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INTRODUCTION

The problem of interest in this book is the study of differential equations driven by
irreqular functions (more specifically: continuous but not differentiable). This will be
achieved through the powerful and elegant theory of rough paths. A key motivation
comes from stochastic differential equations driven by Brownian motion, but the
goal is to develop a general theory which does not rely on probability.

We will focus on controlled differential equations: given a driving path X = (X¢)1>0
and a function o(-), we look for a solution Z = (Z;)i>0 of

Zi=0(Z) X,. (1)

The challenge is to make sense of this equation when X is not differentiable. We
consider in particular the case when X is a generic a-Hoélder continuous path, i.e.
it satfies | X; — Xi| = O(|t — s|*) for some a €]0, 1].

The basic idea is to reformulate the ill-posed differential equation (1) in ways that
do not contain the derivative X. In Part I of this book (Chapters 1 to 4) we rewrite
the differential equation (1) as a finite difference equation on some interval [0, T:

Zy—Zs=0(Z) (Xe— Xs) +{- -} +o(t—s) for 0<s<t<T, (2)

where {---} denote suitable additional terms (to be described below). For such a
difference equation we prove well-posedness, i.e. existence, uniqueness, regularity of
solutions and continuous dependence on initial data, when X is a generic a-Holder
path with « >% and o(-) is a sufficiently regular function. More precisely:

in Chapter 1 we introduce our key tool, that we call the Sewing Bound',

e in Chapter 2 we consider the so-called Young case a > %: we prove well-
posedness for the difference equation (2) where we simply take {---} =0;

e in Chapter 3 we consider the so-called Rough case %< a< %: in this regime we

need to enrich the path X with a notion of iterated integral [ X, dX,, leading
to a so-called rough path, then we prove well-posedness for the difference
equation (2) for a natural additional term {---} #0;

e in Chapter 4 we apply the theory of Chapter 3 when X = B is a typical path
of Brownian motion: the solution of the difference equation (2) coincides with
the solution of the stochastic differential equation dZ,=o(Z;) dB; in the Ito
or Stratonovich sense, depending on the choice of iterated integral f B,dB,.

1. This may be viewed as “half’ of the celebrated Sewing Lemma, to be discussed in Chapter 6.
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Altogether, we show that the difference equation (2) driven by a rough path (i.e.
a Holder continuous path X enriched by an iterated integral) provides an elementary
yet powerful reformulation of the ill-posed differential equation (1), which sheds a
“pathwise light” on stochastic differential equations driven by Brownian motion.?

Part II of this book is devoted to the alternative (and possibly more customary)
reformulation of the differential equation (1) as an integral equation:

t .
Zy=Zo+Ti(0(2),X),  where It(Y,X):/Y;XSds. (3)
0

The natural strategy to solve it (for given initial datum Zj) is via the following steps:

e define a notion of integral Z,(Y , X') with respect to a non-differentiable X,
for a suitable class H of integrands Y = (Y;)s>0:

e show that the maps Y — (Z,(Y, X))i>0 and Z +— o(Z) are continuous with
respect to a suitable metric on the space H of integrands;

e solve (3) as a fized point equation, by showing that for small time horizon
T >0 the map Z+— ®(Z):=(Zy(0(Z), X))tecjo,r is a contraction.

This is indeed the standard strategy to solve stochastic differential equations driven
by Brownian motion X = B, in which case Z,(Y, B) = [ Ot Y. dB; makes sense as a
stochastic inegral (e.g. Ito or Stratonovich).

We show that the same strategy can be applied in the theory of rough paths:
one can define a notion of rough integral Z,(Y , X ) for a wide class of integrands Y,
known as controlled paths, and then solve the equation (3) by fixed point arguments.
This is the approach in the book by Hairer and Friz [Insert reference].

To be completed ...

NOTATION

We fix a time horizon 7" > 0 and two dimensions k,d € N. We use “path” as a
synonymous of “function defined on [0, 7]” with values in R%. We denote by || the
Euclidean norm.

The space of linear maps from R? to R¥ is denoted by £(R?, R*) =R* ® (R%)*.
We can identify it with the space R¥*? of k x d real matrices, that we equip with
the Hilbert-Schmidt norm |-| (i.e. the Euclidean norm on R¥*?). Note that for a
linear map A € £(IRY, R¥) and a vector v € R? we have |[Av|<|A] |v].

2. The restriction to a-Hoélder paths X with « >é is made for simplicity: the theory can be extended

to any a >0 (for n-1-1 <a S% with n € N one needs to enrich the path X with n-order iterated integrals).
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CHAPTER 1

THE SEWING BOUND

This first chapter is dedicated to an elementary but fundamental tool, the Sewing
Bound, that will be applied extensively throughout the book. It is a general Holder-
type bound for functions of two real variables that can be understood by itself,
see Theorem 1.9 below. To provide motivation, we present it as a natural a priori
estimate for solutions of differential equations.

1.1. CONTROLLED DIFFERENTIAL EQUATION

Consider the following controlled ordinary differential equation (ODE): given a con-
tinuously differentiable path X: [0, 7] — R? and a continuous function o: R¥ — R* ®
(RY)* , we look for a differentiable path Z: [0, T] — R¥ such that

Zi=0(Z) Xy,  tel0,T]. (1.1)

By the fundamental theorem of calculus, this is equivalent to
t
Zt:Zo—i—/ o(Zs) Xsds, te(0,T]. (1.2)
0

In the special case k=d =1 and when o(x) = Az is linear (with A € R), we have
the explicit solution Z; = zpexp(A (X; — X)), which has the interesting property of
being well-defined also when X is non differentiable.

For any dimensions k,d € N, if we assume that o(+) is Lipschitz, classical results
in the theory of ODEs guarantee that equation (1.1)-(1.2) is well-posed for any
continuously differentiable path X, namely for any Z, € R” there is one and only one
solution Z (with no explicit formula, in general).

Our aim is to extend such a well-posedness result to a setting where X is contin-
uous but not differentiable (also in cases where o(-) may be non-linear). Of course,
to this purpose it is first necessary to provide a generalized formulation of (1.1)-(1.2)
where the derivative of X does not appear.

1.2. CONTROLLED DIFFERENCE EQUATION

Let us still suppose that X is continuously differentiable. We deduce by (1.1)-(1.2)
that for 0 <s <t < T

2= Z=0(2) (Xi=X)+ (0(22) = o(2.)) Xudu, (1.3)

15
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which implies that Z satisfies the following controlled difference equation:
Zy— Zs=0(Zs) (X — Xs) +o(t — s), 0<s<t<T, (1.4)
because u— o(Z,) is continuous and u— X, is (continuous, hence) bounded on [0, T7.

Remark 1.1. (UNIFORMITY) Whenever we write o(t — s), as in (1.4), we always
mean uniformly for 0 <s<t<T, ie.

Ve>030>0: 0<s<t<T, t—s<0 implies [|o(t—s)|<e(t—3s). (1.5)

This will be implicitly assumed in the sequel.

Let us make two simple observations.

e If X is continuously differentiable we deduced (1.4) from (1.1), but we can
easily deduce (1.1) from (1.4): in other terms, the two equations (1.1) and
(1.4) are equivalent.

e If X is not continuously differentiable, equation (1.4) is still meaningful,
unlike equation (1.1) which contains explicitly X.

For these reasons, henceforth we focus on the difference equation (1.4), which pro-
vides a generalized formulation of the differential equation (1.1) when X is continuous
but not necessarily differentiable.

The problem is now to prove well-posedness for the difference equation (1.4).
We are going to show that this is possible assuming a suitable Holder regularity on
X, but non trivial ideas are required. In this chapter we illustrate some key ideas,
showing how to prove uniqueness of solutions via a priori estimates (existence of
solutions will be studied in the next chapters). We start from a basic result, which
ensures the continuity of solutions; more precise result will be obtained later.

LEMMA 1.2. (CONTINUITY OF SOLUTIONS) Let X and o be continuous. Then any
solution Z of (1.]) is a continuous path, more precisely it satisfies

|Zy— Zs| < C | Xy — Xs| +o(t —s), 0<s<t<T, (1.6)

for a suitable constant C' < co which depends on Z.

Proof. Relation (1.6) follows by (1.4) with C :=|0(Z)|~ = supo<i<r |0(Z1)],
renaming |o(t — s)| as o(t —s). We only have to prove that C' < oco. Since o is
continuous by assumption, it is enough to show that Z is bounded.

Since ot — s) is uniform, see (1.5), we can fix § >0 such that |o(t — s)| <1 for
all 0 < s <t < T with |t —s|< 6. It follows that Z is bounded in any interval [3, ]
with |[f — 5| <4, because by (1.4) we can bound

sup |Zt| < |Z§| + |O'(Z§)| sup |Xt— X§| +1<o00.
te(s,t] te(s,t]

We conclude that Z is bounded in the whole interval [0, 7], because we can write
[0, T as a finite union of intervals [5,#] with |t — 5| <4. O
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Remark 1.3. (COUNTEREXAMPLES) The weaker requirement that (1.4) holds for
any fixred s € [0,T] as t|s is not enough for our purposes, since in this case Z needs

not be continuous. An easy conterexample is the following: given any continuous
path X:[0,2] — R, we define Z:[0,2] — R by

7. Xy if 0<t<1,
T X, +1if 1<t<2.

Note that Z; — Z,=X; — X, when either 0 <s<t<1or 1<s<t<2, hence Z satisfies
the difference equation (1.4) with o(-)=1 for any fized s €10,2) as t]s, but not
uniformly for 0 <s<t<2, since Z is discontinuous at t = 1.

For another counterexample, which is even unbounded, consider

i <
A if 0<t<1,
0 if 1<t<2,

which satisfies (1.4) as ¢|s for any fixed s € [0,2], for X; =t and o(z) =22

1.3. SOME USEFUL FUNCTION SPACES

For n > 1 we define the simplex
0,7)¢:={(t,...,tn): 0<ty<--- <L, <T} (1.7)

(note that [0, T]&=[0,T]). We then write C,,=C([0,T]%, R¥) as a shorthand for the
space of continuous functions from [0,T]% to R*:

C,:=C([0,T)%, RF) :={F:[0,T]*—RF: F is continuous}. (1.8)

We are going to work with functions of one ( f), two (Fy) or three (Gs,;) ordered
variables in [0, T, hence we focus on the spaces C1, Cy, Cs.

e On the spaces (5 and C5 we introduce a Holder-like structure: given any
n € (0,00), we define for F € Cy and G € C3

Fstl |Gsut|
IFly= s 5 aye s Al )
! 0<s<t<T (t—s)" ! 0<s<u<t<T (t—s)"
s<t
and we denote by CJ and C the corresponding function spaces:
Cy:={FeCy ||F|,<oo}, CJ:={GeCs |G|, <o}, (1.10)

which are Banach spaces endowed with the norm ||-||, (exercise).

e On the space C} of continuous functions f:[0,7] — R* we consider the usual
Hélder structure. We first introduce the increment §f by

Of)st:=fe—fo,  0<s<t<T, (1.11)
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and note that §f € Cy for any f € C;. Then, for o € (0, 1], we define the
classical space C®=C*([0, T], R¥) of a-Hélder functions

Co = {f: 0, 7] =R*  [|of o= 3 ’(ft e Jil OO} (1.12)

(for =1 it is the space of Lipschitz functions). Note that ||0f ]|, in (1.12)
is consistent with (1.11) and (1.9).

Remark 1.4. (HOLDER SEMI-NORM) We stress that f—||df||4 is & semi-norm on
C® (it vanishes on constant functions). The standard norm on C? is

[ fllee:=11f oo+ 116 e, (1.13)
where we define the standard sup norm
[ flloc:= sup [ fi. (1.14)
te[0,T]

For f:]0,T] — R* we can bound || f|loc < |f(0)] +T||6 f|la (see (1.40) below),
hence

[ lea < SO+ AT [0 f la- (1.15)

This explains why it is often enough to focus on the semi-norm |0 f ||, -

Remark 1.5. (HOLDER EXPONENTS) We only consider the Hélder space C* for
a € (0,1] because for a > 1 the only functions in C* are constant functions (note that
10f|o < 00 for av>1 implies f,=0 for every ¢t €[0,T]).

On the other hand, the spaces CJ and C3 in (1.10) are interesting for any
ezponent 1 € (0, 00). For instance, the condition ||F'||, < oo for a function F € Cy
means that |Fy| <C (t —s)", which does not imply F'=0 when 1> 1 (unless F'=4§f
is the increment of some function f & ().

In our results below we will have to assume that the non-linearity o: RF —
R* ® (R%)* belongs to classes of Holder functions, in the following sense.

DEFINITION 1.6. Let v>0. A function F:RF —RY is said to be globally vy-Hélder
(or globally of class C7) if

1. for v €(0,1] we have

Fl@) = Fy)l o (1.16)

Flev:= sup
) [z —y|

z,ycRF,x#y

2. forye(n,n+1] andn={1,2,...}, Fisn times continuously differentiable and

[D™F(x) - DMF(y)|

lz—y| "

[DMWF)ev:=  sup
z,yeRF x#+y

where D™ s the n-fold differential of F.

<400
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Moreover F:RF— RN is said to be locally ~v-Holder (or locally of class C7) if
e fory€(0,1] we have for all R>0

v FEFWI
z,yeRF z#y |ZE - y|
lz],ly|<R

o forye(n,n+1] andn={1,2,...}, Fisn times continuously differentiable and

|[D™F(z) — D™F(y)|
|z —y[™

sup < 400.

z,yeRF x#y
lz|,ly|<R

We stress that in the previous definition we do not assume F of D™F to be
bounded. The case v=1 corresponds to the classical Lipschitz condition.

1.4. LOCAL UNIQUENESS OF SOLUTIONS

We prove uniqueness of solutions for the controlled difference equation (1.4) when
X €C® is an Hélder path of exponent o> % For simplicity, we focus on the case
when o: R¥ — R* ® (R?%)* is a linear application: o € (RF @ (RY)*) @ (R¥)*, and we
write o Z instead of o(Z) (we discuss non linear o(-) in Chapter 2).

THEOREM 1.7. (LOCAL UNIQUENESS OF SOLUTIONS, LINEAR CASE) Fiz a path
X:[0,T] = R% in C%, with a € ]%, 1}, and a linear map o: R¥—RF® (RY)*. If T >0
is small enough (depending on X ,«, ), then for any zo € RF there is at most one

path Z:[0,T] — RF with Zy= 2y which solves the linear controlled difference equation
(1.4), that is (recalling (1.11))

07— (0 Zs) 6 Xse=o0(t — 3), 0<s<t<T. (1.17)
Proof. Suppose that we have two paths Z, Z: [0, T] — R* satisfying (1.17) with

Zo=Zy and define Y :=Z — Z. Our goal is to show that Y =0.
Let us introduce the function R € Co=C([0,T]%, R¥) defined by

Ry:=0Y,— (0Y)0Xy, 0<s<t<T, (1.18)
and note that by (1.17) and linearity we have
Ry=o(t—s). (1.19)
Recalling (1.9), we can estimate
16 [l < [ Y [loo [[0X fla+ [ Rla

and since Ry =o0(t —s)=o((t — s)%), we have ||R]||o < 400 and therefore [|[§Y |4 <
+o00. Since Yy =0, we can bound

||Y||oo < |}/E)| + sup |Y;€_ YE)l <Te ||5Y||a
t<

0\\
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Since 1 <T(t —s) > for 0< s <t < T, we can also bound

Rl <T | R]|20
so that
[0Y [ ST (|o ] [|0Y [ 16X ||a+ [ R]]2a)-

Suppose we can prove that, for some constant C'=C(X,«a,0) < o0,

[R]l2a < C [|0Y o (1.20)
Then we obtain

10V [la ST (o] 10X [[a +C) 0Y la-

If we fix T small enough, so that T (|o|||0X ||+ C) <1, we get ||dY || =0, hence
dY =0. This means that Y; =Y for all s,¢€[0,7], and since Yy =0 we obtain Y =0,
namely our goal Z = Z. This completes the proof assuming the estimate (1.20)
(where the hypothesis « >% will play a key role). O

To actually complete the proof of Theorem 1.7, it remains to show that the
inequality (1.20) holds. This is performed in the next two sections:

e in Section 1.5 we present a fundamental estimate, the Sewing Bound, which
applies to any function Ry =o(t — s) (recall (1.19));

e in Section 1.6 we apply the Sewing Bound to Ry in (1.18) and we prove the
desired estimate (1.20) for « >% (see the assumptions of Theorem 1.7).

1.5. THE SEWING BOUND

Let us fix an arbitrary function R € Cy=C([0,T]%, R") with Rg=o0(t — s). Our goal
is to bound |Rgy| for any given 0 <a<b<T.

We first show that we can express R,, via “Riemann sums” along partitions
P={a=ty<ti1<...<ty,=0>b} of [a,b]. These are defined by

#P
]P(R) ::Z Rtifltiu (121)
i=1

where we denote by #P :=m the number of intervals of the partition P. Let us
denote by |P|:=max;<i<m (t; —t;—1) the mesh of P.

LEMMA 1.8. (RIEMANN SUMS) Given any R € Cy with Ry =o0(t — s), for any 0<
a<b<T and for any sequence (Pyn)n>o of partitions of [a,b] with vanishing mesh
lim,, 00 |Prn| =0 we have

lim Ip, (R) =0.

n— o0
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If furthermore Po={a,b} is the trivial partition, then we can write

Rup=>  (Ip,(R)—1Ip,,,(R)), 0<a<b<T. (1.22)

n=0

Proof. Writing P, ={a=t§ <tf <...<tlp =0b}, we can estimate

#Pn |Rt;.7'_lt;.7" #Pn . .
[ Ip,(R)| éz |Rin 0] < ,_max iy Z (tr—1t7y),

i=1

i=1
hence |Ip,(R)| — 0 as n— oo, because the final sum equals b — a and the bracket

vanishes (since Ry =o(t —s) and |P,| =max < <up, (1] —t7-1) —0).
We deduce relation (1.22) by the telescopic sum

=

]PO(R) - ]"PN(R) = (]Pn(R) - I’Pn+1<R))>

because limy_, o Ipy(R) =0 while Ip,(R) = Ry for Po={a,b}. O

n

If we remove a single point ¢; from a partition P ={to<t; < ... <t;}, we obtain
a new partition P’ for which, recalling (1.21), we can write

IP'(R) - ]'P(R) - RtifltiJﬁl - Rtiqtz‘ - Rtiti+1 . (123>

The expression in the RHS deserves a name: given any two-variables function F' € (s,
we define its increment 0F € (5 as the three-variables function

5Fsut::Fst_Fsu_Futa OéséuétéT (124)
We can then rewrite (1.23) as

[P/(R) - [P(R) = 5Rti_1titi+1 ) (125)
and recalling (1.9) we obtain the following estimate, for any 7 > 0:
[ Ip/(R) — Ip(R)| < |6R ]|y [tiv1 — tioa|™ (1.26)

We are now ready to state and prove the Sewing Bound.

THEOREM 1.9. (SEWING BOUND) Given any R € Cy with Ry =o(t —s), the fol-
lowing estimate holds for any n € (1,00) (recall (1.9)):

R, < K, ||0R]), where K,:=(1-=2"=m"1, (1.27)

Proof. Fix R € C; such that ||[0R]|, < oo for some 7> 1 (otherwise there is nothing
to prove). Also fix 0 <a <b<T and consider for n >0 the dyadic partitions P, :=

{th:=a+ 2% (b—a): 0<i<2"} of [a,b]. Since Py={a,b} is the trivial partition, we
can apply (1.22) to bound

|Rap| < [p,(R) = Ip, ,(R)|. (1.28)
n=0
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If we remove from P, .1 all the “odd points” tg;j_ll, with 0 < j <2"—1, we obtain

Pn. Then, iterating relations (1.25)-(1.26), we have
2n—1

|Ip,(R) = Ip, (R)| < D [0R g1t s
=0

< =)

g1
= 2==Yn5R]|, (b—a)". (1.29)
Plugging this into (1.28), since > o0 27D = (1 —21=7)~1 we obtain
|Rop| < (1 =2""1)"1|6R],, (b—a)", 0<a<b<T, (1.30)
which proves (1.27). O

Remark 1.10. Recalling (1.11) and (1.24), we have defined linear maps

Oy~ Oy -2 Oy (1.31)
which satisfy §d o d =0. Indeed, for any f € C we have
(5<5f)5ut: (ft_ fS) - (fu_ fs) - (ft_ fu) =0.

Intuitively, 0F € C3 measures how much a function F' € C; differs from being the
increment o f of some f € (4, because 6F =0 if and only if F=46f for some f € Cy
(it suffices to define f;:= Fy; and to check that ¢ fsy = 0Fps + Fsr = Fyt).

Remark 1.11. The assumption Ry =o(t —s) in Theorem 1.9 cannot be avoided:
if R:=df for a non constant f e Cy, then 0R =0 while ||R]|,> 0.

1.6. END OF PROOF OF UNIQUENESS

In this section, we apply the Sewing Bound (1.27) to the function Ry defined in
(1.18), in order to prove the estimate (1.20) for o> %

We first determine the increment R through a simple and instructive computa-
tion: by (1.18), since §(62) =0 (see Remark 1.10), we have

O0Rsut = Rs— Rou— Ru
= (—-Y)—(Y.—Y)—(Yi—Y)
— (oY) (Xy = Xo) + (0 5) (Xu = Xo) + (0 V2) (Xi — Xo)
= [o(Ya—Y)] (Xi— Xu). (1.32)
Recalling (1.9), this implies
[6R |20 < |0 [ [[0Y [|o [|6X |[a-

We next note that if « >% (as it is assumed in Theorem 1.7) we can apply the
Sewing Bound (1.27) for n=2a>1 to obtain

[ l20 < K0 |0R |20 < Koo [0 | [|0Y [l [[0X o -
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This is precisely our goal (1.20) with C=C(X,a,0):= Ka |o|[[0X || a-

Summarizing: thanks to the Sewing bound (1.27), we have obtained the estimate
(1.20) and completed the proof of Theorem 1.7, showing uniqueness of solutions to

the difference equation (1.4) for any X € C* with a € ]%, 1]. In the next chapters we
extend this approach to non-linear o(-) and to situations where X € C* with a < %

Remark 1.12. For later purpose, let us record the computation (1.32) withouth o:
given any (say, real) paths X and Y, if

Ast:)/;éXsty VO<S<t<T7
then
Mgt = — Y 6Xut,  VO<s<u<t<T. (1.33)

1.7. WEIGHTED NORMS

We conclude this chapter defining weighted versions ||-||, - of the norms ||-||,, intro-
duced in (1.9): given F € Cy and G € (s, we set for n, 7€ (0, 00)

_L | Fl
Fl, .= Liociscrn€ ™ | F 1.34
1E = sup_ Lio<e-ssrre " 5 (1.34)
_t Gsut|
Glly-:= sup  lio<i—s<rre 7 | , 1.35
G, A A (T (1.35)

where Cy and Cj are the spaces of continuous functions from [0,7]% and [0, T]% to
R*, see (1.8). Note that as 7— oo we recover the usual norms:

Il = Tim . (1.36)

Remark 1.13. (NORMS VS. SEMI-NORMS) While |||, is @ norm, |||, is a norm

for 7> T but it is only a semi-norm for T <T (for instance, | F ||, =0 for F € Cy

implies Fy; =0 only for ¢t — s <7: no constraint is imposed on Fy; for t —s > 7).
However, if F=4f, that is F;= f; — fs for some f € C}, we have the equivalence

T\ T
1571 < 7 (12 ) 1671 (1.37)

The first inequality is clear. For the second one, given 0 < s <t <T, we can write
s=tog<ti1 < ---<ty=t with t;, —t;_1 <7 and N < 1+§ (for instance, we can
consider ¢;,=s+1 =% Wwhere N := V;SD; we then obtain dfy = Zfil 0fr. 1, and

N
1 i UG e €7 (6 1)1 < 0 lyr 777 (1 — )7, which yields (1.37).

Remark 1.14. (FROM LOCAL TO GLOBAL) The weighted semi-norms |||, , will
be useful to transform local results in global results. Indeed, using the standard
norms ||-||,, often requires the size 7°> 0 of the time interval [0, 7] to be small, as

in Theorem 1.7, which can be annoying. Using |-|,,,» will allow us to keep T >0
arbitrary, by choosing a sufficiently small 7> 0.
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Recalling the supremum norm || f || of a function f € Cy, see (1.14), we define
the corresponding weighted version

[ fllco,r:= sup e 7| fi. (1.38)
0<t<T
We stress that ||-||oo.r 25 a norm equivalent to ||-||oo for any 7> 0, since
r
oo, r < ll-lloo < €7 [[-floo.7 - (1.39)

Remark 1.15. (EQUIVALENT HOLDER NORM) It follows by (1.37) and (1.39) that
I locrr + I-lacr is @ norm equivalent to |-[l¢a:=||-|ls + [}/l on the space C* of Halder
functions, see Remark 1.4, for any 7> 0.

We will often use the Holder semi-norms [[0f]||o and ||0f|a,r to bound the
supremum norms || f || and || f||cc.r, thanks to the following result.

LEMMA 1.16. (SUPREMUM-HOLDER BOUND) For any f € Cy and n € (0, 00)

[ oo < LSl =T 10 f 1l (1.40)
[ lloo.r <L fol +3(r AT) 10 f Nl ¥T>0. (1.41)

Proof. Let us prove (1.40): for any f € C; and for ¢t € ]0,7] we have

<1l 15 ol = 1ol + Ll oo,

The proof of (1.41) is slightly more involved. If t € |0, 7 AT, then
<l + e T L e ary o

which, in particular, implies (1.41) when 7 >T. When 7 < T, it remains to consider
T<t<T: 1n this case, we define N :=min {n € N: n7'>t}>2 so that — <7' We
set tk—k for k>0, so that ¢ty =t. Then

: . | foe = fu
e_;f <f+ tr—ti._1)"e T [e Tu}
| fil <[ fol kz::l(k k1) (e —1x_ 1)
N — 'k
<ol + (T AT (|6l Y e 7
k=1

By definition of N we have (N —1)7 <t; since 7 <t we obtain N7 <2t and therefore

i > % Since t —tp= (N — k:) renaming ¢ := N — k we obtain

Nt N’
N _t
_ _gi l—e - 1
e T — Nt — T < 1<3
k=1 l—e ¥ 1—¢ 2

The proof is complete. O
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We finally show that the Sewing Bound (1.27) still holds if we replace |-||, by
|||, for any 7> 0.

THEOREM 1.17. (WEIGHTED SEWING BOUND) Given any R € Cy with Rys=o0(t —s),
the following estimate holds for any n € (1,00) and 7> 0:

| Ry < Ky [|0R]5,- where K,:=(1-2""m"1 (1.42)
Proof. Given 0<a <b< T, let us define

5Rsut|

6Bl on:= sup oReul

et s,u,t€a,bl: (t—S)n
s<u<t, s<t

(1.43)

Following the proof of Theorem 1.9, we can replace [|0R|, by [[0R];, 0.5 in (1.29)
and in (1.30), hence we obtain |Rep| < Ky ||0R||n,[a,p) (0 —a)™. Then for b —a <7 we
can estimate

o |Ra| _ -t
and (1.42) follows taking the supremum over 0 <a<b<T with b —a < 7. O

1.8. A DISCRETE SEWING BOUND

We can prove a version of the Sewing Bound for functions R = (Ry;)s<ieT defined on
a finite set of points T:={0=1t; <--- <tup} CR; (this will be useful to construct
solutions to difference equations via Euler schemes, see Sections 2.6 and 3.9). The
condition Ry =o(t — s) from Theorem 1.9 is now replaced by the requirement that
R vanishes on consecutiwe points of T, i.e. Ry, , =0 for all 1<e<#T.

We define versions ||||;, of the norms |-, . restricted on T for 7> 0, recall
(1.34)-(1.35):

_t |A
||AH;]7I,‘T = sup 1{0<t—5<7‘}e Tﬁ7 (144)
0<s<t |t_8|?7
s, teT
_t |B
IBIT, = sup  Tjoaroserye s 0 (1.45)
0<s<ust |t —s]
s,u,tel, s<t

for A: {(s,t) e T:0<s<t}—Rand B:{(s,u,t) eT>0<s<u<t,s<t}—R.

THEOREM 1.18. (DISCRETE SEWING BOUND) If a function R=(Rs;)s<teT vanishes
on consecutive points of T (i.e. Ry, ,=0), then for any n>1 and 7 >0 we have

. 1
|R|7-<CyI6R]|~ with 0173:2772 m:2’7§(7))<oo. (1.46)

n>1

i+1

Proof. We fix s,t € T with s <t and we start by proving that
|Ratl <Gy [0R]]5 (t = 5)". (1.47)
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We have s =1t and t =t;,, and we may assume that m > 2 (otherwise there is
nothing to prove, since for m =1 we have R, , =0).

Consider the partition P ={s =ty <tp11<... <tpim=1} with m intervals. Note
that for some index i€ {k+1,...,k+m — 1} we must have t;;1 —t;_1 < %,
otherwise we would get the contradiction

k+m—1 k+m—1

2i-5)> 3 (a—ti)> Y 2= oy

. , m—1
i=k+1 i=k+1

Removing the point ¢; from P we obtain a partition P’ with m — 1 intervals.
Let A= (Ast)s<teT be a generic real function and set Ip(A) = Zf:,:”flAtitiH.
As in (1.25) we have

21 (t — )" |6 Ao |
Ip(A) — Ip(A)| = |0As,_ 1,00, S ————— '
’ 73( ) 73( )| | t171t1t1+1| (m_]_)n sguilj}iwgt |/ZU_U/|77
u,v,weT

[terating this argument, until we arrive at the trivial partition {s,¢}, we get

5 Awvo|

Io(A) — ALl < — g\ M 14

|P( ) St‘_cn(t 8) sguiligwgt |/w_u|777 ( 8>
u,v,weT

with (), := Zn>1 - ~ < 00 because 7> 1.

We apply now (1.48) to A= R; since Ry,;,,,=0 we obtain Ip(R)=0 and therefore
(1.47) follows Fmally if t —s<7 then w —u <7 in the supremum in (1.48) and

since e 7 < e T we obtain
e 7 | Ryl < Cy (t — )" [|0R]]5)-,
and the proof is complete. O

We also have an analog of Lemma 1.16. We set for f: T— R and 7 >0

HfHOOT'—SUPe T|ft|
teT

LEMMA 1.19. (DISCRETE SUPREMUM-HOLDER BOUND) For T:={0=t;<--- <
t#']r} Q R+ set

M:= max |tz—tl,1|
i=2,... ,#T

Then for all f: T—R, 7>2M and n>0

1f 1o, < [fol + 577 [16.f |7 (1.49)

Proof. We define Ty:=0 and for i > 1, as long as TN (7;_1,T;_1 + 7] is not empty,
we set

Ti:=max TN (T;_1, ;-1 + 7], i=1,...,N,
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so that Ty =max T. We have by construction T; + M >T; +7 for all i=1,...
N — 1, and since Mé%

E—Ti_@r—M%.

For := N we have only Ty > Ty _1. Therefore for i=1,... N

5 - SIme| T | fr — fr
e 7| fr| < + E T, —T_1)"e 7 |e ==k 2k
| fr, | fol £ (T k—1) { (T — Ty —1)"

i T Ty
< ol + 7 6FIE S e
k=1

<k
<|mwwm%0+2eﬂ
k=0

< il + 4770 7.1
Now for t € T\{7;}; we have T; <t < T;;; for some ¢ and then

AL < el (- W~W ﬁ<eW&7wmm
[ fol 577 67 |[%..
The proof is complete. O

1.9. EXTRA (TO BE COMPLETED)
We also introduce the usual supremum norm, for F'€ C5 and G € Cs:

[Fllc:= sup [Ful,  [|Glloc:=sup  |Gsul,
0<s<t<T 0<s<ut<T

and a corresponding weighted version, for 7 € (0, 00):

_t _t
|F|loo,r:= sup e 7|Fql, |Glloo,r:= sup e 7|Gaut- (1.50)
0<s<t<T 0<s<u<t<T

Note that
TEIEOOHFHOO,T:IIFHW lim L |Gl =Gl im [ H g =1 H ]l

We have
H‘FHW,T< HGHOO,T ||HH777 (Fsut:GsuHut); (151)

Note that ||-[|,),- is only a semi-norm on C}" if 7 <T'; we have at least

s 1
-l <H-lln <€ { -l + =5 lloor ) - (1.52)
T

However, if 7 >T we have again equivalence of norms

T
e <lllp<er |-y 72T (1.53)






CHAPTER 2
DIFFERENCE EQUATIONS: THE YOUNG CASE

Fix a time horizon T > 0 and two dimensions k,d € N. We study the following
controlled difference equation for an unknown path Z: [0, T] — R*:

Zy—Zs=0(Zs) (Xi— Xs) +o(t —s), 0<s<t<T, (2.1)

where the “driving path” X:[0,7] — R? and the function o: R* — R* @ (R%)* are
given, and o(t — s) is uniform for 0 < s <t <7 (see Remark 1.1).

The difference equation (2.1) is a natural generalized formulation of the con-
trolled differential equation

Zi=o(Z) X,, 0<t<T. (2.2)

Indeed, as we showed in Chapter 1 (see Section 1.2), equations (2.1) and (2.2) are
equivalent when X is continuously differentiable and o is continuous, but (2.1) is
meaningful also when X is non differentiable.

In this chapter we prove well-posedness for the difference equation (2.1) when
the driving path X € C* is Hélder continuous in the regime a € ]%, 1], called the
Young case. The more challenging regime o < %, called the rough case, is the object
of the next Chapter 3, where new ideas will be introduced.

2.1. SUMMARY

Using the increment notation 0 fs:= f; — fs from (1.11), we rewrite (2.1) as
0Zg=0(Zs) 0 X+ o(t — s), 0<s<t<T, (2.3)
so that a solution of (2.3) is any path Z:[0,T] — R* such that the “remainder”
72 =624 —0(Z,) 6 Xy satisfies ZE=o(t—s). (2.4)

We summarize the main results of this chapter stating local and global existence,
uniqueness of solutions and continuity of the solution map for the difference equation
(2.3) under natural assumptions on o. We will actually prove more precise results,
which yield quantitative estimates.

THEOREM 2.1. (WELL-POSEDNESS) Let X:[0,7]— R be of class C* with a € |4,1]
and let o: R¥—RF @ (RY)*. Then we have:

e local existence: if o is locally v-Holder with vy € (é —1,1] (e.g. of class C*),
then for every zo€ R¥ there is a possibly shorter time horizon T'=T, x -(20) €
10,7 and a path Z:[0,T'] — R starting from Zy= zy which solves (2.3) for
0<s<t<T;

29
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e global existence: if o is globally v-Holder with v € (é -1, 1] (e.g. of class
C! with ||[Vo |l <o0), then we can take T}, x ,(z0) =T for any z € R%

e uniqueness: if o is of class C7 with v € (%, 2] (e.g. if o is of class C?), then
there is exactly one solution Z of (2.3) with Zy= zo;

e continuity of the solution map: if o is differentiable with bounded and
globally (v —1)-Holder gradient with v € (é, 2] (i.e. Voo <o00, [Vo]er-1<
00 ), then the solution Z of (2.3) is a continuous function of the starting point
zo and driving path X: the map (20, X )+ Z is continuous from R¥ x C*— C*,

In the first part of this chapter, we give for granted the existence of solutions and
we focus on their properties: we prove a prior: estimates in Section 2.3, uniqueness
of solutions in Section 2.4 and continuity of the solution map in Section 2.5. A key
role is played by the Sewing Bound from Chapter 1, see Theorems 1.9 and 1.17, and
its discrete version, see Theorem 1.18.

The proof of local and global existence of solutions of (2.3) is given at the end
of this chapter, see Section 2.6, exploiting a suitable Euler scheme.

2.2. SET-UP

We collect here some notions and tools that will be used extensively.

We recall that O denotes the space of continuous functions f: [0, 7] — R¥. Sim-
ilarly, C5 and (5 are the spaces of continuous functions of two and three ordered
variables, i.e. defined on [0, 7% and [0, 7]%, see (1.7)-(1.8).

We are going to exploit the weighted semi-norms |||, -, see (1.34)-(1.35) (see also
(1.9) for the original norm ||-||,,). These are useful to bound the weighted supremum
norm || fle.~ of a function f € Cy, see (1.38) and (1.41):

[ loo.r < Lfol +3(r AT) 10 f NIy, V1,7 >0. (2.5)
It follows directly from the definitions (1.34)-(1.35) that
||-||777T<(T/\T)”/||-||,7+,7/,T, Vn,n'>0, (2.6)
because (t —8)"> (t — )" (t AT)™" for 0< s <t < T with t —s<7.

Remark 2.2. The factor (1 AT)" in the RHS of (2.6) can be made small by
choosing T small while keeping T fixzed. This is why we included the indicator function
L{o<t—s<r} in the definition (1.34)-(1.35) of the norms ||-||,,,-: without this indicator

function, instead of (7 AT)" we would have T, which is small only when T is small.

We will often work with functions F'€ Cy or F € (s that are product of two
factors, like Fyy= gs Hg or Fyyy = Gy Hyy. We show in the next result that the semi-
norm || F'||,, - can be controlled by a product of suitable norms for each factor.

