ @ R and (B);>0 is a d-dimensional Brownian motion.
We suppose that o is of class C® and satisfies | Vo ||oo < +00. We want to
show that

THEOREM 6.6. The unique solution to the SDE (6.10) is a.s. equal to the
unique solution to the rough finite difference equation (4.13) associated with
the Ité rough path

t
Bli=0Bu Bl [ BLedB.  0<s<i<T.
S
where the integral defining B? is in the Ito sense.

Proof. First we note that B is indeed a a-rough path for any a € (%,%),

by Theorem 6.2. Indeed, setting h,.:=B,, 7 € [s,T] and Ry :=1B2,, then we
obtain |B%| <[t — s]2* by (6.5).

Since o is supposed to be uniformly Lipschitz, it is well known that
the SDE (6.10) satisfies existence of (probabilistically) strong solutions and
pathwise uniqueness. On the other hand, since o is of class C, by Theorem
4.7 the rough finite difference equation (4.13) has a unique solution. There-
fore we only need to show that the solution to the SDE (6.10) is a solution
to the rough finite difference equation (4.13) associated with the It6 rough
path, namely that it satisfies

6yst =0 (ys)Bi 4+ 02(ys) B2+ o(t —s),  0<s<t<T.
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Let us fix a € ( , ) and les us fix a sample of B of class C¢. Now by the
Ito formula and (6.10

U(yt) = ys / Z aaa yr dy'r / Z aabo' yr y Yy >

S a,b=1

= o+ [ ety o ) a5, +

S

d

k ¢
=305 / (a0 7€ %) (3,) dr

a,b=1 c=1
t
/ prdr.
s

b (v)et— 0a(0BY = [ (o2(0r) — 0203 dB.+ [ prct

t
/ prdr
S

Since a.s. y € C%, we obtain that a.s. [s,¢] 3 s+ o2(y,) is in C* moreover
a.s. BYc C®. By Theorem 6.2 we obtain that a.s.

Il
S
&
4
—

Q
=
<
o,
oy
_|_

We obtain

First we have trivially

S le—sISle—sie.

S|t — s

[ ) -atw)az,

Therefore
|5U(y)st - 0’2(ys)IB§t| 5 |t - S|2a'

Now, if y is solution to (6.10) then
t
8Yst — o (ys) By UQ(?JS)]Bst = / (00 (y)sr — 02(ys)Bsy) d By

Then by Theorem 6.4 with h,=c(y,) and h}=o2(y,), we obtain a.s.
|5yst - O—(ys)IB;t - 02(ys)IB§t| S/ |t - |3a.

The proof is complete. [l

Note that here we are only assuming the bound ||Vo||o < +00, which
is weaker than the condition ||Vo|leo + [|[Vo2|leo < +00 needed in Theorem
4.9 for existence of a global solution on [0, T] for the rough finite difference
equation (4.13) associated with a generic rough path.
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Let us consider now a k& dimensional SDE with a non-zero drift term

t t
ytzyo—i—/ b(ys) ds+/ o(ys) dBs, t>0, (6.11)
0 0

where b: RF—RF, 0: RF - R*®R% and (B;)¢>0 is a d-dimensional Brownian
motion. We assume that o and b are of class C® with the bound || Vo ||« +
[IVD||oo < +o0.

We define X:[0,T] — R as X;:=(B},...,B{,t), t€[0,T]. Note that
X is a continuous semimartingale. Then we define

¢

XL, =0 X, Xﬁtzz/ X!, ®@dX,, 0<s<t<T, (6.12)
where the integral f;Xir d X is in the It6 sense for i € {1,...,d} while for
i=d+1 we have a standard Riemann integral since dX{ ™" =d¢. Moreover
we define

o RFS>RF@RMY,  G5(2):=(o(z) b)),

in other words 6"/ =1 (<)o + L(j=aqs )b for (i,j) €{1,....k} x {1,...,d+1}.
Then the SDE (6.11) can be rewritten as follows

t
ve=yo+ / o(y)dX,, 1320,
0

where the integral is in the It6 sense, which is well-defined since X is a semi-
martingale.

THEOREM 6.7. The unique solution to the SDE (6.11) is a.s. equal to the
unique solution to the rough finite difference equation (4.13) with coefficient
& and associated with the Itoé rough path X defined in (6.12) above.

The proof is identical to that of Theorem 6.6. Again, the assumptions
on ¢ and b (class C? with the bound ||[Vo||so + || Vb||eo < +00) are weaker
than what would be necessary to have existence of a global solution on [0, 7]
using Theorem 4.9.

6.3. A REFINED KOLMOGOROV CRITERION

In this section we prepare the ground for the proof of Lemmas 6.3 and 6.5
in Section 6.4 below. Define the set D of dyadic points by

D:= U Dy, where Dk::{df:—i

- 2k}o<i<2k' (6.13)
k>0

We equip D with a directed graph structure: given d,d €D, we write d— d
if and only if d=d¥ and d= dﬁl, for some k>0 and 0<i<2" —1. More
explicitly, d — d if and only if the point d is consecutive to d in some layer
Dy, of D.
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Remarkably, in order to prove relation (6.7), it is enough to have a
suitable control on R, ; for consecutive points d—d (together with a global
control on dR). This is the heart of the Kolmogorov continuity criterion, but
we stress that it is a deterministic statement.

THEOREM 6.8. (KOLMOGOROV CRITERION: DETERMINISTIC PART) Given a
function A:D% —TR, define the following quantities, for fivedy, p,o € (0,00):

Q= sup |A~(d—’d)|, (6.14)
d,LZE]D:d—Mi~ |d_d|’Y
K, ,:= sup M. (6.15)
(s,u,t)eD |U—S| |t_u|

Then there is a universal constant C' < oo, depending only on v, p, o, such
that

|A(s,t)| < C(Qq |t — s|"+K, o |t — s|PT), V(s,t) € D2. (6.16)

A key tool for Theorem 6.8 is the next result, proved in Section 6.4 below,
which ensures the existence of suitable short paths in the graph D.

LEMMA 6.9. (DYADIC PATHS) For any s,t €D with s <t, there are integers
n,m>1 and a path of (m+n+1) points in D which leads from s to t,
labelled as follows:

S=8m<...<s1<sp=tg<t1<...<t,<t,=t, (6.17)

with the property that for alli€{0,...,m—1} and j€{0,...,n—1}

|t — 5|

2

t—s
|tj+1—tj|<|2—j|

Sit1—8i, L=t [si— sl < (6.18)

Proof of Theorem 6.8. Fix s,t €D with s <t. We use Lemma 6.9 with
the same notation. By the definition of dA, we write

A(s,t)=A(s,to) + A(to, t) + 6A(s, to, 1)
In the case m > 2, we can develop A(s,ty) = A(s, sq) as follows (recall that
$=S8m):

A(s,s0) = A(s,s1)+ A(s1, s0) +0A(s, s1,50)
= (A(s, s2) + A(s2, 1) +0A(s, S2,51)) + A(s1, S0) + 0A(s, 51, 80)

m—1 m—2
= ...= Z A(Si+1,si)+ Z 6A(8,8i+1,8i).
=0 =0

Similarly, when n > 2, we develop

n—1

n—2
Alto,t) =Y Altytirn) + > 6A(L, t41,1),
=0 =0
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so that
m—1 n—1
A(s,t) = Z A(5i+175i)+z Altj, tj41) +
i=0 j=0
7;—2 n—2
+0A(s, to, 1)+ > GA(s,sip1,8) + Y SA(tj,t41,0).  (6.19)
i=0 j=0

[1]

2

By the definition of @, for any d— d we can bound
A(d, d)| < Qy|d —d|".

