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Chapter 1

The Sewing Bound

The problem of interest in this book is the study of differential equations driven by
irregular functions (more specifically: continuous but not differentiable). This will be
achieved through the powerful and elegant theory of rough paths. A key motivation
comes from stochastic differential equations driven by Brownian motion, but the
goal is to develop a general theory which does not rely on probability.

This first chapter is dedicated to an elementary but fundamental tool, the Sewing
Bound , that will be applied extensively throughout the book. It is a general Hölder-
type bound for functions of two real variables that can be understood by itself,
see Theorem 1.9 below. To provide motivation, we present it as a natural a priori
estimate for solutions of differential equations.

Notation. We fix a time horizon T > 0 and two dimensions k, d∈N. We use “path”
as a synonymous of “function defined on [0, T ]” with values in Rd. We denote by |·|
the Euclidean norm. The space of linear maps from Rd to Rk, identified by k× d
real matrices, is denoted by Rk⊗ (Rd)∗≃Rk×d and is equipped with the Hilbert-
Schmidt norm |·| (i.e. the Euclidean norm on Rk×d). For A∈Rk⊗ (Rd)∗ and v∈Rd

we have |Av |! |A| |v |.

1.1. Controlled differential equation

Consider the following controlled ordinary differential equation (ODE): given a con-
tinuously differentiable path X : [0, T ]→Rd and a continuous function σ:Rk→Rk⊗
(Rd)∗ , we look for a differentiable path Z: [0, T ]→Rk such that

Żt=σ(Zt) Ẋt , t∈ [0, T ]. (1.1)

By the fundamental theorem of calculus, this is equivalent to

Zt=Z0+

∫

0

t

σ(Zs) Ẋsds , t∈ [0, T ]. (1.2)

In the special case k=d=1 and when σ(x)=λx is linear (with λ∈R), we have
the explicit solution Zt= z0 exp(λ (Xt−X0)), which has the interesting property of
being well-defined also when X is non differentiable.

For any dimensions k, d∈N, if we assume that σ(·) is Lipschitz, classical results
in the theory of ODEs guarantee that equation ( 1.1)-( 1.2) is well-posed for any
continuously differentiable path X, namely for any Z0∈Rk there is one and only one
solution Z (with no explicit formula, in general).
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Our aim is to extend such a well-posedness result to a setting where X is contin-
uous but not differentiable (also in cases where σ(·) may be non-linear). Of course,
to this purpose it is first necessary to provide a generalized formulation of (1.1)-(1.2)
where the derivative of X does not appear.

1.2. Controlled difference equation

Let us still suppose that X is continuously differentiable. We deduce by (1.1)-(1.2)
that for 0! s! t!T

Zt−Zs=σ(Zs) (Xt−Xs)+

∫

s

t

(σ(Zu)−σ(Zs)) Ẋu du, (1.3)

which implies that Z satisfies the following controlled difference equation:

Zt−Zs=σ(Zs) (Xt−Xs)+ o(t− s), 0! s! t!T , (1.4)

because u '→σ(Zu) is continuous and u '→Ẋu is (continuous, hence) bounded on [0,T ].

Remark 1.1. (Uniformity) Whenever we write o(t− s), as in (1.4), we always
mean uniformly for 0! s! t!T , i.e.
∀ε> 0 ∃δ> 0: 0! s! t!T , t− s≤ δ implies |o(t− s)|≤ ε (t− s) . (1.5)

This will be implicitly assumed in the sequel.

Let us make two simple observations.

• If X is continuously differentiable we deduced (1.4) from (1.1), but we can
easily deduce (1.1) from (1.4): in other terms, the two equations (1.1) and
(1.4) are equivalent .

• If X is not continuously differentiable, equation (1.4) is still meaningful ,
unlike equation (1.1) which contains explicitly Ẋ.

For these reasons, henceforth we focus on the difference equation (1.4), which pro-
vides a generalized formulation of the differential equation (1.1) whenX is continuous
but not necessarily differentiable.

The problem is now to prove well-posedness for the difference equation (1.4).
We are going to show that this is possible assuming a suitable Hölder regularity on
X, but non trivial ideas are required. In this chapter we illustrate some key ideas,
showing how to prove uniqueness of solutions via a priori estimates (existence of
solutions will be studied in the next chapters). We start from a basic result, which
ensures the continuity of solutions; more precise result will be obtained later.