LEMMA 2.3. (WEIGHTED BOUNDS) For any n,n' € (0,00) and 7 >0, we have
if Fa=gsHa or Fa=gHa  then  [|F |- <[glloor [[H |y, (2.7)
if  Foaun=GauHu  then — |[Fllypy - <[|Gllyr [ HIly - (2.8)
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Proof. If F,,= g, Hy, by (1.38) we can estimate e /7 |g,| <||g]lo.r to get (2.7). If
F, = gs Hy, for s <t we can bound e /" <e™/7 in the definition (1.34)-(1.35) of
||l,.-, hence again by (1.38) we can estimate e™*/" |gy| < ||g|co.r to get (2.7).

If Fyy= Gy Hy, we can further bound (¢ — )" > (t —u)" (u — )" in (1.35)
and then estimate e ~*/" Gy, / (u — 5)" < ||G||,,.», which yields (2.8). O

We stress that in the RHS of (2.7) and (2.8) only one factor gets the weighted
norm or semi-norm, while the other factor gets the non-weigthed norm ||-||,. We
will sometimes need an extra weight, which can be introduced as follows.

LEMMA 2.4. (EXTRA WEIGHT) For any n,7T € (0,00) and 0 <7 <7, we have
T
if Fa=gsHe or Fa=giHa  then  |[Fllyr<|gllecre” [H]lyz.  (2.9)

Proof. Recall the definition (1.34)-(1.35) of |||, and note that for 0 < s <t < T we
have e /7 | g:| < || g |lo.r and e /7 | gs| < ||| oo.» (see the proof of Lemma 2.3). Finally,

for t — s <7 <7 we can estimate |Hy| <e?/7e ™7 |Hy| <eT/7 |H||,-(t—s)". O

We recall that RF @ (R%)*~R¥*4 is the space of linear applications from R? to R*
equipped with the Hilbert-Schmidt (Euclidean) norm |-|. We say that a function is of
class C™ if it is continuously differentiable m times. Given o: R¥— R* ® (R?)* of class
C?, that we represent by o/(z) withi€{1,...,k} and j€{1,...,d}, we denote by Vo:
RF— R ® (RY)* ® (R¥)* its gradient and by V20: R* — R* @ (RY)* ® (R*)* ® (RF)*
its Hessian, represented for i,a,b€{1,...,k} and j€{1,...,d} by

7 2 %
-780']' 8aj

(Vo(eDja=52) (Vo2 =5g-(2)

Remark 2.5. (NORM OF THE GRADIENT OF LIPSCHITZ FUNCTIONS) For a locally
Lipschitz function : R¥ — R’ we can define the “norm of the gradient” at any point
(even where ¢ may not be differentiable):

IV (2)] :zlimsupM €[0,00).

y—z |y—Z|

Similarly, |V2y(z)| is well defined as soon as 1) is differentiable with locally Lipschitz
gradient V1) (which is slightly less than requiring 1 € C?).

2.3. A PRIORI ESTIMATES

In this section we prove a priori estimates for solutions of (2.3) assuming that o
is globally Hélder, that is [o]cr < oo with v > %, recall the definition (1.16) of the
Hoélder seminorm [o]¢r. Note that o is not assumed to bounded.

We first observe that if the driving path X is of class C®, then any solution Z of
(2.3) is also of class C?, as soon as ¢ is continuous.
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LEMMA 2.6. (HOLDER REGULARITY) Let X be of class C* with a €]0,1] and let o
be continuous. Then any solution Z of (2.3) is of class C*.

Proof. We know by Lemma 1.2 that Z is continuous, more precisely by (1.6)
we have [0Z4| < C [0X| + o(t — s) with C' < oo. Since |0Xs| < ||0X [|o (t — $)* and
o(t —s)=o((t — s)*) for any <1, it follows that Z € C*. O

We next formulate the announced a priori estimates. It is convenient to use the
weighted semi-norms ||-||,, - in (1.34)-(1.35) (note that the usual norms |||, in (1.9)
can be recovered by letting 7— 00).

THEOREM 2.7. (A PRIORI ESTIMATES) Let X be of class C* with a € }%, 1] and let
o be globally ~-Hdélder with v € (l —1,1]. Then, for any solution Z:0,T] — R* of
(2.3), the remainder 212 =062y — 0(Z,) 6 Xy satisfies Z12 € COTVY more precisely
for any T >0

1220 4 vair < Carrx o 10211 with Cayx 0= K(yin)a 10X [la[oler,  (2.10)
where K,=(1—2'"""~1" Moreover, if either T or T is small enough, we have

10Z]lar <1V (2[0X [l [0(Z0))  for (TAT)* <€ay.X 0, (2.11)

where we define
1

Ea,v,X, 0=
! 2 (K(y+1a+3) [[0.X [|a [o]er

(2.12)

If o is globally Lipschitz, namely if we can take y=1, we can improve (2.11) to

10Z]|a,r < 210X || |0(Z0)] for (TAT)*<éeai1.x,0- (2.13)

Proof. We first prove (2.10). Since Z!Z =o(t — s) by definition of solution, see (2.4),
we can estimate Z'2 in terms of 67, by the weighted Sewing Bound (1.42). Let
us compute 622, = 72 — 78 _ 7B recalling (2.4) and (1.33), since 60 =0, we have

028, =060(2)su0Xur=(0(Z,) — 0(Z)) (Xe— X,) . (2.14)
Since |o(2) — o (2)| < [o]ev |z — 2|7 for all 2,z € RY, we can bound

160 (2) e < [l [16Z |5, - (2.15)

hence by (2.8) we obtain
16ZP| (3 41)0,r S 10X [l [0)er 162117
Applying the weighted Sewing Bound (1.42), for (7 + 1)a > 1 we then obtain
1Z2 (v 1)asr < Kv11)a 10X [la [oer 162117, (2.16)

which proves (2.10).
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We next prove (2.11). To simplify notation, let us set €:= (7 AT)® Recalling
(2.7) and (2.6), we obtain by (2.4)

10ZJar < N0(Z) 6X [lar + 1ZP -
< No(@)llsoir 10X Nla+e7 122 ¢y 1)a,r (2.17)

We can estimate ||0(Z)||«,- by (2.5) and (2.15):
10(2) oo, <lo(Z0)| 437 [o]en 02110, -
Plugging this and (2.16) into (2.17), we get

16Z]lar < (lo(Zo)l+3e7 [oler [[0Z]]a,) 10X [lo+
+ " Kyna 10X o [aler 107115, -

1 & 5
= [0X]lalo(Z0)[ +5 102

D) a,T )
a777X’0.

where €44, x,, is defined in (2.12). For €7 < ¢, 4,x,» the last term is bounded by
L16Z |2 . which is finite by Lemma 2.6. If ||§Z||4.- <1 then (2.11) holds trivially; if
2 a77— b

not, %H(SZH7 <2|16Z||a., Bringing this term in the LHS we obtain (2.11).

a, T X g

To prove (2.13), we argue as for (2.11) and since v =1 we obtain

1 €
182 llayr <16 [l | (Zo)| + 5

10Z]]a,r
€a,1,X

For e <e,.1,x,» the last term is bounded by %||5Z||a77 which is finite by Lemma 2.6.
Bringing this term in the LHS we obtain (2.13), and this completes the proof. [

2.4. UNIQUENESS

In this section we prove uniqueness of solutions to (2.3) assuming that o is of class C'!
with locally Hélder gradient (without boundedness assumption on ). This improves
on Theorem 1.7, both because we allow for non-linear o and because we do not
require that the time horizon 7" > 0 is small.

We first need an elementary but fundamental estimate on the difference of incre-
ments of a function. Given ¥: R¥ — R, we use the notation

Cyr:=sup{|¥(z)]: zeRF |z|<R}. (2.18)

LEMMA 2.8. (DIFFERENCE OF INCREMENTS) Let 1): RF — R’ be of class Cit? for
some 0< p<1 (i.e. ¢ is differentiable with V1 of class CL.). Then for any R >0
and for all x,%,y,y € R* with max {|z|, |y|,|Z|, ||} < R we can estimate

[¥(z) = ()] = [¥(Z) — (D]
<Chlz—y)— @ —P|+Ch{lz—yl?+ |z — 7|} ly — 7], (2.19)

where Cg:=sup {|V¢(z)|: |x|<R} andC]{::sup{M: \x|,]y|<R}.

|z —yl?
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Proof. For z,w € R* we can write
¥(z) = P(w) = (z,0) (z —w),
where (2, w) := folvw(u 2+ (1 —u)w)du € R*® (R)*, therefore

(@) = D) = [¥(@) = ¢(9)] = [¥(2) = v(@)] = [U(y) = ()]
= (e, 7) (r =) = Py, §) (y = 7)
= U, D)7~ (v~ )
+ [0z, 2) =y, 9] (y— 1)
By definition of Cf, and Cf we have |¢(z, Z)| < Ck and

~

[, 2) = Py, 9)| < [P(a,2) = Py, 2)] + [d(y. 2) = d(y, 9)]
< Cr{le—ylP+ 1z —9l°},

hence (2.19) follows. O

We are now ready to state and prove the announced uniqueness result.

THEOREM 2.9. (UNIQUENESS) Let X be of class C* with a € } } and let o be of
class C7 for some =y > ~ (for instance, we can take o € C?). Then for every z € R¥
there exists at most one solution Z to (2.3) with Zy= 2.

Proof. Let Z and Z be two solutions of (2.3), i.e. they satisfy (2.4), and set
Y =2-7.
We want to show that, for 7 >0 small enough, we have
1Y |0, < 21Y0l,

where the weighted norm ||-||o» was defined in (1.38). In particular, if we assume
that Zy= Zy, we obtain ||Y ||e.» =0 and hence Z = Z.
We know by (2.5) that for any 7 >0

1Y [loo,r < [Yo| + 37 0Y [la 7 , (2.20)

where we recall that the weighted semi-norm ||-||, - was defined in (1.34). We now
define Y as the difference between the remainders Z@ and Z2 of the solutions Z

and Z as defined in (2.4), that is
V.= ZB8 7B _ 5y, —(0(Z)) — 0(Z)) 06X . (2.21)

(We are slightly abusing notation, since Y i is not the remainder of Y when o is not
linear.) By assumption o € C” for some > —: renaming 7y as y /A2, we may assume

that v € ]— 2] We are going to prove the followmg inequalities: for any 7 >0
18Y flar < e [IY flo,r + 70DV B|0 7 (2.22)

1Y P la,r <2 Y lloo,r + 2 70D [V v, (2.23)
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for finite constants c¢;, ¢/ that may depend on X ,o, 7,7 but not on T.

Let us complete the proof assuming (2.22) and (2.23). Note that (y —1)a >0
by assumption. If we fix 7> 0 small, so that ¢5 707~ <%, from (2.23) we get
1Y 0r <2 ||Y |Joor which plugged into (2.22) yields ||6Y ||a.r <2¢1 ||V |loo.r for
7> 0 small (it suffices that 2 ¢, 70D < ¢;). Finally, plugging this into (2.20) and
possibly choosing 7 > 0 even smaller, we obtain our goal ||Y|« - < 2 |Yp| which
completes the proof.

It remains to prove (2.22) and (2.23). Using the notation from Lemma 2.8 we set
Cl = sup{|Vo(2)|: [2]<[Z]leV[Z]lsc}
Vo(z)—Vo =
ot = sup{ FHI=ROW, o) 1y < 2] v 21 -

|z =yl
so that |0(Z;) — o(Z,)| < C1|Z; — Z;| and, therefore,

l0(Z) = o(Z) e, S CTIY lloo,r- (2.24)
We now exploit (2.21) to estimate ||dY ||o,-: applying (2.7) we obtain

1Y o < Nl0(2) = 0(Z) oo 16X [l + 1Y P -
< OY oo 16X fla+ 700 [V q (2.25)

where we note that | Y|, . <70~V ||V, by (2.6). We have shown that (2.22)
holds with ¢; = C1[|0X || -

We finally prove (2.23). Since Y2 =o(t — s), see (2.21) and (2.4), we bound Z!
by its increment §Z through the weighted Sewing Bound (1.42):

Y Per <Eoa ll6Y 0., (2.26)
hence we focus on [|0Y?)||,,... By (2.21) and (1.33), since 6 0§ =0, we have
0V = (00(Z)su— 00(Z) ) 6 X s (2.27)

Applying the estimate (2.19) for x = Z,, y = Z,, T = Z,, §j = Zs, We can write

100 (2 ) g0 — 00(Z)gu| < C116Zg0— 6 Zgu| + CL {|6Z 0 7™ + 10 Zsu| "} Zs — Z4|
= O16Yau| + OV |0 Zsu| V=1 + 10 25| 1} |Vl (2.28)

hence by (2.7) we get

165(2) = 60(Z)liy-ae < CHIOY liyvjar+ (2.20)
+ 212 18202 Y ler

If we take 7 <1 we can bound [[0Y||(y—1)a,r < ||0Y ||a,- by (2.6) (recall that we are
assuming v < 2). Then by (2.27) we obtain, recalling (2.8),

16Y Pl ar < 10X Mo [160(Z) = 80 (2) | (- 1yasr < E1 (10Y [l + 1Y [loo,r) +
for a suitable (explicit) constant ¢, = ¢ (o, Z, Z, X). Applying (2.22), we obtain

16 P|ar < (1 + 1) e 1Y flowr + e 70D [V g,
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which plugged into (2.26) shows that (2.23) holds. The proof is complete. O
We conclude with an example of (2.19).

Example 2.10. If o:R— R is o(z) =22 then we have

AA@
<
+
\_/S‘//—\
+
=
|
)
T
+
&
|
S
+
S

where in the second last equality we have summed and subtracted (y — ¢) (z + ).
If we use this formula for v =7, y=Z; and ¥ = Z,, y = Z,, then we obtain

(5(22 - Z2)st:5(Z - Z)St (ZS+ ZS) + (Zt - Zt) [5Zst+ 5Zst]7
which is in the spirit of (2.19) with p=1. It follows that
16022 = Z)la <211 21| 10(Z = Z)lla+ 12 = Z o< [I10Z [l + 10 Z [|o]

which is the form that (2.29) takes in this particular case.

2.5. CONTINUITY OF THE SOLUTION MAP

In this section we assume that o is globally Lipschitz and of class C* with a globally

v-Hélder gradient, i.e. ||Vo || <00 and [Voler < 0o, with ~ >é (recall the definition

(1.16) of the Holder seminorm [Vo|c~), while o itself is not assumed to be bounded.

Under these assumptions, we have global existence and uniqueness of solutions Z:

[0, 7] — R* to (2.3) for any time horizon T >0, for any starting point Z; € R* and

for any driving path X of class C* with %< a <1 (as we will prove in Section 2.6).
We can thus consider the solution map:

d: RFx(C* — Co

(Z0,X) — Z ,_{ unique solution of (2.3)for t€[0,7] . (2.30)
0 =

starting from 7,
We prove in this section that this map is continuous, in fact locally Lipschitz.

Remark 2.11. The continuity of the solution map is a highly non-trivial property.
Indeed, when X is of class C, note that Z solves the equation

t .
Zt:ZO—l—/ o(Zs) Xsds, (2.31)
0

which is based on the derivative X of X. We instead consider driving paths X € C*
with a € ]%, 1] which are continuous but may be non-differentiable.

We shall see in the next chapters that the continuity of the solution map holds
also in more complex situations such as X € C* with a < %, which cover the case
when X is a Brownian motion and Z is the solution to a SDE.
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Before stating the continuity of the solution map, we recall that the space C* is
equipped with the norm || f||co:=|| f |loc + ||0.f ||a, see Remark 1.4, but an equivalent
norm is || flloo,r + |0f |la. for any choice of the weight T > 0, see Remark 1.15.

THEOREM 2.12. (CONTINUITY OF THE SOLUTION MAP) Let o be globally Lipschitz
with a globally (v —1)-Hélder gradient: |Vo||s <00 and [Vo]ev-1<oo, withy € (é,
2}. Then, for any T >0 and o € B, 1], the solution map (Zy, X)+— Z in (2.30) is
locally Lipschitz.

More explicitly, given My, M, D < oo, if we assume that

max {|[Vo e, [Vo]er-1} < D,

and we consider starting points Zy, Zo € R and driving paths X, X € C* with

max {|o(Zo)|, l0(Zo)|} < Mo, max {[0X [|a, [0X [} <M, (2.32)
then the corresponding solutions Z = (Zs)sejo,1 7= (Zs)se[o,T} of (2.3) satisfy

1Z = Zloor + 167 — 62 ||ar < €ar | Zo — Zo| +6 Mo ||6X — 0X ||y (2.33)
provided 0 <7 AT <7 for a suitable T =T 1,0, >0, where we set

Cr:=2(|VolleM+1)<2(DM+1).
Proof. Let us define the constant
v :=|VolleeM<DM. (2.34)

We fix two solutions Z and Z of (2.3) with respective driving paths X and X. If we
define Y :=Z7 — Z, we can rewrite our goal (2.33) as

1Y (|o,r + 16Y [Ja,r <6 Mo [|[6X — 60X [|o+2 (car + 1) |Y5| - (2.35)

Let us introduce the shorthand
e:=(TAT)"*

and let us agree that, whenever we write for e small enough we mean for 0 <e<eg
for a suitable £g >0 which depends on o, T, My, M, D. By (2.5), for € small enough,

1
1Y lloo,r < Yol +€ [10Y la,r < [Yol + = [10Y [l (2.36)

hence to prove (2.35) we can focus on [[0Y |47

Recalling (2.4), let us define Y2 := 7z — 712 We are going to establish the
following two relations, for € small enough:

4 —
=10V a7 <2 Mo [|0X = 0X o+ ear [¥o] + [[Y P o~ (2.37)
oLl 1
1Yo < Mol|0X = 6X [|a+ S{Yol + £ 10 [la,r- (2.38)

Plugging (2.38) into (2.37) and applying (2.36), we obtain (2.35).
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It remains to prove (2.37) and (2.38). We record some useful bounds. Let us set

1
E=E = . 2.
M TS (K +3) DM (2.39)

We exploit the a priori estimate (2.13) from Theorem 2.7: by (2.32), we have
fore=(rAT)*<z: max{[|0Z ||a.r, |02 ]|ar} <2 Mo M, (2.40)
therefore
160(Z)la.r S NV lloo 10Z |a,r 2V [loo Mo M =2 Mo car, (2.41)
and applying (2.5) and (2.32) we get, for € small enough,

10(2)||oo,r < |0(Z0)| + 3 100(Z) |7 < Mo (146 crre) <2 M, . (2.42)

We can now prove (2.37). Defining Y12 := 7 — 7P we obtain from (2.4)

(SYSt — 5Zst - (52515 — (Z ) 5X3t ( ) 6Xst + }/;LZ}
= 0(Z,) (0X X)st+( (Zs) —U(Zs))(ngt—i-Y;?],

hence by (2.7) we can bound

1Y Jlar < Nlo(Z)llow.r 16X = 6X o

) ! (2.43)
H0X [la 10(2) = o(Z)lle,r + 1Y Pla,r
Let us look at the second term in the RHS of (2.43): by (2.5)
0(2) ~ 0(Z)nr < Vol llZ — Zll 211
< [[Volle ([Yol 432 [16Y [[a.r)-
Hence by (2.32) and (2.34) we get, for € small enough,
_ _ 1
10X o lo(Z2) = 7 (Z)llow,7 < €ar [Yol + = [[6Y [lar (2.45)
Plugging this into (2.43) we then obtain, by (2.42),
4 _
£ 106V a7 <2 Mo 10X = 0X o+ ear [Yol + [V, (2.46)

which proves (2.37).
We finally prove (2.38). Since Y@ = 72— 72— 5(t — 5), see (2.4), the weighted
Sewing Bound (1.42) and (2.6) give

Yo - < Y Pl < Koo e? ™ [0V Hl|ar - (2.47)
To estimate §Y12 =§ 212 — § Z12I note that by (2.4) and (1.33) we can write
OVt =

hence by (2.8)

oo (Z)su <5X - 5X)ut + (60<Z) - 50_(2))su 5Xut ) (248>

10V ® |0, <160(2) | (y-1yar 10X = 0X o+ 10X [la 00/(Z) = 60(2) || (y-1yar- (2:49)
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The first term is easy to control: by (2.41), for e small enough,
Koo e HI00(Z2) | (r-vyarr 10X = 6X [0 < Mo [|6X = 0X || (2.50)
Let us now focus on the second term. By (2.19) we have, see also (2.28),
160(Z)su = 00(Z)sul <V |l [6Youl + [Vl er-1 {|0Zsul ™" + 10 Zeua 1} V5]
We apply (2.9) for H=6Z, g=Y and 7 = (£)"/* from (2.39):
160(Z) = 60(Z) | (y-1ya,r < IV lloo 1Y [ly-1)a,r +
T — —
HVale-rem (162127 +16Z 12 DNY Nloo,r
T
< D|6Y |lar+22Mo M) e7D [|Y || oo, (2.51)

where we applied (2.40). Hence by (2.51), recalling (2.32), for ¢ small enough we
obtain

a2 [6X o 107(2) = 60(Z) 3 10r S5 10Vl + 5V oo (252)
and since ||Y ||oo,r < Y0l —1—% |0Y || a7, see (2.36), we obtain
Ko 65 o 60(2) — 00(Z) |07 < S50l + 518
Finally, plugging this bound and (2.50) into (2.49) and (2.47), we obtain
¥ ar < Mo X = 6 [l 3551 + 18 7
which proves (2.38) and completes the proof. O

Remark 2.13. An explicit choice for 7 in Theorem 2.12 is

T

o, e

T 10 (Ko +3) (11 Mo) (1 + D (M + M2))’

(2.53)

with 7 =7, p am defined in (2.39). This is obtained by tracking all the points in
the proof of Theorem 2.12 where ¢ = (7 AT)® was assumed to be small enough: see
Section 2.8 for the details.

2.6. EULER SCHEME AND LOCAL/GLOBAL EXISTENCE

In this section we discuss global existence of solutions, under the assumption that o is
globally v-Holder with ~ € (% -1, 1}, i.e. [o]ev < oo (again without any boundedness
assumption on o). We also state a result of local existence of solutions for equation
(2.3), where we only assume that o is locally y-Hdélder with ~ € (% —1,1] (with no
boundedness assumption on o).

We fix X:[0,7] — R of class C* with a € B, 1] and a starting point zo € R*. We
split the proof in two parts: we first assume that o: R* — R* @ (R%)* is globally ~-
Holder, then we consider the case when o is locally y-Holder.
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First part: globally Holder case.

We consider a finite set T={0=1; < --- <txr} C R} and we define an approximate
solution Z = ZT = (Z;);eT through the Euler scheme

ZO = ZO, Zt = Zti + O'(th.> 5Xtiyti+1 fOI' 1 < ’L < #T — 1 . (254)

i+1 :
Let us define the “remainder”

Rst::(SZst_O-(Zs) 5Xst for s<teT. (255)

We assume that o is globally v-Hélder, namely [o]c~ < 0o, with v € (é —1,1]. We set

A 1
Ea,v,X,0 = )
! 2(Cy41)a +5) [[0X [|a [o]er

(2.56)

where the constant C), is defined in (1.46). We prove the following a priori estimates
on the Euler scheme (2.54), which are analogous to those in Theorem 2.7.

LEMMA 2.14. If o is globally vy-Hélder, namely [o]cr < 0o, with vy € (é— 1,1], then

IR (4170 < Ciyanyaloler (10Z 1) 16X o, (2.57)
and for T < Ep 5 X 0" H(SZHEEé 1V (2]o(z0)] [|6X ||a) - (2.58)

Proof. Since 0Rgu = (0(Zs) — 0(Zy)) 6Xus, recall (1.33), and since Ry, , =0 by
(2.54), we can apply the discrete Sewing Bound (1.46) with n=(y+1)a>1 to get

IR+ var < Clrna IORIG 4 1)0,r < Clatnya [0]er (102 ]]a,r) 10X o (2.59)

We have proved (2.57).
We next prove (2.58). Recalling (2.55) we can bound, by (2.6) for [|-||sa,T,,

162115+ <Nl (D)5, 10X Nla+ 77 IRIIEG 4 1y, -
By (1.49)
lo(Z2) 5.7 < lo(20)| + 577|00(Z) o, < |0 (20)] + 577 [0]e ([0Z]|a.r) -
We thus obtain, combining the previous bounds,
10Z]]a7 < lo(z0)| 10X [lo+ {77 (Cra+5) [o]er 10X [la} (10Z [|a,r)-
Now if ||6Z]|& <1 then (2.58) is proved, otherwise (||0Z]|2,)? <||6Z||% . and then
for 7 as in (2.56) the term in brackets is less than = and we obtain (2.58). O

2
We can now prove the following
THEOREM 2.15. (GLOBAL EXISTENCE) Let X be of class C*, with « € ]%, 1}, and

let o be globally v-Holder with v € (% —1,1], i.e. [o]en <o0. For every zo € R, with
no restriction on T >0, there exists a solution (Zy)iepp,1) of (2.3) with Zy= 2.
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Proof. Given n €N, we construct an approximate solution Z" = (Z{").ct, of (2.3)
defined in the discrete set of times T,,:= ({i27™: ¢=0,1,...}N[0,T])U{T} through
the Fuler scheme (2.54).

Zii=zo, IR =20 +o(Z0) 6Xy,.

i1t

for ti, ti+1 c Tn . (260)

i+1
Let us define the “remainder”

v =020 —o(Z1) 0 Xs for s<teT,. (2.61)
We fix T > 0 such that

We extend Z™ by linear interpolation to a continuous function defined on [0, 77,

still denoted by Z™. Given two points t; < s <t <t;;1 inside the same interval [t;, ;1]
t

of the partition T, since o Qz%éthiH, we can bound for « € (0, 1]

‘5ZSTIL€’ _ ( t—s >l—a |5Zt7:t¢+1| < |5Zt7:t¢+1|
(t—s)* \t (e — )™ = (tisn — )"
Given two points s <t in different intervals, say ¢; <s <41 <t; <t <14 for some
i < j, by the triangle inequality we can bound [6Z3| < [0Zg,, |+ [0Z], ;| + (6284
Recalling (1.9) and (1.44), we then obtain |||, <3 |-||a™, hence by (2.58) we get

162" a7 <3V (6o (20)| [[0X o) - (2.62)

it1— 1t

The family (Z"),en is equi-continuous by (2.62) and equi-bounded, since Z§ = z
for all n € N, hence by the Arzela-Ascoli Theorem it is compact in the space C([0, T,
R¥). Let us denote by Z:[0,T] — R* any limit point. Plugging (2.58) into (2.57),
by (2.61) we can write

if T*<E0 x.0 1025 — a(Z1) 6 Xo| < c(z0) (t —s8)** Vs<teT,, (2.63)
where ¢(20) := Cy41)a [0ler (B3V (6 |0(20)] |0X||a))” |0X||o - Letting n — oo and
observing that T, C T, ., we see that (2.63) stil‘l holds with Z" replaced by Z
and T, replaced by the set T :=J,c Tor=({55: i,n €N} N[0, T]) U{T} of
dyadic rationals:

if T*<é4 x 00 1024 — 0(Zs) 0 Xst| < c(20) (t — 5)** Vs<teT.

Since T is dense in [0,7] and Z is continuous, this bound extends to all 0 < s <t < T,
which shows that Z is a solution of (2.3). This completes the proof. O

Second part: locally Lipschitz case.

We now assume that o is locally v-Holder and we fix zo € R¥. We also fix T'> 0 such
that T'<Z,.x.0(20), see (2.64), and we prove that there exists a solution Z:[0, 7] — RF
of (2.3) with Zy= 2.

THEOREM 2.16. (LOCAL EXISTENCE) Let X be of class C*, with o € ]%, 1], and let o
be locally Lipschitz (e.g. of class C1). For any zo€ R and for T >0 small enough, i.e.

1 1

TY< 4 x.o(20) i == )
S A N (G )Y 15 R § oY | 22 G311

(2.64)
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there exists a solution (Zy)icjo,r) of (2.5) with Zy= 2.

Let 6 be a globally v-Hélder function (depending on zy) such that
G(z)=0(z) Y|z — 20| <o(20) and [Glcv= sup |Vo(z)]. (2.65)

|z — 20| <o (20)

Since T'< €n.x.0(20) < €4, x .0, see (2.64) and (2.56), by the first part of the proof
there ezists a solution Z of (2.3) with & in place of o and Zy= z,. We will prove that

| Z — 20| < o(20) for all t€]0,7], (2.66)

therefore 6(Z;) = o(Z;) for all t €]0,T], see (2.65). This means that Z is a solution
of the original (2.3) with o, which completes the proof of Theorem 2.16.

To prove (2.66), we apply the a priori estimate (2.13) with 7 = oco: we note that
T<E4x.0(20)<cax.o (see (2.64) and (2.12), and note that Cy, > Ks,), therefore

162 [lo < 20X |la [0 (20)1,
because 6(z9) =0(zp). Then for every t € [0, 7] we can bound
20— 20l ST [[0Z ][0 2T [|6X [|a o (20)] <o (20)];

where the last inequality holds because T < 4. x »(20) < (2 [|0X ||o) 7!, see (2.64).
This completes the proof of (2.66).

2.7. ERROR ESTIMATE IN THE EULER SCHEME
We suppose in this section that o is of class C? with ||V o ||e + || V0 ||oo < +00.
THEOREM 2.17. The Euler scheme converges at speed n?*~1.

Proof. Let us set z;:= dy; / 0yo, where (y;);>0 is defined by (2.60). Then
ziv1= 2i+ Vo (yi) 2i 60X, 120,

This shows that the pair (y;, 2;)i>0 satisfies a recurrence which is similar to (2.60)
with a map ¥ of class C! and therefore we can apply the above results to obtain
that |z] < const. In particular the map yo — yi is Lipschitz-continuous, uniformly
over k>0.

Let us call, for k>0, (2/")s>, as the sequence which satisfies (2.60) but has

2
initial value z{*) = y(t;). Since (y(t))e=0 is a solution to (2.4), we have

(67

k _
28— y(tesa)| S

Since the map yo— yy is Lipschitz-continuous uniformly over k£ > 0, we have

28 — 2 < 1) — gt )| Sne, ekt L
Therefore
/—1
v =yt =[50 =0 < 3 1o — oV S =T o

k=0
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as t; is bounded and n — oo. O

2.8. EXTRA: A VALUE FOR T

We can give an explicit expression for 7 = 7z, a7,7 in Theorem 2.12, by tracking all
the points in the proof where 7 is small enough, namely:

(64 1 .
for (2.36) we need 7% < 33

for (2.40) we need 7* < (par)®:= (2 (Koo +3) car) ™4
<

)
for (2.42) we need 7 < (6 ¢pr) !, for (2.45) we need 7* < (15¢p)
)

for (2.50) we need 77"V g (2K oen)

(
(
(
for (2.52) we need 70"V < (10 K., ¢py) ™" (first term in the RHS) and also
b g <Kw eﬁ% Moy M? HV20|]OO>_1 (second term in the RHS).

Since ¢y =M ||Vo||~, see (2.34), it is easy to check that all these constraints are
satisfied for 0 <7 <7 given by formula (2.53) in Remark 2.13.






CHAPTER 3

DIFFERENCE EQUATIONS: THE ROUGH CASE

We have so far considered the difference equation (2.3), that is
Zy— Zs=0(Zs) (Xt — Xs) +o(t — s), 0<s<t<T, (3.1)

where X is given, Z is the unknown and o(-) is sufficiently regular. This is a gen-

eralization of the differential equation Z, = o(Zy) X, which is meaningful for non
smooth X, as we showed in Chapter 2, where we proved well-posedness in the so-
called Young case, i.e. assuming that X € C* with a € ]%, 1].

However, the restriction a >% is a substantial limitation: in particular, we cannot
take X = B as a typical path of Brownian motion, which is in C* only for a < % For

this reason, we show in this chapter how to enrich the difference equation (3.1) and
prove well-posedness when X € C* with o € ]%,%], called the rough case. This will

be applied to Brownian motion in the next Chapter 4, in ordered to obtain a robust
formulation of classical stochastic differential equations.

NOTATION. Throughout this book we write f4 < gst to mean that fo < Cgs for all
0<s<t<T, where C' < oo 1s a suitable random constant.

Remark 3.1. (YOUNG VS. ROUGH CASE) The restriction « >% for the study of

the difference equation (3.1) has a substantial reason, namely there is no solution to
(3.1) for general X € C* with a < % Indeed, taking the “increment” ¢ of both sides

of (3.1) and recalling (1.24) and (1.33), we obtain
(0(Zy) —0(Zy)) (Xy— X)) =o(t — s) for 0<s<u<t<T. (3.2)

If X eC? for any a € (0, 1], then we know from Lemma 2.6 that Z € C*, but not
better in general (e.g. when o(-) =c is constant we have Z =c¢ X), hence the LHS
of (3.2) is S(u—8)*(t —u)* < (t — s)?, but not better in general. This shows that
the restriction « >% is generally necessary for (3.1) to have solutions.

3.1. ENHANCED TAYLOR EXPANSION

We fix d, k €N, a time horizon T'> 0 and a sufficiently regular function o: R¥ —
R* @ (R%)*. Our goal is to give a meaning to the integral equation

t
Zt:ZDJr/a(ZS)XSds, 0<t<T, (3.3)
0

where Z: [0, 7] — R” is the unknown and X:[0,7] — R¢ is a non smooth path, more

precisely X € C* with a € E,%]

45
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The difference equation (3.1) is no longer enough, for the crucial reason that
typically it admits no solutions for « <1 5, see Remark 3.1. We are going to solve

this problem by enriching the RHS of (5.1) in a suitable, but non canonical way:
this leads to the key notion of rough path which is central in this book.

To provide motivation, suppose for the moment that X is continuously differen-
tiable, so that (3.3) is meaningful. As we saw in (1.3), an integration yields for s <t

Zi—Zo—0(Z) (X — X,) = /t(a(zu) —0(Z,)) X, du. (3.4)

In Chapter 1 we observed that the integral is o(t — s), which lead to the difference
equation (3.1). More precisely, the integral is O((t — s)?) if X € C"! and o is locally
Lipschitz (note that Z € C'). The idea is now to go further, expanding the integral
to get a more accurate local description, with a better remainder O((t — s)3).

To this purpose, we assume that o is differentiable and we introduce the key
function oy R¥ — R* @ (RY)* ® (RY)* by

" oo
09(2):=Vo(z)o(z), ie. Z (922 (3.5)
Since dia( ) =Vo(Z,) Z,=05(Z,) X, by (3.3), we can write for s <u
0(Z) — () — 0o Zs) (Xu— X,) = / “(02(Z)) — 0a(Z)) X, dr, (3.6)

where for z € R? and a € R? we define 05(z) a € RF @ (R%)* by

d
i=2_ loa()jea"

(=1

If we assume that o9 is continuous, then the right-hand side of (3.6) is o(u — s) (recall
that X € C'). Plugging this into (3.4), we then obtain

Zy—Zy — o(Z) (Xt—Xs)—az(Zs)/t(Xu—Xs)@)Xudu

t .
_ / (0(2.) — () — 05(2) (X, — X)) X, dr, (3.7)
where now for z € R? and B € R?® R? we define 05(2) B € R* by
d
[02(2) B]'= Z [02(2)]im B™. (3.8)
£m=1

Now, since the right-hand side of (3.6) is o(u — s), the right-hand side of (3.7) is
o((t —5)?).

In order to rewrite (3.7) more conveniently, we introduce the shorthands

t
XL =X, — X, th::/(XT—XS)@)XTdr, 0<s<t<T, (3.9)

s
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so that X': [0, T2 — R? and X* [0, T2 — R‘®@ R, see (1.7). More explicitly:
t ..
(th)ij::/ (Xi—XH)XIdr,  i,je{l,....d}.

We can thus rewrite (3.7), in the compact form
Zy— Zs=0(Zs) X+ 02(Zs) Xg+0o(t —s),  0<s<t<T, (3.10)

where for the product o4(Z,) X2, we use the contraction rule (3.8), and we know that
the o(t — s) terms is in fact o((t — s)?) but we are not going to use this further.

We have obtained an enhanced Taylor expansion: comparing with (3.1), we added
a “second order term” containing X2. The idea is to take this new difference equation,
that we call rough difference equation, as a generalized formulation of the differential
equation (3.3), just as we did in Chapter 1 (see Section 1.2). However, there is a
problem: the term X% depends on the derivative X, see (3.9), so it is not clearly
defined for a non-differentiable X.

To overcome this problem, we will choose a suitable function X?= (X2%)o<s<i<r
playing the role of the integral (3.9) when X is not differentiable: this leads to the
notion of rough paths, defined in the next section and studied in depth in Chapter 8.
We will show in this chapter that rough paths are the key to a robust solution theory

of rough difference equations when X of class C* with o € (%, %}

3.2. ROUGH PATHS

Let us fix a path X:[0,7] — R? of class C* with a € (%,%

section, we are going to reformulate the ill-posed integral equation (3.3) as the
difference equation (3.10), which contains X' and X2.