By Lemma 6.9, this bound applies to any couple (s;11,s;) and (¢;,tj41).
Then we can estimate = in (6.19) as follows, exploiting the bounds in (6.18):

m—1 n—1
Qg D Isi—=sainl+D [t —t]7 5 <
i=0 =0

<Qy ZO 277+ ZO @) plt—s|"=
i= j=

which agrees with (6.16).
By the definition of K, ,, for all (z,y,2) € D% we can write

0A(z, y, 2)| S Kp,oly —z|7|z —y|7,

therefore we can estimate =5 in (6.19) by

[ee] [ee]
Kp oS [to—s|Plt —tol"+ _ [siv1—slPlsi—sipa|7+ Y [tje1—t;]Plt —t;41]
i=0 3=0

We now use (6.18) to bound |s; — s;41| and [tj 1 —t;|, while we bound all
other distances simply by [t — s| (recall (6.17)), to get

o0 o0
Kpod 1430 @797 4 30 (279)7 i — 5|7+ <
i=0 j=0

1 1
< —glpto,
\prg{1+1_2p+12_a}|t s|

As a simple consequence of Theorem 6.8, we show that suitable moment
conditions ensure the finiteness of the constant ), in (6.14), as in the clas-
sical Kolmogorov criterion.
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PROPOSITION 6.10. (KOLMOGOROV CRITERION: PROBABILISTIC PART)
Let A= (A(s,t))(s,1yep2 be a stochastic process which satisfies the following

bound, for some o, p,c€ (0,00):
E[|A(s,t)|?] < c|t — s|P, V(st) € D2.
Then, for any value of v such that
v <7 — %, (6.20)
the random variable Q= Q,(A) defined in (6.14) is in L?:
E[|Q, 7] < o0

In particular, Q< oo a.s..

Proof. By definition of @, in (6.14), bounding the supremum with a sum
we can write

2k —1
|A(d, d)| A(dF, dia) [P
|Q7|p< Z ( |d d|’y _Z Z |dk _dklp’Y

d,deD:d—d E>0 i=0

Let us write vy =19 — %, for some € > 0. Since dﬁl dF = 1 — we have

E[ Q7] Z Z c|dl+1—df|p(7°*7)

k>0 ¢=0

S Z Z 2(1+e)k Z 9k ?<°O'

k>0 ¢=0

The proof is complete. O

Remark 6.11. Given a stochastic process (X;):ep defined on dyadic times,
if we apply Theorem 6.8 and Proposition 6.10 to (A(s,t):= 060X = X; —
Xs)(s,tyep2 We obtain the classical Kolmogorov continuity criterion. Note
that in this case K, , =0 because 64 =0.

6.4. PROOF OF TECHNICAL LEMMAS

Proof of Lemma 6.3. Fix 3 <%. We apply Theorem 6.8 to the (random)
function A(s,t) = Rs, with y=a+ 8, p=a, o = and p large enough (to
be fixed later). Then relation (6.16) yields (6.7). It remains to show that
a.5. Qa+8,p <00 and K, g<o0.

We recall that R, is defined in (6.4). In particular, for s <u <t

5Rsut == Rst - Rsu - Rut == (hu - hs) (Bt - Bu)
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Then by (6.15)
Ka,ﬁ(R) < ||hHaHb||ﬁ <00 a.s.,
by our assumption that |||, € LP and by the fact that b is a Brownian

motion.
Next we note that, for fixed s <t, we have Ry = f:(hu —hs)dB, a.s.. By

the Burkholder-Davies-Gundy inequality (see 777), for any p > 1 there is a
universal constant ¢, such that

D

B < Ef( [ tu-npa)]
< oIz ( [ t<u—s>2adu)5}

< e B[R] (- 5",

By Proposition 6.10, we have @y < oo a.s. for any v <« +%f %. Plugging

y=a+ (8 we get B < % — %, which is satisfied for p large enough, since

1
B<5. O

Proof of Lemma 6.5. This is the same as that of Lemma 6.3, apart from
the fact that

6R§ut = (6hsu - hi Biu) :[Bll,bt + 5hiu B%ta

which implies that Kaq g(R?) < +o0, and

P

t z
B[R4 < E[( / <5hus—hgxs§u>2du) }

t )
< cplE[|5hhllB1||§a</ (us)‘mdu) }

1
< o EfIoh — BB (¢ - 9”1,
The rest of the argument is identical. O

Proof of Lemma 6.9. We refer to Figure 6.1 for a graphical representation.
Given s,t €D with s <t, since 0 < |t — s| <1, we can define ¢ >1 as the
unique integer such that

1
5 < [t —s|< (6.21)

1
2¢—1"
We now take the smallest k € {0,...,2¢— 1} for which df, > s and define

So = to = d£

Note that 0<d£—s<d£—d£,1:% and 0<t—di<t—s, by (6.21), therefore

1 1
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Since both sy —s€ DD and t — tg € D, for suitable integers m >1 and n >1
we have

1 1 1 1 1 1
SO*S—ﬁﬁ’%‘i"i’Qq_m, t7t07%+%++27ﬁ’
where ¢ > ¢m-1>...>q¢ > and r, > ... >1r1 > {. We can thus write
1 1 1
8—307ﬁ7ﬁ7...72qm,
- 1 1 1
—0+%+%+...+%.
We can finally define
. 1 1 1 for i— 1
Si.—SO*ﬁ*ﬁ*...*ﬁ or:=1,...,m,
1 1 1 .
t; —t0—|—2h—|—2r2—|—...+% for j=1,...,n.
_ 53 1 1 5 11 _
5= 3316 1 2 8§ 1!
| | | | | [ |
[ T T T T | 1
0 S3 S22 S1 S()Zto tl t2 1

5

Figure 6.1. An instance of Lemma 6.9 with s = D) and t= %. Note that £=1

17«1 o (6.21)) and sg="to :%. The points ¢, ...,

1
(because o < |t — 5| = 55 < 55, d
ty,, are built iteratively: first take the largest (i.e. the smallest r1) such that

or1
t1:=tg +% <t;if t1 <t, then take the largest % such that to:=1t; +% <t; and

so on, until ¢, =¢. Similarly for si,..., sm.

Since g; and r; are strictly increasing integers with ¢; > /¢ and 71 > ¢, we
have the bounds ¢;>¢+ (i —1) and r; > ¢+ (j —1), for all i€ {0,...,m — 1}
and j€{0,...,n—1}, hence

L _ 11 _[|t—s]

|3i_3i+1|:W\?? 51
1 11 |t—s]
bl =ggm Sy <5

having used (6.21). This proves the bounds in (6.18).

We note that, for any integer r > ¢, we have the inclusion Dy C D,.. Then,
given any = € Dy, we have that x € D,., hence xt — x4+ 27". Since tg= dﬁ eD,
and r1 > ¢, this shows that tg— t; =tg+ 27 "'. Proceeding inductively, we
have t; —t; 1 =t;+27"7+1. A similar argument applies to the points s; and
completes the proof of (6.18). O

6.5. B-D-G INEQUALITY

We give a proof of (half of) Burkholder-Davies-Gundy inequality for p > 2.
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PROPOSITION 6.12. For all p > 2 there is a constant c, < 0o such that for
all 0<s<t<1

P

f( fan oo )

for any progressively measurable process such that folyg du < oo, P-a.s..

Proof. To simplify notation we set s=0 and my:= fgyu dB,,.

In a first time we make the additional assumptions that ]E[ /. 01 Y2 du} <
oo and m is bounded by some deterministic constant. By the It6 formula
applied to my, we get

-1
dmy|P = p|lmy|P 1y, d B, + %hnﬂ”_%y? dt.

In general ( fé |my|P 1y, dB,); is a local martingale, but under our addi-
tional assumptions it is a true martingale with zero expectation, because
]E[fo1 [m|2P~Y y2du] < oo (recall that m is bounded). Consequently

) =225 [ ria|

If we set |My| :=supu<¢ |muy|, we obtain by Holder

_ t
Bllmd?] < 2UE/ g2 [au
0

P2

< wmmm]liE[(/(fyﬁdu)T. (6.23)

Since (|my]):>0 is submartingale bounded in L? with continuous trajectories,
by Doob LP inequality we have: E[|m|?] < (pfl)p E[|m|P]. Plugging the
above in (6.23) we conclude:

t t p/2
IE[ / yudBu|p}<cpE[</ yidu) ]
0 0

As far as the general case is concerned, let us define

t
T =1inf {t > 0: |m(t)| >n}/\inf{t20:/ yﬁdu>n}
0

Note that 7™ is a non decreasing sequence of stopping times, with 7" = co
for n large enough, P-a.s.. We denote yi' := y1jo, .= (t) and my := fgyﬁdBu.
By construction, y™ and m™ satisfy our additional assumptions. Since m} =
Miarn &.S., We have

tAT™ t p/2
0 0
t p/2
< cﬂE{(/ ygdu) ]
0
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Finally we notice that by Fatou’s Lemma
t p tAT™
]E[(/ Yu dBu> ] = ]E[liminf / Yu dBu|p]
s n—oo s
tAT™
< liminf IE{ / Yu dBu|p]
t p/2
<onl([20)")
The proof is complete. O






CHAPTER 7

GEOMETRIC ROUGH PATHS

7.1. GEOMETRIC ROUGH PATHS

We recall that the set of smooth paths C' is not dense in C®, but its closure
is quite large, because it contains C®’ for all a’ > av. The situation is different
for rough paths: the set R 4 of canonical rough paths over smooth paths is
again not dense in R, 4, but its closure is a significantly smaller set, that
we now describe.