Lemma 1.2. (Continuity of solutions) Let X and σ be continuous. Then any
solution Z of ( 1.4) is a continuous path, more precisely it satisfies

|Zt−Zs|!C |Xt−Xs|+ o(t− s) , 0! s! t!T , (1.6)

for a suitable constant C <∞ which depends on Z.
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Proof. Relation (1.6) follows by (1.4) with C := ∥σ(Z)∥∞ = sup0!t!T |σ(Zt)|,
renaming |o(t − s)| as o(t − s). We only have to prove that C <∞. Since σ is
continuous by assumption, it is enough to show that Z is bounded .

Since o(t− s) is uniform, see (1.5), we can fix δ̄ > 0 such that |o(t− s)|! 1 for
all 0! s! t! T with |t− s|! δ̄. It follows that Z is bounded in any interval [s̄, t̄]
with |t̄ − s̄|! δ̄, because by (1.4) we can bound

sup
t∈[s̄,t̄]

|Zt|! |Zs̄|+ |σ(Zs̄)| sup
t∈[s̄,t̄]

|Xt−Xs̄|+1<∞ .

We conclude that Z is bounded in the whole interval [0, T ], because we can write
[0, T ] as a finite union of intervals [s̄, t̄] with |t̄ − s̄|! δ̄. "

Remark 1.3. (Counterexamples) The weaker requirement that (1.4) holds for
any fixed s∈ [0, T ] as t↓s is not enough for our purposes, since in this case Z needs
not be continuous. An easy conterexample is the following: given any continuous
path X: [0, 2]→R, we define Z: [0, 2]→R by

Zt :=

{
Xt if 0! t< 1,
Xt+1 if 1! t! 2.

Note that Zt−Zs=Xt−Xs when either 0!s! t<1 or 1!s! t!2, hence Z satisfies
the difference equation (1.4) with σ(·)≡ 1 for any fixed s ∈ [0, 2) as t↓s, but not
uniformly for 0! s! t! 2, since Z is discontinuous at t=1.

For another counterexample, which is even unbounded, consider

Zt :=

⎧
⎨

⎩

1
1− t if 0! t < 1,

0 if 1! t! 2,

which satisfies (1.4) as t↓s for any fixed s∈ [0, 2], for Xt≡ t and σ(z)= z2.

1.3. Some useful function spaces
For n# 1 we define the simplex

[0, T ]!n := {(t1, . . . , tn): 0! t1! · · ·! tn!T } (1.7)

(note that [0, T ]!1 =[0, T ]). We then write Cn=C([0, T ]!n ,Rk) as a shorthand for the
space of continuous functions from [0, T ]!n to Rk:

Cn :=C([0, T ]!n ,Rk) := {F : [0, T ]!n→Rk : F is continuous}. (1.8)

We are going to work with functions of one (fs), two (Fst) or three (Gsut) ordered
variables in [0, T ], hence we focus on the spaces C1, C2, C3.

• On the spaces C2 and C3 we introduce a Hölder-like structure: given any
η ∈ (0,∞), we define for F ∈C2 and G∈C3

∥F ∥η := sup
0!s<t!T

|Fst|
(t− s)η , ∥G∥η := sup

0!s!u!t!T
s<t

|Gsut|
(t− s)η , (1.9)
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and we denote by C2
η and C3

η the corresponding function spaces:

C2
η := {F ∈C2: ∥F ∥η<∞} , C3

η := {G∈C3: ∥G∥η<∞} , (1.10)

which are Banach spaces endowed with the norm ∥·∥η (exercise).
• On the space C1 of continuous functions f : [0, T ]→Rk we consider the usual

Hölder structure. We first introduce the increment δf by

(δf)st := ft− fs , 0! s! t!T , (1.11)

and note that δf ∈ C2 for any f ∈ C1. Then, for α ∈ (0, 1], we define the
classical space Cα= Cα([0, T ],Rk) of α-Hölder functions

Cα :=
{
f : [0, T ]→Rk: ∥δf ∥α= sup

0≤s<t≤T

|ft− fs|
(t− s)α <∞

}
(1.12)

(for α=1 it is the space of Lipschitz functions). Note that ∥δf ∥α in (1.12)
is consistent with (1.11) and (1.9).