We can certainly define X!, := X; — X, as in (3.9), but there is no canonical
definition of X% = fst (X, — X5) ® X, dr, since X may not be differentiable. We
therefore assign a function X2 which satisfies suitable properties. Note that when
X is continuously differentiable the function X2 in (3.9) satisfies:

]. Motivated by the previous

e an algebraic identity known as Chen’s relation: for 0 < s<u<t<T
which follows from (3.9) noting that
t

th_xzu_xzt:/ (XT_X5>®err:<Xu_Xs)®<Xt_Xu)7

u

e the analytic bounds

Xal SlE—sl,  XEIS[E—s (3.12)

which follow from the fact that X is bounded.

The algebraic relation (3.11) is still meaningful for non-differentiable X, while the
analytic bounds (3.12) can naturally be adapted to the case of Holder paths X € C®
by changing the exponents 1,2 to «, 2a.. This leads to the following key definition.
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DEFINITION 3.2. (ROUGH PATHS) Fir o € }%,%}, deN and a path X:[0,T] — R?

of class C*. An a-rough path over X is a pair X = (X!, X?) where the functions
X110, T)2 = R? and X% [0, 7|2 — RI@R? satisfy, for 0<s<u<t < T

e the algebraic relations
Xe=X—Xs, O0XZ,:=X%-X% -X%=Xl®X,, (3.13)
where the second identity is called Chen’s relation;
e the analytic bounds
Xl Sle—sl™, XIS s (3.14)

We call Ro.4o(X) the set of d-dimensional a-rough paths X = (X', X?) over X and
Re.a=Uycco Ra.a(X) the set of all d-dimensional a-rough paths.

When X is of class C!, the choice (3.9) yields by (3.11)-(3.12) a a-rough path
for any a € (%, %} which we call the canonical rough path, see Section 8.7 below.
When X = B is Brownian motion, the theory of stochastic integration provides
a natural candidate for X2, in fact multiple candidates (think of Ito vs. Stratonovich
integration), as we discuss in Chapter 4 below. Incidentally, this makes it clear that
the construction of X2 is in general non canonical, i.e. there are multiple choices of
X2 for a given path X. This is a strength of the theory of rough paths, since it allows

to treat different non equivalent forms of integration.

Remark 3.3. The existence of rough paths over any given path X (i.e. the fact
that Ra.qa(X)#0) is a non trivial fact, which will be proved in Chapter 8.

Remark 3.4. (X% As A “PATH”) The two-parameters function X% is determined
by the one-parameter function

]ItI:X(Q)t+XO®(Xt—XO) y (315)
which intuitively describes the integral f g X, ® XT dr. Indeed, we can write
Xi=L-L—-X,®(X,— X)), (3.16)

since X2 = X3, — X3, — (X, — Xo) ® (X; — X;) by Chen’s relation (3.13).

Vice versa, given a function I: [0, 7] — R, if we define X2 by (3.16), then Chen’s
relation (3.13) is automatically satisfied (recall (1.33)). In order to satisfy the ana-
lytic bound in (3.14), we must require that

T — I, — X, ® (X — X,)| S (8 —s5)>, (3.17)

which is a natural estimate if I; — Iy should describe “= f:Xr ® X, dr”.

Summarizing: given any path X:[0,T] — R? of class C%, it is equivalent to assign
X210, T2 - RY@ R satisfying (3.13)-(5.14) or to assign 1:0,T] — R? satisfying
(3.17), the correspondence being given by (3.15)-(3.16).
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3.3. ROUGH DIFFERENCE EQUATIONS

Given a time horizon T >0 and two dimensions d, k € N, let us fix:

e apath X:[0,7] — R? of class C* with a € ]%,%],
e an a-rough path X = (X! X?) over X, see Definition 3.2;

e a differentiable function o: R¥ — R* ® (RY)*, which lets us define the function

oy R¥ - RF @ (RY)* @ (RY)* (see (3.5)).

Motivated by the previous discussions, see in particular (3.10), we study in this
chapter the following rough difference equation for an unknown path Z:[0,7] — R*:

6Zg=0(Zs) X+ 02(Zs) X+ o(t —s),  0<s<t<T, (3.18)

where we recall the increment notation 7 := Z; — Z, and the contraction rule (3.8),
and we stress that o(t — s) is uniform for 0 < s<t<T, see Remark 1.1. In analogy
with (2.3)-(2.4), a solution of (3.18) is a path Z: [0, T] — R¥ such that

ZB =624 — 0(Z) Xk — 02(Z) X =0(t — 5) . (3.19)

We stress that the rough difference equation (3.18) is a generalization of the
integral equation (3.3), as we show in the next result.

PROPOSITION 3.5. If X and o are of class C' and oy is continuous (e.g. if o is of
class C), then any solution Z to the integral equation (5.3) satisfies the difference
equation (5.18) for the canonical rough path X = (X, X?) in (5.9).

Proof. If X € C*, then X= (X!, X?) defined in (3.9) is an a-rough path over X for
any o € ]%,%], as we showed in (3.11)-(3.12). Given a solution Z of (3.3), if o9 is
continuous we derived the Taylor expansion (3.10), hence (3.18) holds. O

We now state local and global existence, uniqueness of solutions and continuity of
the solution map for the rough difference equation (3.18) under natural assumptions
on o and o0y, summarizing the main results of this chapter. We refer to the next
sections for more precise and quantitative results.

PROPOSITION 3.6. Let z€ R%. We suppose that o and o4 are of class C' and globally
Lipschitz, namely ||Vo|loo+ ||V02|lo<+00. Let D:=max{l,||V0| s, ||Vl )} and
M > 0.

There exists Tyr.p.o >0 such that, for all T € (0, Ty p.o) and X= (X', X?) €Ru.q
such that || X|o+ || X320 < M, there exists a solution Z to (5.19) on the interval
[0,T] such that Zy= zy and

12 1la <15 M (Jo(20)] + |oa(20)])- (3.20)

The proof of this Proposition, based on a discretization argument, is postponed
to section 3.9 below.
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We are going to use the Sewing Bound (1.27), its weighted version (1.42) and its
discrete formulation (1.46).

3.4. SET-UP

We recall that the weighted semi-norms ||-||,,» are defined in (1.34)-(1.35). We are
going to use the various properties that we recalled in Section 2.2, see in particular
(2.5), (2.6) and (2.7)-(2.8), as well as the natural generalization

<UGllans [1H 1

3.21
<Gl 11H 12, (3.21)

1f Fsut:GsuHut then HFH377:T{

In all these bounds, whenever there is a product, only one factor gets the weighted
semi-norm, while the other factor gets the ordinary semi-norm. We sometimes need
to introduce an additional weight, which is possible applying (2.9).

In Chapter 2 a key tool to study the Young difference equation (2.4) was the
estimate on the “difference of increments” in Lemma 2.8. This tool is still crucial in
this chapter, but we will need an additional ingredient that we now present.

LEMMA 3.7. (TAYLOR IDENTITY) Let 21,20 € R¥ and x € RY. If o: RF—RF @ (RY)* is
of class C1, defining o9: RF— RF @ (RY)* @ (RY)* by (3.5) and setting 6z19:= 23— 21,
we have the identities

0'(22) —0(21) —02(21)33‘ ) (322)
== VO'(Zl) (6212 — O'(Zl) Qf) + /0 [(VU(Zl —+r (5212) — VU(Zl)) 52’12] dT,

and

() — 0(21) — oal1) 1 = /0 [(oa(on 4 6213) — oa(22)) 2] dr (3.23)
4 /0 (Vo(o1 4+ 16215) (6223 — 0(21) )] dr
_ /0 Vol i) ( /0 (Vo (21 4+ v6219) 62192] dv) dr.

Proof. The first formula is based on elementary manipulations and on the fact that

1
0(z9) —0(z1) = / [Vo(z1+1rdz12) 6210 dr.
0
For the second formula, setting 0z := 0z for short, we similarly write
1
o(z) —o(z) = / Vo(z1+rdz)dz]dr
0

= /0[V0(21+7“5z) (5z—cr(zl)x)]d7“+/0 [Vo(z1+762)o(z) x]dr

.y
A
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and then, recalling the definition (3.5) of oy,

A:/O [0a(21 + 1 02) x] dr—/o [Vo(z14+7162) (0(z14+702) —0(z1)) x] dr.

J/

B
Finally

1 T
= / Vo(z1+1r62) (/ [Vo(z1+vdz)dzz] dv) dr
0 0
from which (3.23) follows easily. O

We will see below that (3.22) is useful for the comparison between two solutions,
as in the proofs of uniqueness (Theorem 3.10) and continuity of the solution map
(Theorem 3.11), while (3.23) is well suited for a priori estimates on a single solution
(Theorem 3.9) or on a discretization scheme (Lemma 3.13).

3.5. A PRIORI ESTIMATES

In this section we prove a priori estimates for solutions of the rough difference
equation (3.18) for globally Lipschitz o and o9, i.e. ||V || <00 and ||Voo||« < 0.
A sufficient condition is that o, Vo, V2o are bounded, see (3.5), but it is interesting
that boundedness of o is not necessary (think of the case of linear o).
Given a solution Z of (3.18), we define the “remainders” ZP and Z® by
I8 =67y —0(Z) XY~ 02(Z) X2,  Z=6Z4—0(Z)X],. (3.24)

s

Let us first show, by easy arguments, that any solution Z of (3.18) has the same
Holder regularity C* of the driving path X (in analogy with Lemmas 1.2 and 2.6),

and that the “level 2 remainder” ZZ is in C3°, that is | 22| < (t — s)2

LEMMA 3.8. (HOLDER REGULARITY) Let o be of class C* and let Z be a solution
of (3.18). There is a constant C'=C(Z) < oo such that

0<s<t<T. (3.25)

1ZB < C X% +o(t - s),
10Z4| < C (X8| + [XZ]) 4+ o(t — s),

In particular, if X= (X", X?) is an a-rough path, then Z1 € C3* and Z is of class C°.

Proof. If X= (X! X?) is an a-rough path, then by the first bound in (3.25) we have
1 ZB| < (t—s)2 4 o(t — s) < (t — )2, that is Z12 € C3*. Similarly, the second bound
in (3.25) gives |0Zs| S (t—5)+ (t—8)**+o(t —s) S (t— s)*, that is Z is of class C*.

It remains to prove (3.25). This follows by (3.18) with C':=supo<s<r {|0(Zs)| +
|oa(Zs)|}, so we need to show that C' < oco. Since o and oy are continuous (because
o is of class C), it is enough to prove that Z is bounded: supo<i<r | Z| < 0.

Arguing as in the proof of Lemma 1.2, we fix § >0 such that |o(t —s)| <1 for
all 0 < s <t < T with |t —s| <J. Since [0,7T] is a finite union of intervals [5,7] with
t —5< 4§, we may focus on one such interval: by (3.18) we can bound

sup |Z,] <|Zs| +|0(Zs)| sup [Xgl +|oa(Z5)| sup |X5[ 41 <o0.

te(s, i) te(s, i) te(s, i)



52 DIFFERENCE EQUATIONS: THE ROUGH CASE

This completes the proof that supg<i<r | Z:] < o0. 0J

We next get to our main a priori estimates, showing in particular that the

“level 3 remainder” Z is in C3%, that is |21 < |t — s[3*. Let us first record a useful

computation: recalling (1.24) and (1.33), by §0d=0 and (3.13), we have
52[3} _ Zg} _ Z[:ﬂ _ ZE;&]

sut su

= (U(ZU> - U(ZS) - UQ(ZS) X;u) X’llLt + (U2<Zu) - 02(23)) Xit . (326>

J/

-~

Bsu

THEOREM 3.9. (ROUGH A PRIORI ESTIMATES) Let X be of class C* with o € ]%,%}
and let X= (X', X?) be an a-rough path over X. Let o and oy be globally Lipschitz.
For any solution Z of ( 3.18), recalling the “remainders” Z® and Z1? from (3.24),

we have ZB e C3*: more precisely, for any >0,
HZ[g]H?)a,T < K3o¢ C&,X,O’ (“6Z“Q7T + HZ[Q]HQa,T> ’ (327>
where we recall that Kz, = (1 —2'73%)"1 and we define the constant

o0 = IV oo [XH a4 [V oalloo X220 + (VO[5 + [ Voalleo) XS (3.28)

Moreover, if either T or T is small enough, we have

16Z |lar + 11 2P |20, < 2(0(Zo) XMoo+ 02(Z0) X2 20) (3.29)
for (TAT)*<ehx.0

where we set
1

/ - )
X a4 3) (g 1)

(3.30)

Proof. Let us prove (3.27). Since 3a>1 and Z2 = o(t — s), see (3.19), we can
apply the weighted Sewing Bound (1.42) which gives || 25|34 » < K30 [|6Z27||30.,. It
remains to estimate §Z from (3.26): applying (3.21) we can write

10Z 30,7 <I1Bll2a,7 [IX![lo + 1602(Z) o, X220 (3.31)

We now focus on By, from (3.26): by (3.23) we have

1 1
B., = / [(09(Zs + w6 Zs) — 09(Z,)) XL ] du+ / Vo (Zs+udZy) Z2] du
0 0

1 u
—/ Vo (Zs+udZg,) (/ Vo (Zs+v074,) 0 Zsy XL dv)du,
0 0
so that, by (2.8),
1 Bll20.» < (IVoalloo + IV 13) XM 162 [l + 1V [0 22| 20,7 - (3.32)

We can plug this estimate into (3.31), together with the elementary bound
1602(Z) |la.r < 1V O2llo0 102 [|a 7 - (3.33)
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Recalling that || 2|34 7 < Kaq [|[0Z5)]|34.7, We have proved (3.27)-(3.28).

We next prove (3.29), for which we need to estimate Z12 and §Z. Writing ZS[?} =
02(Z) X2+ 7 and setting & := (7 AT)* for short, we can bound by (2.6) and (2.7)

||Z[2}”2oz,~r< ||U2(Z)Hoo,7' ||X2||204+€ HZB]H?’“’T'

By (2.5) we have ||09(Z)||oo,r < 02(Z0) + 3¢ ||002(Z) || a.r and we can bound ||002(Z)||a.
by (3.33). Applying (3.27) and recalling (3.28), we then obtain

1Z%20,r < 02(Z0) X220+ (Ksa +3) c50.0 (102 ]lar + 1221 20,7)
1

< 02(Z0) 1X7||20 +Z€,L (16Zlasr + 1 Z120,7) (3.34)

o, X, o
where we recall that ¢, x , is defined in (3.30).
Similarly, writing 6Zy = 0(Z,) X%+ Z2) we can bound, by (2.6) and (2.7),
10Z Ja,r < o(Z)llow,r XM o+ € 125|207,

and since ||0(Z)||oo.r < 0(Zo) + 3¢ ||00(Z)||a.r <0(Zy) +3¢€ |V || |07 ||a.r We get,
recalling (3.28),

16Z]lar < 0(Z0) X a+3echx0 162 lar+2 127 20.r
1 ¢
< o(Z%) HXleLZE, - 167 ||, +€ 112 207 (3.35)

Finally, for e <¢;, x, (hence € < %, see (3.28)), by (3.34) and (3.35) we obtain

1
162 lar + 12|20, < 7(Z0) | X o+ 02(Z0) [ X|20+ 55 (162 lla,r + 12|20 7) -

Since |07 ||a.r + | Z? |20, < 00 by Lemma 3.8, we have proved (3.29). O

3.6. UNIQUENESS

In this section we prove uniqueness of solutions of (3.18) under the assumption that
o:RF— RF® (RY)* is of class C7 with >é (e.g. it suffices that o is of class C?).
This implies that oy from (3.5) is of class C! with locally (v — 2)-Holder gradient
Voy. We stress that o and oy are not required to be bounded.

THEOREM 3.10. (UNIQUENESS) Let X be of class C* with « € }%,%}, let X= (X!,
X?) be an a-rough path over X, and let o be of class C7 with >é (e.g. if o is of
class C3). Then for every zo€ R* there exists at most one solution Z to (5.18) such
that ZO =Z20-

Proof. Let us fix two solutions Z, Z of (3.18) and define their difference

Y. =27-7.
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Our goal is to show that, for 7 >0 small, we have [|Y ||oo» < 2|Yp|. In particular, if
Zo=Zy, then Yy=0 and therefore ||Y||o0 =0, i.e. Z=Z, which completes the proof.
We know by (2.5) that

1Y (oo, < [Yo +37% [[0Y [|a.7 - (3.36)

With some abuse of notation, we denote by Y;? = ZS[?] — Zﬁ] and YSE’] = Zs[i’} — ZSE]
the “differences of remainders”; recall (3.24), so that we can write

§Yy = (0(Z) —o(Z)) XL+ Y, (3.37)
Y = (0a(Z) — 02(Z,)) X2+ V). (3.38)

We are going to show that, for 7 >0 small enough, the following bounds hold:

H5Y||a,‘r<01 ||Y|’oo,7'+7'a ||Y[2}||2a,7'7 (3-39>
1Y Pllag r o 1Y [loo,r + 7072 [V g - | (3.40)
Y B r <3 Y Nloo,r + 470722 VB0 (3.41)

for suitable constants ¢;, ¢/ that may depend on Z, 7, X', X2, o, but not on 7.
We can easily complete the proof, assuming (3.39)-(3.41): if we fix 7> 0 small

enough so that cj (72 by (3.41) we have |[YB||,0. <2¢3]]Y||oo.r; Plugging

this into (3.40) and taklng 7> 0 small, we obtain ||Y®||sq ;<2 ¢ ||Y ||o.r, Which
plugged into (3.39) yields [[0Y ||a.r <2¢1 [|Y ||oo,r, for 7 >0 is small enough. Finally,
by (3.36) we obtain, for 7> 0 small, our goal ||Y ||e,r <2 Y|

It remains to prove (3.39)-(3.41). Recalling (2.18), let us define the constants

C1:= 090, 2]V 112l Cl'i= C920. 2]V 1 2] C21=CV03,1 2]V 12 o
Vio(z) —Vio(y =
crri=sup { AD=TZW, o)y < 2 v 1211

[Voa(z) — Vou(y)]

lz—y|7 2

C’g":zsup{ : |:c|,|yr<uzuoovuzuoo}-

(Note that ||Z||eo, || Z ||eo < 00 because Z, Z are continuous, see Lemma 3.8.)
We can prove (3.39) and (3.40) arguing as in the proof of Theorem 2.9, see (2.24)
and (2.25). Indeed, from (3.37) we can bound, by (2.6) and (2.7),
10 Jlar < Nl0(2) = 0(Z)lloc,r [IXM o+ 7 [[Y |20,
< CHY oor 15X o+ 7 1Y P20 (3.42)
because |0(Z;) — o(Zy)| < C1|Z; — Z4], hence (3.39) holds with ¢; = Cf | X!||,. Simi-
larly, by (3.38) we can bound
Y ¥lzar < Nlo2(Z) = 02(2) ooy 1P| 20+ 7072 [V g,
< C3lIY [loo,r X220+ 702 Y B0 (3.43)

because |09(Z;) — 02(Z4)| < C3|Zy — Z4], hence also (3.40) holds with ¢y = C4 || X2||24.
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We finally prove (3.41). Since Y= ZB — ZB— o(t — s), see (3.19), we can bound
ZB by its increment 67 through the weighted Sewing Bound (1.42):

Y lar <Ko 10V P ha.r- (3.44)
We are going to prove the following estimate:
1Y e < G5 Y oo + E 18 s + & [V (3.45)

for suitable constants ¢, ¢4, &} that depend on Z, Z, X', X2, o, but not on 7. Plugging
the estimates (3.39) and (3.40) (that we already proved) for ||6Y ||a.» and ||Y2/]|2q -,
we obtain (3.41) for suitable (explicit) constants cs, 3.

Let us then prove (3.45). Recalling (3.26), for 0 < s <u<t<T we can write

oY, 8 (Bsu - Bsu) X’llit + (502(Z) - 502( ))SU XUt ’

sut —
where By, :=0(Z,) — 0(Zs) — 09(Zs) X!, and similarly for By,, hence by (3.21)
18Y B < (1B = Bll(y-vyaur X[l + [002(2) = 602(Z) || (420 1X2[|20- (3.46)

To obtain (3.45) we need to show that || B — B||(y-1)a,r and [|002(Z) — 609(Z) || (y-2)a,r
can be bounded by linear combinations of ||Y ||oo,r, [|0Y ||a,- and 1Y @0, -
We start from ||609(Z) — 002(Z)||(y-2)a,r Which can be bounded as in (2.29):
1602(Z) = 602 Z)|(y-2pa,r < C31I0Y Nlar+ CE{ISZI ™"+ 10Z 137 HY lloc,r-

We next focus on || B — B|(y—1)a,r, which we are going to estimate by the following
explicit linear combination of [|Y [|ee.r, |0Y ||, and ||V 2|24
1B = Bll(s-1a.r < CLIY loor |1 Z2Z]20 + CLIY P20,
CUISY [l 102 la+2CT Y Nloo,r 10Z 112 (3.47)
+CT[[0Z]a [10Y (a7,

which completes the proof of (3.45) when plugged into (3.46).
It only remains to prove (3.47). Recalling (3.24), it follows by (3.22) that

By, = o(Z,)—o0(Zs) — ?Q(Zs) X2,
_ Vo(z) 7P+ / (Vo(Zu+ 76Z0) ~ Vo(2,)) 6 Zuudr,

-~

FSU

and likewise for B,, (with F}, defined similarly), therefore

|Byw — Bou| < |Vo(Z,) 22— Vo (Z) 22 + / | Frw 6 Zg — Fuus 62| dr. (3.48)

By the elementary estimate |[ab—ab|=|ab—ab+ab—ab|<|a—allb|+|a] |b— b,
that we apply repeatedly, we can bound

Vo(Z,) 23 = Va(Z) Zi| < |Vo(Z) = Va(Z)| |23 + Vo (Z)] 125 = Z2)
< Or'Y |Z2]|+C'|Y[5]|»
and note that by (2.7) we obtain the first line in the RHS of (3.47).
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To complete the proof of (3.47), we look at the second term in the RHS of (3.48):
because |Fy,| < C{'r|6Z,|. We then see, applying (2.8), that the last term in (3.49)
produces the third line in (3.47). Finally, by (2.19) we estimate

|Fou— Fo|l = |(Vo(Zu+710Z4,) —Vo(Z,)— (Vo(Zy+76Z4,) —Vo(Z,))|

< OUr |0Yeu| + OV {|r 0 Zou |72 + 10 Zsu|" 2} Y] .
We obtain by (2.7) for 0<r <1
1F = Fll(-2)a,r SCIN0Y [lar + 2 C1 Y [loc,r 1621137

Applying again (2.8), we finally see that the first term in (3.49) yields the second
line in (3.47), which completes the proof. O

3.7. CONTINUITY OF THE SOLUTION MAP

In this section we assume that ¢ has bounded first, second and third derivatives,
while o5 has bounded first and second derivatives:

IV lloo V20 [loos [[ VP |oo <00, [[VO2|oc, [| VP02l o0 < 00 (3.50)

(We stress that no boundedness assumption is made on ¢ and o5.) Under these
assumptions, given any time horizon 7' > 0, any starting point Z; € R*¥ and any a-
rough path X= (X! X?) with %< a< %, we have global existence and uniqueness of
solutions Z: [0, T] — R” to (3.18) (as we will prove in Theorem 3.12).

Denoting by R, 4 the space of d-dimensional a-rough paths X = (X!, X?), that
we endow with the norm || X!||, + [|X?||2 we can thus consider the solution map:

d: RkXRa,d — C®

(Zo,X) +— Z ._{ unique solution of (3.18) for t€[0,7] . (3.51)
0 =

starting from 7,

We prove the highly non-trivial result that this map is locally Lipschitz. In the space
C® of Holder functions we work with the weighted norm || f||co,~ + ||0f ||, Which is
equivalent to the usual norm || f|co:= | flco + |0 ||a, see Remark 1.15.

THEOREM 3.11. (CONTINUITY OF THE SOLUTION MAP) Let o and oy satisfy (3.50)
(with no boundedness assumption on the functions o and os). Then, for any T >0
and o € E, %], the solution map (Zy, X)+— Z in (3.51) is locally Lipschitz.

More explicitly, given any My, M, D < oo, if we assume that

max {[|[ Voo, [[V20 |0, [ V2o |loc, [[Vo2]loc, [|VP02llc} < D, (3.52)

and we consider starting points Zy, Zo € R and rough paths X, X € C® with
max {|o(Zo)| , 02(Z0)| . |0(Zo)| , |o2(Z0) |} < Mo, (3.53)
max {[|X o, 11X |2a , X o, X2 [l2a} <M, (3.54)
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then the corresponding solutions Z = (Zs)sejo,1, 7= (Zs)se[o,:r} of (3.18) satisfy

1Z = Z)looir +116Z = 62 |jayr + 12 = 2P 20 -
<y 1Z0— Zo| +30 Moy (|| X" = X + X2 = X2[0)- (3.55)

provided T satisfies 0 <T AT < 7' for a suitable /=741 p aym >0, where we set
=16 {(|V||oo + [[VO2|loo) M +1} <32(D M +1).
Proof. It is convenient to define the constant
=Vl + ||Voalleo) M <2D M. (3.56)

Let Z and Z be two solutions of (3.18) with respective routh paths X and X.
Defining Y :=Z — Z and Y2 := 718 — 713 see (3.24), we rewrite our goal (3.55) as

1Y Nlooir +10Y Jlar + 1Y P20, 7 < 16 (chs +1) Yo
30 Mo (IIX" = X0+ [|X2 = X2||50) . (3.57)

Throughout the proof we use the shorthand
e:=(TANT)* (3.58)

and we write for e small enough to mean for all 0 <e <gy, for a suitable ey depending
on o, T, My, M, D. We claim that the following estimates hold for §Y" and Y2

16Y fla,r < er 1Y [loo,r +2 Mo X = XMl + € [V 20,7, (3.59)
HY2]H204 T cM HYHOO r+2Mp HX2 X2H2a+5 HY[?)}HQ}OC,T? (3-60>
and, moreover, for e small enough the following estimate holds for Y¥l:= ZB — Z13I;

_ _ 1
e 1Y Plsa,r <Y loor + Mo (IX = XMl + 1X* = X|20) + 161 Jlar + 7 [V Pla
(3.61)

It is now elementary (but tedious) to deduce our goal (3.57). Plugging (3.61)
into (3.60) we obtain ||[Y ™|y, < (--) +— ||Y2]||2a , which yields [|Y?||5q , <2 ()
(since ||Y'?]|24.» < 00 by Lemma 3.8). Maklng (...) explicit, we get

1Y P2, <2 (ehr + D) IV [loo,r +4 Mo (X" = XM o+ | X2 = XP[|20) + 2|0 [l (3.62)
which plugged into (3.59) yields, for ¢ small enough (it suffices that e g%),
16Y [|ar <3 (chs + 1) |V [|oo,r +6 Mo (|| X — XY |+ [|X2 = X250 , (3.63)
and looking back at (3.62) we obtain
1Y o, <8 (chs + 1) Y [loo,r + 16 Mo (X" = XM o + X% = X2([oa), (3.64)
so that, overall,

1Y lloor + 18 lar 4 1Y P20, r < 12 (ks + 1) [V ]loc,r i
+22 My (X! = X o+ X2 = X2]50) . (3.65)



58 DIFFERENCE EQUATIONS: THE ROUGH CASE

It only remains to make ||Y ||oo - explicit. Since ||Y ||oo.» < |Yo| + 3¢ ||0Y ||a.- by (2.5),

for e small enough (more precisely for & < 1

—— ) we can bound
36 (cpr + 1))

(chs+ D) [[Y [Joo,r < (ear +1) |Yo|+1—12||5Y||a,T, (3.66)
which inserted into (3.63) yields
10Y [la» <4 (chr + 1) [¥o] +8 Mo (X" = X o + [IX? = X|20).
Plugging this into (3.66), and then (3.66) into (3.65), we obtain our goal (3.57).

It remains to prove (3.59), (3.60) and (3.61). We first state some useful bounds
that will be used repeatedly. Recalling (3.52) and (3.28)-(3.30), let us define

1

7_— = 7_—a7D,M = {4(K3a+3) (2 (D2+D) (MZ—‘,—M)-FI)}I/OL ) (367)
By the a priori estimate (3.29) we can then bound
for e=(r AT)*<7% |62 ]larr + |1 2P| 20,» <4 Mo M, (3.68)

hence

max {|[60(Z)|la.r , 1002(Z) 0.} Smax{[[Vo |loo, [[VOol oo} 02 |07 <4 Mochs,  (3.69)
which implies that, by (2.5) and for e small enough,
max {||o(Z)|co.r s [|02(Z)||oo,r } < Mo+ 34 Mycpr <2 M.
We record the following simple bound, for any Lipschitz function f,
1A(Z) = F(DNlocr SNV Fllosc 12 = Zllor = IV flloo 1Y [lsc.r- (3.70)
We will also use a number of times the elementary estimate, for a,b,a,b € R,
lab—ab|=|ab—ab+ab—ab|<|a||b—b|+b||a—al. (3.71)
We can now prove (3.59). Since 0Yy=0Zy — 024 =0(Z) XY — 0 (Z,) X§t+Y;[t2},
see (3.24) for Z and Z, by (2.7) and (3.53)-(3.54) we get, applying (3.71),

10Y lar < Nlo(Z)lloor 1XH =X+ 0(2) = 0(Z)lloor 1K o+ [V o s
< 2Mo | X' =X o+ |0(Z) = 0(Z) oo, M+ [[Y ]| 20,

because ||V, <e ||V ?]|20.- by (2.6) (recall the definition (3.58) of €). Applying
(3.70) with f =0 and recalling ¢}, from (3.56), we obtain (3.59).

The proof of (3.60) is similar. Since Z5 = Z2 — 5,(Z,) X2, and similarly for Z8,
see (3.24), we can write Y, = Z1 — Z12 = 5,(Z,) X2 — 09(Z,) X%+ Y therefore

Y Plear < llo2(2) oo X2 = X220+ [02(2) = 02(2) oo, X220+ V|20 -
< 2Mo X2 = XP|aa + [|02(Z) — 02(2) |l ow.r M 2 [V P50

since ||YP||20.r <& ||Y||34.- by (2.6). Applying (3.70) for f =0y we obtain (3.60).
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We finally prove (3.61). Since Y, = ZB — ZBl—o(t — 5), see (3.19), the weighted
Sewing Bound (1.42) yields

||Y[3}||3Q,T<K3a H(;Y[?’}H?)a,f y (372)
hence we can focus on Y B =628 — §ZB). Let us recall (3.26): for 0<s<u<t<T

sut —

52[3] — (O’(Zu) — O'(Zs) — 0’2<Zs) Xiu) X};t + 502<Z)su Xit )

J/

-~

BSU
and analogously for 675 and Bi,, therefore by (3.71) and (3.21) we obtain

10V Pl0,r < [IBll2a,r X! =X o+ | B = Bll2ar [X!ar .
H602(Z) o X2 = X2||20 + [1602(Z) — 602(Z) [la r [XP[l2a- (3.73)

It remains to estimate the four terms in the RHS: in view of (3.72), relation (3.61)
is proved if we show that, for ¢ small enough,

Ko | Bllaar X =K' la < My |5 =X (374)

e K 1B = Blloar Ilar < 5 (1Y oo H10Y o) 43 1V P, (3.75)

e K 6022 s I3 = XCla. < My |3 = X (3.76)

¢ K 502(2) = 602 2) | 1% < 3 (1Y loor+ 10 ) (377)

We first deal with (3.76) and (3.77), then we focus on (3.74) and (3.75).
Proving (3.76) is very simple: since ||d09(Z)||a.r <4 Mocjs by (3.69), we see that
(3.76) holds for e small enough. To prove (3.77), note that by (2.51) we have

160(2) = 602 lir-viar < V0l 8 llar+4 Mo M [0+ [V s
Applying (3.54) and (3.68) we obtain
_ _ r
1602(Z) = 602(Z) |7 [ X220 < [ Voalloo M {|5Y ||z + €7 [ V202|008 Mo M [[Y [ oc, 7,

which shows that (3.77) holds for € small enough.
Let us now prove (3.74). By (3.22) we have, for 0<s<t<T),

1
By=Vo(Z) 722 + / (Vo(Zy+102y) — No(Z,)) 6 2] dr (3.78)
N——— 0

Est N 4
t

o

and similarly for £, and F;. In particular, recalling (3.68), we get

1Bll2ar < [V lloo 12|20, + V20|l [16Z][3.7
< Vo lloed Mo M +[|V20 [|oo (4 Mo M)?,

hence we see that (3.74) holds for e small enough.
We finally prove (3.75), which is a bit tedious. In view of (3.78), we first consider

Eg — Est = (VU(ZS) - VU(ZS)) ng] + VU(ZS> (Zs[f} - ng]) :
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Applying (2.9) with H = Z1Z and 7 from (3.67), we obtain

_ - T
1B = Ellza,r < V0 (Z) = Vo (Z)lloo,r €7 1 2P]20,7 + IV || oo 1Y |20,

By (3.70) with f=Vo and the a priori estimate (3.68) we obtain

1B = Elloar < V20 o Y [l 7 4 Mo M AV e [V 2 01 (3.79)
We then consider Fy; — Fy;. By (2.19), for 0 <r <1 we can estimate
(Vo (Zs+16Zs) — N0 (Zs)) — (Vo (Zs+1074) — Vo (Zs))| |6 Z|
SUIVE0 oo [0Yet| [0Zse] + ||V30||oo01f£32<1 {(1 =) Yol 4+ u [V} [0Za]?,
as well as

N O (Zs+1624) — Vo (Z)| 16Zus — 67| < ||V ||oo |75 [ Yae] -

We can then estimate Fy, — Fy; from (3.78) as in (3.71): applying (2.9) twice with
H=6Z and H=(6Z)?, always with 7 from (3.67), and recalling (3.68), we obtain

_ T T
IF = Fll2ar < 2[[V?0 oo 10Y [lar e [6Z oz + V20 [loc [[Y [loc.r €7 62115 7
T
< e {8Mo M || V20 [|oo[|0Y o, r+ (4 Mo M)? [V [|oo [V [l - (3.80)

Since ||B — Bllaa.r <||E — E|l2a,s + |F — F||2a.- in view of (3.78), we see by (3.79)
and (3.80) that (3.75) holds for e small enough. The proof is complete. O

3.8. (GLOBAL EXISTENCE AND UNIQUENESS
Let us suppose that o: RF— RF @ (R%)* is of class C? with ||V ||so + || Voa|lee < +00.

THEOREM 3.12. Let a > % If o: R¥ - RF @ (RY)* is of class C? with ||Vo| s +
|Voa|leo < +00 then for every zo€ RF and T'>0 there is a unique solution (Z;)iejo,r]
to (3.19) such that Zy= 2.

Proof. By Theorem 3.10 we have at most one solution. We now construct a solution
on an arbitrary finite interval [0, T, arguing as in the proof of Theorem 2.15. We
define A C [0,T] as the set of all s such that there is a solution (Z;)¢cjo,s to (3.19).
By Proposition 3.6, A is an open subset of [0, 7] and contains 0. By the a priori
estimates of Theorem 3.9, A is a closed subset of [0,7]. Therefore A =10, 7. O

3.9. MILSTEIN SCHEME AND LOCAL EXISTENCE

In this section we prove the local existence result of Proposition 3.6, under the
assumption that o, o are of class C' and uniformly Lipschitz. To construct a solu-
tion to (3.10), we set t; ::%, i >0, and for a given yo € R”

Ytivr = Yt + O-(yti) X%iti+1 + 02(yt¢) X%iti+17 i 20.
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We set D:=max {1, ||Vo|o,||Voa|e}, T:={t;:t;<T} and

5ytitj = ytj_ytiv

Iyl = s el
o<i<j<nT |ti —til

At-tj F= O'(yti) X—%it]’ + 02(yti) X%itj'

7

The main technical estimate is the following

LEMMA 3.13. Let M >0. There exists Ty p o >0 such that, for all T € (0,Tis Do)
and X = (X', X?) € Ra.q such that || X s+ [|X2||2a < M, we have

loylla < 5M(Jo(yo)| + |o2(o)]).
19y = Allza Sam.p.a (o)l + o2(yo) )-

Proof. Let us set Ry, := 0y, — Are;- By the definitions, Ry, , =0. Then we can

apply the discrete Sewing bound (Theorem 1.18) to R on T := {% i< nT} and we
obtain

1
|RIE < CoallRIF,  Caa=2°Y" —

n3a :
n>1
Now, analogously to (3.26), since 6R = —JA,
5Rtitjtk = _(0<ytj) - U(yti) - UQ(yti) X%itj)x%jtk - (UQ(yti) - UQ(yt,i)) X%jtk’
; X
so that
10R |30 < M (|| Bll3a + [IC|2)-

We set

Htitj = 6ytitj - U(?/tl) X%itja
and by (3.23) we obtain

Btitj = O.(ytj) - a(ytz) - 02(yti) X%itj =

1 1
:/ (UQ(yti + ua@/tm) - 0'2(3/151')) X%it]‘du + / va(yti + U‘(Sytitj) du Htitj
0 0

v~

~~

1
_/ va(yti =+ U‘(Sytitj) (U(yti =+ u(sytitj) - U(yti))X%itjdu'
0

iy
First
1Bl < [IVorlloclidylla 11X o < DM |0yl
Similarly

1G]z < [IVollsldylla X lo < D*M||dy a-
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By the definition of Ry,

|th'tj < |Rtitj +|02(yti>xit]’
< [T RI56 + (loalyo)| + T Vol 10y 1) 13| 2a] [t — ti*
< (TR0 + Mloa(yo)| +T*D M|y ||a)It; — ti**.
Therefore

1Pl < DIH |z

<
< D(T*|R|[30+ Mloa(yo)| + T*D M [|dy]|2)-

Finally
1Bll3a < B30+ [1F ]2+ |G |2
< D [Mloa(yo)| + T Rllza+ DM(2+T)||dylla]
Analogously
IC 1120 < D6yl
Therefore

|Rl30 < C3a DM (M |oa(yo)| + T R|30+ [1+ DM (2 +T)]|0yla)-
If T%Csq DM < 5 then
IR |30 < 2Cs0 DM (M |oa(yo)| + [1+ DM (2+T)]||dy[|a)- (3.81)
We set
L(y) = 2C30 DM(M|oa(yo)| +[1+ DM (2+T*)][10y|la)
Now we obtain by (3.81)

loylla < [IR]la + [1Alla
< T*L(y) + (lo(yo)] + loa(yo)| + 2D T ylla) M.