DEFINITION 7.1. The closure of Ri,qa in Ra,a is denoted by Ri,d and 1its
elements are called geometric rough paths.

For smooth paths f, g€ C!, the integration by parts formula holds:

/tf(U) dg(u) = f(t)g(t) — f(s)g(s) /tg(U)df(U)~

It follows that
t

/t(f(U)f(S))dg(UH/ (9(u) —g(s)) df (u) = (f(t) = f(5))(9(t) — g(s)) -

S

We have seen in Proposition 2.8 that the same formula holds if (f, g) €
C* x CP with a4+ 3> 1 and the integral is in the Young sense.

Given a smooth path X € C!, define X2 by (5.30) as an ordinary integral
(i.e. (X!, X?) is the canonical rough path over X). The previous relation for
f=X; and g=X; shows that

X3i(s,t) + XFi(s, t) =X (s, 1) XJ(s,1). (7.1)

This relation is called the shuffle relation: for i = j it identifies X% in terms
of X,L

X35, 1) =3 X0 (s, 1)%, (7.2)

while for ¢ # j it expresses ng in terms of X}, XJI-, ijl Denoting by
Sym(X2);; ::% (ij + XJQ-,-) the symmetric part of X2, we can rewrite the
shuffle relation more compactly as follows:

Sym(X2) :%xl XL, (7.3)

87
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DEFINITION 7.2. Rough paths in R, q that satisfy the shuffle relation (7.1)-
(7.3) are called weakly geometric and denoted by RY%,.

Exercise 7.1. For a >% we have Ry, ,q= sz{d (every rough path is weakly geo-
metric).

We can now show that the closure of Rq 4in Ry 4 is included in Rvavfgd.

LEMMA 71.3. Geometric rough paths are weakly geometric: 'Ri,d C T\’,Z‘ii for
any o € (Ev 1), with a strict inclusion.

Proof. Canonical rough paths (X!, X?) € R 4 over smooth paths satisfy the
shuffle relation (7.1)-(7.3). Geometric rough paths are by definition limits in
Ra,d of smooth paths in R1 4. Since convergence in R, 4 implies pointwise
convergence, geometric rough paths satisfy the shuffle relation too. This
shows that R, ;CRy%,.

To prove that the inclusion RY, ;C RJ%, is strict, it suffices to consider a
weakly geometric rough path (X', X?) e R, which lies above a path X € C*
which is not in the closure of C'. Such a path is not geometric (recall that
(X1, X2) — (X!, X32) in R, 4 implies X;, — X! in C%).

To prove the existence of such a rough path, in the one-dimensional
case d=1 it is enough to consider the one provided by (5.23), which is by
construction weakly geometric, since the shuffle relation reduces to §X2,:=
F(X1)2. O

Although the inclusion RY, ;C Ry, is strict, what is left out turns out to
be not so large. More precisely, recalling that Rf, ; is the closure of R 4 in
Ra,d, we have a result which is similar to what happens for Holder spaces,
with the important difference that the whole space R q is replaced by Rg%d.
The proof is non-trivial and we omit it.

PROPOSITION 7.4. For any %< o' <a<1 one has R7% CRE, 4 This means
that for any XGRZ% there is a sequence X,, € R1,q such that X, — X in
Rafyd.

We stress that the notion of “weakly geometric” rough path depends
only on the function X = (X!, X?2), but the notion of “geometric” rough path
depends also on the chosen space R 4. Given a weakly geometric rough path
X €Raq,dq, even though X may fail to be geometric in R, 4, it is certainly
geometric in R, g4 for all o’ < . In this sense, every weakly geometric rough
path is a geometric rough path, of a possibly slightly lower regqularity.

7.2. NON-GEOMETRIC ROUGH PATHS

We next consider generic rough paths. These cannot be approximated by
canonical rough paths over smooth paths. However we have
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LEMMA 7.5. Given an arbitrary rough path (X', X2) € R, .4 lying above X,
there is always a weakly geometric rough path (Xl,XQ) € Rg%d lying above
the same path X.

Proof. It suffice to define X%— = X?j for all 4> j and use the shuffle rela-
tion to define the remaining entries of X2, i.e. X% ::%(X%)2 and X7 :=
Xi X} — X3 for all i < j. In this way (X!, X2) satisfies the shuffle relation
by construction and it is easy to check that X2 e C3°.

It remains to prove that the Chen relation (5.25) holds for (Xl,XQ), that
is

6X'¢2j(37u;t) :X%(Sﬂ u) X}(U,t) .

If ¢ > j this holds because ij = ij, so we only need to consider 7= j and

1< j. Note that if we define A :=dfst dgst, for arbitrary f, g:[a,b] — R, we
have

6Asut = 6fst 6gst - 6fsu 5gsu - 6fut 5gut
== (5fsu + 5fut) 6gst - 6fsu 5gsu - 6fut 6gut
= 0 fsu0Gut + 09sub fut-
Applying this to f=X* and g= X/ yields, for i < j,
5X12j(8a u, t) = 6(X11 le - X?'L)(Sa u, t)
— X (s,u) X, 1) + X35, 0) X, 1) — X5, ) X (u, )
= X}(s,u) X}(u,t).
Similarly, choosing f = g= X gives 55&%(5, u,t) =X (s,u) X} (u, t). O

As a corollary, we obtain a useful approximation result.

PROPOSITION 7.6. For any rough path (X', X?) € R,.4, there is a function
feC?([0,T);RY®@R?) and a sequence of canonical rough paths over smooth
paths (X}, X2) € Ry 4 such that

(XL, X2 +6f) — (X!, X?) in Rar.d, Vo' <a.

Proof. By Lemma 7.5 there is a weakly geometric rough path (X', X?)
lying above the same path X. Then X2 — X2?=§f for some f e C2*([0,T];
R?® RY), by Lemma 5.17. By Proposition 7.4, there is a sequence (Xj,,
X2) € Ry 4 such that (X1, X2) — (X!, X?) in Ry g, for any o’ < . It follows
that (X5, X2 +6f) — (X1, X2+ 6f) = (X!, X2). 0

7.3. PURE AREA ROUGH PATHS

Given X € C?, we denote by R, 4(X) the subset of rough paths (X!, X?2) €
Ra,a lying above X, i.e. such that X!=§X. Here is a special case.



90 GEOMETRIC ROUGH PATHS

DEFINITION 7.7. The elements of Rq.a(0), i.e. those of the form X = (0,
X2), are called pure area rough paths.

Pure area rough paths are very explicit. Let us denote by (R¢*?)? the
subspace of R¥*? given by antisymmetric matrices.

LEMMA 7.8. X =(0,X?) is a pure area a-rough path if and only if X?>=4f,
for some f € C?*([0,T); R?*9). Such rough path is weakly geometric if and
only if X2, € (R4*9)2, i.e. is an antisymmetric matriz, for all s,t€[0,T]%;
equivalently, we can take f € C?*([0,T]; (RE*)2).

Proof. Since (0,0) is a rough path, it follows by Lemma 5.17 that for all
(pure area) rough paths (0, X?) we have X?=4f for some f € C?*. We may
assume that f(a) =0 (just redefine f(t) as f(t) — f(0)). Since x =0, the
shuffle relation (7.3) becomes Sym(X?2) =0, i.e. X% is an antisymmetric
matrix. Then f(t) = f(t) — f(0) = X3, is antisymmetric too. O

Note that the set Ry, q(0) of pure area rough paths is a vector space,
because the Chen relation (5.25) reduces to the linear relation §X2=0. Here
is the link with general rough paths.