Remark 1.4. (Hölder semi-norm) We stress that f '→∥δf ∥α is a semi-norm on
Cα (it vanishes on constant functions). The standard norm on Cα is

∥f ∥Cα := ∥f ∥∞+ ∥δf ∥α , (1.13)

where we define the standard sup norm

∥f ∥∞ := sup
t∈[0,T ]

|ft|. (1.14)

For f : [0, T ]→Rk we can bound ∥f ∥∞≤ |f(0)|+ T α ∥δf ∥α (see (1.39) below),
hence

∥f ∥Cα≤ |f(0)|+(1+T α) ∥δf ∥α . (1.15)

This explains why it is often enough to focus on the semi-norm ∥δf ∥α .

Remark 1.5. (Hölder exponents) We only consider the Hölder space Cα for
α∈ (0,1] because for α>1 the only functions in Cα are constant functions (note that
∥δf ∥α<∞ for α> 1 implies ḟt=0 for every t∈ [0, T ]).

On the other hand, the spaces C2
η and C3

η in (1.10) are interesting for any
exponent η ∈ (0,∞). For instance, the condition ∥F ∥η<∞ for a function F ∈C2
means that |Fst|!C (t− s)η, which does not imply F ≡ 0 when η> 1 (unless F = δf
is the increment of some function f ∈C1).

In our results below we will have to assume that the non-linearity σ:Rk→
Rk⊗ (Rd)∗ belongs to classes of Hölder functions, in the following sense.

Definition 1.6. Let γ > 0. A function F :Rk→RN is said to be globally γ-Hölder
(or globally of class Cγ) if

• for γ ∈ (0, 1] we have

[F ]Cγ := sup
x,y∈Rk,x=/ y

|F (x)−F (y)|
|x− y |γ <+∞
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• for γ∈(n,n+1] and n={1,2,...}, F is n times continuously differentiable and

[D(n)F ]Cγ := sup
x,y∈Rk,x=/ y

|D(n)F (x)−D(n)F (y)|
|x− y |γ−n <+∞

where D(n) is the n-fold differential of F.

Moreover F :Rk→RN is said to be locally γ-Hölder (or locally of class Cγ) if

• for γ ∈ (0, 1] we have for all R> 0

sup
x,y∈Rk,x=/ y
|x|,|y |!R

|F (x)−F (y)|
|x− y |γ <+∞

• for γ∈(n,n+1] and n={1,2,...}, F is n times continuously differentiable and

sup
x,y∈Rk,x=/ y
|x|,|y |!R

|D(n)F (x)−D(n)F (y)|
|x− y |γ−n <+∞.

We stress that in the previous definition we do not assume F of D(n)F to be
bounded. The case γ=1 corresponds to the classical Lipschitz condition.

1.4. Local uniqueness of solutions

We prove uniqueness of solutions for the controlled difference equation (1.4) when
X ∈ Cα is an Hölder path of exponent α> 1

2
. For simplicity, we focus on the case

when σ:Rk→Rk⊗ (Rd)∗ is a linear application: σ ∈ (Rk⊗ (Rd)∗)⊗ (Rk)∗, and we
write σZ instead of σ(Z) (we discuss non linear σ(·) in Chapter 2).

Theorem 1.7. (Local uniqueness of solutions, linear case) Fix a path
X: [0, T ]→Rd in Cα, with α∈

]1
2
, 1
]
, and a linear map σ:Rk→Rk⊗ (Rd)∗. If T > 0

is small enough (depending on X,α, σ), then for any z0∈Rk there is at most one
path Z: [0, T ]→Rk with Z0= z0 which solves the linear controlled difference equation
( 1.4), that is (recalling ( 1.11))

δZst− (σZs) δXst= o(t− s), 0! s! t!T . (1.16)

Proof. Suppose that we have two paths Z, Z̄: [0, T ]→Rk satisfying (1.16) with
Z0= Z̄0 and define Y :=Z − Z̄. Our goal is to show that Y =0.

Let us introduce the function R∈C2=C([0, T ]!2 ,Rk) defined by

Rst := δYst− (σYs) δXst , 0! s! t!T , (1.17)

and note that by (1.16) and linearity we have

Rst= o(t− s) . (1.18)

Recalling (1.9), we can estimate

∥δY ∥α! |σ | ∥Y ∥∞ ∥δX∥α+ ∥R∥α ,

1.4 Local uniqueness of solutions 17



and since Rst= o(t− s) = o((t− s)α), we have ∥R∥α<+∞ and therefore ∥δY ∥α<
+∞. Since Y0=0,we can bound

∥Y ∥∞! |Y0|+ sup
0!t!T

|Yt−Y0|!T α ∥δY ∥α .