If we assume also that 2D MT* < %, we obtain

16y llo <272 L(y) +2 M (|0 (yo)| + lo2(yo)])-

By the definition of L(y), if furthermore 2C3,D M1+ DM (2 + T )] T?* < %, we
obtain finally

10y ||
L(y)

and by (3.81)

5M(|o(yo)| + loa(yo)l) ,

<
< 1203QDM2[1+DM(2+Ta)](|0'(y0)| + |02(y0)|) :IK,

1oy — All3a < K.
The proof is complete. O

Proof of Proposition 3.6. Arguing as in Theorem 2.16 we obtain the result of
local existence for equation (3.19) of Proposition 3.6. O



CHAPTER 4

STOCHASTIC DIFFERENTIAL EQUATIONS

In this chapter we connect the rough difference equations (RDE) discussed in the pre-
vious chapter, see (3.18), with the classical stochastic differential equations (SDE)
dY;=o(Y;) dB; driven by a Brownian motion B. Indeed, both RDE and SDE are
ways to make sense of the ill-posed differential equation Y, = oY) B,.

We fix a time horizon 7> 0 and two dimensions k,d € N. Let B = (By)¢cjo,1) be
a d-dimensional Brownian motion (with continuous paths) relative to a filtration
(Ft)tep,r), defined on a probability space (€2, A4, P). We fix a sufficiently regular
function o: R* — R* ® (R?)* and we consider a solution Y = (Y;);c[o,7] of the SDE

t
dY,=o(Y,)dB, ie. Y;:YO+/U(Y;)dBS, £>0, (4.1)
0

where the stochastic integral is in the Ito sense. We always fix a version of Y with
continuous paths (we recall that the Ito integral is a continuous local martingale).

We want to show that Y solves a rough difference equation driven by the rough
path B= (B!, B?) (see Definition 3.2) defined by

Bl := B, — B,, Bgt::/t(Br—BS)(@dBr, 0<s<t<T, (4.2)

where the stochastic integral is in the Ito sense. More explicitly, for ¢, j € {1,...,d}

By =Bi-BL (B)9= [ (BB aB, (43)

where we write B;=(B},..., Bf), so that B! [0, T)2 — R%and B%[0,7]2 - R¢® R%
Our first main result is that (B!, B?) is indeed a rough path over B.

THEOREM 4.1. (ITO ROUGH PATH) Almost surely, B:= (B!, B?) is an a-rough path

over B (see Definition 3.2) for any o € ]%,%

[, namely it satisfies a.s.
5]B§ut = Bgt - ]Bgu - B%t = :[Béu ® ]len )
Bil St —sl*, B S|t —s (4.4)

Our second main result is that, under suitable assumptions, the solution Y of
the SDE (4.1) solves the RDE (3.18) driven by the Ito rough path X=B.

THEOREM 4.2. (SDE & RDE) If 0: RF— R*® (RY)* is of class C?, then almost
surely any solution Y = (Y)iecjo,1) of the SDE (4.1) is also a solution of the RDE

§Yu=0(Y,) Bl + oo(Y,) B2 + o(t — s), 0<s<t<T. (4.5)

63
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(We recall that oo(-) :=Vo(-)o(:) is defined in (3.5).)
If o(+) is of class C? and, furthermore, o(-) and oo(+) are globally Lipschitz, i.e.
IV |loo + || Vo lee < 00, then almost surely both the SDE (/.1) and the RDE (4.5)

admit a unique solution Y = (Yt)te[o,T} and these solutions coincide.

The key tool we exploit in this chapter is a local expansion of stochastic integrals,
see Theorem 4.3 in the next Section 4.1. The proofs of Theorems 4.1 and 4.2 are
direct consequences of this result, see Section 4.2.

In Sections 4.3 and 5.1 we discuss useful generalizations of the SDE (4.1), where
we add a drift and we allow for stochastic integration in the Stratonovich sense,
which leads to generalized versions of Theorems 4.1 and 4.2.

In Section 5.2 we present the celebrated result by Wong-Zakai on the limit of
solutions of the SDE (4.1) with a regularized Brownian motion (via convolution).

Finally, Section 4.4 is devoted to a far-reaching generalization of Kolmogorov’s
continuity criterion, which leads to the proof of Theorem 4.3 in Section 4.5.

4.1. LOCAL EXPANSION OF STOCHASTIC INTEGRALS

We recall that B = (By)¢cjo,r) is a d-dimensional Brownian motion. Let h = (h¢)¢ecjo,n)
be a stochastic process with values in R¥ @ (R?)*. We assume that h is adapted and
has continuous paths, in particular [ OT |hs|*ds < 0o, hence the Ito integral

t
L= I+ / hydB, (4.6)
0

is well-defined as a local martingale. It is a classical result that the stochastic process
I = (It)te)o,r) admits a version with continuous paths, which we always fix.

We now state the main technical result of this chapter, proved in Section 4.5
below, which connects the regularity of h to the regularity of I.

THEOREM 4.3. (LOCAL EXPANSION OF STOCHASTIC INTEGRALS) Let h:[0,T] —

R* @ (RY)* be an adapted process with a.s. continuous paths. Fiz any o € }O,%[ and
recall (B!, B?) from (4.2).
1. Almost surely I is of class C*, i.e.
I — I| S (6 —s)°, VO<s<t<T. (4.7)

(We recall that the implicit constant in the relation < is random.)

2. Assume that, almost surely, |0hs| < (r —s)P for some 3€]0,1] (i.e. h is of
class CP). Then, almost surely,

t
/ Ohg dB,

3. Assume that, almost surely, |0hg. — hiBL| < (r — s)"re, for some adapted
process h' = (hi)iepo.1) of class C" with n €)0,1]. Then, almost surely,

|01 — he Byy| = S(t—s)tP VO<s<t<T. (4.8)

t
(60— hy Bl — h1B2| — / (6he — hLBL) dB,

< (t—s)12e VO<s<t<T. (4.9)
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The proof of Theorem 4.3 is postponed to Section 4.5.

4.2. BROWNIAN ROUGH PATH AND SDES
In this section we exploit Theorem 4.3 to prove Theorems 4.1 and 4.2.

Proof. (OF THEOREM 4.1) We need to verify that B= (B!, B?) satisfies the Chen
relation (3.13) and the analytic bounds (3.14).
The Chen relation §B2,, = B!, ® BL; for 0 < s <u<t<T holds by (4.3):

§(B*2, = (B4 —(BY)Y —(BYY,
~ [wi-pyan - ["@i-myas - [ @i as;
— / (Bi— Bi)dBi = (Bi— BY) / 1dBi = (Bi— BY)(Bj — BY),

by the properties of the It6 integral and the fact that the times s <wu <t are ordered.

The first analytic bound |By| < |t — 5| for a € |0, %[ is a well-known almost sure
property of Brownian motion, which also follows from Theorem 4.3, applying (4.7)
with h=1. Finally, the second analytic bound |BZ| < |t — s]?* is also a consequence
of Theorem 4.3: it suffices to apply (4.8) with hs:= By and §=a. O

Proof. (THEOREM 4.2) We first prove the second part of the statement.

e  When o is globally Lipschitz (||Vo || < +00), it is a classical result that for
the SDE (4.1) there is existence of strong solutions and pathwise uniqueness.

e  When o is of class C?, by Theorem 3.10 there is uniqueness of solutions for
the RDE (3.19), and if both ¢ and o9 are globally Lipschitz (||Vo || < +00
and ||Vos|le < 400) there is also existence of solutions, by Theorem 3.12.

Therefore we only need to prove the first part of the statement: we assume that o is
of class C? and we show that given a solution Y = (Y});e[o,7] of the SDE (4.1), almost
surely Y is also a solution to the RDE (4.5).

Since Y is solution to (4.1), recalling (4.2) we can write

t

5Y— (V) Bl — 0o(Y)) B, = / (o(V) — o(¥)) dB, — oY) / (B,— B.)dB,

t
_ / (60(Y)ar — 0a(Y,) BL) dB,
Let us fix a € }0, %[ We prove below that, almost surely,

100 (Y )t — 02(Ya)Biy| S (¢ — )%, VO<s<t<T. (4.10)

This means that the assumptions of part 3 of Theorem 4.3 are satisfied by h,=0o(Y})
and h} = 05(Y;) with n=a: applying (4.9) we then obtain, almost surely,

10Ys — o (Y5) Bl — o2(Y5) B§t| S(t— 5)3(1-
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If we fix o> %, this shows that Y is indeed a solution of the RDE (4.5).
It remains to prove (4.10). By It6’s formula and (4.1) we have, for 0< s <t < T,

oY) = / Z@aa )dve 4 / Z e (V) (Ve Y,

S a,b=1

= U(Y;)—l—/tag(Y;) dBr—i-/tp(Yr) dr, (4.11)

therefore
¢

3o (¥ )~ s Bl = | (0a(Y;) — oY) dB, + [oran

s

To prove (4.10), we show that both integrals in the RHS are O((t — s)%).

e Since o is of class C? and Y has continuous paths, the random function
r+— p(Y,) is continuous, hence bounded for r € [0, T'], therefore

l tp(Yr) dr

e Almost surely Y is of class C%, thanks to (4.7) from Theorem 4.3 and (4.1).
Since o9 is of class C!, hence locally Lipschitz, r+ o5(Y}) is of class C* too.
Applying (4.8) from Theorem 4.3 with 5=« we then obtain, almost surely,

S(t—s)S(t—s)% VO<s<t<T.

< (t—s)%, VO<s<t<T.

/ (0a(¥;) — 0a(Y)) B,

This completes the proof. 0]

4.3. SDE WITH A DRIFT

It is natural to consider the SDE (4.1) with a non-zero drift term:

dY,=b(Y}) dt + o(Y;)dB;,  ie.
¢ ¢
YQZYO-I—/b(YS) ds+/0(Ys) dBs, t>0, (4.12)
0 0

where b: R*— R* and 0: R¥ — R* ® (R%)* are given and we recall that B = (By);>0
is a d-dimensional Brownian motion. We can generalize Theorem 4.2 as follows.
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THEOREM 4.4. (SDE & RDE WITH DRIFT) If o(-) is of class C* and b(-) is
continuous, then almost surely any solution Y = (Y;)cpo,1) of the SDE (4.12) is also
a solution of the RDE

6V =0b(Y,) (t — s) + o (Ys) B+ 0o(Y) B4+ o(t — ), 0<s<t<T. (4.13)

If o(-) and b(-) are of class C® and, furthermore, o(-), oa(-) and b(-) are globally
Lipschitz, i.e. ||V | oo+ [|VO2l o+ || V| <00, then almost surely the SDE (4.12)
and the RDE (/.13) have the same unique solution Y = (Yi)ic(o,1]-

Proof. We cast the generalized SDE (4.12) in the “usual framework” by adding a
component to the driving noise B, i.e. we define B:[0,7] — R x R by

By:=(B,t)=(B},...,BLt),  te[0,T],
and accordingly we define 5: R* — RF @ (R¢*1)* by
G()b:=o()b+b(-)t  for b=(b,t)eRIxR,

that is 6(-)i =0 ()i Lij<a} +b(-) L{j=q+1}- We can then rewrite the SDE (4.12) as

_ t
A,=5(V)dB,  ie  Yi=Yo+ / 5(Y)dB,,  t>0. (4.14)
0

We next extend the Ito rough path B = (B!, B?) from (4.2), defining

~ ~ - 1
By = Bt_Bs:< E“S ) (4.15)

(4.16)

One can show that B = (B', B?) is a rough path over B, following closely the proof
of Theorem 4.1. Indeed, if we fix o € ]0, %[, we have almost surely B € C%, hence

¢ t
/ (B, — B, dr| < (t — )2+, / (r—s)dBy| < (t — )2+, (4.17)

We can now write the RDE which generalizes (4.5):
0o =5(Y,) Bl +62(Y) BL 4ot — s) . (4.18)

Interestingly, plugging the definitions of B and & into (4.18) we do not obtain (4.13),
because the components of B2 other than B2 are missing in (4.13), see (4.16). The
point is that these components can be absorbed in the reminder o(t — s), see (4.17),
hence the RDE (4.18) and (4.13) are fully equivalent.

To complete the proof, we are left with comparing the SDE (4.14) with the
RDE (4.18). This can be done following the very same arguments as in the proof of

Theorem 4.2. The details are left to the reader. OJ
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Remark 4.5. The strategy of adding the drift term as an additional component of
the driving noise, as in the proof of Theorem 4.4, suffers from a technical limitation,
namely we are forced to use the same reqularity exponent o for all components, due
to Definition 3.2 of rough paths. This prevents us from exploiting the additional
regularity of the drift term: for instance, in the second part of Theorem 4.4, the
assumption that b(-) is of class C® could be removed, because the “driving noise” ¢
is smooth and the classical theory of ordinary differential equations applies.

A natural solution would be to generalize Definition 3.2, allowing rough paths
to have a different regularity exponent for each component. The key results can be
generalized to this setting, but for simplicity we refrain from pursuing this path.

4.4. A REFINED KOLMOGOROV CRITERION

In this section we prepare the ground for the proof of Lemmas 4.10 and 4.11 in
Section 4.5 below, which are the main technical tools in the proof of Theorem 4.3.
We suppose without loss of generality that 7'= 1, namely our processes are defined
on the interval [0, 1]. Define the set D of dyadic points in [0, 1] by

D:= U Dy, where D= {df:: !

7 foci<ar (4.19)
k>0
Given d, de D, we write d — d if and only if d is consecutive to d in some layer Dy,
of D, that is d =d¥ and ci:df;l, for some k>0 and 0<i <2 —1.

Remarkably, in order to prove relation (4.35), it is enough to have a suitable
control on R, j for consecutive points d— d (together with a global control on dR), as
the next result shows. This turns out to be at the heart of the Kolmogorov continuity
criterion, but we stress that it is a deterministic statement.

THEOREM 4.6. (KOLMOGOROV CRITERION: DETERMINISTIC PART) Given a func-
tion A:ID2 — R, for 0< p <~ we define the constants

Ayl
Q,:= sup b (4.20)
! d,deD:d—d |d - d|7
5145 u t|
K, = 1045 . 4.21
T e B i (s, = w7 2
s,u,teD
Then there is a constant C, , < oo such that
|[Astl SCpo(Qy+ EKpp)lt = 5|7, ¥(s,1) € DZ. (4.22)

A key tool for Theorem 4.6 is the next result, proved at this end of this section,
which ensures the existence of suitable short paths in D.

LEMMA 4.7. (DYADIC PATHS) For any s,t €D with s<t, there are integers n,m>1
and a path of (m-+n+1) points in D which leads from s to t, labelled as follows:

S=8p<...<s1<sg=tg<ti1<...<t,=t, (4.23)
with the property that for all i€ {0,...,m —1} and j€{0,...,n—1}

|t —s|

[t — sl
2 ‘

5 (4.24)

Siv1— S, ti—tiiy  |si— s < ltj1—t] <
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Proof of Theorem 4.6. Fix s,t € D with s <t. We use Lemma 4.7 with the same
notation. By the definition of JA, we write

Agt = Asto+ Atgt +0As 151 -

In the case m > 2, we can develop Ay, as follows (recall that s=s,, and so=1o):

m—1 m—2
ASto = E A3i+1si+§ 5AS,Si+1,Si'
=0 1=0

Similarly, when n > 2, we develop

n—1 n—2
Atot: E Atjtj+1+ E 5Atj,tj+1,ta
Jj=0 Jj=0

so that
m—1 n—1
Ast - Asi+1si + Z Atjtj+1 +

=0 7=0
=
m—2 n—2

+0As 101+ > FAssinsit Y 0AL 1 (4.25)
=0 7=0

S

2

By the definition of @), for any d— d we can bound
|Agal < Q,|d —dl.

By Lemma 4.7, this bound applies to any couple (s;;+1,s;) and (¢;,%;+1). Then we
can estimate Z; in (4.25) as follows, exploiting the bounds in (4.24):

m—1 n—1
Q’Y{Z |S¢—Si+1|7+z |tj+1—tj|7} <
i=0 =0
<@7{z 2y <zj>v}|t—sw:
i=0

J=0

2
ZQw{W}U—SW,

which agrees with (4.22). On the other hand, thanks to (4.21) and (4.24),

[t —s]
9

P
|6A575i+175i| < pr( ) t—s|"7F= Kp,72_ip [t —s|7

and similarly for 5Atj,t]. +1,t> 50 that the term =5 can be bounded above by

m—2 n—2
K, |t — s|7<1 +y 2y 2—1?) <K, |t — s|7(1 +1 _22_p).
i=0 =0

This completes the proof of (4.22). O

As a simple consequence of Theorem 4.6, we show that suitable moment condi-
tions ensure the finiteness of the constant (), in (4.20), as in the classical Kolmogorov
criterion.
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PROPOSITION 4.8. (KOLMOGOROV CRITERION: PROBABILISTIC PART) Let A=
(Ast)(s,t)eﬂ)i be a stochastic process which satisfies the following bound, for some 7,

p,c€(0,00):
E[|Ag|?] < c|t — s|P, V(s,t) € D2.

Then, for any value of v such that
¥ <=7, (4.26)
the random variable Q= Q,(A) defined in (4.20) is in LP:
E[|Q, P <

In particular, a.s. Q< +00.

c
1 — 91=-p(v—"7)

< 0. (4.27)

Proof. By definition of @), in (4.20), bounding the supremum with a sum we can

write
k_q
|Add| : |Ad’“di“1
QP< Y <|d dp ZZ ZZ’“Im

d,deD:d—d k>0 i=0

Let us write v = — IT for some € > 0. Since d¥,; —df = = — we have

2k—1
E[Q, 7] Z Z c|dk, — dF|pto=)
k>0 i=0
2k—1
<Y Y GmmtY e
k>0 i=0 k>0
The proof is complete. O

Remark 4.9. Given a stochastic process (X;);ep defined on dyadic times, if we
apply Theorem 4.6 and Proposition 4.8 to (Ag:=0Xs = X; — XS)(s,t)E]D2< we obtain
the classical Kolmogorov continuity criterion. Note that in this case K, , =0 because
dA=0.

Proof of Lemma 4.7. We refer to Figure 4.1 for a graphical representation. Given
s,teD with s<t, since 0 <t — s <1, we can define £ > 1 as the unique integer such
that

1
= 5T (4.28)

We now take the smallest k € {0,...,2°— 1} for which dj, > s and define

l<75—5<

So:=to:= df.

The definition of k£ guarantees that dy < t, because if di >t then % —s=>t—s5> %
and this would violate the minimality of k.

Note that 0 < df —s<df —df_, = and 0<t —df, <t —s, by (4.28), therefore

0<30—8<F, O<t—t0<w (429)
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Since both sg—s €D and t —ty € D, for suitable integers m >1 and n > 1 we have

11 1 P 1
So— S—= ﬁ_{—ﬁ—’_ +2m, - 0_2T1+2r2+"'+%’

where ¢, > ¢p_1>...>q > and r,> ... >r; > /. We can thus write

1 1 1
S Sg—ﬁ—%—...——2qm,
b=t 1 1
= 0+2r1+2r2+"'+2rn'
We can finally define
1 1 1 .
Si:zso—ﬁ—%—...—ﬁ fOI‘ZIl,...,m,
1 1 ‘ 1
tj _t0+2r1+2r2+"'+ﬁ or yj=1,...,n
_ 53 1 1 5 11 _
§=3316 1 2 8 w1
{ H— i — 1
0 S3 S92 S1 S0 = to tl t2 1
Flgure 4.1. An 1nstance of Lemma 4.7 with s —5 and t—— Note that £=1 (because
= <|t— |7 T< L 20, f (4.28)) and sO:tOf— The points t1, ,tn, are built iteratively:
ﬁrst take the largest er (i.e. the smallest r1) such that t1:=to+ = er <t;if t; <t, then take
the largest > such that to:=t1 4+ 5 2T2 <t; and so on, until ¢, =¢. Similarly for s1,..., Sm.

Since ¢; and r; are strictly increasing integers with ¢; > ¢ and r > ¢, we have the
bounds ¢; > ¢+ (i—1) and r; > {4 (j—1), for all i €{0,...,m —1} and j €{0,...,
n — 1}, hence

1 It —s]
|5i - 3i+1| 9Git1 < 21 2£ <5 20

1 |t—s|
‘tj'i‘l _t]| 2qj+1 < 2‘7 2£ 2]

having used (4.28). This proves the bounds in (4.24).

We note that, for any integer r» > ¢, we have the inclusion D, C D,. Then, given
any z € Dy, we have that x € D,,, hence x — x4 27". Since tg= di e Dy and ry >/, this
shows that tg— t; =1%o+ 27"". Proceeding inductively, we have t; = ¢;, 1 =t;+27"7*1
A similar argument applies to the points s; and completes the proof of (4.24). O

4.5. PROOF OF THEOREM 4.3

In this section we prove the three assertions of Theorem 4.3.

Proof of the first assertion of Theorem 4.3. We want to prove that for any
a € (O, 2), a.s. I is a-Holder continuous, namely there is an a.s. finite random

constant C such that
614 <Clt—s|o,  VO<s<t<T. (4.30)
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First observation: if the claim holds under the stronger assumption |h| < ¢ almost
surely, for some deterministic ¢ < oo, then we can deduce the general result by
localization. Indeed, if we only assume that supj,7)|h| < oo a.s., we can define for
n € N the stopping times

T, :=inf {t € [0, T: |he| > n}.
Let us define

t
R I / hdB,.
0
Note that supp,1y |h(”)] < n by the definition of 7,,. Then
SIS C™t—s|o,  VO<s<t<T, (4.31)

for a suitable a.s. finite random constant C'™. Let us define the events

Ap:={r,=o00}={sup|h|<n}
(0,7]

and note that h=h™ on A,. By the locality property of the stochastic integral,
I=1" as. on A,*.

Note that A:={J, . An={supjo,r]|h| < oo}, hence P(A) =1. If we define C':=
C™on A,\ A,_; (with Ag:=0) and C:= 00 on A°, we have C' < co a.s. and relation
(4.7) holds.

Second observation: if relation (4.30) holds for all s, in a (deterministic) dense
subset D C [0, 77, then it holds for all s,¢€[0,T], because 1 is a continuous function
of (s,1).

In conclusion, the proof is reduced to showing (4.30) only for s,¢ € D, under the
assumption that supp, 7y |h| < ¢ < oo almost surely. Suppose that this is the case and
set Ay =01y, 0<s<t<T. Here 0 A=0 and therefore the constant K, - in (4.21)
is equal to zero for any 0 < p <. It remains to estimate @), using Proposition 4.8.

By the BDG inequality of Proposition 4.12, for any p > 2

t g »
E[|6L)7] < CPEK/ hidu) } <Cylt—sf.

Then Proposition 4.8 applies with g :% and any o=y — % € (O, %) for p sufficiently
large. By Theorem 4.6, we obtain (4.30) and the proof is complete. 0J

For 0 < s <t<T we define the (random) continuous function

t
Rui=1I,—I,— hy(Bi— B,) = / Shp dB,. (4.32)

s

We recall that a.s. B €C? for every a < %

Proof of the second assertion of Theorem 4.3. Let a < % We want to show
that, if a.s. h€CP?, for some 3 € (0, 1], then there is an a.s. finite random constant

(' such that
|Ry| < C |t —s|tP, VO<s<t<T. (4.33)

4.1. We mean that 7™ and I are indistinguishable on A,: for a.e. w € A,, one has I\™ (w) = I,(w) for
all t €0,1] (we recall that we always fix continuous versions of the stochastic integrals).
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First observation: if the claim holds under the stronger assumption ||dh |5 < ¢ almost
surely, for some deterministic ¢ < oo, then we can deduce the general result by
localization. Indeed, if we only assume that ||0h||g< oo a.s., we can define for n € N
the stopping times

T :=1nf{t €[0,1]: |6n |g,10,4 >},

where ||0h]|q,0,4 is the Holder semi-norm of h restricted to [0, ] (equivalently, the
Holder semi-norm of s+ hgs; on the whole interval s € [0, 1]). Let us define

—~

t
WY i=hopr, 1= / nap,,  RY =1 1™ —h"(B, - B,).
0

Note that [|6h™|5 < n, by definition of 7,. (Indeed, ||6h||g,0.q < n for all t <7,
which means that |h(r) — h(s)| <n|r —s|? for all r, s € [0, 7,); then, by continuity,
\h(r) — h(s)| <n|r—s|? for all r,s €[0,7,], which means that ||6h |50, =||0h™]|s <
n). Then

|R§?)| <CM|t —s|oth, VO<s<t<T, (4.34)

for a suitable a.s. finite random constant C'™. Let us define the events
Ap={mn=o00} ={|6h[la <n}

and note that h=h(™ on A,. By the locality property of the stochastic integral,
I=1I™ as. on A,,%? hence also R= R™ as. on A, Redefining C™ =0 on the
exceptional set { R = R™}¢ we get by (4.34)

on the event A,: |Ryy| <CM|t — s]ot8, VO<s<t<T.

Note that A:={]J, . An={[[0h| s <oo}, hence P(A)=1. If we define C:=C™ on

A\ An—1 (with Ag:=0) and C':=00 on A°, we have C' < oo a.s. and relation (4.8)
holds.

Second observation: if relation (4.33) holds for all s, in a (deterministic) dense
subset D C [0, 1], then it holds for all s,t € [0, 1], because Ry is a continuous function
of (s,1).

In conclusion, the proof is reduced to showing (4.33) only for s,¢ € D, under the
assumption that ||6h||g < ¢ < oo. This technical result is formulated in the separate
Lemma 4.10. O

LEMMA 4.10. Let 0<a« <% and 0< 3<1. Assume that IE[||6h[|f] < oo for all p>0.
Then there is an a.s. finite random constant C' such that

|Ry| <Ot —s]2T5, Vs, teD with s<t. (4.35)
Equivalently, a.s. Re C5™7.

Proof. We apply Theorem 4.6 to the (random) function A(s,t) = R, with y=a+
and p=a A . Then relation (4.22) yields (4.35). It remains to show that a.s.
Qatp<ooand K, 443<00.

4.2. We mean that 1™ and I are indistinguishable on A,: for a.e. w € A,, one has I\™ (w) = I,(w) for
all t €0,1] (we recall that we always fix continuous versions of the stochastic integrals).
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We recall that Ry is defined in (4.32). In particular, for s <u <t
5Rsut == Rst - Rsu - Rut == (hu - hs)(Bt - Bu)
Then by (4.21), a.s

—s|Plt —ul|*
K R)<||6h||5]|6B 4 v '
pats(R) <|[0h|s||0B] 0<sil£t<1 min (u — s, ¢ —u)* |t — s|oVFP

By our assumption that ||dh||g € L? and by the fact that B is a Brownian motion, it
follows that ||6%]|]|0B]|a < oo a.s., hence it only remains to show that the constant
defined by the supremum is bounded above by 1. However, this constant equals

B anp
sup L = sup (a—b) aa*a/\/g bﬁ*a/\ﬁ < 1.
ab>0, atb=1 (@AD" oo arp=1 \ (AAD)

We want now to estimate Q.43(R). We note that, for fixed s <t, we have a.s.
Ry = f (hy — hs) dB,. By the Burkholder-Davies-Gundy inequality, see Proposition
4.12, for any p > 2 there is a universal constant ¢, such that

EllR|"] < cplEK[(hu—hs)?du)g}
< quflonip( | t<u_s)2ﬁdu>5}

< e E[Ion]2) ("3,

By Propos1t10n 4.8, we have (), < oo a.s. for any v < 3 —i— =—= Pluggmg y=a+ [
we get « < = — ; which is satisfied for p large enough, since a < = O

Next, we suppose that there exists another adapted process h' = (hi)iejo,7] with
values in RF @ (R%)* such that a.s.
|6hee — hiBy| S|t — s|7T
Then we define
Ry = Ra—hiB%=0ly—hBl—hiB
t
= / (8hs, — hiBL) dB,, (4.36)

where B? is defined in (4.2). Then the third assertion of Theorem 4.3 follows with
the same localisation argument as for the second one and from the following

LEMMA 4.11. Assume that E[||0R'||} 4 ||6h — h'BYP, ] < oo, for some a € (0, %)
and for all p>0. Then there is an a.s. finite random constant C such that

|Ry| <C|t—s[72,  Vs,teD with s<t. (4.37)
Equivalently, a.s. Re CJT.

Proof. We apply Theorem 4.6 to the (random) function A(s,t) = R, with y=a+ 3
and p=aAn. Then

ORqut = (Ohe, — hi BL,) Bl + dhl, B2,
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Now

- — ”+a|t —ul®
K R) < |6h—h'B! B! [u 3'

’204

_ t—u
5h1 IB2 |u S‘ ’ .
+H HUH Han<si%Iit<1mm( _Sat_u)p|t_5|n+2a_p

We note that the first supremum is equal to

alltape ( ab

oup alb

— < up
a,b>0,a+b= 1(a/\b)p a,b>0,a+b=1

al\n
) aa\/nbafa/\ng ]_7

while the second supremum is equal to

sup anb < sup < ab
Ny X
ab>0,a+b=1 (AAD)? = 4 hs0.arb—1 \AAD

Now by (4.36)

t p
E[|Ry|?] < IEK/ (5hsu—h§18§u)2du)1

t 3
< cpE[uah WE o [ (0= au )

a/An
) an—a/\ana—a/\ng 1.

1
< e Blloh—WBYg, ) (- )
By Proposition 4. 8 We have Q,y < oo a.s. for any v<n+« + 5 —= Plugglng =
N+ 2a we get « < 37 , which is satisfied for p large enough, smce Q@ < = O

Finally, we give a proof of (half of) Burkholder-Davies-Gundy inequality for
p=2.

PROPOSITION 4.12. For all p > 2 there is a constant ¢, < oo such that for all 0 <

s<t<T
t p t g
E{/yudBu }@pEK/ yidu) }

for any progressively measurable process such that P-a.s. folyg du < oc0.

Proof. To simplify the notation we set s=0 and m;:= f(fyu dB,.

First we make the additional assumptions that IE[ | 01 Y2 du} < oo and m is bounded
by some deterministic constant. By the Itd formula applied to m;, we get

—1
Al = plomr=sgn(me)ye dBy + LM =224,

In general (fg|mu|pflsgn(mu)yu dB,); is a local martingale, but under our
additional assumptions it is a true martingale with zero expectation, because
E[fol [m|2P~Y) y2du] < oo (recall that m is bounded). Consequently

Ellm =22 D) [ trmu|p—2y3du}
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If we set |my| :=supy<t |my|, we obtain by Holder

¢
E[lm?] < @E{Imﬁp‘?/ yﬁdu]
0

< wE[ymt|p]1‘§1E{<Atygdu>g}i. (4.38)

Since (|my|)i>0 is submartingale bounded in L? with continuous trajectories, by
Doob LP? inequality we have: E[|m,|?] < (%)p]EHth]. Plugging the above in (4.38)
p

we conclude:
t p t 5
o fanf ol f50)]
0 0

As far as the general case is concerned, let us define

t
7" =inf {t >0: |mt]>n}/\inf{t20:/ yﬁdu>n}
0

Note that IP-a.s. 7" is a non decreasing sequence of stopping times, with 7" = oo for
n large enough. We denote y' :=ylp,»(t) and mf:= [ Ot yndB,. By construction,
y"™ and m" satisfy our additional assumptions. Since my = ms,» a.s., we have

tAT™ D t g
E{/ Y, d B, } < cp]E[(/ y21[077n}(u) du) }
0 0

p
Finally we notice that by Fatou’s Lemma

t 3
o ([n)]
0
¢
]E[ / Yud By,
0

tAT? p
/ Yud By, }
0
tAT™
/ Yud By,
0

|
< c,,EK/Otygdu)Q].

The proof is complete. 0

P
} = E[liminf

n—oo

< liminf ]E{

n—oo




CHAPTER 5

WONG-ZAKAI

5.1. ITO VERSUS STRATONOVICH

We recall that B = (Bt)te[o,T] is a Brownian motion in R¢. Given the It6 rough path
B = (B!, B?) over B constructed in Theorem 4.2, see (4.2), we can define a new
rough path B = (B!, B%) over B, called the Stratonovich rough path, given by

Bl : =B, B2 :=1B? VO<s<t<T, (5.1)
that is
(Bi — BY)? e
L ot ifti=j,
(B2):= (BT + - Mgepy=y 2 (5.2)
[L(Bi—B)dB! ifi+#j.

The fact that B is an a-rough path over B, for any ae }1 1[ is a consequence of
Theorem 4.1 (note that B2 =B2 + df,; with f;= —Ide hence 0B? = 6B2).

Remark 5.1. (STRATONOVICH INTEGRAL) If X Y:[0,7] — R are continuous
semimartingales, the Stratonovich integral of X with respecto to Y is defined by

t t
/XsodY;::/Xdeer%(X,Y)t, te(0,7], (5.3)
0 0

where [ g X, dY; is the It6 integral and (-, -) is the quadratic covariation. For Brownian
motion B on R? we have (B, BY); =t 1;—;}, hence recalling (4.2) we see that

t
IBst-_/ Bl ® odB,, 0<s<t<T. (5.4)

This explains why we call B = (B!, B?) the Stratonovich rough path.

Let us consider now the Stratonovich version of the SDE (4.12):
dY;=0(Y;) dt + o (Y;) o dBy, ie.

t t
Yt—Yo+/ b(Yy) ds+/ o(Y,) odB;, t>0, (5.5)
0 0

where b: R — RF and 0: R¥ — R¥ @ (R?)* are given. This equation can be recast in
the Ito form by the conversion rule (5.3): since the martingale part of (o(Y;)):>0 is
fo 02(Y;)dBs) >0 by the Ito formula, see (4.11), we obtain

K=%+/Ot(b(Y)+;Ter[@( )])ds+[)t (Y)dB,,  t>0.

7
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This is precisely the SDE (4.12) with a different drift b(-) :=b(.) —l—%Ter[og()].
As an immediate corollary of Theorem 4.4, we obtain the following result.

THEOREM 5.2. (STRATONOVICH SDE & RDE) fo(-) is of class C* and b(-) is
continuous, then almost surely any solution Y = (Y;)ico,r) of the Stratonovich SDE
(5.5) is also a solution of the following RDE, for 0 < s<t<T:

0y = b(Y) (t—s)+o(Ye) Bét‘f'(fz(ys) B§t+0<t_5) (5.6)
— (b(y;) +%Ter[02(Y;)]) (t — )+ o(Ys) Bl + 0u(Y) B + ot — 5).

If o(-), oa(+), b(+) are of class C® and, furthermore, o(-), aa(+), b(-) are globally
Lipschitz, i.e. ||Vo oo+ [Vo2|loo + | VD]l < 00, then almost surely the SDE (5.5)
and the RDE (5.6) have the same unique solution Y = (Y;)iejo,r)-

In conclusion, if the coefficients b(-) and o(-) are sufficiently regular, the Ito
equation (4.12) can be reintepreted as the RDE

Y =b(Y;) (t —5) +o(Ys) B§t+02(ys) Bz + ot —5), 0<s<t<T,
while the Stratonovich equation (5.5) can be reintepreted as the RDE
Y =b(Y,) (t — s) + o (V) Bl + 0o(Y,) B2+ o(t — s), 0<s<t<T.

In other words, rough paths allow to describe the It6 and the Stratonovich SDEs as
the same equation where only the second level of the rough path has been changed.
This shows that, in a sense, the relevant noise for a SDE is not only the Brownian

path (B:)¢>0, but rather the rough path B or B.