PROPOSITION 7.9. The set Ro.a(X) of rough paths laying above a given path
X is an affine space, with associated vector space Ry 4(0), the space of pure
area rough paths.

Proof. Given rough paths X = (X!, X?) and X = (X!, X?) lying above the
same path X, their difference X — X = (0, X? — X?) is a pure area rough path,
because it satisfies the Chen relation §(X2? — X2) =0 (since IX?=X'®@ X! =

§X32).
Alternatively, Lemma 5.17 yields X2 - X2%2=4f for some f € C?* hence
(0,X2—X?) is a pure area rough path by Lemma 7.8. O

We have seen in Section 5.8 how pure area rough paths can arise con-
cretely.

7.4. WONG-ZAKAI

(to be completed)
We choose any p: R— R of class C! such that p(z) = p(—x) for all z€ R
and [ p(x)dz =1. We define, for £ >0, p:: R —R by

1 rx
pg(x).—gp(g>, z€R.
Let (By)i>0 be a d-dimensional Brownian motion, extended to B: R — R¢
by setting B;:=0 for t <0. Then we set for € >0

Bf = (B*pg)(t):/Bspg(t—s)ds, teR.
R
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We set the following random ODE

t t )
y;?:yOJr/ b(Yi)dS+/ o(ys) B< ds,
0 0

: d Lo . . . .
where B5 = Bs which is a continous function since p is C.

Then Wong-Zakai’s result states that a.s. y$ converges to the solution y;
of

t t
v ot [ b dst [ ow)ods,
t t 1 t
= vot [ W ds+ [ o) Bt [ Trmuoa(r) ds,
0 0 0

where (Trgaoa(y))t:= Z;l,m:1 (oa(y)) ™.

7.5. DOSS-SUSSMANN

In this section we suppose that o is such that for all i€ {1,...,k} the d x d
matrix (05’"™");m is symmetric, namely

(o2(y)) ™M = (oa(y))™, VyeRF ie{l,....k},j,me{l,....d}. (7.4)
For example, if k=d=2 and we consider

dm(“ 0), y= (1, 92) €R?,

0 vy
then
0a0(y) =Lqiz1,j=1,a=1} + L{i=2,j=2,0=2}
and
2
UéJm(y) = Z aaaij(y) o™ (y) = Tgi=1,5=1,m=13¥1+ L{i=2,j=2,m=2}Y2,
a=1

which is clearly symmetric in (7, m).
In this case, if X = (X!, X?) is a weakly geometric a-rough path, we
obtain

2 2
(O’Q(y) X2)z _ % Z O_tab X2 ba+ Z Uzba XQ
a,b=1 a,b=1
_ 1
2

a, 1

2
Z O_lab{ X2 ba (X2)ab}
b=

2

o5 (y) (X1 (X", (7.5)

| =

a,b
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In this case the solution y to the finite difference equation is a function
of X! alone since (4.13) is equivalent to

|‘YEt| S |t - S|<7 YSt = 6YSt - U(Ys) X%t - UQ(YS) (X;t 0 X%t) (76)
It can be seen that the map (v, X!) —y is continuous.

ProrosiTiON 7.10. Let M >0 and let us suppose that X is a weakly geo-
metric rough path and o satisfies the Frobenius condition (7.4). If

max {|o(yo)| + |0 (o) + [o2(Fo) |, [IX* las [XHla} < M,

then for every T >0 there are Tar,p, 7, Car,p,7 >0 such that for T € 0,
M, D,T)]

Iy = Flloo,r + 10y = 65 |, » + [[¥2 = 7]l 20,~ <
< Cu,p, 7 (Jyo — Fol+ X = XHo).

Proof. The proof is identical to the proof of Proposition 4.10. (]

Remark 7.11. Doss and Sussmann prove a continuity result in the sup-
norm.

7.6. LACK OF CONTINUITY (AGAIN)

In section 7.5 we have seen that, under appropriate conditions on o, the map
X!y is continuous if X = (X!, X?) varies in the class of weakly geometric
rough paths. In this section we show that this is not a general fact, and the
continuity result of Proposition 4.10 can not be improved in general.

More precisely, we show that, for a suitably chosen o, one has a sequence
X, = (X}, X2) such that X} — 0, X2 — X20, and the associated solutions
y™ converge to ...

For y1, 42 € R, 0: R? - R?® R2, we set

() =% )

o'(y) =1qi=1,j=1} Y2+ L{i=2,j=2} 11

In coordinates,

then we compute the partial derivative,

da'(y)

e Tgi=1,5=1,m=2} T L{i=2,j=2,m=1}

From chapter 4 we have the expression for o9 in coordinates,

ijm

2
oy " (y) = Z 0a0(y) 0""™(y) = L{i=1,j=1,m=2} Y2+ L{i=2,j=2,m=1} Y1.
a=1
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Note that o is not symmetric with respect to (j,m) i.e. 047™ % oi™ (which

means that it does not satisfy the Frobenius’s condition in Doss). By taking
X2 from Section 5.8, we compute

; ; t—s
(o2(y) X?)' = Z ob(y) (X2)be = 5 (Lgi=2y y1— Lgi—1y 2).

a,b=1

Since we have already shown that X! — 0, we get

_1{0 -1
¥=3\1 o )¥

we can conclude that the solution y is in the form of exponential different
from 0.


http://www.numdam.org/article/AIHPB_1977__13_2_99_0.pdf




CHAPTER 8

ROUGH INTEGRATION

8.1. CONTROLLED PATHS

Given a vector space V, we can canonically identify V @ R? with the space
of linear maps from R? to V, namely

V@R4=L(R4,V), (v@z)y=(x,y)v, veV,z,yeRY, (8.1)

where (-, ) is the canonical scalar product on R?. This justifies the notation
(A,B)— ABcR™®R" where

d
(AB)®*=3" AkBH  AeR™®R? BeR‘@R" (8.2)
k=1
Note also that on R™® R™ we have the natural scalar product (4, B) =
Tr(ABT).

We fix a € ]1/3,1/2], X €C([0, T]; RY). We recall that fixing a a-rough
path X over X as in Definition 5.11 is equivalent to choosing a solution
(I,X?) to (5.21), with I and X2 representing our choices of the integrals,
respectively,

t t
It::/XT@)dXT, th:;/ (X, — X)) @dX, =1, — I, - X, ® (X; — Xy).
0 s

The key point is that, having fixed a choice of X2, it is now possible to give
a canonical definition of the integral f(;Y dX for a wide class of Y €C([0,
T]; R ® R%), namely those paths Y which are controlled by X. In order to
motivate this notion, let us recall that, given X € C%([0, T]; RY) and Y: [0,
T]— R* ®RY, we look now for J:[0,T] — R* and R’: [0, T]?— R* such that,
in analogy with (5.4),

Jo=0,  0Ju=Y:6Xu+RY,  |RLS|E—sP.

In order to make this operation iterable, it is natural to require that each
component of Y has an analogous property. This is exactly the motivation
for the next

95
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DEFINITION 8.1. Let a € ]1/3,1/2] and X = (X!, X?) an a-rough path
on R A pair y = (y,y!) € C¥([0,T]; RF) x C*([0, T]; R¥ ® R%) is a path
controlled by X if

0y =viXsetyd,  IAISI=sP (s, €0, 7% (8.3)

The function y' is called a derivative of y with respect to X and y2 is the
remainder of the couple (y,y!). Note that y2€ C3% is defined by the first
identity in (8.3).

For a fized a-rough path X on RY, we denote by D3*(RF) the space of
paths controlled by X with values in RF.

Note that in general y! is not determined by (y, X!), so that we say that
y! is a derivative rather than the derivative of y.

It is now clear from the definitions that, unlike rough paths, controlled
paths have a natural linear structure, in particular as a linear subspace of

Co¥xC~

8.2. THE ROUGH INTEGRAL

Now we can finally show how to modify the germ Y(X;— X;) in order to
obtain a well-defined integration theory.

PROPOSITION 8.2. Let € ]1/3,1/2] and X = (X% X2) a a-rough path on
Re If y=(y,y!) is controlled by X with values in R*¥ @ R¢ as in Defini-
tion 8.1, then the germ

Ag=y. X%+ yi Xz

satisfies 0 A € C3% with 3a > 1.
Therefore we can canonically define J,=* gy dX"” as the unique function

J:[0,T] =R such that Joy=0 and 6J — A€ C3%, namely

[Je=Js =y Xa —yI X3 St — s
Finally we have
#P—1
— 1 1 12
Jt - |%1‘g0 ; (ytixtiti+1 + ytixtiti+1)
along arbitrary partitions P of [0,t] with vanishing mesh |P|— 0.

Proof. We compute by (5.24)
6Asut == 75}’571 X}Lt + yi 6X§ut - 6yiu Xl%t
= _(5}’3u - Y§ X%u) X}n - 5Y§u Xit
= fyiu X’}Lt - 5}’;& X%ta (8-4)
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where we remark that for i=1,...,k

d
(v10X20)" = D (yh)ieb(0X2,,)

b=

d

(ya) " (X50)" (Xae)®

Then by (1.32)
640ual <l laalu— P alt = w2 65 alu — 5| X2 zalt - ule
(1220 X a0y ol X2 |20) [t = s[> (8.5)

Since § A € C3%, we can apply the Sewing Lemma and define J3:=—A(JA)
and J: [0,7] — R such that Jo=0 and §J = A+ J3 where A is the Sewing Map
of Theorem 1.13, so that

Jo=0, 6Jst:y$xit+}7§x§t+‘]gta I3 S It — s|3. (8.6)

The last assertion on the convergence of the generalised Riemann sums
follows from (1.16). O

We have in particular proved by (1.19) and (8.5) that

[Pll30 < Ksa (7220 IX a0 ol X3 24), (8.7)
Jgt = Jt_JS_ySX;t_y;XEt'

We stress that the function J depends on (y,X), in particular on y! as
well. We use the following notations

J::(Jay)a /Otde:(JDYt)Jt' (88)

We shall see in Proposition 8.4 below that J: [0, T] — RF x (R* @ RY) is
controlled by X.

We define a norm ||-||pz« and a seminorm [-] pz« on the space D3¢ of paths
controlled by X, defined as follows:

lyllpze = Iyol +Ivdl + [¥lpzes,  y=(y,¥") (8.9)
[Ylpze = 16y la+ Iy2l2a:  vZ=0ys—viXs

as in (8.3). Recall that we defined the standard norm || f||ce=||f oo+ 10 f ||«
in (2.5).

LEMMA 8.3. We have the equivalence of norms for all y=(y,y?!) e D¥

1Yllpze < [lyllea + [IyHeo + [[y2]l20 < Clly [l e, (8.10)
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where C >0 is an explicit constant which depends only on (X, T, ). In
particular, (D%, || - | p2e) is a Banach space.

Proof. The first inequality in (8.10) is obvious by the definition of the norm
I|lce. In order to prove the second one, first we note that by (1.24)-(1.25)
and by (1.29)

[ £ llee =l flloo + 10 flla < | fol + (L +T*)[[6 f |la
S@+T) (1 fol +116f lla)-
This shows that ||y!]|ce S|y || pze for (y,y!) € D% Now, since 6y, =yL X!, +
165 la < Iy oo X a2l < Cr.allydl + 10y ) IXH a7 (1y2] 20,

namely [lyllcs S | llpze + ly2llza Finally [y2za < lyllpze. The proof is
complete. O

8.3. CONTINUITY PROPERTIES OF THE ROUGH INTE-
GRAL

We wrote before Definition 8.1 that the notion of controlled path aimed
at making the rough integral map (y,y!)+— (J,y) iterable, where we use
the notation of Proposition 8.2. In order to make this precise, we need the
following important

PROPOSITION 8.4. Let X be a a-rough path on R¢ with o€ |1/3,1/2] and
y € D3 a path controlled by X. Then, in the notation of (8.8),

o J=[,ydX is controlled by X
o the map D¥' s y— J € DX is linear and for all y € DX

[Tpze < 2(1+ Kza)(1+ X[, o) ly0] + T [y]p2e]- (8.11)

Proof. Recall first (8.6), so that in particular ||J3|3a < +00. Now
thzyi X2, + J3, satisfies

17220 < Iy oo I X2 |21 |20 < Iy oo X2 |2a+T 2130 (8.12)
Finally 6J =y, X} +J% and therefore
163 1la < ¥ looIXH a1y oo X2 [l 20+ % |30

Therefore (J,y,J%) €C® x C* x C3“ and we obtain that (J,y) is controlled
by X.
We prove now the second assertion. Since dy,, =y! X% +y2, by (1.29)
165 lla <Yl oo I XH a1 [[y2] 26
<XHMla + DIyl + Tyl pge)-
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Now, analogously to (8.12), again by (1.29)

172l 20 <[y oo X[ |20+ 7|26
ST Plsa+1X22a(lydl + T (165 o)

Therefore, since [|X'|o + [|X?||20 = || X[z, . recall (5.27),
1 loc+ [17%]|20 < T T30+ (1 + X Rq ) (Iy8] + T (Y] D2e]-
By (8.11) we obtain

[T)pze = [1oylla+ 17220
< 2(1L+ [X]Ra ol + (14 Kza) T Y] p2e]

Since Jo=0 and Ji=y,, we obtain
[T 1l pge = lyol + [Tlpge < 2(1 4 Ksa) (1 + [ X%, J)[yol + [y8] + Tyl pzel-

The proof is complete. O

By 8.4, the operator d is linear and continuous. In fact a much stronger
property holds: we have continuity of the map (X, y)— [ ydX. In order
to prove this, we need to introduce the following space

So:={(X, y): X is a a-rough path, y € D¥},
and the following quantity for y € D% and 3 € D%’
[¥; Ulx 520 7= 105 = 05 la + [[¥2 = 72|20,
where y?=6y — y1X! and y2=0y-y'X!, recall (8.9). We endow S, with a
family of distances (see (5.28) for the definition of dgz, ,)
da((X, y), (X, 9)) = dr,, (X, X) +lyo = Fol+y5 — 5ol +[¥; Ulx % 20-
Let us note that in the case X =X, we have
Y Ulx g 20 =Y —0lpze,  dal(X,y), (X, 9)) = lly — Fllpz~,

see the definition (8.9) of the norm ||-[|pz. Note that [y; ¥]x x 24 IS 10t a
function of y — y when X #X.

PROPOSITION 8.5. (LOCAL LIPSCHITZ ESTIMATE) Let o€ |1/3,1/2] . The
function d is continuous with respect to d.

More precisely, for every M >0 there is Kpr o >0 such that for all (X,
y), (X, §) €S, satisfying

1+ 70 4+ X, , + 19 lpe < M,



100 ROUGH INTEGRATION

setting J := [y dX and J::f(;g dX we have

da((X, ), (X, J)) <
S2M2(1+ Ksa)ldr., o(X, X) +lyo = Yol +1v§ — 56 I+7°[y; 9lx x. 2]
<2M3(1+K3a) da((Xa y)v(X; g))

Proof. Let X = (X!, X?) and X = (X!, X?) be a-rough paths with a €

]1/3,1/2] and y € DX, y € DX*. We argue as in the proof of (8.11), using
furthermore a number of times the simple estimate

lab—ab| < |a—al|b|+|a| |b—b|. (8.13)

We set for notational convenience ¢ :=T. Then, since Jys; =y} X+ V2
by (1.29)

18y = 67 lla <lIy* = 5 oo | X la + 1157 oo X! = XM |ate [[y2 = 52|24
<Xl + D (y§ — 58l +elys Flx x,20) + M2[X =X o,
since by assumption
15 oo < 58] + /165 [l < (14 €)(I575] + 1105 lo) < M.