5.2. WONG-ZAKAI

In this section we show the following application of the previous results. We consider
a family (p:)e=o of compactly supported mollifiers on R, namely p: R — [0, 00) is
smooth, compactly supported in [—1, 1], satisfies [ p()dz =1 and we set

pg(x):—lp(g), e>0, zelR. (5.7)

(We do not assume that p is even.) We consider a d-dimensional two-sided Brownian
motion (Bj)ier, namely a Gaussian centered process with values in R? such that

By=0, E[Bng]zl(i:j)ﬂ(st>o)(’3|/\|ﬂ)>

which is equivalent to say that (By);>o and (B_;):>0 are two independent d-dimen-
sional Brownian motions.
We consider the following problem: we define a regularization of (B;);>o by

B,f::(pa*B)t:/pg(u) By, du, t>0, (5.8)
R
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and we consider the integral equation (3.3) controlled by B¢, namely
t
Zf:Zo—i—/ o(Z5) B; ds, 0<t<T. (5.9)
0

It is easy to check that (Bf):>¢ converges to (Bi)i>o as £|0 uniformly for ¢ € [0, T

%; see below). Then we want to understand whether
(Z7)t>0 also converges, and especially to which limit.
This question has a very natural answer in the context of rough paths. We define

the canonical rough path over B¢ (see section 8.7 below for more on this notion):

(and even in C* for any a <

t
B := Bi - B, IBZf::/IBE;}QQBdeu, 0<s<t. (5.10)

Then we can prove the following result.

THEOREM 5.3. (WONG-ZAKAI) As €]0, B® converges in probability to the
Stratonovich rough path B, see (5.1), namely for any o <%

HlBs’l—I_BlHa—l—HIB5’2—I_BZH2Q—€10—> 0 n probability . (5.11)

The convergence holds almost surely along sequences (g,), that congerge to 0 expo-
nentially fast.
Moreover let (Z§)icpo,1) be the solution to the controlled equation

t
Zf:ZO+/a(Z§)B§ds, £>0.
0

Assume that o:RF— RF @ (RY)* is of class C3, with ||V |leo+ |V30||oo + | V30 || +
|V oa||oe + [[V202||oe < +00. Then, for any a € ]O,%[, we have Z°— Z in probability
in C°([0,T);R*) as €10, where Z is the unique solution to the Stratonovich SDE

t t t
Zt:ZO+/ U(ZS) ost:ZO+/ U(ZS) dBS—F%/ TI'Rd[O'Q(ZS)] ds.
0 0 0
Proof. Fix a € (%, %) Let B® be the canonical smooth rough path associated

with B® as in (3.9). Suppose we have proved that B¢ converges to B as in (5.11).
By Proposition 3.5, the solution Z¢ to the controlled equation (5.9) is equal to the
(unique by Theorem 3.10) solution to the rough finite difference equation (3.19)
associated with the a-rough path B¢. In the notation (3.51), we have Z¢=®(Z,, B?),

and by Theorem 5.2 we have Z = ®(Z,, B). By the continuity result Theorem 3.11

we obtain that Z¢=®(Zy, B) — ®(Zy,B) =7 a.s. as €]0.
It remains now to prove (5.11). We first observe that by (5.8)

B;lz/pg(u) 0Bs—u t—udu. (5.12)
R

Let us fix « <% and set ||0B || :=||0B||a,[—1,7+1], 0 that | Ba| < ||0B]|o (b — a)* for
all =1<a<b<T+1. Then, uniformly for e € (0,1) and 0 < s <t < T, we can bound

B < 108 la (t — ) (5.13)
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We can write similarly
B5' - Bl = / pe(t) (6Bs_ut—u— 0By) du, (5.14)
R
hence for any o’ € ]a, %[ we can estimate, by the triangle inequality,
B — Bl <2[|0B|lar (t — )"
At the same time, since 0By — 0Bs_y t—yw=0B;_y 1+ — 0Bs_, s, we can also bound

B~ BY| <2[16B | / pelw) u® du <2 [|6B]|oe””
R

because p. is supported in [—¢,¢]. Overall, we have shown that

_ t—s)¥ Ao
1B~ Blapr) < 210Bllanrrey sup LA
o<s<i<T (L —9)
= 2”53Ha/7[—17T+1}6a1_a8—w> O, Va <o (515)

(for the equality, consider separately t —s>¢ and ¢t — s <¢e). We stress that the
previous arguments are pathwise. Since ||0B||as,j—1,741) <00 almost surely for any
a' < %, it follows that ||B! — BY||, — 0 almost surely for any a < %

To complete the proof of (5.11), it remains to show that |[B%? — B?|sq — 0
in probability as £|0. We distinguish (B*? — B?)" for i=j (diagonal terms) and
for i # j (off-diagonal terms, in case d > 1). To lighten notation, we fix i # j and
abbreviate X = B* and Y = B/, which are independent Brownian motions.

Diagonal terms are easy: by (5.10) and integration by parts (since X is smooth)

t . €_ YE)2
(B=2)st = / (g — X7) X2 du= KA QXs) .
Similarly (B?)% = w by definition (5.2) of Stratonovich Brownian motion.
Since (6X5)? — (0Xs)?=20X5 (X — X ) + (6(X® — X),)?, by what we already
proved on (B! — BY)||o=|6(X¢ — X)]|a, see (5.15), we have almost surely

[6(X°— X)|la
2 el0

(B2 = B2)iila0 < [|6X [|a [[5(X° = X)||o + 0

We next turn to off-diagonal terms (B2 — B%)" = L¢ — L, where we set

t t t
Lg ::/ 0 X dYy,, St ::/ 0X5, de:/ 0X5, Y, du. (5.16)
The core of the proof is the following second moment bound, that we prove below.

PROPOSITION 5.4. (SECOND MOMENT BOUND) For all >0, s <t we have

E[(LE, — Ly)?] < 10 (t—s)Qmin{l,tfs}. (5.17)
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We derive from (5.17) a bound for moments of order p > 2 exploiting a key
property known as hypercontractivity, that we state in the special case which is
relevant for us. The proof is given below.

PROPOSITION 5.5. (HYPERCONTRACTIVITY) Consider the stochastic integral

W::/_Z(/_;g(s,t) dXs) a; (5.18)

for a deterministic function g € L>(R*— R). Then the following bound holds:
vpel2,00):  EW|<EEW??, (5.19)
with ¢, :=E[|N(0,1)]?] < co.

We can now apply (5.19) to L5 — L, which is of the form (5.18) (see (5.24)
below): plugging (5.17) into (5.19) we obtain

B[| LS, — Ly|?] < 10 2 (¢ — 5)P min {1, (t £ )2} (5.20)

— S

Since min {1,z } <z" for all x>0 and « € [0, 1], it follows that

K

Vee (0,1 B[LE— Lul?] <102 (t —5)P 72 P2 (5.21)
We now fix « <% and exploit Theorem 4.6 for Ay := L;; — Lg; with p=a and y=2a.
We need to control the random constants Q2o and K, 24 from (4.20)-(4.21).

e For (), we apply Proposition 4.8 with vg=1— %: if we take k>0 small and
p =2 large, so that (4.26) is satisfied, by (5.21) and (4.27) we get

10 c2
1— 2171}(172047%) ’

E[Q},] <€’ with €=Cpq = (5.22)

This implies that QY2 — 0 in probability as € |0, and even almost surely along
sequences € = ¢,|0 which vanish exponentially fast.

e For K, 2, we note that, by the Chen relation,
therefore by (5.13) and (5.15), if we fix any o’ € (a,%), we can bound

Koo < [0X5[al0(YE=Y)[lat[10Y [la 10X = X)][a

<

< 2 (16X o [10Y [lar+ 18 [la [|6X [lar) e~ (5.23)
This shows that K, 20 — 0 almost surely as € |0.

We can finally apply (4.22) to conclude that, by (5.22) and (5.23),

|(B52 — B*)Y g0 = | L* — L|20 < Cu.20 (@20 + Ko.20) 5 0 in probability.

This completes the proof of (5.11). O
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Proof of Proposition 5.4. Recalling that X*=p.* X and Y*=p.* Y, an inte-
gration by parts for the stochastic (Wiener) integral yields for s <t

Xi = [ (pt=0)= s —o) Koo [ ( / :vm(r)dr)dxv,
V0 = [ (=) Yodw= [ plt—w)a,

Recalling the definition (5.16) of Lg and L, we can write

S st—// St) U ’LU ﬂ(sgvgwgt)) dXUdY;U, (524)

g8 (v,w) = /stps(u—w) ([:Upg(r) dr) du

= /l(sgrgugt) pe(r —v) pe(u —w) drdu.

where we set

Since 0< g% (v, w) <1 (recall that p.(-) is a probability density), it follows that
Flle - // (0, w) ~ Lszyuwen)? dvdu

/ |g(S ) (s<v<w<t | dvdw. (525)

To estimate this integral, we give a probabilistic representation of g¢.(v,w):
denoting by @ and @ two independent random variables with density p(-), since
pe(-—v) and p.(- —w) are the densities of € Q1+ v and € Q2+ w, we can write

g5 (0, w) =P(s <eQr+v <eQy+w < t).

Writing v=s+a (t —s) and w=s+b(t — s), for new variables a, b, we note that

€
t—s’

S N(stalt—s),s+bt—s)=g"(a,b)  with §:=
A change of variables in the integral (5.25) then yields
Bl(Li— Lo < (=) [f 16 (0,0) = Lo<ozhey | dadh.
Looking at our goal (5.17), it only remains to show that

/ 199D (a,b) — Lo<acsen|dadb< 10min {1,5} . (5.26)

We define the subset
D:={(a,b)eR* 0<a<b<l1}

so that we can write

98" (a,b) =P(0<0Q1+a<5Qa+b<1)=E[lp so(a,b)]  with Q:=(Q1,Qs).
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We can express the integral in (5.26) as

/|9<(50’1)(a>b)—]l(ogagbgl)\dadb = [/ |1p—s0(2) — 1p(2)|dz
_ E(D-0Q)sD]]

where || denotes Lebesgue measure in R? and AAB := (AN B°) U (A°N B) is the
symmetric difference between sets. Note that z € (D — y)A D means that either z € D
but z+ye€ D or z€ D but z+y € D, and in both cases dist(z, D) < |y|, where
dD is the boundary of D. In other terms, for any y € R? we have the inclusion

(D—y)ADC{zeR?* dist(z,0D)<|yl|}.

Since 9D is a triangle with perimeter 2+ /2, the area of {z € R%:  dist(z,0T) <|y|}
is bounded above by 2 (2+ +/2) |y|, hence

E[(D—-6Q)aD[[<2(2+V2)E[l6Q] <2(2+v2) V29,

because |Q|=1/Q1+ Q3 < /2 (we recall that p(-) is supported in [—1, 1], hence
|Q1], Q2| <1). Since 2(2+ 1/2) /2 <10, the proof of (5.26) is completed. O

Proof of Proposition 5.5. By (5.18) we can write W = ffoooh(t) dY; where h(t) =
h(X,t):= fjoog(s, t) dX, depends only on X. Since X and Y are independent,

it follows that W is a Gaussian random variable conditionally on X, as a Wiener
integral. Recalling that ¢,:=E[|N(0,1)|?], we can thus write

p
2

E[W 7] X] =, E[W?|X]2,

We now denote by £ =C(RR,R) the standard path space for X and Y, so that
can write W = f(X,Y) for a suitable measurable function f: E x F'— R. Denoting
by p the law of X, i.e. the two-sided Wiener measure, Fubini’s theorem yields

EW?|X]=E[f (2, Y)?|la=x = (1 f (@, Y |E2(u(ay)) le=x"

hence

BIW (7] = o B| EIW 21X | = 6, (1L (2, 1) lcautann lrucaon)?

We now apply the Minkowski integral inequality (see Remark 5.6 below), which
states that for p > 2 switching the two norms yields an upper bound:

E[WT < & (/@ ) llerguaanll2uay))”

1

= o(|[E1rcx.ppr

We finally observe that f(X,y) is a Gaussian random variable, i e. W= f (X,Y) is
Gaussian conditionally on'Y (because W = [ h(s)dX with h f g(s,t)dY; is
a Wiener integral conditionally on Y, by independence of X and Y) It follows that

E[l /(X 9)" = o E[f (X, y)?]

p
) 5.27
LQ(u(dy))> ( )

P
2

— & (1 £, ) lucaan)” (5.28)
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Plugging (5.28) into (5.27) we obtain (5.19), since

I1£ (@, )|z l20uayy) = EIW?H2

by Fubini’s theorem. 0

Remark 5.6. (MINKOWSKI'S INTEGRAL INEQUALITY) Given o-finite measure
spaces (E, u) and (F,v) and a measurable function f: F x F'— R, Minkowski’s
integral inequality states that for any 0 < ¢<p< oo

11f (, Y)llLae, wazp e vy <@, Y)lleeE @) L, wa)) - (5.29)

For g = p this holds an equality, as a consequence of Fubini’s theorem. If ¢ < p, the
proof goes as follows: if the left-hand side of (5.29) is equal to zero, there is nothing
to prove; if it is not, then raising it to power p gives, by Fubini’s theorem,

L([Ewdﬁ)?dy _ /F;@ﬂq (/E|f|qdu)ildu] W
_ [E:Lw ([irran) o] |
. (L'f‘pd”)g{L([Erflqdu)ﬁ%dy}p »

) {L([;'f’qd“)zd”}TA(/Frfipdy)f’du

where we have used the Holder inequality on (F',v) with conjugated exponents %

N

and %. The first term in the last line is the left-hand side raised to power %:

dividing by such term (which is not zero by assumption) we obtain (5.29).
Note that for ¢=1 we have additionally, since | [ fdu|< [ |f]du,

[l ff o< f] v

In the special case E'={1,2} with p =0, + o, if we set fi(-) := f(4,-), then for p>1
we recover the usual Minkowski inequality || f1 4+ follze < || fillee + || f2l|ze-

1
pd,u.




Part 11

Rough Integration












CHAPTER 6

THE SEWING LEMMA

We fix throughout the chapter a time horizon 7" >0 and two continuous functions
X,Y:[0,7] — R. In this setting the integral

T
/ Y, dX, (6.1)
0

can be defined as [, DT Y, X, dr if X is differentiable or, more generally, as a Lebesgue
integral if X is of bounded variation, so that dX is a signed measure. The key
question we want to address is: how to define the integral when X does not have
such reqularity? This is an example of a more general problem: given a distribution
(generalized function) X and a non-smooth function Y, how to define their product
VX ?

A motivation is given by X = B with (B;);>0 a Brownian motion. In this special
case, one can use probability theory to answer the question and define the integral
n (6.1), but one sees that there are several possible definitions: for example Ito,
Stratonovich, etc.

In this book, we are going to present the alternative answer provided by the
theory of Rough Paths, originally introduced by Terry Lyons. This theory yields
a robust construction of the integral in (6.1) and sheds a new “pathwise” light on
stochastic integration.

The approach we follow is based on the Sewing Lemma, to which this chapter
is devoted. In particular, we will show in Chapter 7 that the integral in (6.1) has a
canonical definition ( Young integral) when Y and X are Holder continuous, under a
constraint on their Holder exponents. Going beyond this constraint requires Rough
Paths, which will be studied in Chapter 8.

6.1. LOCAL APPROXIMATION

If X is of class C!, we can define the integral function
t
]t::/Kerr, tel0,T].
0
Then we have Ip=0 and for 0<s <t < T

[t—IS—Y;(Xt—XS):/t(YT—YS)XTdr:o(t—s) (6.2)

89
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as t —s— 0, because X is bounded and |Y, — Y| =o0(1) as |r —s| — 0. Thus the
integral function I; satisfies

Io=0, L—L=Y,(X,—X)+o(t—s), 0<s<t<T. (6.3)

Remarkably, the relation (6.3) characterizes (It)icpo,r). Indeed, if I' and I? satisfy
(6.3) with the same functions X, Y, their difference A :=I' — I? satisfies

A — Ay =o0(t —s), 0<s<t<T,

which implies <A, =0 and then A,=Aq= I} — I3 =0 by (6.3). This simple result
deserves to be stated in a separate

LEMMA 6.1. Given any pair of functions X ,Y:[0,T]| — R, there can be at most one
function I:[0,T] — R satisfying (6.3).

The formulation (6.3) is interesting also because the derivative X of X does not
appear. Therefore, if we can find a function /: [0, 7] — R which satisfies (6.3), such
a function is unique and we can take it as a definition of the integral (6.1).

We will see in Section 7.1 that this program can be accomplished when X and
Y satisfy suitable Holder regularity assumptions. In order to get there, in the next
sections we will look at a more general problem.

6.2. A GENERAL PROBLEM

Let us generalise the problem (6.3). We define A:[0,T]% — R by setting for 0 < s <
t<T

A=Y, (X, - X,) . (6.4)
We can then decouple (6.3) in two relations:

Iy=0, Iy — I,=Ag + Rat 0<s<t<T, (6.5)

R:[0, T2 =R, Ry=o(t—s). (6.6)

The general problem is, given a continuous A:[0,7]%— R, to find a pair of functions
(I, R) satisfying (6.5)-(6.6). We call

o A:[0,T)2— R the germ,
e [:[0,7] — R the integral,
e R:[0,7T)%— R the remainder.

We are going to present conditions which allow to solve this problem.
Note that we always have uniqueness. Indeed, given (I', R') and (I?, R?) which
solve (6.5)-(6.6) for the same A, by the same arguments which lead to Lemma 6.1

we have % (I} — I?) =0, hence I'=I? and then R'= R? by (6.5). We record this as

LEMMA 6.2. Given any germ A, there can be at most one pair of functions (I, R)
satisfying (6.5)-(6.0).
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6.3. AN ALGEBRAIC LOOK

We first focus on relation (6.5) alone. For a fixed germ A, this equation has infinitely
many solutions (I, R), because given any I we can simply define R so as to fulfill
(6.5). Interestingly, all solutions admit an algebraic characterization in terms of R
alone.

LEMMA 6.3. Fixz a function A€ Cs.
1. If a pair (I, R) € Cy x Cy satisfies (6.5), then R satisfies

2. Viceversa, given any function R € Cy which satisfies (6.7), if we set I;:=
Ao+ Ry, the pair (I, R) € Cy x Cy satisfies (0.5).

Proof. Relation (6.5) clearly implies (6.7), simply because §(61) =0. Viceversa,
given R satisfying (6.7), we can define Ly := Ay + Ry so that

L — Loy — Ly =0.
Applying this formula to (s, u’,;t")=(0, s,t), we obtain that I;:= Lo, satisfies
It - ]s - LOt - LDs - Lst:Ast+ Rst

and the proof is complete because [y:= Log= Ago+ Roo= 0, which follows by (6.7)
for s=u=0. O

We can now rephrase Lemma 6.3 as follows.

PROPOSITION 6.4. Fiz A€ Cy. Finding a pair (I, R) € Cy x Cy satisfying (6.5) is
equivalent to finding R € Cy such that

5Rsut:—5z45ut, VogséuétQT (68)

6.4. ENTERS ANALYSIS: THE SEWING LEMMA

So far we have analyzed (6.5). We now let (6.6) enter the game, i.e. we look for a pair
of functions (I, R) € C x Cy which fulfills (6.5)-(6.6), given a (general) germ A € Cs.
We stress that condition (6.6) is essential to ensure uniqueness: without it, equa-
tion (6.5) admits infinitely many solutions, as discussed before Lemma 6.3. When
we couple (6.5) with (6.6), uniqueness is guaranteed by Lemma 6.2, but ezistence
is no longer obvious. This is what we now focus on.
We start with a simple necessary condition.

LEMMA 6.5. For (6.5)-(6.6) to admit a solution, it is necessary that the germ A
satisfies

|0 Asut| = 0(t — ), for 0<s<u<t<T. (6.9)
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Proof. If (6.5) admits a solution, by Proposition 6.4 we have |0Agut| = |0 Rsue|. If
furthermore R satisfies (6.6), we must have for 0 <s<u<t<T

|0 Rsut| < |Rst| + | Rsu| + |Rut| = 0(t — s) + o(u—8) +o(t —u) =o(t —s) . 0

Remark 6.6. Choosing u=s in (6.9) we obtain that —Ass=o0(t — s), which means
that Ags=0. Therefore a necessary condition for (6.5)-(6.6) to admit a solution is
that A vanishes on the diagonal of [0, T)%.

Remarkably, the necessary condition in Lemma 6.5 is close to being sufficient:
it is enough to upgrade o(t — s) in O((t —s)") for some 7> 1. This is the content of
the celebrated Sewing Lemma, which we next present.

We have seen in the Sewing bound (Theorem 1.9) that any R € C5 such that
Ry =o0(t —s) for 0<s <t <T satisfies an a priori estimate || R||, < K, ||0R||, for any
n>1. Of course, this estimate is only interesting if |[0R ||, < oo for some 7> 1. This
property, that we call coherence, is at the heart of the celebrated Sewing Lemma
(Gubinelli [2|, Feyel-de La Pradelle [1]), as it provides a sufficient condition on the
germ A for the solution of (6.5)-(6.6).

DEFINITION 6.7. (COHERENCE) A germ A € Cy is called coherent if, for somen>1,
it satisfies SA € CJ, i.e. ||0Al], <oo. More explicitly:

dn € (1, 00): |0 Asue] S|t — 5|7, 0<s<u<<t<T. (6.10)

THEOREM 6.8. (SEWING LEMMA) For any coherent germ A € Cy there exists a
(unique) function 1:]0,T] — R such that |As — 01| = o(t — s); equivalently, there
exists a unique pair (I, R) € Cy x Cy such that

o The “remainder” Ry :=0ly — Ay satisfies the Sewing Bound:
R, < K, ||16A]l, where K,:=(1-2"mn"1, (6.12)

e The integral I € 'y is the limit of Riemann sums of the germ:
#P—1
Ii:= i Ay, 6.13
t ‘731|r£>10 ; titit1 ( )
along arbitrary partitions P={0=tg<t;<...<tp=t} of [0,t] with vanishing
mesh |P|:=max;—q .. gx_1|tiz1—ti| —0 (we set #P:=k).

.....

The Sewing Lemma is a cornerstone of the theory of Rough Paths, to be intro-
duced in Chapter 8. We will already see in Chapter 7 an interesting application to
Young integrals. The (instructive) proof of Theorem 6.8 is postponed to Section 6.6.
Remark 6.9. For a fixed partition P of [0,t] we have, by dls = Ay + R,

#P—1 #P—1

It: Z Atiti+1+ Z Rtiti+1'
=0 =0
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Therefore, (6.13) is equivalent to
#P—1

lim Rt-t- =0
"P|—>0 — ili4+1

which is the reason why one wants the remainder R to be small close to the diagonal.
The information Ry = o(t — s) is not enough in general to obtain the existence of
(I, R), while the stronger estimate |Rg| < |t — 5|7 is sufficient.

6.5. THE SEWING MAP

Given a coherent germ A, by Theorem 6.8 we can find an integral I and a remainder
R which solve (6.5)-(6.6). We now look closer at the remainder R.

LEMMA 6.10. In the setting of Theorem 6.8, the remainder R is a function of dA:
given two coherent germs A, A" with 6A=0A’, the corresponding remainders R, R’
coincide. Moreover, the map A+ R is linear.

Proof. By Proposition 6.4 we have 6(R— R')=0(A'— A) =0, hence R— R'=0f for
some f € C) (see Remark 1.10). Both |Rs| and |R%| are o(|t — s|) by (6.6), hence
| fi— fs|=o0(]t — s|). Then f must be constant by Lemma 6.1 and therefore R= R’
Linearity of the map dA+— R is easy. 0J

Since R is a function of § A, we introduce a specific notation for this map:
R=—-A(64)

where the minus sign is for later convenience.
Let us describe more precisely this map A. Throughout the following discussion,
we fix arbitrarily 7 € (1, c0).

e Domain. The map A is defined on A for coherent germs A, see Definition 6.7.
The domain of A is then C3NdC,, where we denote by 6Cy C C5 the image
of the space Cy under the operator ¢ in (1.24).

e Codomain. The map A sends 0A to —R, and we have |Ry| < |t — s, see
(6.12). A natural choice of codomain for A is then CY.

o Characterization. In view of Proposition 6.4 and Lemma 6.2, the function
—R=A(0A) is characterized by the properties

S(—R)=6A,  |Ry|=o0(t—s).

The second condition is already enforced by our choice C3 of codomain for A,
which yields |Rs| S [t — s|” (with n>1). The first relation can be rewritten
as 0(A(B)) =B for all B in the domain of A, that is d o A is the identity map.

In conclusion, we have proved the following result.

THEOREM 6.11. (SEWING MAP) Let n € (1,00). There exists a unique map

A:CINSCy — CY,
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called the Sewing Map, such that § o A =1id is the identity on C3JNCs.

e The map A is linear and satisfies
[A(B)|ln < Eq||Bll,  VBeCINGCy, (6.14)

where K, is the same constant as in (6.12).

e Given a coherent germ A € Cy, i.e. such that 0A € C3, the unique solution
(I,R) of (6.5)-(6.6) is R:=—A(0A) and I;:= Ao+ Roq.

6.6. PROOF OF THE SEWING LEMMA
We prove the Sewing Lemma, i.e. Theorem 6.8.

Proof. We fix a germ A € C; with ||dA ||, < oo for some 7> 1 (we do not require A,y =
o(b—a)). Our goal is to build a function I:[0,7] — R such that |01 — As| =0(t — s).
Uniqueness of [ follows by Lemma 6.2, while the bound (6.12) follows by the Sewing
Bound (1.27) applied to Rs:= 0l — Ag (note that R = —9A, because dod =0).

We fix 0<s <t <T. Given a partition P={s=ty<t1<...<t, =t} of [s,1], let
us define Ip(A):= ZZBIAtitiJrl as in (1.21). The following bound holds:

21
[Ip(A) — Ay < C, |6A]], (t —s)7  with Cn::zm<oo, (6.15)

as we showed in the proof of Theorem 1.18, see (1.48). Similarly, if Q@ D P is another
partition of [s, ],

#P—1
|]Q(A)_I7’(A)| < Z |‘[Qm[ti,ti+ﬂ(A)_Atiti+1|
1=0
#P—1
< Gy oAl Z (tig1—t;)"
=0
#P—1
< Cyll6Al, PP~ Y (tia—t)

1=0

< Gy [0A[,T [P

where we recall that |P|:=max; (t;+1 — ;). Finally, if P and P’ are arbitrary par-
titions, setting Q :="PUP’ and applying the triangle inequality yields

|1 (A) = Ip(A)| < Cy [|6AN, T (IP"=" + [P]"71).

This shows that the family Ip(A) is Cauchy as |P|— 0 (for every € >0 there exists
de > 0 such that |P], |P’| <0, implies |Ip/(A) — Ip(A)| <€), hence it admits a limit
as |P|— 0, that we call Jg.

We now define I, := Jy;. We claim that

Li—I,=Jg forall 0<s<t<T.
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Indeed, if we consider partitions P’ on [0, s] and P of [s,t], then P":=PUP’is a
partition of [0,¢] such that Ip«(A) — Ip/(A)=Ip(A), and taking the limit of vanishing
mesh we get Jo; — Jos = Jst, that is the claim.

Finally, taking the limit of relation (6.15), since I'p(A) — Jg = I — I, we obtain
our goal |01y — Agt| S(t —s)"=o0(t — s). This completes the proof, since (6.13) holds
by construction. 0

Remark 6.12. Taking the limit of (6.15) gives
|Rst|§C17||6AHn|t_S|n7 Rst::&[st_Asty O<S<t<T,

which is the bound (6.12) with K, replaced by the worse constant C,,. This is because
the estimate (6.15) holds for arbitrary partitions.






CHAPTER 7

THE YOUNG INTEGRAL

We can now come back to the problem that we discussed at the beginning of
Chapter 6: given two continuous functions X, Y: [0, 7] — R, how can we give a
meaning to the integral I, = fOtYdX for t 0,777

A natural answer, recall (6.3), is to look for a function I:[0,7] — IR satisfying
Iy=0, I — L,=Y,(X; — X,) +o(t —s), 0<s<t<T. (7.1)

As an application of the Sewing Lemma (Theorem 6.8), we can show that such a
function [ exists (and is necessarily unique) when X and Y are Holder functions
of exponents «, 3 € ]0,1] such that o+ 3> 1. This leads to the notion of Young
integral, to which this chapter is devoted.

Going beyond this setting, in order to treat the case a4+ (8 <1, will require the
notion of Rough Paths, that we discuss in Chapter 8.

7.1. CONSTRUCTION OF THE YOUNG INTEGRAL

As we did in Chapter 6, it is convenient to rewrite (7.1) as follows: we look for a
function I:[0,7] — R satisfying

Ihy=0, Ii—I,=Agq+ Ry with Ry=o(t —s), (7.2)
where the germ A:[0,T]% — R is defined by
Ast:Ys(SXst:)/s(Xt_Xs) . (73)

This is the framework of the Sewing Lemma, see Theorem 6.8, for which we need to
fulfill the coherence condition (6.10), that is ||0A]], < oo for some 1> 1 (we use the
norms introduced in (1.9)). Recalling that

5Asut = Ast - Asu - Aut - _5)/;u 5Xut )
see (1.33), we can write for any «, 5 € ]0,1]
0Asul = Yu =Y | Xe = Xo| = [|6A]Ja4p<[[0X [|a 16Y ][5 (7.4)

As a consequence, it is natural to assume that ||[0.X ||, < oo and [|6Y ||z < oo for a,
B € 10,1] such that a+ 3> 1.

97
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We can now give a consistent definition of the integral I, = | g Y dX, known as
Young integral, when X and Y are suitable Holder functions.

THEOREM 7.1. (YOUNG INTEGRAL) Fiz o, f € |0,1] with a+ >1. For every (X,
Y) €C¥x CP there is a (necessarily unique) function I:[0,T] — R which satisfies
(7.1), i.e.

Ip=0, L—L=Y,(X,—X,) +o(t—s). (7.5)

The functon I, called the Young integral, is also denoted by I, =: ngdX.
The remainder Ry :=1; — I, — Y, (X; — X;) satisfies the bound

1B la+s < Karp 10X o 16 [ls, (7.6)
where K,:=(1—2"")71 see (6.12). This yields I € C*, more precisely
167 ]|o < (Y [loo + KarsT7 [[0Y]]5) 10X [la- (7.7)

The Young integral I = (I})ico,1), as a function of (X,Y), is a continuous bilinear
map I:C* x CP— C°.

Proof. Recalling (7.2)-(7.4), we have ||0A||a+3<[[6X || ||0Y ]| g < 00, that is §A € C
with n=a+ > 1, where the spaces C}' were defined in (1.10). By the Sewing
Lemma, see Theorem 6.8, there exists a (unique) function I which satisfies (6.11)
and (6.12), hence (7.5) and (7.6) hold.

In order to prove (7.7), we note that

107]la < Alla+ I1Rla <Y oo 10X fla +T7 | Rlla+ s
< Yoo [10X fla+ TP Ko g 10X [|a 10Y |5

Recalling Remark 1.4, in particular (1.15), this bound implies that [ is a continuous
function of (X,Y), as a map from C® x CP to C~.

We finally prove that the map (X,Y’)~ [ is bilinear: given X, X’€C* and a fixed
Y €CP, if I satisfies (7.5) for (X,Y) and I’ satisfies (7.5) for (X',Y), then for any
a,b€R the function I;:=a I, + b I} satisfies (7.5) for (X :=a X +bX",Y). Linearity
with respect to Y is proved similarly. 0

By (6.13) in Theorem 6.8, we also have that the Young integral (7.5) is the limit
of Riemann sums

#P—1
It:“ylmo Z }/ti(XtH—l_Xti)
1=0

along arbitrary partitions P={0=ty<t;<...<tp=t} of [0,t] with vanishing mesh
|P| =maX;—o,..., k_1|tl+1—t2|—>0 (Wlth #P: k?)

Remark 7.2. The setting of Theorem 7.1 provides a natural example of a germ
Agi:=Y;0X which is not in CJ for any 7> 1 (excluding the trivial case when Y =0
on the intervals where X is not constant, hence A=0), but it satisfies A € C5 with
n=oa+[3>1.
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Remark 7.3. (BEYOND YOUNG) It is natural to wonder what happens in The-
orem 7.1 for (X,Y)€C*x CP with a+ 3<1. In this case, there might be no solution
to (6.5)-(6.6), because the necessary condition (6.9) in Lemma 6.5 can fail. For a
simple example, consider X; =t and Y; =t for t € [0, T] and note that for s=0 and

u:% we have by (1.33)
e @ze o

which is not o(t — s) =o(t) when a+ 3 <1.

In order to define a notion of integral I; = fOtY; dX, when (X,Y)e€C%x C? with
a+ (<1, we need to relax condition (6.3), see Definition 8.1 below. This will lead
to the notion of Rough Paths, described in Chapter 8.

|0 Asut| =04,

2

R

6X1,

t|:

7.2. ITO VERSUS YOUNG

Let (B)te[o, 1] be a standard Brownian motion and (h)¢cjo,r) and adapted process.
Let o, € (0, 1) such that « <% and o+ 3 >1. We know that a.s. B is of class
C®, we suppose that a.s. h is of class C”. In this case we have

PROPOSITION 7.4. Under the conditions above, theYoung integral I(B, h) con-

structed in (7.5) is a.s. equal to the Ité integral (fghs dBy)iejo,r)- In particular

a.s. for all t€[0,T]
#P—1

t
hedB,= li hi, (B, — B,
A |7)1‘11>10 ; tz( tz+ tz)

along arbitrary (random) partitions P={0=1to<t; < ... <tp=t} of [0,t] with
vanishing mesh |P|:=max;—g . k-1 |tiz1—ti| —0 (with #P :=k).

.....

Proof. By (4.8) in Theorem 4.3 we know that the Ito6 integral I, := fghs dB;,
t€[0,7], satisfies a.s.

|01 — hs 0Bgy| S|t — s]*th, 0<s<t<T.

Since av+ 3> 1, I coincides a.s. with the Young integral I(B,h). The convergence
of the Riemann sums follows from (6.13). O

7.3. INTEGRAL FORMULATION OF YOUNG EQUATIONS

In this section we explain why we call (2.4) a Young equation. In fact, we can
interpret the finite difference equation (2.4) as an integral equation, using the Young
integral of section 7.1.

PROPOSITION 7.5. Let X € C*([0, T]; R¥) with a>%. Then Z satisfies (2.4 ) if and
only if
¢
Zie 7o+ / o(Z)dX,  te[0. T, (7.9)
0

where the integral is in the Young sense.
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Proof. We consider the germ Ay :=0(Z;) 6Xg, 0<s<t<T. By (7.4)
0Asue| = |0(Zu) =0 (Z)[| Xe = Xu| = [[0A]2a < |V [|oc][0X [|a[|0Z]]a-

Therefore we obtain that (2.4) is equivalent to (7.5) above. O

In the case a € (%, %}, this argument does not work and the Young integral is
not adapted, since the germ Ay :=0(Z,) § X, has the property dA € C3* with 2a <1,
so that the Sewing Lemma can not be applied. We have already seen in Chapter 3,
see equation (3.19), how the germ A must be modified in this case. We are going to
come back to this in the following chapters.

As an application of the estimates on the Young integral of Theorem 7.1, we want
to give a local existence result for equation (2.4) which does not rely on compactness
and which can be therefore used also in infinite dimension.

Let Zy€ R* and X €C([0,T]; R?) be given, o: R¥ - R¢® (R?)* smooth and the
unknown Z:[0,7] — R* is such that ¢(Z) € C* and 2a > 1, so that the right-hand side
of (7.9) can be interpreted as a Young integral. We want now to show the following

THEOREM 7.6. (CONTRACTION FOR YOUNG DIFFERENTIAL EQUATIONS) Let o:

R* - R* @ (RY)* be of class C* with Vo and V?o bounded. Let o € ]%, 1] and
X eC*([0,T);RY) fizred. It T >0 is small enough, then for any Zy € R there exists
a unique Z € C*([0, T); R¥) which satisfies (7.9).

Proof. For all feC*([0,T]; R*) we have

lo(fe) =o(fII<IIVolle|fi = fil
so that
100 (flla <NVl fla:

By (7.7) with = /3 we obtain for all f € C® satisfying (7.9)
10 f1la < (lo(fo)l + (14 K2a) T*[[V o llocl|6.f lla) [0 X o

since

lo(Plloe < lo(fo)l +T 6o (F)]o-

Therefore, if T satisfies
1 1

2 (1+ Kao) [V lloof0 X o

T <
then we have the following a priori estimate on solutions to (7.9)

16Z o < 2[o(Zo)[ 16X [|a -

We fix such T" and we set C*(Zp) :={f €C% fo=Z0, 10 f|la <2|0(Z)|||0X ||} Then
we define A:C*— C® given by

A(f):=h, ht::ZOJrAta(fs)dXs, teo, 7.
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It is easy to see, arguing as above, that A acts on C*(Z), namely A:C*(Zy) — C*(Zy).
Note that the map C%(Zy) x C*(Zp) 3 (a,b) — ||da — db|| defines a distance on C*(Zy)
which induces the same topology as ||-||ce. We want to show that A is a contraction
for this distance if 7" is small enough. By (7.7) we have for a = f3

18A(a) = SAB) [ <(ll0(a) = ()l + KoaT*[[30(a) = 50(b)]) 15X [l
<T° (1 + Kaa) X [la [60(a) — 50 (B)]

We now need to estimate ||[do(a) —do(b)||. By Lemma 2.8
190(a) =00 (b)[la <[V ollscllda—0bllat [V olloc(lldallat0b]la) la — bl
Since, as usual, ||a — bl <T||da — db||n, We obtain
190 (a) = 50 (b)[la < (Vo l|loo+ T Vo [|so(ll6allat[|0b][a)) |60 — bl (7.10)
Therefore, for all a,b e C*(Zy)
16A(a) =3 A(D)]la < Crllda—5bl|a,

where C7:=T%(1 4+ Ka4) |0 X ||la IV 0 ||aotT*||V?0 ||ocd|o(Z0)| |0 X ||a). Tt is now
enough to consider 7" small enough so that C'r < 1. 0J

7.4. PROPERTIES OF THE YOUNG INTEGRAL

The Young integral [ g Y dX, defined in Theorem 7.1, shares many properties with
the classical Riemann-Lebesgue integral, that we now discuss. For an interval [s,
t] €10, 7T] we will use the notation

t
It—[S::/ YdX.