Now J%=yl X2 +J3,, so that arguing similarly

172 = P20 < |72 = P20 + Iy X2 = 51 X220 <

<e[[ 9% = Pllsat X[ 2a(lyd — 56l +e 1oyt — 651 [la) + M2 X — X?|2q.
Therefore, since 1+ | X! o + | X%2a =1+ X[z, , < M,

«,d
16y = 65]la + (|7 = I?[|2a <
<e[| 9% = Pllsat+M?(lyh — 56l +e[ys Flx x.20 + AR, o(X, X))
Since ut, we can estimate in the same way
16A=6Allsa < 112 = 72l2al X la + 17720/ X" = Xa +
+9yt = 05 |al X2 0+ 15 | [X2 = X[ 20
< Y5 U x 20 X Rg o + [Flp2e dr,, o(X, X)
< M([Y; Ulx x,20 + AR (X X))
By the Sewing Lemma (1.33), and since ¢ < M,
e[| I3 = Il|z0 < K3aM (e]y; 9lx % 20 + Mdr,, (X, X)).
We obtain
[T3 T]x %20 =10 = 67 [la + [[9% = J?||24 <
SMP(1+ Ksa) [y — 98l +dr., (X, X) +€[y; 9)x 5 20)-
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Since Jo—Jo=0, Ji—J =y, — 7o, we obtain
da((X, J), (X, j)) = dRa,d(Xa X) +yo = Yol+I[J; j]X,X,Qa
S2MP(1+ K3a)lyo — Yol +1y6 — Fol+dr. (X, X) +ely; glx x,20)-

The second estimate follows since we have assumed that 1 +e < M. O
8.4. STOCHASTIC AND ROUGH INTEGRALS

8.5. PROPERTIES IN THE GEOMETRIC CASE

We have seen in Proposition 2.8 that the Young integral satisfies the classical
integration by parts formula. We consider now a weakly geometric rough
path X and two paths f=(f, f'),g=(g,g") controlled by X. We set

t t
Ft:=F0+/fsdxs, Gt:=Go+/gsts, £>0.
0 0

We want to show that, under the assumption that X is geometric, an anal-
ogous integration by parts formula holds, namely:

t

Fth = FOG0+/

t
FygedX, + / G, f.dX,.
0 0

Iy
We start by showing that (Fgs, Fs gl + fs9s)seo,1] is controlled by X:
tht *Fsgs = Ft(sgst+gs§Fst
= Fy0gst+ gs 0F 51 +0F 1 0gse
= (Fs g5 + £ 95) X5+ O(|t — s*%).

The same holds of course for (f; Gy, GsfL+ fs gs)sefo,7- Now we know that
I, is the integral uniquely associated with the germ

Ast = (Fs Js + Gs fs)Xit + (Fs g; + Gsfsl + 2fs gs)th'
By the geometric condition, we have 2X2% = (X!,)? and therefore we obtain
Ast = (Fs s + Gs fs)Xit + (Fs g; + Gsfél)XEt + fs Js (Xit)Q
Now we write
5(FG)st = 0FuGi+ Fs0Gsy
= Gs0F+ F,0Gs+ 0F 5 0G gy
= (Fs gs+ Gs fs)th + (Fs gsl + Gsfsl)th +0F: 6Gst + O(lt =S8 |3a)
Now

6Fst 6Gst = (fsxit + fleEt)(gSXit + gngt) + O(|t ] |3a)
= fsgs(xél’t)2+0(|tis|3a)'
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Then we obtain that
NFG)st = Ag+O([t —s[>%).
Since 3a > 1, it follows that FyG; — FoGo=1I; for all t > 0.

Example 8.6. It is well known that the Stratonovich stochastic integral
satisfies the above integration by parts formula. This section extends this
result to all (weakly) geometric rough paths.



CHAPTER 9

ROUGH INTEGRAL EQUATIONS

In this chapter we go back to the finite difference equation (4.13) in the rough
setting, and we discute its integral formulation that we already mentioned
in Section 4.9. Now that we have studied the rough integral in Chapter 8,
we can indeed show that the equation

|3a’ YSt = 5YSt - U(YS) X;t - UQ(YS) tha (91)

recall Lemma 4.3, can be interpreted in the context of controlled paths.
Indeed, (9.1) suggests that, for any candidate solution y, the pair (y, o(y))
should be controlled by X. At the same time, in order to apply Proposi-
tion 8.2 and interpret (9.1) as an integral equation, we need existence of
h € C* such that (o(y), h) is controlled by X. This is guaranteed by the
following

& St —s

LEMMA 9.1. Let ¢: RF— R’ be of class C? and f = (f,f') € DI*(RF¥). Set
where ¢(f): [0, T] — R is defined by ¢(f);:= ¢(f;) and
k
Vo) £1:0,T] - R@R?, (VD) )P = Vieo(fy) - ()7,
j=1
Then ¢(f) € D3*(RY).

Proof. Analogously to (4.16) we have for f = (f, ') € D3®(IRF), setting
fgt = 5f5t — f‘% th as in (83),

()i = ¢(ft)*¢(fs)*lv¢(fs)fixit (9.2)
= V() 2+ / [V (£, +16f) — V(£,)] dr 6ty
0

1
= Vo(f,) 4+ / (1 —u) V2p(fs + udfy;) du 0fsy @ 0fsy.
0

Then we can write using the estimate |ab—ab| < |a — al |b|+|al| b — b

IV (f) = Vo) £ < eS8 — 8187 £ — o] 1| oo,
162 < e§p 1R+ 1882, (9.3)

103
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where

= sup [Vo(ty), = sup IV2¢(f, +udty)|.  (9.4)
s€[0,T] s,t€[0,T],ue(0,1]

Therefore (¢(f), Vo(f)f!) is controlled by X. O

This suggests that we can reinterpret the finite difference equation (9.1)
as follows: we look for y:[0,T] — RF such that y = (y,o(y)) is controlled by
X (namely it belongs to DZ*(R¥)) and

t

Y= (v0,0) + /0 o(y)dX,  Vie[0,T). (9.5)

By Lemma 9.1, o(y)=(c(y), Vo(y) y1), but here y'=0o(y), so that
o(y) =(o(y), Va(y) o(y)) = (a(y), o2(y)),

where we use the notation o9: R* —» RF @ R?® R?
k
oa(y):=Vo(y)oly),  [oa(y)]7™:=> Vao'(y) o™ (y).
a=1

By Proposition 8.2, the integral equation in (9.5) is equivalent to

|yzt| §/|t73|3aﬂ yzt:(sy‘stfa(YS) Xal*t70—2(y$) Xft (96)

Viceversa, if yeC*([0,T]; R¥) is such that y>cC3?, then setting y': =0 (y)
the path y = (y,y!) is controlled by X and satisfies (9.5). Therefore, the
integral equation (9.5) is equivalent to the finite difference equation (9.6).

9.1. LOCALIZATION ARGUMENT

PrOPOSITION 9.2. If we can prove local existence for the rough differential
equation (9.6) under the assumption that o is of class C°® and o,Vo, V30,
V30 are bounded, then we can prove local existence for (9.6) assuming only
that o is of class C3.