A elementary but useful observation is that (X,Y)— f:YdX is a bilinear func-

tion. If the integrand Y, =c is constant for all u € [s, ], then fstYdX =c(Xi— Xy),
which follows directly from (7.5). As a corollary, we obtain the following useful
formula for the remainder.

LEMMA 7.7. Let (X,Y)eC*xCP for a, 3€]0,1] with a+ 3> 1 and let ]t::nguqu
be the Young integral, see Theorem 7.1. Then the remainder

Rst::It_Is_Y;(Xt_Xs)7 0<s<t<T,

admits the explicit formula
t
Rst:/(Yu—Y;)qu, 0<s<t<T, (7.11)

where the right hand side is a Young integral.
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Proof. By linearity and the basic property mentioned above, we obtain

t t t
An important property is integration by parts, which follows by the uniqueness
of the solution for the problem (6.5)-(6.6), recall Lemma 6.2.

PROPOSITION 7.8. (INTEGRATION BY PARTS) Fiz «, 5 € ]0,1] with a+ 3> 1. For
all (X,Y)€C*xCP the Young integral satisfies

t t
/XdY+/ YdX = XY — XY, (7.12)
0 0

Proof. Let us set I]:= ng dY + fOtY dX. By the property (7.5) we have

-~

Ast

Next we set I/ := X;Y; — Xy Yy and note that, by direct computation,
I' =1 =Y(X; = X,) + X,(V} = Y) + (X; — X,) (Y, - X)),

[ J/

~~
Ast Rst

where |Ry| <||0X||o]|0Y ||s]t — s|*"?=o0(t — s). By Lemma 6.2, for any germ A,
there can be at most one function I which satisfies 01y, = Ag + o(t — s) (6.5)-(6.6),
hence I'=1". O

We next discuss the chain rule.

PROPOSITION 7.9. (CHAIN RULE) Let X € C* with o € ]%, 1]. Let o: R— R be
differentiable with ¢’ € C'(R), for v € ]0,1] such that ~y >%— 1 (a sufficient condition
is that ¢ € C?). Then ¢'(X)= ' 0 X €C* and

o) o(Xo) = | (X)X, (7.13)

where the right hand side is a Young integral.

Proof. It is easy to see that ¢'(X) € C®?, which implies that fégp’(X) dX is well-
defined as a Young integral, since a4+ ary > 1. By the definition (7.5) of the Young
integral, proving (7.13) amounts to showing that

[o(Xe) — p(Xs) = ¢'(Xy) (Xi— X)[So(t —s).
By the classical Lagrange theorem, if, say, X; > Xj, then
P(Xi) — p(Xo) = ' (X) (Xe = Xo) = (¢'(§) — ¢'(X,)) (Xe = Xi)
with £ € | X, Xi[. Since ¢’ €C? and X € C?, it follows that
[p(Xe) — o(Xs) = 9'(Xo) (Xe = X)| S [ Xe = X[ 7T =0(t — 5)
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since 7+ 1> é > 1. This completes the proof. 0
More generally, we have

COROLLARY 7.10. In the same setting of Proposition 7.9, for all s <t
P00 = o (X) =P X)X =X+ [P0 - X ()
Proof. It is enough to note that, by (7.13),
p(Xe) = p(Xs) = / tw’(Xr) dX,

t
= X=X + [ (P0) = X)) X,
where all integrals are in the Young sense. 0

In particular, for X € C* with a > %, we have

2 2 t
% _ )g XX — X)) +/ (X, — X)X, (7.15)
which can be rewritten as follows:
t 2 2 . 2
/(XT—XS)dXT:%—)gs X (X X = K (7.16)

7.5. MORE ON HOLDER SPACES

We discuss further properties of the Holder spaces C* for a € (0,1) (excluding the
case a =1 of Lipschitz functions). These will be useful in the next Section 7.6, when
we discuss the uniqueness of the Young integral.

Let us denote by C* the space of infinitely differentiable functions. We note
that C°° C C* for every a € (0,1), but C* is not dense in C*.

THEOREM 7.11. For any a€(0,1), the closure of C™ in C* is the subset C§ defined by

C§ ={f:[0.T]=R: |f(t) = f(s)| =ollt — s|°) uniformly as |t — s| -0},

Remark 7.12. Note that f € (g if and only if
Ve>0 30.>0: | f(t)— f(s)| <e|t—s|* for |t — s| <0, (7.17)

which implies (exercise) that C' C C§ C C® for a € (0,1). It follows that the closure
of C'in C® is again Cg, simply because C* cC C*' C C§.

Exercise 7.1. Prove that C' C C§ and C§ C C® for a € (0,1) (inclusions are strict).

We stress that the subset Cf is strictly included in C%, but what is left out is not
so large, in the following sense.
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Exercise 7.2. Prove that C® C C§ for 0 < a < a’ <1 (the inclusion is strict).

The proof of Theorem 7.11, which we defer to Section 7.7, is based on the
following classical approximation result (also proved in Section 7.7).

LEMMA 7.13. For any continuous f:[0,T] — R there is a sequence f, € C* such
that || fn — flloo— 0. One can take f, with the same modulus of continuity as f, in
the following sense: given an arbitrary function h(-),

if S = f(s)| <h(t—s) Vs, t€[0,T7],

then | fu(t) — fu(s)| <h(t—s) Vs, t€[0,T], VneN. (7.18)

It follows that || fulla <||0f|la for alln € N and o € (0, 1).

Remark 7.14. Lemma 7.13 holds with no change for functions f:[0,7]— R, where

R is an arbitrary Banach space. One only needs a notion of integral [ OT fsds when
f is continuous, and for this one can take the Riemann integral, i.e. the limit of
Riemann sums ). f(t;)(ti11 — ;) along partitions (Z;) of [0, 7] with vanishing mesh
max; |t;+1 —t;| — 0 (one can check that such Riemann sums form a Cauchy family).
This integral satisfies the key usual properties: f+— fOTfs ds is linear, |f(;ffs ds| <

Sy 1 £l ds and [} flds= fr— fo.

7.6. UNIQUENESS OF THE YOUNG INTEGRAL

Throughout this section we denote by I,”°"™ the Young integral I, = J Ot Y dX built
in Theorem 7.1. We want to compare it with the classical integral

t
[z:lassicalz :/ K,LXU du
0

which is defined for continuous Y and continuously differentiable X € C*.

We remarked in (6.2)-(6.3) that I£21 gatisfies property (7.5), therefore [¢tassical
coincides with 1™ when (X,Y) € C* x C?, for any 3€]0,1]. In other terms, the
Young integral is an extension of the classical integral.

We can be more precise: by Theorem 7.1, for a, 5 €10, 1] with o+ 5> 1, the
Young integral 1Yo = (I"°"*#), (o 7] is a continuous bilinear map from C* x C” to
C®. This means that 1Y°"8 is a continuous extension of the classical integral J<assical
defined on C' x C?. It would be tempting to state that it is the unique continuous
extension, but this is not true, because C' C C* is not dense in C* (see Theorem 7.11
and Remark 7.12).

However we can characterize the Young integral as the unique continuous exten-
sion of the classical integral on C® x C? for fixed a, provided we consider a slightly
weaker notion of convergence on C®.

DEFINITION 7.15. Fiz a €]0,1]. Given f,, f:[0,T] — R, with n € N, we write
fooraf = Afa—Fle—0 and sup [0fulla<oo. (7.19)

nelN
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In other terms, fn,~o f if and only if f, — f in the sup-norm and, moreover, the
sequence f, is bounded in C*.

We leave it as an exercise to check some basic properties.
Exercise 7.3. Fix a €]0,1] and let f,, f:[0,T7] — R, with n € N. Prove the following.
1. If f~~qf, then f€C® more precisely ||0f ||o <supnen ||0fn]la < oo.
2. If f,~>qf, then f,— f in C® for any a’ < o, but not necessarily f,, — f in C.
3. If f,~qf and p:R— R is Lipschitz, then o(fn) ~a@(f).
4

. In the definition (7.19) of f, ~4 f, the uniform convergence || f, — f|lcoc — 0 can be
replaced by pointwise convergence: f,,(t) — f(t) for every t €[0,T].

We can now provide the following characterization of the Young integral.
THEOREM 7.16. (CHARACTERIZATION OF THE YOUNG INTEGRAL, II) Fiz «,

B€10,1] with a+ 3> 1. The Young integral IY"8 = (I}°""%),c (0.1 is the unique map
[:C*x CP— C* such that:

1. L= ISl = (1Y, X, du for X € CY;
2. if Xpy~a X and Y, ~3Y, we have I(X,,,Y,) ~o 1(X,Y).
Proof. We already know that the Young integral Yo" satisfies property 1. Let

us show that it also satisfies property 2: given X, ~~, X and Y, ~3Y, we need to
prove that

TYOus (X V) a [YOUE(X Y (7.20)

Let us fix o’ < a, ' < (8 such that we still have o’ + 3’ > 1. We know by Exercise
7.3 that X, — X in C* and ¥, —Y in C?. Since the Young integral is a continuous
bilinear operator 1Yo™e: " x C% — C#'  we have the convergence I°"8(X, Y,)—
IYowe(X V) in C*', which implies

||]Young()(m )/;7,) _ IYoung()(7 Y) ||oo —0.
To prove (7.20), it remains to observe that, by (7.7),
sup || X, Vo) o <sup ([[Yalloo + Kot g T (|62 0) [| Xl < 00
We next consider an operator I: C* x C®— C* which satisfies properties 1 and 2
and we show that it must coincide with the Young integral 7¥°"8, Given X € C“ and
Y € C?, by Lemma 7.13 we can construct a sequence (X,,) C O with || X, — X ||oc — 0

and || X,|la < [|X||a- By property 2 we have I(X,,Y) ~4[(X,Y) and IYouneg(X,,
Y) ~o IY°"8( X Y'), which implies pointwise convergence: for any ¢ € [0, T

LX,Y)=lmI[,(X,Y) and  L°™(X,Y)=limIl"8X,,Y).
By property 1 we have I,(X,,,Y)=I1""8(X,,Y) for any n, hence
LIX,Y)=I"8(X)Y) Vte|0,T],

which completes the proof. 0J
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Interestingly, it is also possible to characterize the Young integral as the unique
continuous extension of [¢ssical if we let the exponent a vary. Given a €]0, 1], we

define the space
ce= | ¢

a€la,l]

and we agree that f, — f in C>® if and only if f, — f in C* for some @ > a. The
basic observation is that C! is dense in C>: for any f € C~“ we can find a sequence
fn € Ctsuch that f, — f in C>* indeed, if f€ C® with &> a, by Exercise 7.2 we
have f e C§ for any o’ €]a, @[, then by Theorem 7.11 we can find f, € C™ such
that f, — f in C*, hence f,— f in C>®

If we fix a=1— 3, for $€]0, 1], the Young integral IYous = (fz(oung)te[o,ﬂ is a
continuous map from C>1~%) x €8 to >~ by Theorem 7.1.

These observations yield immediately the following result.

PROPOSITION 7.17. (CHARACTERIZATION OF THE YOUNG INTEGRAL, I) Fiz any
5 €]0,1]. TheYoung integral 1Yo = ([Eoung)te[o,ﬂ, viewed as a map from C~(1=P) x

CP to C*1U=P) s the unique continuous extension of the classical integral I¢%ssical —

(Igassiealy, 0.7 defined on C* x CP.
Ezplicitly, Y™ is the unique map I:C>1 =% x CP— > =8 such that:

o [y=Ifesil= 1Y, X, du for X € CY;

o if (X,,Y,)—(X,Y) inC*xCP, for some a>1— (3, then we have the con-
vergence 1(X,,,Y,) — 1(X,Y) in C* for some o’ >1— 3.

7.7. TWO TECHNICAL PROOFS
We give here the proof of Theorem 7.11 and Lemma 7.13.

Proof of Lemma 7.13. We extend f:[0,7] — R to a function defined on the whole
real line, by setting f(t)= f(0) for t <0 and f(t)= f(T) for t >T.

Let us fix a C* function ¢: R — R supported in [—1, 1] with unit integral:
Jow(u)du=1. Note that @,(t):=nep(nt) is supported in [—%,%} and also has unit
integral: ngpn(u) du=1. We then define f, =y, * f, that is

fal(t) = A On(t —u) f(u)du.

It is a classical result that f, € C* (we can differentiate inside the integral by
dominated convergence, since f is bounded).
We next write

h0)= [ entw) fe=u)du= |

R

p(v) f(t—3> dv,

n

which implies || fr, = f||oo < SUPter,ju|<1 |f(t — %) — f(t)| (since ¢ has unit integral),
hence || fr, — f||loo — 00. Property (7.18) is also directly checked. O
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Proof of Theorem 7.11. First we show that C§ is closed in C*: given f,, in C§ and
f €C such that || f,, — f|la — 0, we need to show that f e Cg, that is (7.17) holds.
For s <t and n € N we can write, by the triangle inequality,

|f@#) = f(s)] | fu(?)
w§||5f—5fn||a+ 0

Fix n =1, such that [|6fs, —f [l <5. Since fs, €C§, by (7.17) we can fix d. >0 such
that for [t —s| < the last term in (7.21) is <5 and we are done.

It remains to show that, for any f € C§, there is a sequence f, € C*° such
that || fn— flleo + [|0fn — 0f||a — O (recall Remark 1.4). We define f, € C* as in
Lemma 7.13, so we only need to show that ||df, —df|/o— 0.

Since f € C§, property (7.17) holds. The same property holds replacing for f,,
uniformly for n € N, thanks to relation (7.18). This means that for any € > 0, for all
0<s<t<T with |t — s| <4, and for any n € N, we can write

|(fn= F)@) = (fn= H)  [falt) = fuls) | [F() = F(5)]
(t—s) = (t—s) (t—s)

If we fix i > 0 such that || f, — f|leo <€ (0) for all n >n,, for |t — s| > J. we get

(= DO = (u= D] 2a= Sl

(t—s) (4¢)
Altogether, the previous relations show that ||df,, — 0 f ||« < 2€ for n > 7. This implies
that ||0f, —df]|a— 0. O

oIy (7.21)

5)@

<2e.







CHAPTER 8
ROUGH PATHS

We have seen in Chapter 3 that it is possible to build a robust theory for a controlled
equation of the form Y;=o(Y;) X; with X:[0,7] — R¢ of class C* for a € (%, %],
provided we choose a function X2 [0, T]Qg — RY® RY satisfying for 0<s<u<t<T

5X§ut:X§u®X}zta |X§t| S |t_8|2a7

see (3.13), where we denote XL :=6X,, 0<s<t<T. In coordinates, the former
identity means

(0X2), = 0X0 06X, |(XD)Y[Slt sl i jefl,....d}. (8.1)

In Section 3.2 we left the problem of the existence of such a function X2 open.
We recall that, for X of class C!, we have a natural choice for X? given by

t
(X3 12/ (Xf—X)X)dr,  0<s<t<T,

see (3.9). In Lemma 7.7 we saw that, for o >% and X €C([0,T]; R?), the (uniquely
defined) Young integral I;” := [ Ot X"dX7 satisfies

t
Ry =1 — I — X; (X{ — X{) =/ (X=X X!, [RGISTE— s,

where the integral in the right-hand side is again of the Young type and 2« > 1.

There is a clear resemblance between the two last expressions, and indeed for
a >% we show in Lemma 8.16 below that setting (X2)% := R we obtain (8.1) and
this is the only possible choice.

If now o < %, neither of these formulae is well-defined, because for 2a <1 we are
not in the setting of the Young integral. However, we have seen in Chapter 3 that
the bound |XZ%| < |t — s]?* is enough for the whole theory of existence, uniqueness
and stability of the rough equation (3.19) to work, even if 2a < 1.

This suggests that, for every i,j € {1,...,d}, the function (X%)¥ can be inter-
preted as the remainder RV associated with an integral I of (X X7), where we
weaken our requirements with respect to the Young integral, namely we only require
that

I - 17 - XH(X] = X)) =(X2)7, (XIS — s,
and now 2a < 1. Therefore the choice of the rough path X = (X! X?) over X is
equivalent to the choice of a generalised integral I = [ X ®dX €C*([0, T, R*®@ RY),
and in this case X2 plays the role of a generalised remainder with respect to the
germ (s,t)— X, ® (X; — X;).
In this chapter we explore these notions and explain them in greater detail.

109
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8.1. INTEGRAL BEYOND YOUNG

Let us fix (X,Y)€C*x CP We saw in Theorem 7.3 that when a + 3> 1 we can
define the integral I, = | g Y dX as the unique function which solves

I():O7 5[st:}{95Xst+Rst7 Rst:O(t—S) . (82)
This was based on the observation that for the germ A, :=Y; d X, we have
0Asut=—0Yu0Xwr = [0Allars<[[0X|lall0Y 5.

Therefore if n:=a+ §>1 we have ||0Al], < oo, i.e. the germ A is coherent, see
Definition 6.7, and the Sewing Lemma can be applied, see Theorem 6.8.

We now focus on the regime v+ 5 < 1. As we have already seen in (7.8) above,
there exist germs A which allow no function I solving (8.2). Indeed, we recall
that choosing X;=1t* and Y, =t t ¢ [0, T], then the germ Ay :=Y; X, satisfies
|5A0%t| >te+8 see (7.8), and therefore the necessary condition (6.9) in Lemma 6.5
is not satisfied.

A solution is to relax the requirement Ry =o(t — s) in (8.2), say to

dn< L |Rst| S|t — s (8.3)
Arguing as in Lemma 6.5, this would imply
|0 Rout| St = s|"4 Ju—s|"+ |t —u|"S Ju— s+ [t —ul”

since 7 < 1. On the other hand, by Proposition 6.4 we have [§ Rsut| = |0 Asut| S
lu — s|°|t —u|®. Choosing |u — s| = |t — u| shows that the best we can hope for in
(8.3)is n=a+ f.

Summarizing, given (X,Y) € C®x C? with a + 8 <1, it is natural to wonder
whether there exists a function I which satisfies the following weakening of (8.2)

Iy=0, 0 =Y 0Xs1+ Rot |Rot| S|t —s|2TP. (8.4)

This would provide a “generalised notion of integral” dedX . This justifies the
following

DEFINITION 8.1. Fiz o, 3€(0,1) with a+ < 1. Given (X,Y)e€C*x CP, if there
exists a function I:[0,T] — R which satisfies

I — I[,=Y,(X; — X,) + O(Jt — s]**F) uniformly as |t —s|—0, (8.5)
we say that I is a generalised integral of Y in d.X.

We stress that this new definition of integral extends the previous one (8.2) for
(X,Y)eCxCP with a+ 3> 1, because the term o(t — s) is actually O(|t — s|*+5)
in this case, by the key estimate for the Young integral (or, equivalently, for the
sewing map).

On the positive side, there is always existence for (8./) if a+ 3<1. This is a
non-trivial result, due (in a more general setting) to Lyons and Victoir. We state
this as a separate result, which is a consequence of Proposition 8.5 below.

LEMMA 8.2. Let (X,Y)€C*x CP with a+ 3 < 1. There exists (I, R) €C*x Cy™7°
satisfying (8.4 ).
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Remark 8.3. It is an easy observation that uniqueness can not hold for (8.4).
Indeed, given I which solves (8.4), any function of the form I{:= I, + hy — hy with
h € C*P still solves (8.4). As a matter of fact, all solutions are of this form, because
given two solutions I, I" of (8.4), with corresponding R, R’, their difference h:=1'—1
must satisfy |dhg|=|Rl — Re| S|t — s|*HP.

Remark 8.4. An integral I as in Definition 8.1 is necessarily of class C* by (8.5).
We state now a result which implies Lemma 8.2 above.

PROPOSITION 8.5. (PARAINTEGRAL) Fiz o, 5€(0,1) with a+ 3 <1. There exists
a (non unique) bilinear and continuous map J<:C*x C?— CSF such that

[T<(X, Y ) [lar s < CHOX [la [0 |15, (8.6)
for a suitable C=C(«, 3,T), with the property that, for all s <u<t,
5J—<(X7Y)sut:5}/;u5Xut- (87)

The proof of Proposition 8.5 is postponed to Section 8.9 below.

Remark 8.6. Let o, 5€(0,1) with a+ #< 1. Finding a generalised integral of Y
in dX for (X,Y)€C*x C? as in Definition 8.1 is equivalent to finding Ry, € Cg 7
such that

5Rsut - 5Y:9’LL 5Xut ’
ReCyTh.

Indeed, if we define Ay :=Y; Xy, relation (8.8) implies that §(A 4+ R) =0, hence
there exists 1:[0,7] — R which satisfies 6] = A+ R, which is exactly relation (8.5).

By Proposition 8.5 and Remark 8.6, if o, 5 € (0,1) and a+ 5 < 1, any (X,
Y) €C%x CP admits an integral I as in Definition 8.1.

Remark 8.7. (THE ITO INTEGRAL AS A GENERALISED INTEGRAL) Fix a standard
Brownian motion (By)icjo,r] and an adapted process (h¢)icpo,7] such that a.s. h is of
class C® with € (0,1). If a € (O,%) and a4+ <1, then by (4.8) in Theorem 4.3
we have the a.s. estimate on the It6 integral

Sle—sletP 0<s<t<T.

t
/ (hy— hy) dB,

Therefore in this setting the It6 integral ( [ g h,dB,)cp,1] is a.s. a generalised integral
of h in dB in the sense of Definition 8.1. Compare this with the case a4+ > 1
discussed in Proposition 7.4.

8.2. A NEGATIVE RESULT

We show that the usual integral I( f, g)= fggs fids, when f€C?, cannot be extended
to a continuous operator on C® x C?, when o+ 3 < 1.
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LEMMA 8.8. Set [0,7]=]0,1] and define, for a;, 3 €(0,1),

gn(t) := %COS (nt), folt):= %sm (nt).

Then g, ~+40 and f,~>50 (recall Definition 7.15), more precisely:

[gnllc =0 [|0gnlla <2; [ fallo =0, [l0fulls <2, (8.10)

(in particular, g, — 0 in C* and f,— 0 in C* for any o/ <o and 3'< B).
However, if we fix a+ <1, we have I( fn, gn) # 0, because

+oo if a+p<1
vt €[0,1]: m I(fo, gn)i=9 5t if a+B8=1.
0 if a+pB>1

Proof. Note that ||gn|lcc=n"" and || g/ |lcc =n'"%, hence
|9n(t) = gn(s)| < min {||galloclt = 5[, 2[| gnllec} <min{n'=*|t = s[,2 n7}.

Since min {x, y} <x7y'~7, for any ~ € [0, 1], choosing 7= a we obtain

[9n(t) = gn(s)| <27 |t — 5|2,

hence ||0g,|lo <2'7*< 2. Similar arguments apply to fn, proving (8.10).

Next we observe that % ) 02 "cos?(z) dr = f 0 sin?(z) dz = <. Then, for fixed
t>0, as n— 00

o) do— [ cost(e) do+ 0(1) = Lo o) =in+o0
/Ocos(x) x—/o cos*(x) dz + ()—5 WLQWJ+ ()—§n+ (1).

It follows that

t nt
I( fo, gn)t—#/; cos?(ns) ds_#é cos?(x) dxwgnl—(oﬂrﬁ)‘ ]

8.3. A CHOICE

We have seen in (7.11) above that, given (X,Y) €C® x C? with a+ > 1, we have
an explicit formula for the remainder Ry =1, — I, — Y; (X; — X), given by

t
Rst_/%—ys)dxu, 0<s<t<T, (8.11)

where [, = f o Yud X, is the unique function given by the Young integral of Theorem
7.1. Moreover Ry = f (Y, — Y;) dX, is the unique function in Cy which satisfies

ReCytP, ORsut =0V 0 Xy,  0<s<u<t<T. (8.12)
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In the regime o+ 3 < 1, the Young integral is not available anymore. However by
Proposition 8.5 we know that we can find an integral I € C® in the sense of Definition
8.1 by setting

=Y, (Xt - Xs) - J<(X7 Y)stv
where J_ is the paraintegral of Proposition 8.5, see also Remark 8.6. This shows that,

in this setting, the remainder Ry = I; — I, — Y; (X; — X;) is not given by an explicit
formula like (8.11) (which is now ill-defined), rather we have

R: _J<(X,Y)

However formula (8.11) suggests that we can define
t
/ (Y, —Y,)dX,:= Ry =—J(X,Y)s, 0<s<t<T. (8.13)

In other words, the left hand side of (8.13) is chosen to be equal to the remainder
R associated with the integral I as in (8.4). We recall that R=—J<(X,Y) satisfies

ReCS™P . Ry =0Y0Xy,  0<s<u<t<T. (8.14)

The difference between formula (8.14) and formula (8.12), is that in the former
a+ (<1 while in the latter a+ 5> 1. Accordingly, in (8.14) the function R is not
uniquely determined, while in (8.12) it is.

The comparison between formula (8.14) and formula (8.12), and the explicit
expression (8.11) in the case a+ (3> 1 show that (8.13) is a reasonable definition of
the function (s,t)— f;(Yq} —Y;)dX, in the setting o+ < 1.

We also stress that R in (8.14) can not be uniquely determined. Indeed, by
Remark 8.3, we have infinitely many possible choices given by

R'=R+dh, heCtP hy=0. (8.15)

1
2

]OZO, (SIStZXs(SXSt‘f—RSt, |R3t|§|t—8|2a. (816)

Remark 8.9. In the special case X =Y and a= <5, (8.4) becomes

Now the germ is Ay = Xs(X; — X;) and we have a simple canonical solution which
does not rely on the paraintegral and is given by

Li=5(X2=X3),  Ru=g(Xi= X2
s1ce
7 X2 = XX X+ L - X2

As we have seen in (7.15)-(7.16), if « >% then (7, R) is the only solution of (8.16)
and moreover

t
Ry = / (X, — X,) dX,

where the integral is in the Young sense. If a < %, then we have infinitely many
possible solutions (I', R).
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8.4. ONE-DIMENSIONAL ROUGH PATHS

We have seen at the beginning of this chapter that for every i, j € {1,...,d}, the
function (X%)¥ plays the role of the remainder R¥ associated with a generalised
integral " of (X*, X7) in the sense of Definition 8.1 with a = < %: in other words
the choice of X2 is equivalent to the choice of integrals (in the sense of Definition
8.1) I'"eC for all 4, j € {1,...,d}, such that

If=0,  OL]=XJ0X,+ (X307, (X[t - s,
or, in more compact notations,
[[):0, 5[St:XS®X;t+X§t7 |X§t‘§‘t—$‘2a (817)

Existence of X? satisfying (8.17) with a <%is therefore granted by Lemma 8.2, e.g.
via the paraintegral of Theorem 8.5. We also know that in the regime « <% we have
infinitely many possible choices for (7, X?), all of the form (8.15) above.

Suppose first that we are in the setting d =1. Then Definition 3.2 becomes

DEFINITION 8.10. Let a € ]%, %] and X:[0,7] - R of class C*. A a-Rough Path
over X is a pair X = (X!, X?) € C% x C3* such that

Xit = Xt - Xsa 5X§ut = X;u Xit- (8- 18)

We recall that the conditions X € C* and X! =§X € C% are equivalent, and that
(X!, X?) € O x C3% is equivalent to

Xal SHE—slo IXEIS[E— s

We have seen in Chapter 3 that it is possible to build an integration theory for every
choice of the a-rough path X over X. In this theory we can recover existence and
uniqueness of the integral function [ 6Y dX for a large class of choices of Y. For
this we have to give very different roles to the integrator X and to the integrand Y,
whereas in the case of the Young integral the two functions play a symmetric role:
X will be a component of a rough path and Y a component of a controlled path, see
Chapter 9.

We note that the algebraic condition §X2,, = X!, X}, is non-linear, which implies
that a-rough paths do not form a vector subspace of C§ x C3°.

For all o € (%,%

a rough path lying above X. Indeed, I; ::%Xt2 is a generalised integral of X in dX

|, given any real-valued path X € C*([0,T]; R), there is always

integral in the sense of Definition 8.1, because

5@:%@(3 _X2) =X, 5Xst+%(5Xst)2 — X, X+ O(|t — s]2) .

Then, by Remark 8.9, we can define a rough path X by setting
X =2 (X0, (8.19)

More directly, note that (8.19) satisfies the Chen relation (8.21), and clearly X? €
C3~.
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8.5. THE VECTOR CASE

Let us consider now a vector valued path X:[0,7] — R, with X, = (X},..., X1). We

suppose that X is of class C% namely that X*€C® for all i=1,...,d, with a > %

We can now see that Definition 3.2 generalises Definition 8.10 to the vector
case. The multi-dimensional case d > 2 is sensibly richer, because off-diagonal terms
I = fOtXide with 7= j as in (8.17) do not have explicit candidates as in (8.19).
We rephrase then Definition 3.2 as follows:

DEFINITION 8.11. Let a € ]é,%], d>1 and X:[0,T] —R? of class C*. An a-Rough
Path on R? over X is a pair X= (X!, X?), with

° XII((SXi>Z‘:1 77777 dECS‘([O,T];IRd)
o X2=(RY); ;1 . a€C3*(0,T% RI@RY)
such that

.....

(0XCZ)" = (Xa)' (Xar), (8.20)
or equivalently
th_ Xgu_xitzxiu(gx}n- (8-21>

We denote by Ra.a the space of a-rough paths on R and by Ra.a(X) the set of a-
rough paths over X.

The condition (8.20)-(8.21) is the celebrated Chen relation (3.13). Via the
equality (8.17), a choice of X € R, 4(X) is equivalent to the choice of I:[0,7] —
R%® R such that I[,=0 and

L= 1= X, @ (X = X,)[ St —sP 0<s<t<T,

see Exercise 8.1 below. We say that [.= f 6X8 ®dXs and we know that in the regime
a <% we have infinitely many possible choices for (7,X?), all of the form (8.15)
above.

In other words, for every fixed xy € R? we have a natural bijection between the
space Rq.q of a-rough paths on R? and the pairs (X, I) where X:[0,7] — R? is of
class C* with Xy= =, and I: [0, T] — R?® R? satisfying (8.17).

We are going to see in Chapter 9 that it is possible to build an integration theory
for every choice of an a-rough path X. Again, we note that the condition (8.20)-
(8.21) is mon-linear, which implies that a-rough paths do not form a vector space.
Exercise 8.1. Given a a-rough path X = (X!, X2) over X in R% a process I € C%([0, T;
R?®RY) satisfying (8.17) is a generalised integral of X in dX in the sense of Definition 8.1.
Viceversa, given X € C%([0,T]; R?) and an integral I € C*([0, T]; R¢® R%) of X in dX, in
the sense of Definition 8.1, defining X2 by (8.17) we obtain a a-rough path X = (X!, X?) over
X in R4
In the multi-dimensional case X € C%([0, T]; R?) with d > 2, building a rough path
over X is non-trivial, because one has to define off-diagonal integrals [ X*dX7 for
i #+ j. However, by the results we have proved on the existence of the paraintegral
in Proposition 8.5, we can easily deduce the following.
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PROPOSITION 8.12. For any deN, a € (%, %) and X € C*([0,T);RY), there is a a-
rough path X which lies above X (hence, by Lemma 8.17, there are infinitely many

of them).

Proof. For any fixed i, j € {1,...,d}, let I be a generalised integral of X*in dX7
in the sense of Definition 8.1, whose existence is guaranteed by the paraintegral of
Proposition 8.5. Then, by Exercise 8.1, defining X2 by (8.17) we obtain a rough path
X which lies above X. 0

We conclude with an elementary observation, that will be useful later. By Exer-
cise 8.1, any a-rough path X over X € C%([0,T];R%) determines an integral I of (X,
X)), given by (8.17). Applying the latter relation in a telescopic fashion, we can write

]t: Z (th 5Xtiti+l +X%iti+1) ) (822>

[ti,ti+1]€7)

where P={0=ty<t;<...<tp=t} is an arbitrary partition of [0, ¢]. We will see
in Chapter 9 below that a generalization of (8.22), when we also take the limit of
vanishing mesh |P|— 0, is the correct recipe for building “Riemann-sums”; in order
to define a generalised integral of h in dX in the sense of Definition 8.1 for a wide
class of functions h.

Remark 8.13. (ITO AND STRATONOVICH) Given a d-dimensional Brownian motion
(Bp)ie,r], with B= (B!, -+, B%) a vector of d independent standard BMs, we
have seen in Theorem 4.1 and in Remark 5.1 that the Itd rough paths B = (B!,
B?) defined in (4.2) and the Stratonovich rough path B = (B',1B%) defined in (5.1)
satisfy satisfy Definition 8.11 for all « € (%, %) We recall that this is based on
the a.s. estimate on the It6 integral

t
/(Bfi—Bé)dBﬂ Slt—sl*, 0<s<t<T,

which follows from (4.8) in Theorem 4.3. This is a special case of Remark 8.7.

8.6. DISTANCE ON ROUGH PATHS
We denote by R, q the set of all a-rough paths in R¢. For X= (X1, X% e Ra,qa we set

X! D\
X 5= 3 (X0 = sup oty sup Bl
0<s<t<T | s 0<s<t<T | s

(8.23)

We stress that R,,q is not a vector space, because the Chen relation (8.21) is not
linear. However, it is meaningful to define for X, X e R, 4

dr,, (X, X): =X = X o + X% = X220 (8.24)

Exercise 8.2. dr_, , is a distance on Ry, q.

When we talk of convergence in R, 4, we mean with respect to the distance
dr, . Note that dg, ,is equal on R, 4 to the distance induced by the natural norm
| F o+ |G l2a for (F,G) € C§ x C3°. In particular X, = (X3, X2) —» X = (X!, X?)
in R, q if and only if Xj, — X! in C% and X2 — X2 in C3“.
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LEMMA 8.14. The metric space (Ra,4, dr, ,) 15 complete.

Proof. Let (X,)nen CRa,q be a Cauchy sequence. Then, by definition of dz, ,, for
every € >0 there is n. < oo such that for all n,m >n. and 0<s<t <T

IXL(s,t) = Xh(s,t) <elt—s|*, |X3(s,t)—X2(s,t)|<elt —s|>. (8.25)
Note that - -
oy X =X X2 - X2
dRa,d(X7 X) 2 Ta + T20é :

It follows that the sequences of continuous functions (X}),en and (X2),en are
Cauchy in the sup-norm, hence there are continuous functions X! and X? such that
X5, — XYoo — 0 and || X2 — X?| oo — 0. In particular, we have pointwise convergence
Xh(s,t) = X(s,t) and X2,(s,t) — X3(s,t) as m — oo. Taking this limit in (8.25)
shows that dr,, ,(X,, X) < 2¢ for all n > 7. O

This allows to rephrase the continuity result of section 3.7. We fix
D > |[Volla+ V20 |0+ [[VP0 [0 + [ Vol lo + [ V02 |cc-
We obtain from Proposition 3.11
PROPOSITION 8.15. We suppose that o € (%,%] and o: R¥— R* ® (RY)* is of class
C?, with [|[Vo ||+ ||V |lso+ | V30 ||oo+ [| Vo2l + [ V202 o < +00 (without bound-

edness assumptions on ¢ and o3). For X € Ryq and Zy € R* we denote by Z:
[0, 7] — R* the unique solution to equation (5.19)

Z[?]:O(t_ S), Zs[i’]:(SZst—a(Zs) Xét_02(Zs) th»

s

Then the map R x Ry.a> (Zo, X) +— Z € C is locally Lipschitz continuous.

Let us fix 2o € R%. Via the bijection constructed in the discussion after Definition
8.11, we have that X and X determine (X, ), (X, 1):[0,7] — R? x (R?® R?) such
that Xo=Xo=10, [y=1p=0, 6X :=X!, §X :=X!, and

|Rst|+|Rst|5|t_3|2aa 0<s<t<T,

where Ry =1 — I, — X, ® (X; — X,) and Ry :=1I;— I, — X, ® (X; — X,). Now, the
distance between X and X in Ra.q is equal to

dr, (X, X) = [0X = 06X [la+ | R = Rl l20-

8.7. CANONICAL ROUGH PATHS FOR « >%

Let §< a’'< % <a < 1. Then it is well known that C*C C®'. Therefore, if X €C([0,T];
R?) we have in particular X € C*([0,7];R%) and therefore there is a a’-rough path
X over X. However, is there a a-rough path over X7 Note that we have restricted
Definition 8.11 to the range a € (%, %], while here we are discussing the existence of

X210, T2 — R¢® R? satisfying the Chen relation (8.21) and

X5 STt — s
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1
where now « > 5

LEMMA 8.16. Let o € (%, 1}. For every X € CY([0, T]; RY), there is a unique X%
0, T)2 — RI@R? satisfying the Chen relation (8.21) and such that X*€ C3*. We

have the explicit formula
st_/ X;u(g)quv X;t 5Xst7 0<3<t<T; (826>

where the integral is in the Young sense. Moreover the map C*3> X — X2 € C3° is
continuous (in particular, locally Lipschitz-continuous).