Proof. Let o be of class C®. Note that o and its derivatives are bounded
on the closed unit ball B:={z € R¥:|z —yo| <1}, which is a compact subset
of R*. Then we can find a function & of class C*® which is bounded with all
its derivatives up to the third on the whole R¥ and coincides with o on B.
By local existence for &, there is a solution y: [0, 7] — R of the RDE (9.6)
with o replaced by &. Since y is continuous with yy € B, we can find 77 >0
such that y, € B for all t €[0,7"]. Then o(y;) =6(y;) and oa(y;) = 62(y;) for
all t €[0,7"], so that y is a solution of the original RDE (9.6) on the shorter
time interval [0,7”]. We have proved local existence assuming only that o is
of class C3. (|
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9.2. INVARIANCE

In this section we prepare the ground for a contraction argument to be
proved in the next section. We start with an estimate of [¢(f)]pze(re) in

terms of [f]D%a(]Rk), under the assumption that ¢ is of class C? with bounded
first and second derivative. We fix D > 0 such that

D Zzmax {||[Vo|lsc, [ V20 |lc}-
LEMMA 9.3. Let o: R¥F —RF®R? be of class C? with ||Vo s+ V30|00 < D,
for some D < +o0o. Then for some C >0 and any f = (f,f') € DI*(RF)

lo(Plpzewesy < D Fflpzemm + 1 ooll6Fla + [|6£]3)- (9.7)
Proof. By (9.3) we have
16(F0(0) )0 < DUIGE o+ 1 ol15E].0),

lo(f)?ll2a < D([[]| 20+ [|5£]]2)-

Therefore, recalling (8.9),

[o(Alpzewey = 16(Vo®) )]a+ llo(£)?]2a
< D([flpzemey + I locll o]l + [16£]12).-

where, in the last inequality, we apply (8.10). O
We define I': D (R¥) — D¥*(R¥)

T(f) = (y0.0) + /0 o(f)dX,

(we know that indeed T' maps D3%(R¥) into D¥*(RF) by Lemma 9.1). In
other words, T'(f, f') is equal to the only (J,J) € D3 such that
Jo=yo, J;ZU(fs% 5Jst70(fs) Xal*tfvo—(fs) fi thecga. (98)

We want to construct solutions to (9.6) by a Schauder fixed point argument
for T small enough. Let M >0 and X such that ||X!||, + [|X2||l2o < M and

B:={f = (f ') € DX": (fo, 16) = (v0, 7(y0)): [flpze(me) <4C}, (9.9)
where
C:=1+M)D|c| - (9.10)

LEMMA 9.4. If T < gy given by

1
8(1 4 Ksa)(1+ D)(1+ o loo) (1+ M)?’

then T'(B) C B. Moreover, setting

€0:= (9.11)

2
Li=2(1 4+ M)o =25 (9.12)
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for any f = (f, ') € B we have
max {[|0f]|a, [l } < L.
Proof. Let f e B. Setting e:=T¢, if ¢ <gg then in particular

o< Jor s o s

8(1+ K3a)(1+loflcc)(1+M) =~ 8

We obtain
[0 < o (y0)| + |0t o <0 oo + [ Flp2eme) < 2[00 < L.

Similarly

I6fla < ellf[l2a + I loo X o < eC' + (o]l +£C)M
<

g
I 8||°°(1+M)+ o lloo M < 2(1+ M) oo =L

We recall that T'(f) = (J, o(f)), where J is uniquely determined by (9.8). By
(8.11) and (9.7)

(C(f)]p2e(mry 2(1+M)(IVa(yo) o(yo)l +e(1+ Kza)[o(f)]p2a(mr))

<
< 2(1+M)(D|lo|lso + (1 + K3a) D([flpzewr) +2L2)).
Now (14+ M)D||o|lec =C, and

2
D([flpza(me) +2L7%) < D<4C’+ 2£> < 8C<D+£).

D2 D
Note that
D+%=D+ (14+M)|ofloo < (1 +M)(1+D)(1+o]l), (9.13)
so that
[C(H)lpzemry < 2C+2C=4C.
Therefore, I'( f) € B. O

9.3. LOCAL LIPSCHITZ CONTINUITY
We suppose that o is of class C3, with ||0||oc + ||V ||oo 4[| V20 || oo + | V30 || 0o <
+o00 and we fix D >0 such that
D2Vl + V20 ||loo + V30 o

LEMMA 9.5. (LOCAL LIPSCHITZ ESTIMATE) We have for f, f € B, where B
is defined in (9.9), the local Lipschitz estimate

lo(f) —o(Plpzemrersy < 2+D+ollo) [f = Flpzeme (9.14)
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Proof. By Lemma 9.4 we have for f = (f,f!), f = (f, f!)
max {[|0fa, [|0F[la, [[£]loc} < L,

with L as in (9.12). Now, we want to estimate

[o(£) = o(Hlpzewreray =[10(Vo (D) ! = Vo (f) F)]la+ |o(£)? = o(£)?]|20-
A B

We first estimate A:

|6(Vo(f) ! = Vo(f) f1)g| =
=|6(Vo(f))st f; + Vo (£s)dts — 8(Vo(£))st £ — Vo (£s)dts]
<[6(Vo(f) = Vo (f))st fil +[0(Vo(f))se (£ — £1)] +
T (Vo(E) — VorE)oth| + Vo) (5 — 5T)ad.
By Lemma 3.5 and (1.27) we have for e =T

A < D[||f1||30(||5f*5?||a+(||5f||cj+Hfﬁl\a)llf*fl\oo)+|\5f||a|\f1*f1|\oo+
I = fllooll 0 ||+ 16" — 6 E1(|o]
< D[((||5f||a7+|\5f|\a)||f{||m+H5f1||a)|\f* £lloo 4 [1']] ool |0 — 0 f[| 0t
+(1+e||0f]la) |6 — 5]
< D[2L2 + (|6 o) [ = Fllco + L|6f = 0Fla+(1 + L) || 0£ — 6] ]
We show now that
lo(H2—o(Phas ) ) (9.15)
<D((||f2||2a+3||5f|\i)|\f* flloo+(|\5f|\a7+||5f||a)|\f{f*5f|\a+|\f2* £2]|24)
<D[([[Pll2a+3L?)[[f = f[loo+2L |6 — 5F[| o+ = £2]|20]-
We have by (9.2)

o(£)2 =0 (F)?||2a <||[Vo(f) £2 = Vo (f) 2o +
1
+/ V20 (f4 uof) 6f @ 6f — V20 (f +udf) 6f @ 6f||20 du.
0

With the usual estimate |ab—ab| < |a —a| |b|+|a| |b — b| we can write
[Vo(f) 2 — Vo (f) 2] 20 <
<[Vo(f) = Vo) lollf?ll2a + Vo (£)|ollf* = |20
<IV2 o lloo [ = Fllocl |20tV orlloo 1£2 = £[|2a
<D([If = fllool[]l20+ £ — £[|2a)-

For the other term
1
/ V20 (f +udf) - 6f @ 6f — V20 (f +udf) - 5f @ 5f||2a du <
0

<V lloo 1OFIE (I = Flloot10F = 6 [loo) + V20 [l oo (168 + |0F [|) [ 6F — 6F |
<D(ISEN A1 — £lloot116f = 0F[loc) + ([[6F|a + 1E]|a) |6F — 5E[a).-



108 ROUGH INTEGRAL EQUATIONS

Recalling that ||§f — & f||oo < 2|/f — ||, we have finished the proof of (9.15).
Since fo — fo=0, we have ||f — f| <& ||0f — §f||o. Summing up, we obtain

[0(f) —o(f)lpzemrgry=A+ B . )
H{BL+e(5L? + [flpze@mm)II0f = 6f[la + (1 +L) [f — Flpzamm }-
On the other hand
[6f=0flla < ellf? = £[loa + [ = ol XM |
< e||f2— £2|oq +eM |61 — 5 £
- —

e(L+M)[f — flpzemr-
Therefore

[0(f) —o(Nlpzemrery < (e(L+M)er+c2) [f = Flpzemwn),
where we set
c1:=D (3L +&([f]pza(wr) + 3L?)), c2:=D(1+¢L).
Since [ f]pzerr) < 4C we obtain, recalling that DL =2C by (9.12),

1 < D(3L+¢e(4C+5L%)<6C + 2050<D+%>

< 6C+20eC(1+D)(1+ ||o|loo)(1+ M)
< 6C+3C=9C,

where we have used first (9.13) and then (9.10)-(9.11). Similarly
e(1+M)e1 <9eC(1+ M) =9eD||o||oo(1+ M)?< 2,

and
co=D+eDL=D+2eC<D+|0] -
Therefore
e(1+M)cr+ca<2+ D+ [|o||oo
The proof is finished. O

9.4. CONTRACTION

In this section we prove local existence by means of a Banach fixed point,
assuming o to be of class C® and bounded with its first, second and third
derivatives, namely ||o || + ||V ||oo + || V20 |00 + || V30 || oo < 4+00. Therefore
the assumptions are stronger than for the Schauder fixed point argument of
Section 9.2 or for the discrete approximation of Section 4.8. However this
method has the advantage of not requiring compactness of the image of "
and therefore this approach works also for rough equations with values in
infinite-dimensional spaces.
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Let us fix D >0 such that
Dz max {[|[Volac, [[V?0|oo, V0 ||}

Recalling that B was defined in (9.9), we can now show the following

LEMMA 9.6. If T™ € ]0,e9] where g9 is as in (9.11), then T:B— B is a
contraction for ||-|pza.