Proof. It is easy to check that X2 in (8.26) satisfies the Chen relation (8.18), thanks
to the bi-linearity of the Young integral. Indeed, we can rewrite (8.26) as

t
xgt_/ X, ®dX,— X, ® (X — X,), (8.27)
hence for s <u <t we have that
(5X2)sut = _Xs & (Xt - Xs) + Xs X (Xu - Xs) + Xu X (Xt - Xu)
= —X,® (X — X))+ Xu® (X — Xu)
- 5X5u ® 5Xut .

We show now that X2 C3%. We recall that the Young integral satisfies the following
key estimate, for f €C® and g € C? with a+ 3> 1:

[fdg— fs (9= 95)

Choosing f=X"and g= X7 shows that X?, given by (8.27), is O(|t — s|**). Finally,
we prove the continuity of C*3 X — X2 e (3. Given X, X €C® and the respective
X2 X% e (3, we have

LCatplt — 5|a+ﬁ :

t t
X2, — X2 — / (XL, — XL) @ dX, + / XL, @d(X — X)u,

with all integrals in the Young sense. Then by the Sewing Lemma
IX? = X220 < Kaal[|0X [la+ [0X [|a) [6X = 6X .
The proof is complete. 0

Therefore, we could extend Definition 8.11 to a-rough paths for o € ( 1] For
ae€ ( 1] and X €C*([0,T]; R?) there is a unique a-rough path over X, which we
call the canonical rough path over X.

Whﬂe for a> < L there is a unique rough path lying above a given path X €C¢,
for « < = there are mﬁmtely many of them, that can be characterized explicitly.

11

LEMMA 8.17. Let X = (X', X?) be a a-rough path in R?, with a € (5,5]. Then
X = (X', X?) is a a-rough path if and only if for some f €C?**([0,T]; R®@RY) one
has X2=X2+0f, that is

XZ=X%+ fi— fs 0<s<t<T.
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Proof. By assumption X2 and X2 satisfy the Chen relation (8.21). If X2=X2+6f
then X? € C%* if and only if X2 =§X? and X? € C2%. Therefore, if X is a a-rough
path then so is X.

Viceversa, if X is a a-rough path, then §X2=§X? because both X and X satisfy
the Chen relation (8.21) with the same X', hence X2=X2+§f for some f. Since
both X2, X2 belong to C3%, then also 6 f € C3%, which is the same as f € C?. O

Remark 8.18. We malnly work with a-Hélder rough pats for o € ( ) excluding
the boundary case « :— for technical reasons. Let us stress that, by domg S0, we are
not throwing away any mugh paths, but only giving up a tiny amount of reqularity,
because any %—rough path is a a-rough path, for any a < %

To summarize, the situation is the following:
1. For a € (l, 1] and X €C*([0,T]; R?) there is a unique c-rough path over X

2. For o€ (
over X

= 2) and X €C([0,T]; RY), there are infinitely many a-rough paths

3. Fora= ;, either there is no a-rough path over X, or there are infinitely many
of them.

In the range a € (%, 1], the unique a-rough path X above X can be called the
canonical rough path over X. We let R, 4 be the set of all canonical rough paths
over paths X € C'! (see Lemma 8.16).

8.8. LACK OF CONTINUITY

We have seen in Lemma 8.16 that, for a > %, the map C®*> X — X% € C3“ is con-

tinuous if X2 is defined by the Young integral (8.26). It is a crucial fact that this

continuity property can not be extended to a < %, as shown by the next example.
For n € N consider the smooth paths X}, X2:[0,1] = R

X1(t) ZZ%COS (nt), X2(t) ::%sin (nt).

We have already shown in Lemma 8.8 that X} — 0 and X2 — 0 in C%, for all a € (0,
) More precisely, we have shown that X! ->1 0 and X7 ~1 0, by showing that

16X Hl <2, |]5X2|]1 <2 for all n € N and, ob\flously7 | X Hoo—>0 | X2]|o — 0. Next

we set
i /X’ w) dX3 (u for i, j € {1,2},
and correspondingly (X},)s: 1= (Xp(t) — Xh(t), X2(t) — X2(t)),
(X7)sd= (8.28)
:/ (Xa(w) = Xi(s)) dX;i(u) = LY (1) — L) (s) — Xa(s) (X(1) = X(5)) -
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Then X, = (X}, X2) is the canonical rough path associated with the smooth path
(Xn, X7).
We also set X = (X!, X?), with X! =0 and X2 given by the 2 x 2 matrix

0o s Eifi=1,j=2
(=, P = -t ifi=2j=1 - (8.29)
2 0 0 if i=j

It is not difficult to show that (X2)¥ — (X2)¥ in CY, for any 6§ € (0,1). As a conse-
quence, for any a € (%, %), we have X} — 0 in C* and X2 — X? in C35%, that is the
canonical rough path X, = (X3, X2) converge in R4 to the rough path X =(0,X?).

Let us prove that (X2)¥ — (X2)¥ in CY, for any 6 € (0,1). We have already shown
the pointwise (actually uniform) convergence I:%(t) —>%t. With similar arguments,
one shows the uniform convergence I’ — I defined by

o L 5 ifi=1,j=2
rig=( , 2 |= ~Lifi=2,j=1"
-2 0
2 0 ifi=j

It follows by (8.28) that we have the uniform convergence (X2)% — I%(t) — I¥(s) =
(X?)4. To prove convergence in C9, it suffices to show a uniform “Lipschitz-like”
bound |(X2)!| <2 |t — s|, which is easy:

x2)4| < /|XZ 1)) 1(X2) ()| du
< 216 | ot
= 2= i
VG

= 2|t—s].

8.9. THE PARAINTEGRAL

In this section we prove Proposition 8.5. Given continuous functions X,Y:[0,7] —

R, let us define R', R?c C,
Rl(X,Y)st::—Ys(ngt, RQ(X,Y)StI:Xt(SY;;t, 0<S<t<T, (830)

and note that
Rgt - Rslt + 5(XY)st .

Recalling Remark 8.6, it is easy to check that R! and R? satisfy
ORY (X, Y )sut = 0R* (X, Y )sut = 0 Yar, 0 X st - (8.31)
However, neither R! nor R? are in C% ™7 in general, because we can only estimate

IR e <Y lloc 16X o, IRZls <N X Moo 16Y 15 (8.32)
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We are going to show that, by combining R! and R? in a suitable way, one can build
R which satisfies both (8.8) and (8.9). This yields the existence of an integral.
We start with a technical approximation lemma.

LEMMA 8.19. Given f €C®, there is a sequence (fn)n C C™ such that

0)+>  falx),  Vxe[0,T]. (8.33)

n>0
One can choose f, so that for every n >0
Ifallo<ClOf a2, il <SCl8f a2, (8.34)
where C' € (0,00) depends only on T (e.g. one can take C=2(T*+1)).

Proof. We may assume without loss of generality that f(x)=0 (it suffices to
redefine f(x) as f(z) — f(0), which does not change [|0f||a-)

We extend f:IRR— R (e.g. with f(z):= f(0) for <0 and f(z):= f(T) forz >T)
so that || f||« is not changed. Then we fix a probability density ¢:[—1, 1] — [0, 00)
with ¢ € C! and for n >0 we define the rescaled density

On(x):=2"p(2" ).
Next, for n >0, we set f,,(z):=(f* ¢,)(x), that is

/f ) onl — 2) dz—/fx—z e
[R f(@—2)d(z) dz. (8.35)

It is easy to check that || f, — f|lcc — 0. Next we define
fo(z) := folz), for k>1:  fulz):= fu(x) = fer(x).

Note that >, fr= fn, hence relation (8.33) is proved (we recall that f(0)=0).
We now prove the first relation in (8.34). Since f(0)=0, for all x € [0,7] we can
write

| o) = fola |</|f:c—2|¢ dZ—/If:v—z F(0)]é(2) dz
<||5f||a/ 2= 2% 6(2) dz < (T*+ 1) |6/ o

where for the last inequahty we have used (9: +y)*<z*+y* (fora<1and z,y >0),

r<T and [L[2|* ¢(2)dz < f[ . l]gb =1, because ¢ is a density supported on
[—1,1]. For k>1 we estlmate
|fe(@)] = | fu(z) = feoa(z)]
< /|fx—2k fla - ) 6(:) dz
< 27 jof [l

again because [p|z|*¢(2) dz <1. We have proved the first relation in (8.34).
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We finally prove the second relation in (8.34). Note that

/f Oz — 2) dz—2”/fx—— (2)dz,

which has the same form as f,(x), see the last integral in (8.35), just with an extra
multiplicative factor 2" and with ¢ replaced by ¢’. Arguing as before, we obtain

el =l ([ 1) 1.
w(x 1 ok(1=a) ") dz ) ||6f ||as
) = )= a2 ([ 1)1z ) 1o

for £ > 1. We can choose ¢ to be symmetric, decreasing on [0, 1], with ¢(0)=1 and
(1) =0, so that

/ 6/(2)] dz =2 / (—6/(2)) dz=2($(0) — $(1) =2,
[—1,1] 0

and this completes the proof. 0J

Proof of Proposition 8.5. The existence of an integral is an immediate conse-
quence of Remark 8.6, because if we define Ry := J(X,Y )y, then both relations
(8.8) and (8.9) are satisfied.

It remains to build J.. Let us write, applying Lemma 8.19,

0)+ > Xu(x), Y(@)=Y(0)+> V().

m>0 n>0

Recalling (8.30), we define
JAXY)i= > RM(X, V)4 Y RA(X, Vo). (8.36)

o<m<n os<n<m
We show below that the series converge uniformly. Note that " >0Xn(x) =X(z)—
X(0), hence 3 6X, =6(X — X(0)) =6X, and similarly for Y. Applying (8.31),

we get

0J(X, Y )sur= Y (OVa)au (0Xm)ue+ D (0V)su (6K )t

o<m<n on<m
n>0 m2>0

which proves (8.7). We now prove (8.6). Note that, by (8.34),
|(6Xn)sel < 1 Xilloo [t = 8| SO 0X |0 2707 (2" [t — 51)
but at the same time, always by (8.34),
[(8X0)ot] <18+ 1 Xa(t)] 2| Xalloo < 2C [|X [0 270"
Altogether, using the notation z A y:=min {z,y},
1(6X,) st <2C [|6X [l 27" (2]t — s| A1)
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Similarly
1(8Y,,)se| <20 |6V ||g27Pm (2™t —s| A1) .

Recalling (8.30) and applying again (8.34), we get

|R1<mem)st| < HYMHOO|(5Xn)st|
< 2C2||6X || |6 ||p27 ™ 27 Fm (27t — s| A1)

and similarly
’RQ(Xnv}N/m>st| < HXnHOOK(SYm)stl
< 207 [[0X [l [0Y [[g270m 277 (2|t — s| A1)

These relations show that the series in (8.36) converge indeed uniformly. We now
plug these estimates into (8.36), getting

[J<(X, Y )al < 2C2||5X||a||5YHﬂ< > 2 @rit—s| Al

o<m<n

osn<m

+ Y 2memTAm(Qn]t— | A 1)). (8.37)

Let us set for convenience
o 1
k=ky :=logyg——
st g2 |t — Sl )
so that 2|t — s| <2 if and only if m < k. Since Zzo:m 27an L ﬁZ*am, the first

sum in (8.37) can be bounded as follows (neglecting the prefactor (1 —27%)71):

Z 2—(a+,3)m (2m’t _ S’ A 1)<|t _ Sl Z 2(1—04—/3)7”_'_ Z 2—(a+ﬁ)m
m>0 0<Zn<15 v (mZ;E_
1—a—P)k —(a+p)k
<Jt—s| 2 2

ol—a=p _ 1 + 1— 27(a+5)

1 1 a+p

The same estimates apply to the second sum in (8.37), hence (8.6) is proved. [

Remark 8.20. In the previous proof, if o+ =1, then we have

- 1
ol—a=Bm _ I _ 10—
Z [ S — 082 |t — 3|
os<m<k =1
and therefore we obtain, instead of (8.6), that
T o)l sl losr=]. 0<s<t<T.







CHAPTER 9

ROUGH INTEGRATION

9.1. CONTROLLED PATHS

We fix a € ]%, %], X €C([0,T]; RY). We recall that fixing a a-rough path X over
X as in Definition 8.10 is equivalent to choosing a solution (I,X?) to (8.17), with [
and X2 representing our choices of the integrals, respectively,

t t
[t::/XT®dXT, Xﬁt::/ (X, — X)) ®dX, =L, — I,— X,® (X; — X,).
0 s

The key point is that, having fixed a choice of X2, it is now possible to give a
canonical definition of the integral [Y dX (depending on X?) for a wide class of
Y € CY([0, T]; R* @ (R%)*), namely those paths Y which are controlled by X (see
below). In order to introduce this notion, let us recall that, given X € C*([0, T]; R%)
and Y € CP([0, T]; R* ® (R%)*), we look now for J:[0,7] —R* and R’:[0,T]% — RF
such that, in analogy with (8.4),

6Ju=Y.0Xu+ Ry, |RAIS|E— st

We say that J is controlled by X. It is actually a very fruitful idea to require that
each component of Y is also controlled by X. This is the content of the next

DEFINITION 9.1. Let € ]é,%], n€]0,1] and X=(X',X?) an a-rough path on R%.
A pair Z=(Z,7ZY):10,T) - R* x (R*® (RY)*) with Z of class C* and Z" of class C"
is a path (a4 n)-controlled by X if

0Zu=ZsXL+ 25, 1ZB S|t —s)ot, (s,t) €[0, T (9.1)

The function Z" is called a derivative of Z with respect to X and Z? is the remainder
of the couple (Z,Z").

For a fived a-rough path X on R?, we denote by D%"(IR¥) the space of paths
(e + m)-controlled by X with values in R,

Remark 9.2. Note that, if «+n<1, in general Z' is not determined by (Z,X1), so
that we say that Z!is a derivative rather than the derivative of Z. Viceversa, Z is
not determined by (Z!, X1): if (Z, Z') is (a+ n)-controlled by X and f €C**"([0,T7;
R*) then (Z + f, Z1) is also (a + n)-controlled by X.

It is now clear from the definitions that, unlike rough paths, (« + n)-controlled
paths have a natural linear structure, in particular as a linear subspace of C* x C".
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Exercise 9.1. Show that for each i, j=1,...,d, setting [0,7] > t — (X{;,Id) e R x (R4 ® (R%)*)
and [0,T]>t+— (X3, X§;®1d) e RY@ R x (RY® R?® (R?)*) are paths 2a-controlled by X.

9.2. THE ROUGH INTEGRAL

Now we can finally show how to modify the germ Y, (X; — X;) in order to obtain a
well-defined integration theory.

PROPOSITION 9.3. Let a € ]%, %], n€l0,1] and X= (X', X?) a a-rough path on
R If Z=(Z,Z") is (a+ n)-controlled by X as in Definition 9.1, with Z: |0,
T)—RF@ (RY* and Z*:[0,T] — R* @ (RY)* @ (RY)*, then the germ

Ag=Z, X5+ 2, X3,

satisfies 6 A € C3*H.
Therefore if 2a+n>1 we can canonically define J;= “ OtZ dX” as the unique

function J:[0,T] — RF such that Jo=0 and §J — A€ C3°" namely

|Je— Js— Zs X5 — Z3 X2 S |t — s]?t,

and we have

#P—1
o= \7131|m0 Z (th X%ztz+1+Ztlz X%iti-u)
=0

along arbitrary partitions P of [0,t] with vanishing mesh |P|— 0.

Proof. We compute by (8.20)

6Asut = _5Zsu leuf + Zsl 5X§ut - 5Zslu X%t
= - (5Zsu - Zsl Xiu) leuf - 5Zslu Xit
= —Z0 X1, - 025X, (9.2)

Then by (2.8)

[0Asut] < NZP arglu = s1FTIXM ot = ul*+62M |y lu — |71 X|2alt —ul*

<
< (N2 arn X102 1 | X |20) [E = s[4, (9-3)

Since 0 A € C3**" if 20v+ 1> 1 we can apply the Sewing Lemma and define JP¥:=
—A(8A) and J:[0,T] — R* such that Jo=0 and 6.J = A+ J& where A is the Sewing
Map of Theorem 6.11, namely

Jo=0,  6Ju=ZXL+Z X2+ T8 B <t — s[2etn, (9.4)

The last assertion on the convergence of the generalised Riemann sums follows from
(6.13). O

We have in particular proved by (6.14) and (9.3) that

1720 < K (122 |5 ot 627552 2. (9.5)
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We stress that the function J depends on (Z,X), in particular on Z! as well. We
use the following notations

J:=(J,2), /tz AX:=(J,, Z,) = J,. (9.6)

We shall see in Proposition 9.5 below that J: [0, 7] — R* x (R* ®@ (RY)*) is 2a-
controlled by X i.e. Z is a derivative of J with respect to X as in Definition 9.1.

We define a norm ||-[|pa+n and a seminorm []pa+n on the space DY of paths
(o + m)-controlled by X, defined as follows:
HZ|’D%+U = |Z()|+’Z(%|+[Z],D%+n, Z:(Z,Zl) (97)
(Z)pern = 62+ 12 s, Z3=0Z0— 20X,

as in (9.1). Recall that we defined the standard norm || f|lce = || flcc + ||0 f]la in
(1.13).

LEMMA 9.4. We have the equivalence of norms for all Z =(Z,Z') € D™
1Z | pen <1 Zlea+ 121 len+ 1 2P asy < C N Z | pgn, (9.8)

where C' >0 is an explicit constant which depends only on (X, T, c,n). In particular,
(DL |- |pa+n) is a Banach space.

Proof. The first inequality in (9.8) is obvious by the definition of the norm ||||co.
In order to prove the second one, first we note that by (1.15)

1 llen=11£ lloo 116 f lly < (LT ([ Sol + [10f 1n)-
This shows that || Z!||en < |1 Z || pe-+n for (Z,2Ye DL, Now, since 6 Zy = Z2 XL, + 22
by (9.1),

16Z]a < 12" ool X o+ 1 2]l

<
< Cry(I1 261+ 110ZH ) IX o+ T 22 ok,

namely [|Z||co S| Z || po+n. Finally 12| an < |Z || pa+n. The proof is complete. [

9.3. CONTINUITY PROPERTIES OF THE ROUGH INTE-
GRAL

We wrote before Definition 9.1 that the notion of controlled path aimed at making
the rough integral map (Z, Z') — (J, Z) iterable, where we use the notation of
Proposition 9.3. In order to make this precise, we need the following important

PROPOSITION 9.5. Let X be a a-rough path on R* with o € ]é,%], nell—2a,l1]
and Z € DK™ a path (o + n)-controlled by X. Then, in the notation of (9.6),

o J=[,ZdX is 2a-controlled by X
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o the map DT> Z+— J € DX is linear and for all Z € D"
[Tlpze < 201+ [XIr, 1 Zo] + T7(1 + K2a4)[Z] pg]- (9.9)
Proof. Recall first (9.5), so that in particular ||J®||sq, ., < +0o. Now JB =712+
Js[i’} satisfies
10 < 12 el X2 et o < 2 S T2 S (9210)

Finally 6.J, = Z, X1, + Js[f] and therefore
187 o <N Z ool XM a1 2 oo I X2 20T | T 2004

Therefore (J, Z, J#) €C* x C* x C2* and we obtain that (J, Z) is 2a-controlled by
X.
We prove now the second assertion. Since 6Zy = Z; X3, + Zs[?}, by (1.40)
16Z lo <NZH oI XM o+ T 1 2P 0

(XY |o+1)(|Z8| + T 2] ).
Now, analogously to (9.10), again by (1.40)

17220 <2 oo X 20+ ]| T 20
ST T 201X ]l20(| Z] + 71|02 ,)-

Therefore, since | X!||o + [|X?||20 = || X]|r,, ,, recall (8.23),

a,d)
162 lla+ 17220 < T T s+ (L + XK, 28]+ T 2] o]

By (9.5) we obtain

lpge = 110Z]|a+|7Zl20 <
< 2(1+ IXIr, )1 Z0] + (1 + Koo n) T Z] pg o]

The proof is complete. O

We note that the estimate of the seminorm [J]pz. in terms of [Z]pa+n rather
than of the norm ||J || pz» in terms of || Z || pe+» plays an important role in Chapter
10 (with n=«), see in particular (10.9). In any case, from (9.9) it is easy to obtain
an estimate of ||J || pz: since Jo =0 and .J§ = Zy, we obtain

1T lpze =1 Zof + [J]pze <
< 2004 Koain) (14 [X|R, o) (LT[ Z ]| pg o0
Therefore the linear operator D" > Z /. 6Z dX € D% is continuous. In fact a

stronger property holds: we have continuity of the map (X, Z) — | O'Z dX. In order
to prove this, we need to introduce the following space

San:={(X, Z): X is a a-rough path, Z € D&},
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and the following quantity for Z € D" and Z € D"
1Z; Z)x 50 = 102" = 62"l + |2 = ZP o,

where 2 =67 — 7'X" and ZP =67 — Z'X, recall (9.7). We endow S, ,, with the
distance (see (8.24) for the definition of dg, ,)

daﬂ?((xa Z)? (Xa Z)) - dRa,d(X7 X) +|ZO - ZO|+|Zé - Z&H‘[Z, Z]X,X,a,n'
Let us note that in the case X=X, we have

[Zv Z]X,X,a,n: [Z - Z]Dg‘{"'”u da,n((X7 Z)7 (X7 Z)) = HZ - ZHD%'H’?
see the definition (9.7) of the norm ||-|| pa+». Note that [Z; Z]x X a.n IS not a function
of Z —Z when X #X.
PROPOSITION 9.6. (LOCAL LIPSCHITZ ESTIMATE) Let o € ]%,%] andn €l —2a,1].
The function Su,n> (X, Z) — (X, [ Z dX) € Ss o is continuous with respect to the
distances dq,, and dg.q- )

_ More precisely, for every M >0 there is Kir,a,y >0 such that for all (X, Z), (X,
Z)eS,,, satisfying

L+ T+ [X]R, o+ 12 || pgtn < M,
setting J := [, Z dX and j::de dX we have
da,a((X,J), (X, J)) <
S2M2(1+ Koain)ldr,, o(X, X) +[Z0 = Zol +1 20 — Zo|+T"Z; Z]x %0,
LM3(1+ Kanry) dan((X, Z), (X, Z)).
Proof. Let X = (X', X?) and X = (X!, X?) be a-rough paths and Z € DL"", Z ¢

D We argue as in the proof of (9.9), using furthermore a number of times the
simple estimate

lab—ab| <|a—al|b|+|a||b—b]. (9.11)
We set for notational convenience ¢ :=T". Then, since §Zy; = Z1 X3, + Zg], by (1.40)

167 = 6710 <1 2" = Z )l KMo+ 1 21X = X e[| 22 — 22,
<KMo+ 1128 — Z81412; 2l s.0) + MK - XL,

since by assumption
124 oo <1231 +€162* |y < (1 +€) (1 Z6] + 1021 ],) < M.
Now Js[f} =Z1X2 + JS[?], so that arguing similarly

177 = T a0 < [T = TP laa + [ 2" X2 = 21 X220 <
<e |7 = T |0y 1 X2 |20 (125 — Zd|+e 102 — 62]|y) + M2 X2 — X250
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Therefore, since 1+ || X'|o + | X% 20 =1+ [|X|, , < M,

16Z = 62 ||o+ || P = TPH||20 <

<€||‘][3} - j[3]||204+77+M2(|Z01 - Zol|+6[Za Z]X,X,a,n+d72a,d<x7 X))
We can estimate in the same way

164 =0 All2ary < 127 = ZP 0yl XMla+ 127 I = X+
1621 = 6 21| I3 |20+ 11621 | X2 — X256,
< 12 Zlxxan |XR,ut [ Zlpsndr, (X, X)
< M([Z; Z)x 5 0.9+ dr., (X, X)).

By the Sewing bound (1.42)
HJ[3] - j[3]H201+77 < K2a+77M([Z; Z]X,X,a,n + dRa,d(Xv X))
We obtain

[T J)x 500 =102 = 6Z|a+ | TP — T30 <
<M2(1 + KQ&-H?)“ZOI - ZOIH_dRa,d(X? X) + g[Z; Z]X,X,a,n]'

Since Jy— Jo=0, J} — Ji = Zy— Z,, we obtain

da,a((X7 J)? (X7 j)) = dRa,d(X7 X) +|ZO - ZDH_[J; j]X,X,a,a
S2MP*(L+ Kzain)l| 2o — Zol+1Z5 — Zj|+dr,, (X, X) +€[Z; Zx x.0.0)-

The second estimate follows since we have assumed that 1+ < M. O

9.4. STOCHASTIC AND ROUGH INTEGRALS

In this section we explore the connections between Itd integrals and Young or rough
integrals. We fix a € ]0, %[ and a realisation of the Itd6 rough path B defined in
(4.3) satisfying a.s. (4.4). We consider an adapted process h: [0, T| — (R%)* with
continuous paths and its It6 integral

t
[t::/ hedB,  telo,T]. (9.12)
0
Let us suppose also that a.s. h is of class C* with 3€]0,1[. By (4.7) we have

t
/ Ohs dB,

By Theorem 4.3, this means a.s. the It6 integral in (9.12) is a generalised integral
of h in dB in the sense of Definition 8.1.

|5Ist—hs]B§t|: S(t_s)a+ﬁ, VO<s<t<T.
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The situation is different according to the value of a+ (. If a+ 3> 1, then we
can apply Theorem 7.1 and we obtain that I; is equal to the integral [ g hsdBs also

in the Young sense. In this regime, we have uniqueness of generalised integrals in
the sense of Definition 8.1. Moreover, by (6.13) we have a.s.

#P—1
Iy = ‘71}'{10 Z hy, (Btz'+1 - Bti)’
i=0
where P={0=tyg<t;<...<tp=t} is a partition of [0, ¢].

If a+ <1, then [ is indeed only one of the generalised integrals as in Definition
8.1: for any f:[0,T] — R of class C**#, then I + f is also such a generalised integral.
In this setting, in order to characterise uniquely the It6 integral among all generalised
integrals, one can use (4.9): if we assume that, almost surely,

|6hs — hiBL| < (r —s)1te,

for some adapted process h' = (h{)iejo, 1] of class C7 with n €]0, 1], then a.s.

t
01 — hs BL, — hi B%| = / (8hsy — hIBL) dB,| < (t — s)? .

By Proposition 9.3, if 2a+ 7> 1 then (I, h) is the rough integral of (h, h') with
respect to B, namely

t
uhmyi/(thdB, t>0,
0

as in (9.6). Moreover, by (6.13) we have a.s.

#P—1
li= |7171\m0 Z [hti B%itiJrl + h%i B%iti+1] )
=0

where P={0=to<t;<...<tlp=t}.

Let (By)i>0 be a Brownian motion in R? and o: R*¥ — RF @ (R%)* be such that
the SDE

t
%=%+/diﬁ& (9.13)
0
It6 integral

has a unique solution for all Z, € R*.

THEOREM 9.7. (LyONS 98, DAVIE 07) A.s. (Zi)t>0 is the only continuous function
Y:[0,00) — R¥ such that Yo= Zy and

Yi—Y,—o(Y,) (Bi— By) — az(Ys)/t(Br _B)@dB,—oft —s) (9.14)

S/

~
Ito integral

(where o5(y) ==V o(y) a(y) ) uniformly over 0<s<t<T for any T >0.
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Here the distribution on R

t
" o(Z)dB,” ;_% o(z)as,

is analytically a singular product, since

ZeC?°, Be(C?".

It is therefore not canonically defined if one only knows ¢(Z) and B.
Let us now consider the SDE

t
Zy= o+ / o(Z,) odB, (9.15)
0
Stratonovich integral

and let us suppose that there is a unique solution for all Z, € R*.

THEOREM 9.8. (LYONS 98, DAVIE 07) A.s. (Zi)t>0 is the only continuous function
Y:[0,00) — RF such that Yo= Zy and

Vi Vi o(0) (B B~ oal¥) [ (B~ B) oy =olt —) (9.16)

J/

N
Stratonovich integral

uniformly over 0 < s <t <T for any T > 0.
Here the distribution on R

d [* d [* 1
7 o(Zy)odBy” =17 o(Zs) o dB :E/ 0(Zs)dBs+ §Tr[02(Zt)]
0 0

It6-Strato correction

is analytically a singular product, since

ZeC>*, Be(C? “.

It is therefore not canonically defined if one only knows ¢(Z) and B.

The main message of Rough Paths is that:

e If we choose the product By Bt, then many products like o(Z;) Bt are canon-
ically defined.

This is a pathwise construction: for sample trajectories (fixed w € 2)
o (Bw), Jy BABy(w)):z0,
o (hs(w))s>o,

we can compute canonically ([ g hsdBs(w))¢>0-



CHAPTER 10

ROUGH INTEGRAL EQUATIONS

In this chapter we go back to the finite difference equation (3.19) in the rough setting
a € (%, %], and we discute its integral formulation that we already mentioned at the
end of Section 7.3. Now that we have studied the rough integral in Chapter 9, we
can indeed show that the equation

ZY Slt=sP, 28 =674 —0(Z) Xk — 0a(Z,) X2, (10.1)

recall (3.18), can be interpreted in the context of controlled paths. Indeed, (10.1)
suggests that, for any candidate solution Z, the pair Z = (Z, (%)) should be con-
trolled by X. At the same time, in order to apply Proposition 9.3 and interpret
(10.1) as an integral equation, we are going to shows that (o(Z),02(7)) is controlled
by X. This is guaranteed by the following

LEMMA 10.1. Let ¢: RF— R’ be of class C? and f=(f, f!) € D3*(RF). Set

o(f):=(o(f),Vo(f) f1),
where ¢(f):0,T) — RE is defined by ¢(f)i:= d(f:) and

V() 0. TI=ROR,  (Vo(f) f)i"=3 9,6°(f)- (f)"

Then ¢(f) € D3(RY).

Proof. Analogously to (3.22) we have for f = (f, f) € D¥(RF), setting fZ:=
5fs— fXYL asin (9.1),

o(NE = o(f) = o(f) — Vol fs) fEXL (10.2)
1
= Volf) 12+ / VO(fut rofa) — VO(£.)] drof

1
= VO S+ [ (=) VAo u ) du 6@ O
0
Then we can write using the estimate |ab—ab|<|a —al||b|+|a||b—b]

IVo(f) [ =Vo(f) f1 < ey — el L o= £ e

< o]
(A2 < ]

FE e [0 2, (10.3)
where
copi=sup [VO(f)l,  epi= sup  [VE(fitudfu). (10.4)
s€[0,T] 5,t€[0,T],u€(0,1]

133
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Therefore (¢(f), Vo(f) f1) is controlled by X. O

This suggests that we can reinterpret the finite difference equation (10.1) as
follows: we look for Z: [0, T] — R* such that Z = (Z,0(Z)) is controlled by X (namely
it belongs to D3¢(IRF)) and

Z,=(Z,,0) +/t0(Z) X,  vtelo,T). (10.5)

By Lemma 10.1, 6(Z)=(c(Z),Vo(Z) Z'), but here Z'=0(Z), so that
0(2)=(0(2),Vo(Z)o(Z))=(0(Z),0:(2)),

)
is controlled by X, where we use the notation oy: R* — RF @ (R%)* @ (R%)*

oa(y):=Vo(y)aly), [oa(y)ljp:= Z Du}(y) o2 (y)

By Proposition 9.3, the integral equation in (10.5) is equivalent to

1ZB <t — 53, ZB =67, — 0(2) XY, — 05(Z,) X2 (10.6)

Viceversa, if Z € C*([0,T]; R¥) is such that ZPl € C3%, then setting Z':=o(Z)
the path Z = (Z,Z') is controlled by X and satisfies (10.5). Therefore, the integral
equation (10.5) is equivalent to the finite difference equation (10.6).

10.1. LOCALIZATION ARGUMENT

PROPOSITION 10.2. If we can prove local existence for the rough differential equation
(10.6) under the assumption that o is of class C? and o,V o,V?c,V30 are bounded,
then we can prove local existence for (10.6) assuming only that o is of class C3.

Proof. Let o be of class C3. Note that ¢ and its derivatives are bounded on the
closed unit ball B:={z € R* |z — Zy| <1}, which is a compact subset of R*. Then
we can find a function ¢ of class C® which is bounded with all its derivatives up
to the third on the whole R* and coincides with o on B. By local existence for &,
there is a solution Z: [0, T] — R* of the RDE (10.6) with o replaced by 4. Since
Z is continuous with Zy € B, we can find 7" > 0 such that Z; € B for all t € [0,7"].
Then o(Z:) =6(Z;) and 09(Z;) = 62(Z;) for all t € [0,7"], so that Z is a solution of
the original RDE (10.6) on the shorter time interval [0,7"]. We have proved local
eristence assuming only that o is of class C3. 0J

10.2. INVARIANCE

In this section we prepare the ground for a contraction argument to be proved in
the next section. We start with an estimate of [o( f)]pza(gre) in terms of [ f]pza g,
under the assumption that o is of class C? with bounded first and second derivative.
We fix D >0 such that

D >max { Vo . V20 }.
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LEMMA 10.3. Let o: R*— RF @ (RY)* be of class C? with |Vo |« + ||V |l < D,
for some D < +o0. Then for some C >0 and any f=(f, f}) € D3(RF)

lo(Hlpzeweery < D([Flpzeme+ [/ ollof la+1012)- (10.7)
Proof. By (10.3) we have
16(Va(f) fla< DU o+ 1L locllOf Nla),
lo ()P |20 < D([ fP |2+ 16£112)-
Therefore, recalling (9.7),

o (Hlpzemeary = 16(Vo(f) Flla+ lo(F)P |2
< D[ flozeey + 1 ocllof lla+ 165 112)-

where, in the last inequality, we apply (9.8). O

We define I': D3 (R¥) — D3 (RF)

rwrzw@m+/&umx,

0

(we know that indeed I' maps D3 (IR¥) into D¥(IR¥) by Lemma 10.1). In other
words, I'(f, f1) is equal to the only (J, J') € D3 such that

JOZZ(b Jslza<fs)a 5Jst_a(fs) Xit_vo—(fs) fsl thECSQ- (108>

We want to construct solutions to (10.6) by a fixed point argument for 7" small
enough. Let M >0 and X such that ||X|,+ ||X?|2o < M and

B:={f=(f, ") eDx (fo, fo) = (Zo,0(Z0)), [ Flpraqmr) <4C}, (10.9)
where
C:=1+M)D|o| - (10.10)

LEMMA 10.4. If T*<eq given by
1

S Ko (15 D)1 F o (1 M Ho-t)
then T'(B) C B. Moreover, setting
L:_2(1+M)Ho]|oo_%, (10.12)
for any f=(f, ') € B we have
max {[[0f [la, 1/ floo} < L. (10.13)

Proof. Let f e B. Setting ¢:=T¢, if € <¢( then in particular

o oo < ol

8(1+ K30)(1+||o|loc)(1+M) =~ 8

eC'<
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We obtain
1 oo < lo(Zo)| +ellof o < Nlolloo + ol Flozemey < 2llo oo < L,
since £04C < ||0 ||oo. Similarly

16flla < el fP a4+l FH ool XMa < 20AC + (|00 + £04C) M
= cdC(14+ M) +|lo]lse M <2(1+ M)|o 0o = L.

Therefore (10.13) is proved.
We prove now that I'( f) € B. We recall that I'( f) = (J,0(f)), where J is uniquely
determined by (10.8). By (9.9)

L(Hlpzemey < 2(1+M)(|Va(Zo) o(Zo)| +e(1 + Ksa)[o(f)]p2e(mr))-
By (10.7) and (10.13) we obtain
[C(f)]p2zamey < 2(1+ M) (Do ||co + (1 + Kza) D([f]p2eme) + 2L%)).

Now (1+M)D||o|le=C, and

D (IRF) ~ D2 = D)
Note that

D+ T =D (14 Mo < (14 M1+ D)1+ o), (10.14)

so that by (10.11)
[D(flpzemry < 2C+2C=4C.

Therefore, I'( f) € B. O

10.3. LOCAL LIPSCHITZ CONTINUITY
We suppose that o is of class C?, with [|o||ec+ |V |loo + [[ V20 [|oo + [| V30 || oo < +00
and we fix D >0 such that
D2 [V lloo+ V20 |oo + [ V0 |-
LEMMA 10.5. (LOCAL LIPSCHITZ ESTIMATE) If T € |0, &9] where €¢ is as in
(10.11), then for f, f € B, with B defined in (10.9), we have the local Lipschitz

estitmate

lo(f) = o(Flpz@ramysy < 2+D+|lollw) [f = Flozeme (10.15)
Proof. By Lemma 10.4 we have for f=(f, f1), f=(f, f)

max {[|6 [la |0f o [| fHlloc} < L
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with L as in (10.12). Now, we want to estimate

lo(£) = o(Plormamyy = [10(Vo(f) f'=Va(f) flla

A

Ho () = o(F)Pas,

B

We set A:=f— f, Al:= f1— 1. A= 21 _ 12 We first estimate A:

0(Vo(f) f'=Va(f) [sl=
=|6(Vo(f))st [t +Vo(fs)0fs— (Vo (f))s [t = Vo [fs)ofs|
<IO(Va(f) = Vo (£))se [l +10(Va())s (fi = F)I+
+(Va(fs) = Va(f))oful +Va(f)(Of = f)sl-
By Lemma 2.8 and (1.40) we have for e =T
A < DIl loo(loAN o+ (I0f o+ N16f la) | Alloo) + 10 lall Alloo +
HAllooll0f o+ 1 AMo]
< D10 la+N0F Nl fHloo + NS Hla) 1A oo + 1L F s l0A 0+
+(1+ellof [la)|0AYo]
< DL+ 6/ ) Alloo + LIIGA[la+(1+ L) [SAY|]

We show now that

B < D((1fPNaat310f N ANoct (N6 o+ 18 o) 1A o+ A2 |20)
< D1 Paat3L) | Alloot 2L [6A o+ A%]|20]. (10.16)

We have by (10.2)
B<||Vo(f) fB=Vo(f) fP]lza+

+/1HV20(f—i—u5f)5f®5f—V%(f—i—uéf)éf@df”za du.
0

With the usual estimate |ab—ab|<|a —a||b|+|a||b—b| we can write

IVo(f) f& = Vo (f) fPaa<

<V (f) = Vo (Dol fZlza+ IV (F)llocll AP 20
<IVZ 0 floo [ AloclLf P20tV o lloo [| AP 20
<D(IA ool f |20+ [A2]|20)-

For the other term
1
[ 19207+ ust)-6f @ 8 = Vo(F +ubf)- 6] £ |2 dus
0

<V lloo O£ IAUIA ot 1A lo) + V2 o oo (10 o+ 116f lla) 10Al
<D IENA ot 10A o) + (10f la + 118 £ 1) 6 A o).

Recalling that ||0A|| < 2||A||ee, we have finished the proof of (10.16).
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Since Ag= fo— fo=0, we have ||A.<e||0A[o. Summing up, we obtain

[0(f) —o(f)]pzemrgmayy=A+ B B
H{BL+e(BL*+ [ flpzamy)) 10A o+ (L +eL) [f — Flpgame }-

On the other hand

10A[e < el AP o + 1A ool X

<
< el| APl +eM[|0A
< e(I+M)[f - f]D%g(]Rk)-
Therefore
[0(f) = o(F)lpzemramay < (e(L+M)er+ o) [f — Flpzeme,

where we set

c1:=D (3L + ([ f]pze(me) + 5L?)), c2:=D(1+¢L).
Since [ f]pzawr) < 4C we obtain, recalling that DL =2C by (10.12),

c1 < D(3L+¢e(4C+5L3))<6C + 2056’(D —l—%)

< 6C+20eC(1+ D)(1+ ||olo) (1 + M)
< 60 +3C=9C,

where we have used first (10.14) and then (10.10)-(10.11). Similarly
e(14+M)ey <9eC(1+M)=9eD||o||oo(1+M)*< 2,

and
co=D+eDL=D+2eC<D+|0] -
Therefore
e(1+M)er+ <24+ D+ ||0]|o-
The proof is finished. O

10.4. CONTRACTION

In this section we prove local existence by means of a fixed point argument, assuming
o to be of class C? and bounded with its first, second and third derivatives, namely
10 |loo+ |V ||loo + | V20 || 0o + || V30 || oo < +00. Therefore the assumptions are stronger
than for the discrete approximation of Section 3.9. However this method has the
advantage of not requiring compactness of the image of I' and therefore this approach
works also for rough equations with values in infinite-dimensional spaces.

Let us fix D > 0 such that

D Zmax{[[V 0o, [[VZ0 [[oc, [[VP0 [[oc}-
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Recalling that B was defined in (10.9), we can now show the following

LEMMA 10.6. If T*€ |0,g0] where € is as in (10.11), then I': B— B is a contraction

for [l pz-

Proof. Let f=(f, f') and f=(f, f!) be in B. Since fo= fo and f} = fd, by the
definitions, see in particular (9.7),

() =T(Hllpzewsy = [L(F) = T(F)lpzeme)-
We set e:=T“. By (9.9)
L(f)— F(f)]@%g(w) < 2(14+M)(1+ Kso) [o(f) — U(f)]b%g(lak)-
Now by Lemma 10.5
lo(f)— U(JE)]Dgg(R@(Rd)*) < 2+ D+ o) [f — f]D%{‘(]R’V)‘
Now 24+ D+ |0 |leo <2(1 + D)(1+4||0||c). Therefore

[L(f) =T (H)lpzemwey < calf — Flpzome),

I

with

1

2

by (10.11). This concludes the proof. O

ca=e2(1+ M)(1+ K34)2(1+ D)(1+ [|o||o0) <






CHAPTER 11

GEOMETRIC ROUGH PATHS

11.1. GEOMETRIC ROUGH PATHS

We recall that the set of smooth paths C! is not dense in C%, but its closure is quite
large, because it contains C* for all @’ > a (see Theorem 7.11). The situation is
different for rough paths: the set R; 4 of canonical rough paths over smooth paths
is again not dense in R, 4, but its closure is a significantly smaller set, that we now
describe.

DEFINITION 11.1. The closure of Ri,q in Ra,q for a € ]%, 1] 15 denoted by Ri,d and
its elements are called geometric rough paths.

For smooth paths f, g € C*, the integration by parts formula holds:

/tf(U) dg(u) = f()g(t) — f(s)g(s) —/tg(U) df(u).

It follows that

t

/t(f(U) = f(s))dg(u) +/ (g(u) = g(s)) df(u) = (f(t) = f(5))(g(t) = g(s)) -

s

We have seen in Proposition 7.8 that the same formula holds if (f, g) € C® x C? with
a+ >1 and the integral is in the Young sense.

Given a smooth path X € C!, define X? by (8.26) as an ordinary integral (i.e.
(X!, X?) is the canonical rough path over X). The previous relation for f = X; and
g =X, shows that

(th)ij + (th)ji = (Xit)i(xslt)j : (11.1)
This relation is called the shuffle relation: for i = j it identifies (X?)¥ in terms of
(X1
| .

(X3)" =5 ((Xa))?, (11.2)
while for i # j it expresses (X?)¥ in terms of (X!)!, (X!)/, (X?)7. Denoting by
Sym(X?) := % (X2 + (X?)T) the symmetric part of X2, we can rewrite the shuffle
relation more compactly as follows:

Sym(X2) :%xl o X!, (11.3)

141
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DEFINITION 11.2. Rough paths in R, 4 that satisfy the shuffle relation (11.1)-(11.3)
are called weakly geometric and denoted by Ry,

Exercise 11.1. For « >% we have R, a=R7% (every rough path is weakly geometric).

We can now show that the closure of Ry 4 in Ra,q is included in R7%,.

LEMI}/IA 11.3. Geometric rough paths are weakly geometric: RE , C Ry% for any
@€ (3,1), with a strict inclusion.

Proof. Canonical rough paths (X!, X?) € R, 4 over smooth paths satisfy the shuffle
relation (11.1)-(11.3). Geometric rough paths are by definition limits in R, 4 of
smooth paths in R 4. Since convergence in R, 4 implies pointwise convergence,
geometric rough paths satisfy the shuffle relation too. This shows that R ;C RS

To prove that the inclusion RS ;C Ry is strict, it suffices to consider a weakly
geometric rough path (X', X?) € RY% which lies above a path X € C* which is not
in the closure of C1. Such a path is not geometric (recall that (X}, X2) — (X!, X?)
in Ra.q implies X} — X! in C¢).

To prove the existence of such a rough path, in the one-dimensional case d=1
it is enough to consider the one provided by (8.19), which is by construction weakly
geometric, since the shuffle relation reduces to X% := %(X;t)? 0]

Although the inclusion R ;CR.% is strict, what is left out turns out to be not
so large. More precisely, recalling that R}, ; is the closure of Ry 4 in R4 a4, we have
a result which is similar to what happens for Holder spaces, with the important
difference that the whole space R, 4 is replaced by R%. The proof is non-trivial
and we omit it. 7

PROPOSITION 11.4. For any %< o' <a<1 one has RS CRE 4 This means that
for any X e Ry, there is a sequence X,, € Ry 4 such that X, — X in Rar 4.

We stress that the notion of “weakly geometric” rough path depends only on the
function X = (X!, X?), but the notion of “geometric” rough path depends also on the
chosen space R, 4. Given a weakly geometric rough path X € R, 4, even though X
may fail to be geometric in R, 4, it is certainly geometric in R,/ 4 for all o’ <a. In
this sense, every weakly geometric rough path is a geometric rough path, of a possibly
slightly lower reqularity.

Finally we note the following

PROPOSITION 11.5. Let o € (%, 1) and X € C*([0,T};RY). The canonical a-rough
path constructed in Lemma 8.16 1s geometric.

Proof. We recall that by the Chen relation

0(X2)4,=6X1,0X],  6(X®)I,=6XI 60X},

sut

so that
S(X2)0 + ()9 = 62, 67, + 6X7, 0,
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On the other hand by a simple computation
S[6X 16X g =0X2,0X], +6X7, 60X,

Therefore (X?)¥ + (X?)% — §X?6X7=4f for some f € Cy such that §f € C3%. Since
2a0> 1, we obtain that 0f =0. O

Note that Proposition 11.5 can be seen as a consequence of the integration by
parts formula satisfied by the Young integral, see Proposition 7.8.
11.2. THE STRATONOVICH ROUGH PATH

Let (By)t>0 be a d-dimensional Brownian motion. We have seen in Theorem 4.2 that

the B= (B!, B?), defined by

t
Bl:= 4B, thzz/ledBT, 0<s<t<T,

with an [t6 integral, yields a.s. an a-rough path for all a € (%,%

the Ito rough path. As in Section 5.1 we can modify this definition and set

), that we can call

t
By := 0 Ba, JBEt:—/JBmodBT, 0<s<t<T,

where o denotes Stratonovich integration, namely

t
E;t:zéBsta Bgt:/(Br_Bs)(gdBr—i_t_TSI? 0<s<t<T,

with I the identity matrix in RY® R¢. By Lemma 8.17, B= (B!, B?) defines a a-
rough path for all o € (%, %), that we call the Stratonovich rough path. Now we show
that B is geometric. We recall that the integration by parts formula reads in this case

t ¢
Bng—BﬁBSJ—/BZodBﬂ+/BﬂodBf;, 0<s<t.
Moreover ° °

t
/ BiodB!= B! (B] — B?).
Therefore ’
(B%)" +(B%)" = BiB{ - B{B]-Bi(B] - B]) - B! (B - BY)
= (Bi—B)(B] - B!) =By, ® B}
As in the remark following Proposition 11.5, also in the case of the Stratonovich
rough path an integration by parts formula is at the heart of the geometric property.

On the other hand, the It6 rough path is not geometric, since the integration by
parts formula with [t6 integrals reads for i =j

t
<Bz>2—<Bz>2:z/B:;dBH(t—s» 0<s<t,
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and moreover we have

t
/ BidBi = Bi(Bi— B).

Therefore by the definition of B2

2(B3)" = (B)*—(B)*—2Bi(Bi— B)) — (t — s)
( —DB)?—(t—>s)
B, — (t —s)
B;t®IB "

Note that for i = j we do obtain (IB%)¥ + (B%)’ = [BL ® BL]¥.

11.3. NON-GEOMETRIC ROUGH PATHS

We next consider generic rough paths. These cannot be approximated by canonical
rough paths over smooth paths. However we have

LEMMA 11.6. Given an arbitrary rough path (X', X?) € R, a4 lying above X, there is
always a weakly geometric rough path (Xl,X2) R&E lying above the same path X.

Proof. It suffice to define X?J = X?j for all i > j and use the shuffle relation to define
the remaining entries of X2, i.e. X%:= (Xl) and X2 := X} X! — X2 for all i < j.
In this way (X', X?) satisfies the shufﬂe relation by construction and it is easy to
check that X2 e C2°.

It remains to prove that the Chen relation (8.21) holds for (X!, X?), that is

OXZ(s,u, t) =X (s, u) X}(u,t).

If 4> j this holds because X ij, so we only need to consider i =j and i < j.

Note that if we define A, =4 fst dgst, for arbitrary f, g:[a,b] — R, we have

5Asut = 5fst 5gst - 5fsu 5gsu - 5fut 5gut
= (5fsu + 5fut) 5gst - 6fsu 6gsu - 5fut 5gut
= 6fsu 5gut + 5gsu5fut

Applying this to f =X and g= X’ yields, for i < j,

5§§?j(s,u,t) = 5(X}X}—X§i)(s,u,t)
= Xi(s,u) Xj(u, t) + X (s, u) XH(u, t) — Xj(s, u) Xi(u,t)
= Xi(s,u) Xj(u,t).

Similarly, choosing f = g=X; gives 6X3(s, u,t) =X} (s, u)X}(u, t). O

As a corollary, we obtain a useful approximation result.
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PROPOSITION 11.7. For any rough path (X', X?) € R4, there is a function f €
C?([0, T; RY@RY) and a sequence of canonical rough paths over smooth paths (X3,
X2) e R4 such that

(X0, X5 +6f) = (XL, X?)  inRava, Va’e(%,a).

Proof. By Lemma 11.6 there is a weakly geometric rough path (X!, 5@) lying
above the same path X. Then X2 — X2=§f for some f e C?*([0,T];R?*® RY), by
Lemma 8.17. By Proposition 11.4, there is a sequence (X}, X2) € Ry 4 such that
(XL, X2) — (X', X?) in Ryrg, for any o < a. It follows that (X}, X2 +0f) — (X!
X2+ 6f) = (X', X?). O

11.4. PURE AREA ROUGH PATHS

Given X € C? we have defined in Definition 3.2 the subset R, q4(X) of rough paths
(X!, X?) € R, 4 lying above X, i.e. such that X' =0X. The case of X' =0 is partic-
ularly interesting:

DEFINITION 11.8. The elements of Ra.4(0), i.e. those of the form X=(0,X?), are
called pure area rough paths.

Pure area rough paths are very explicit. Let us denote by (R%*?)? the subspace
of R¥*? given by antisymmetric matrices.

LEMMA 11.9. X =(0,X?) is a pure area a-rough path if and only if X*>=4f, for
some f€C*([0,T);R¥*?). Such rough path is weakly geometric if and only if X% €
(R*2 4.e. X2 is an antisymmetric matriz, for all s,t € [O,T]Qg; equivalently, we

can take f€C**([0,T]; (R4*%)?).

Proof. Since (0,0) is a rough path, it follows by Lemma 8.17 that for all (pure area)
rough paths (0, X?) we have X?=4f for some f €C?*. We may assume that f(0)=

(just redefine f(¢) as f(t) — f(0)). Since X' =0, the shuffle relation (11.3) becomes
Sym(X2) =0, i.e. X2 is an antisymmetric matrix. Then f(t) = f(t) — f(0) = X3, is
antisymmetric too. 0

Note that the set R,,q4(0) of pure area rough paths is a vector space, because
the Chen relation (8.21) reduces to the linear relation 6X?=0. Here is the link with
general rough paths.

PROPOSITION 11.10. The set Ra.a(X) of rough paths laying above a given path X
is an affine space, with associated vector space R, 4(0), the space of pure area rough
paths.

Proof. Given rough paths X = (X!, X?) and X = (X!, X?) lying above the same
path X, their difference X — X = (0, X? — X?) is a pure area rough path, because it
satisfies the Chen relation §(X2 —X2) =0 (since 0X?= X! ® X! =§X?).
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_ Alternatively, Lemma 8.17 yields X* — X2=§f for some f€C?>** hence (0,X2—
X?) is a pure area rough path by Lemma 11.9. 0J

We have seen in Section 8.8 how pure area rough paths can arise concretely as
limits of canonical rough paths associated with smooth paths.

11.5. DO0OSS-SUSSMANN

In this section we suppose that o: R¥— R*¥ @ (R9)* is such that for alli € {1,...,k} the
d x d matrix ((02)});e is symmetric, namely by (3.5) we have the Frobenius condition

k ; k
o8 &7] )3 o5(y) 8” VyeRF i€ {1, k), le{l,.d}. (11.4)

=1 a=1 a

If we introduce the vector fields (X;);—4

)

,,,,,

X; = Z ok rec(my,

then the Frobenius condition (11.4) is equivalent to the commutation relation
XjOXg:XgOXj, j,ZE{l,,d}
Indeed:
k k
of y O°f |, 00f Of )
XjoX))f= Xl ot =— | = ojo +o
(XjoXf =2 ( faya) Zl( $o Bydm T By, Dy,

a,b

The first term in the latter expression is symmetric in 7, ¢, while the second is
symmetric for all f € C*(IR¥) if and only if the Frobenius condition (11.4) holds.

Example 11.11. For k=d=2 we 0: R> —» R?® (R?)*
U}(Z/) = L=} Ui,

namely
0
J(y)z( %1 o ) y=(y1,42) ER%
Then
doj(y)
a—ya— ﬂ{z:]:a}a
and

which is clearly symmetric in (7, ¢). In this case the Frobenius condition (11.4) is
satisfied.

Example 11.12. For k=d =2 we consider 0: R? - R?*® (R?)*

0
U(y):( %2 m >7 y:(y17y2>€R2'
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In coordinates,
oi(y) = Ljimj=1y Y2 + Ljimj=2} Y1.
If we compute the partial derivative

90;(y)
=1{izjta),  a€{L,2},
g, Li=ita) {1,2}

we obtain the expression for oy

[\

02 J@ l{z j#e} Ye

Note that o3 is not symmetric with respect to (j, ) i.e. (02)k # (02)};, namely it
does not satisfy the Frobenius condition (11.4).

If the Frobenius condition (11.4) holds and X = (X!, X?) is a weakly geometric
a-rough path, we obtain

d
(02(y) X?)" = Z (02)an(y) (X2)"
= Y gl (b))

8

1 d

_ 52 02 ab XQ)ab (XQ)ba}
a,b=1
1 d

= 5D (o2)u(y) (X)X’

= S(oaly) (X © X))’

In this case it turns out that the solution Z to the associated finite difference
equation is a function of X! alone since (3.19) is equivalent to

1
2
Arguing as in the proof of the proof of Theorem 3.11, it can be seen that the map
(Zo, X')  Z is continuous.

\ZB| < |t — )P, ZB =674 — 0(Z) XY — = 09(Z,) (XL, @ XL,). (11.5)

PROPOSITION 11.13. Let M >0 and let us suppose that X is a weakly geometric
rough path and o: RF — R* @ (RY)* satisfies the Frobenius condition (11.4). If

max {|0(Zo)| + |0 (Zo)| + |oa(Z0) ], XM las [IXM|a} < M,
then for every T >0 there are 7o p.1r, Crr.p,r >0 such that for T € 10, Tas b 7]

HZ - ZHOOJ"" ||5Z - 52Ha,7’+ HZ[Q] - Z[z]HM,T<
< Ov,p,1 (1Z0 = Zo|+ X! = X|a).
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In particular, the solution to (3.19) depends only on X' if X is a geometric rough
path.

Proof. The proof follows from the same arguments as in the proof of Theorem
3.11, if one uses the algebraic relations for YB:= ZB — ZBl and 6YBl .= 528 — 57!
obtained by replacing X2 with %Xl ® X!, as in
1
Zo = 0Zu—0(Z) X}~ 5 0a(Z) (X5 0 X)),

sut

57, = (0(Z,) = 0(Z) = 03(Z) X)Xy 5 602 Z)ou (K 0 XLy,
and analogously for ZP, §Z8. One can also note the simple estimate
IX! @ X! = X @ X 20 < X = X fa(I1XH o+ XM a).
The rest of the proof is identical to that of Theorem 3.11. 0J

Remark 11.14. Doss and Sussmann prove a continuity result in the sup-norm.

11.6. LACK OF CONTINUITY (AGAIN)

In section 11.5 we have seen that, under appropriate conditions on o, the map
(Zo, X1) +— Z is continuous if X = (X!, X?) varies in the class of weakly geometric
rough paths. In this section we show that this is not a general fact, and the continuity
result of Proposition 3.11 can not be improved in general.

More precisely, we consider the sequence X,,= (X}, X2) such that X}, —0, X2 —
XZ=£0 constructed in Section 8.8 and we provide an explicit o: R*— R* @ (R?)* one
such that the solution Z" to the controlled integral equation

t
Zp_zo+/a(zg)xn(s) ds,  t>0,
0

is not a continuous function of (Zy, X1) (but only of (Zy, X!, X?)).
We consider : R? — R?® (R?)* as in the Example 11.12:

0
0(@/):—< %2 " > y=(y1,y2) eR?

Moreover we consider the rough paths X, and X considered in Section 8.8 and given
by X = (0, (t —s)J), where J is the 2 x 2 matrix

0o L
J = 2
L)
2

while X, is the canonical rough path associated with the smooth function path

1
X,(t)=n 2(cos(nt),sin(nt)), t > 0. Since X,,— 0 in the sup-norm as n— oo, if the
map X — Z were continuous then we would expect Z,, to converge to a constant
function Z = Z,, solution of Z=0(2)-0.
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Since X, converges to X as a a-rough path for a € (%,%), the solution Z" to the
difference equation above converges in C® to the solution Z to the equation

82— 0(Z) XY — 09(Z)X2, = o(t — 5).
Since X! =0 and X2 = (t — 5).J, we obtain that
07t — (t — s)oa(Zs) T =o(t — s).
Then, recalling that (02)%(y) = L= jLe} ye, We can compute

(o2(y) J)i = (@)éb(@ﬁa = %(]l{i:Z} y1— Lg=1) Yo) = (Jy)l

a,b=1
Therefore
0 — (t—s)JZs=o(t —s),
which means that
Zy=JZ = Zy=exp(tJ)Zy,  t>0.

Since we have already shown that X!=0, we obtain that Z:[0, 7] — R?, limit of

Z™ as n— 00, satisfies
170 —1 7 d
Zt—Zo+/()§<1 0 ) sads.

Then if Zy#0 the solution Z is not constant.

11.7. THE ROUGH INTEGRAL IN THE GEOMETRIC CASE

We have seen in Proposition 7.8 that the Young integral satisfies the classical inte-
gration by parts formula. We consider now a weakly geometric rough path X and
two paths f=(f, f!),g= (g, ¢") which are 2a-controlled by X. We set

t t
Ft::Fo+/fsts, Gt::Go+/gsts, £>0.
0 0

We want to show that, under the assumption that X is weakly geometric, an anal-
ogous integration by parts formula holds, namely:

t t
FG = FyGo+ / F, g.dX, + / G, f,dX,.
0 0

4

g

Iy
We start by showing that (F} gs, Fi gs + fs9s)sejo,1) is 2a-controlled by X:
tht _Fsgs = Ftégst+gs($Fst
- Fs 5gst + [F 5Fst +5Fst 5gst
- (FS gsl + fsgs> Xslt+ O(|t - S|2a)'
The same holds of course for (f, Gy, Gsfd + fs gs)sefo,7]- Now we know that [ is the

integral uniquely associated with the germ

Ast: (Fsgs+ Gs fs)X;t_‘_ (Fs gsl + Gsfsl + 2fs gs)th-
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By the weakly geometric condition, we have 2X2 = (X!,)? and therefore we obtain
Ast= (FS gs + G fS>X§t + (Fs gs} + Gsfsl)th + f5 9s (Xslt>2-
Now we write

5(FG)5t — 6F5th+F55GSt
- Gs 5Fst + Fs 6Gst + 6Fst 5Gst
= (Fs Js + Gs fs)X;t + (Fs gsl + Gsfsl)th + 5Fst 6Gst + O(‘t - s‘?,a)'

Now since X2 € C3*

5Fst 5Gst = (fsxét + fleEt)(gsxét + ggX?t) + O(lt - S|3a)
- fsgs(Xslt)2+O(|t_S|3a)‘

Then we obtain that
PGy = Agq+O(|t —s]?).
Since 3a > 1, it follows that FiG; — FyGo=1I; for all t > 0.

Example 11.15. It is well known that the Stratonovich stochastic integral satis-
fies the above integration by parts formula. This section extends this result to all
(weakly) geometric rough paths.



CHAPTER 12

ALGEBRA

Let us recall that a d-dimensional a-rough path X = (X', X?) with « >% is such that
Xt takes values in G:=R?% x (R?® R?) for all 0 < s <t <T. We want to show that
the Chen relation (8.21) has a very natural algebraic interpretation if we endow G
with a suitable group structure.

12.1. A NON-COMMUTATIVE GROUP

We denote in the following generic elements x € G =R x (R?® RY) by x = (21, ¥2)
with z; € R? and z, € R® R%. We define an operation x: G x G — G as follows: for
z,y € G with == (xy,23) and y = (y1, y2) we set

Ty :=2z= 21, 29), 21:=21+ Y1, 20 =To+ Yo+ T1 R Y1.

It is simple to see that (G, *,1), is a group, where 1:=(0,0). First associativity of
the product:

(xxy)xz = (1+p+2,02+ 0+t @ i+ (v1+ 1) ® 21)
($1+y1+21,$2+y2+2‘2+$1®(y1+2’1)+y1®21)
= x*(y*z).

Now the fact that 1 is the neutral element is obvious. Finally the inverse is given
explicitly by

oY = (—xy, —zy + 21 @ 11). (12.1)

Let us note that (G, ,1) is non-commutative for d > 2, since in general z; ® y; #
Y1 T1.

Now we want to interpret the Chen relation (8.21) in this setting. Given a a-
rough path X = (X! X?), we write

X: [0, T]Zg — @G, X 1= (X;t, th).
Then the Chen formula (8.21) yields
Xt = Xgurx Xyt 0<s<t<T.
Indeed it is enough to note that for 0 <s<u <t T

th = X;u + X%m th = Xgu + Xit + Xiu ® leuf-
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Note that we also have, by the analytical estimates |XZ,| <[t — s|* that X =1.

12.2. SHUFFLE GROUP

We can consider the subset H C G given by
H:={x=(r1,20) €G: xp41] =010 11}, (12.2)

where (a ®b)T:=b®a for a,be R
We can see that H is a subgroup of G: if x,y € H then z:=x*y satisfies
et = Tty n @yt +ys @
= T+ N+ 10 Y1+ Y1 Q2
= (m1+y) @@ +y)=2102.

Moreover if z € H then its inverse y = z*(~1) € G satisfies

Yoty = —rat T Qi — T3+ Q1
= —x1®x1+2x1®x1
= (-2) @ (—=21) =1 O u
so that 2*(~Y € H. Finally 1 € H. Therefore H is indeed a (proper) subgroup of

G. Moreover by (12.1) and the relation defining elements of H we have the simpler
expression for the inverse

2 Y = (—z, 27), reH. (12.3)
Indeed for x € H we obtain
($17$2>*(—$1,$g) - (_Ilvxg)*(xlax2>

= (961—$179€2+962T—£U1®$1)
= (0,0).

Therefore by (11.1) we have the following

LEMMA 12.1. A rough path X is weakly geometric if and only if the associated map
X: 0,712 — G takes values in H.

12.3. UNORDERED TIMES

As we explained at the beginning of Chapter 8, given X! =§X € C¢, a choice of X?
is equivalent to a choice of a generalised integral I, = [ Ot X;®dX;, t€0,T], as in
Definition 8.1, namely I:[0,7] — R¢® R¢ such that I,=0 and

5]st_Xs®6Xst:X§t7 XQEC%Q (124)

An interesting feature of the equality in (12.4) is that the left hand side makes sense
also for s >t, which suggests how to define X2, for s >t in a way which is consistent
with the properties of (Xft)sgt, in particular the Chen relation.
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We define therefore, given X = (X!, X?) and I as above, for s > t:
XL = 60X, =X},
X3 = 0Ly — X, ®0 X =—X7 — Xi, @ XU,
where the latter equality follows from
0 — Xs @0 Xy =— (0115 — Xy ® 0Xys) — 0Xps @ 0 Xy
We can now compute for s, u,t € [0,7]:
XeurXur = (0Xou, 0L — X @ 8 X )% (0 X, 6Lt — X0 @ 6 Xt

= (60X, 0l — Xs®0 X, — Xy @ 0 Xyt + 0 X0, ® 0 X )
= (6Xst76]st_Xs®5Xst):Xst.

Therefore with the above definition we obtain the Chen relation for unordered times
Xt = Xou * Xt Vs, u,te0,T). (12.5)
Moreover, if |[X§| S|t —s]® and |[XZ| S|t — s]?* for 0< s <t < T, we have
Xal Slt—sl IXEIS—sPe, Vs,tel0,T].

By (12.1) we see also that with this definition we have Xy, = (X,,)*(™) for all s,
t. In particular we obtain that

Xst - (XOS)*(_ 1)*X0t7

namely we realise that the two-parameter map X:[0,7]?>— G can be recovered as a
purely algebraic function of (Xot)o<i<r. Actually, for any u € [0, 7] we have likewise

Xst - (Xus)*(_l)*xut-
For this reason, one can look for a map X:[0,7] — G such that
X =XVsX,,  s,tel0,7] (12.6)

From the above, we see that any map [0,7]3t— X,: € G, for a fixed u € [0, 7], has
this property. On other hand, (12.6) is also equivalent to

X = Xo* Xy,

and for any g € G setting X7 := gxXy; we have a X9:[0,7] — G that satisfies (12.6)
and X§ = g, since Xgp=(0,0) =1, the neutral element in G.
By the definitions, we have Xo; = (6 Xot, [t — Xo ® 0Xo), 9= (g1, g2) and

X7 = gxXor = (91 + 6 Xot, go + It + (91 — Xo) ® 0.Xoy). (12.7)

For example a natural choice is for g=(Xj,0) and in this case X{ = (X}, I;). Another
natural choice is g=1=(0,0) and then X{= (0Xo, I; — Xo® 0 Xo¢).

If now X is geometric, namely if Xy, € H for all s,¢ as in (12.2), then it is natural
to require that X; € H as well for all t. For X; = gx X, this is equivalent to g € H.
Note that if X0 then (X, 0) ¢ H and therefore in this case (Xi, ;) ¢ H, while
(0 Xot, It — Xo® 0 X)) € H, which corresponds to the case g=1.
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The reason why we discuss this in detail is the following: instead of writing the
theory of rough paths in terms of the two-parameter function (Xg)o<s<t<r, We may
have written everything in terms of a choice of (X;)o<t<r in G as above. However
we must still how the analytical constraints on (X)o<s<t<r are expressed in terms
of (Xy)o<t<r: these can be translated by (12.6) and (12.7) back to

10X | S|t — 5], |01y — X, @0 Xo| S|t — s, 0<s<t<T,

namely the property of I being a generalised integral of X ® dX.

12.4. AN EXAMPLE: THE BROWNIAN CASE

Let consider the It6 Brownian rough paths in R¢
t
B = B, — B, Bft:/ (B, — B)®dB,,  0<s<t<T.

Note that if s>t we can not use naively this definition for B2 since the stochastic
integral [ :(BS — B,) ®dB, is anticipative, namely (B; — B, )i<r<s is not adapted to
the filtration of (B,);<r<s, and therefore some care is required. Let us rather apply
the algebraic definition By, ::IB:S(A) of Section 12.3, namely for 0 <t <s<T we set

By = B,— B,
B = —[(Br — B) ®dB, + (Bs — By) ® (Bs — By)
= /SdBT@)(Br—Bt)qL(s—t)I,
t
where I is the identity matrix of R% In other words
(B2) = [ 4B (B, ~B)+ (s= ),

Here a one-parameter function B: [0, 7] — G such that By, =B xB, is given by

t
]Bt:<Bt,/BT®dBT>, £>0.
0

Let us consider now the Stratonovich case:
t
BlL,=B,~ B, 1‘B§t=/ (B,~B)®odB,,  0<s<t<T.
Then we obtain from the definitions of the previous section for 0 <t <s < T
Egt = Bt_357
and if one applies (12.3) then we have for 0 <t <s<T

By = (Bl = / odB, ® (B, — By),

t
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namely

(B2)4 = / (B, — By)i odB.
t

Here a one-parameter function B: [0, 7] — H such that I_Bst:I_B;(_l)*I_Bt is given by

t
Bt:(Bt,/ BT®OdBT), t>0
0

As discussed at the end of Section 12.3, with this definition B; € H for all ¢ € [0, T
as long as By=0.

12.5. SEWING FOR UNORDERED TIMES

Now, suppose that we have a general germ A: [0, T]> — R. We suppose that it
satisfies for some n>1

| Ayt — Agu — Al < Ca(lu— s V|t —ul)”, s,u,t€0,7T].

In particular, the restriction A:[0,7]% — R is such that dA: [0,7]2 — R belongs to
C4. By the Sewing Lemma, we have a unique choice for (I, R) such that

[O:()u 5[st:Ast+Rst7 ’Rst|§|t_s|n7 0<3<t<T

We want to extend R to a function on [0,7']? in such a way that the previous formula
holds over [0, T]% We set

Ry=—Ay—Ay— Ry, 0<t<s<T. (12.8)
Since 01,3 = —0dl, we have for t < s
Ry =—Ag— (0115 — Rys) — Res=—Agp — 6115 =01y — Ay,
so that 61 = A+ R on [0, T]%. Moreover, since A,s=0 by Remark 6.6,

| Rst| < [(0A)sts] + | Res| < (Cp +1) Ca |t — 5|7, 0<t<s<T. (12.9)

12.6. CONTROLLED PATHS

We define
S:={1}u{1,....,dfU({L,...,d} x{1,...,d})
and 7 as the linear span of S. Given g€ G=R*@®(R?®R?) we define [}: 7 — T
[L1:=1, Lyi:=i+(g")'1

Lo (i, 9) =, 3) + (") 5+ (977 1.
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Then we have the formula for z,y € G
[ol,i = z‘+(g1)i]l+(h1)i =i+ (g'+h') 1=Thyt
LoTi(i,f) = (5,7)+ (") -+ (g9 1+ (j+(g") 1)+ (W1
(i,7) +(g' +h)" G+ (g +h*+ht @ g1)" 1 =Thy (3, 5),

namely
FgOFh:Fh*g, Vg,hEG,

and therefore the map G5 g— I, € End(7) is an anti-morphism of semigroups from

(G, ) to (End(7), o). Since I{g,0)=1, we obtain
(Fg)_l = Fg*(q).
Given a a-rough path (Xg)s ¢ejo,r) on RY, we set I 7T — T as I,,, namely
Fst]]-:: ]l, FStZ:Z—‘—(X%S)z]l,
Lot (4, 5) = (i, ) + (X4)" j+ (XZ)V 1.

Note the somewhat strange choice of Xy, instead of X; everywhere, which is due to
the anti-morphism property. Then by the Chen relation (12.5)

Lo Tue =Tk, o Ix,, = Ixpunxe, = Iy, = Tt
for all s,u,t€[0,T]. In particular, by the above formula for the inverse of I},
(L)' =T,

which shows the importance of defining X;; for all s,¢ € [0,7] and not only for s <t
(see also below).

Let us consider a controlled path (Z, Z1) € C%([0,T]) x C*([0,T]; (R%)*), namely
we suppose that

|5 Lot — Zsl X§t| < |t - 5|2a>

where according to the rule on contraction of tensors we have
d

ZIXy=>  (Z)i(Xy)"

=1

d
Fr=21+) (Z1)i
=1

Now we can let the I§; operators act on F"

We set F:[0,T]—T

d
Do Fo=ZA+ Y (21 (i+ (X3)'1)

1
so that =

U

Fy-TwFo=(Z— Z.— Z: X)L+ Y (28— Z})ii.
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Now the coefficients of this expression satisfy
Ze— Z— Zi Xl St —sPe, | Zi = Z5| St — s

Here we understand the reason for the "strange" definition of I} in terms of Xg;
instead of Xy,: this is the correct definition to obtain the correct expression in the
first bound.

Viceversa, given

d
F:[0,T)—T, Ft:ft1]l+z (fi)i 1,
i=1

and

d
Ft_Ftst: ft£ﬂ+z (ftl— fsl)i {
the condition =t

[fsl Slt=sPe [fi = KISt —s]

is equivalent to (f, f!) being a controlled path.

We can note that in this context it would be enough to define (I;)s ¢cjo,77 on
the linear span of {1,i2:¢=1,...,d}, which is actually invariant under the action of
(Fst)s,tG[O,T}-

Let us now consider a controlled path (7, Z!) and its integral (I, Z) with respect
to X as in Proposition 9.3. We can now define U: [0, T]+— T

d d
Us=I1+> (Z)'i+ Y (ZD)7(i,))
i=1 4,5=1

and compute as for F: 7 +— 7T above

Ut_FtsUs == (Ut_Us_ZsX§t_Z§X§t)ﬂ

d
+Y (Ze—=Zo=ZEXY)i+ Y (21 =77 ().

i=1 i,j=1






CHAPTER 13

NEW TOPICS

Regularization by noise

Stochastic sewing lemma

Machine learning (Rama Cont, rough neural)
Unbounded rough drivers

Equazioni riflesse

Rough Gronwall

BM in magnetic field

Parte algebrica, alberi, prodotto tensore, rough equations
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