Proof. Let f=(f,f!) and f = (f, f!) be in B. Since fo=fo and fj=f, by
the definitions, see in particular (8.9),
IT(f) =T(Hllpgemey = [L(F) =T (F)lpga(me)-
We set e:=T By (8.11)
[C(F) =T(Hlpgemey < e2(1+M)(1+ Kza) [0(f) = o (F)lpgeme).

Now by Lemma 9.5

[0(f) —o(Flpzemrory < (24D +||ollo) [f — Flpzeme).
Now 24+ D+ |0 ]leo <2(1+ D)(1 4 ||0]|co). Therefore

[L(f) = T(H)lpzemsy < calf — Flpzeme)
with
1
2
by (9.11). This concludes the proof. O

ca=e2(1+ M)(1+ K3,)2(14+ D)1+ ||o||0o) <






CHAPTER 10

ALGEBRA

Let us recall that a d-dimensional a-rough path X = (X!, X?) with « >%
is such that X, takes values in G :=R?x (RY®@R?) for all 0 < s <t<T.
We want to show that the Chen relation (5.25) has a very natural algebraic
interpretation if we endow G with a suitable group structure.

10.1. A NON-COMMUTATIVE GROUP

We denote in the following generic elements » € G = R% x (RY® R?) by
r = (z1, z2) with z; € R? and 22 € RY® R% We define an operation *:
G x G— G as follows: for z,y € G with x=(z1,22) and y=(y1, y2) we set

x*xy:=z=/z1, 22), 21:=x1+ Y1, 29:=To+ Y2+ T1® Y1.

It is simple to see that (G, x,1), is a group, where 1:=(0,0). First associa-
tivity of the product:

(w*xy)xz = (1+y1+2,22+ Y2+ 22+ T1@ Y1+ (21 + Y1) @ 21)
= (m+yp+eLret+ypt+aotni@(+a)+n®z)
= xx*x(yx*z).

Now the fact that 1 is the neutral element is obvious. Finally the inverse is
given explicitly by

x*(_l):(—xl,—xg—i—xl@acl). (10.1)

Let us note that (G, *, 1) is non-commutative for d > 2, since in general

T1Q Y1 F Y1 D X1
Now we want to interpret the Chen relation (5.25) in this setting. Given
a a-rough path X = (X!, X?), we write

X: [O,T]%HG, X = (X;t,Xft).
Then the Chen formula (5.25) yields
Xt = X * X, 0<s<t<T.
Indeed it is enough to note that for 0 <s<u<t<T
Xor = X3, + Xqp, X2 =X2, + X3, + X1, © X
Note that we also have, by the analytical estimates [XZ,| <[t — s|** that
Xyu=1.
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10.2. SHUFFLE GROUP
We can consider the subset H C G given by
H:={r=(x1,20)€G: o+l =102},

where (a®@b)T:=b®a for a,be R%
We can see that H is a subgroup of G: if x,y € H then z:=x x y satisfies

Zotzs = To+ Y+ TIQyi+as +ys + 1 ®@a
= 1 +N@ON+1QY1+ Y102
= 14+ y)®@1+y)=21® 21.

Moreover if 2 € H then its inverse y =2*(~Y € G satisfies

Yot+ys = —Ta+T1RT— T8 +11Q 7
= —r1Q®T1+ 221 Q21
= (—21)@(-21) =131 ®@nN

so that 2*(~Y € H. Finally 1 € H. Therefore H is indeed a (proper) subgroup
of G. Moreover by (10.1) and the relation defining elements of H we have
the simpler expression for the inverse

2D = (=g, 2], reH. (10.2)

Therefore we have the following

LEMMA 10.1. A rough path X is weakly geometric if and only if the associ-
ated map X:[0,T)%2 — G takes values in H.

10.3. ALGEBRA AND INTEGRAL

As we explained at the beginning of Chapter 5, given X! =§X € C%, a choice

of X2 is equivalent to a choice of an integral I; = fOX ®dXs, te[0,T],
namely

L0, T]—=RI®RY, Io=0, 6ly—X,06X0=X2, X2eC3
Given X = (X!, X?), we set now
X:[0,T] -G, Xy:= (X, It), tel0,1).
Then for 0<s <t

XEVa X, = (=X, — L+ X, ® X,) * (X, 1))

Xt XS;It Is+X5®X5*X5®Xt)
sta 51&1& Xs 29 (Xt - Xé))
ata ) Xst (103)

(=
(
(X5
(X5



10.4 UNORDERED TIMES 113

again by the Chen relation (5.25).

Remark 10.2. This definition of X:[0,7] — G is not the only possible one.
For example, if X;: =X, then we also have X:(_l) * X, = X,

10.4. UNORDERED TIMES

Given the relation (10.3) X:(fl) * Xy = Xy for s <t, it is natural to wonder

whether we have an expression for X:(_l) * X; when s >t. In fact, this turns
out to be equivalent to having an expression for Xg; when s > t.
The definition of X}, is simple:

X=X, 0<t<s<T.
In particular, if X of class C® is such that X! =JX, then we obtain
Xi =X, — X,, X St =5, Vs, t€0,T7].
We want now to extend X? to [0,T]? so that for all s,u,t € [0,7]
0XZ, =X1, @ X4y, X3 St — s[>
We set for 0<t<s<T
X2 = X3+ Xh o XL =X,

Note that then we clearly have |X%| <[t — 5|2 for all s,t € [0, T).
With these choices, we have by (10.1)

X=XV s telo,T).
Then by (10.3), for 0<t <s<T
X =X = (X7 x ) Y = x0TV e x,

namely (10.3) holds for all s,¢ € [0, 7.

Now, suppose that we have a general germ A: [0, T]?> — R. We suppose
that it satisfies for some 1 > 1

| Agt — Agy — Aut] < Ca(Ju—s| V[t —ul)”, s,u,t€[0,T].

In particular, the restriction A:[0,7]2 — R is such that §A: [0, 7] — R

belongs to C3. By the Sewing Lemma, we have a unique choice for (I, R)
such that

Iy=0, 0L = Ast + R, |Rse| S|t — 5], 0<s<t<T.

We want to extend R to a function on [0,7]? in such a way that the previous
formula holds over [0, T]%. We set

Rst:*Ast*Ats*Rtsa OétéséT (104)
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Since 015 = —0dI,;, we have for t <s
Ry =—Ast — (0145 — Rys) — Ris=—Ast — 6115 = 0I5t — Agy,
so that 6T = A+ R on [0, T]?. Moreover, since Ags=0 by Remark 1.8,
|Rst| <|(0A)sts| + |Res| < (Cpy+1) Ca |t — 5|7, 0<t<s<T. (10.5)

10.5. AN EXAMPLE: THE BROWNIAN CASE

Let consider the Ité6 Brownian rough paths in R?
t
BY=Bi=B. Bi= [ (B-B)edB. 0<s<i<T.

Then we obtain from the definitions of the previous section for 0 <t <s<T

B%t = Bt - BS)

Bgt = _/ (BT - Bt) ®dBr + (Bs - Bt) ® (Bs - Bt)

t
/ dBr®(BT*Bt>+(S*t)I,
t

where I is the identity matrix of R%.

Note that we can not write the latter expression as f ts (Bs— B,) ®dB,
since the integrand is not adapted to the filtration of B. Here the one-
parameter function B: [0,7] — G such that By, :B:(fl) x By is given by

t
]Bt:<Bt,/Bs®st>, t>0.
0

Let us consider now the Stratonovich case:
t
B;t:Bt*Bsa Egt:/(BT*Bs)(g)OdBr; 0<s<E<T.
S

Then we obtain from the definitions of the previous section for 0 <t <s<T

I_B;t = Bt*Bsa
and if one applies (10.2) then we have for 0<t <s<T
B = (B2~ [ odB. o (B, - B).
¢

Here the one-parameter function B:[0,7] — G such that By, :B:(_l) * By

is given by .
IBt(Bt,/ BS®OdBS), t}O
0
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