Since 1!T α (t− s)−α for 0! s< t!T , we can also bound

∥R∥α!T α ∥R∥2α ,
so that

∥δY ∥α!T α (|σ | ∥δY ∥α ∥δX∥α+ ∥R∥2α).

Suppose we can prove that, for some constant C =C(X,α, σ)<∞,

∥R∥2α!C ∥δY ∥α. (1.19)
Then we obtain

∥δY ∥α!T α (|σ | ∥δX∥α+C) ∥δY ∥α .

If we fix T small enough, so that T α (|σ | ∥δX∥α+C)< 1, we get ∥δY ∥α=0, hence
δY ≡ 0. This means that Yt=Ys for all s, t∈ [0, T ], and since Y0=0 we obtain Y ≡0,
namely our goal Z ≡ Z̄. This completes the proof assuming the estimate ( 1.19)
(where the hypothesis α> 1

2
will play a key role). "

To actually complete the proof of Theorem 1.7, it remains to show that the
inequality (1.19) holds. This is performed in the next two sections:

• in Section 1.5 we present a fundamental estimate, the Sewing Bound , which
applies to any function Rst= o(t− s) (recall (1.18));

• in Section 1.6 we apply the Sewing Bound to Rst in (1.17) and we prove the
desired estimate (1.19) for α> 1

2
(see the assumptions of Theorem 1.7).

1.5. The Sewing bound
Let us fix an arbitrary function R∈C2=C([0, T ]!2 ,Rk) with Rst=o(t− s). Our goal
is to bound |Rab| for any given 0! a< b!T .

We first show that we can express Rab via “Riemann sums” along partitions
P = {a= t0<t1< . . . < tm= b} of [a, b]. These are defined by

IP(R) :=
∑

i=1

#P

Rti−1ti , (1.20)

where we denote by #P :=m the number of intervals of the partition P . Let us
denote by |P | :=max1!i!m (ti− ti−1) the mesh of P .

Lemma 1.8. (Riemann sums) Given any R∈C2 with Rst= o(t− s), for any 0!
a< b! T and for any sequence (Pn)n"0 of partitions of [a, b] with vanishing mesh
limn→∞ |Pn|=0 we have

lim
n→∞

IPn(R)= 0.
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If furthermore P0= {a, b} is the trivial partition, then we can write

Rab=
∑

n=0

∞

(IPn(R)− IPn+1(R)), 0! a< b!T . (1.21)

Proof. Writing Pn= {a= t0
n<t1

n< . . . < t#Pn
n = b}, we can estimate

|IPn(R)|!
∑

i=1

#Pn
|Rti−1

n ti
n|!

{
max

j=1, . . . ,#Pn

|Rtj−1
n tj

n|
(tj
n− tj−1n )

}∑

j=1

#Pn
(tj
n− tj−1n ),

hence |IPn(R)|→ 0 as n→∞, because the final sum equals b− a and the bracket
vanishes (since Rst= o(t− s) and |Pn|=max1!j!#Pn (tj

n− tj−1n )→ 0).
We deduce relation (1.21) by the telescopic sum

IP0(R)− IPN(R)=
∑

n=0

N−1

(IPn(R)− IPn+1(R)),

because limN→∞ IPN(R)= 0 while IP0(R)=Rab for P0= {a, b}. "

If we remove a single point ti from a partition P ={t0<t1< .. . < tm}, we obtain
a new partition P ′ for which, recalling (1.20), we can write

IP ′(R)− IP(R)=Rti−1ti+1−Rti−1ti−Rtiti+1 . (1.22)

The expression in the RHS deserves a name: given any two-variables function F ∈C2,
we define its increment δF ∈C3 as the three-variables function

δFsut :=Fst−Fsu−Fut, 0! s!u! t!T . (1.23)

We can then rewrite (1.22) as

IP ′(R)− IP(R)= δRti−1titi+1 , (1.24)

and recalling (1.9) we obtain the following estimate, for any η> 0:

|IP ′(R)− IP(R)|! ∥δR∥η |ti+1− ti−1|η. (1.25)

We are now ready to state and prove the Sewing Bound.

Theorem 1.9. (Sewing Bound) Given any R ∈C2 with Rst= o(t− s), the fol-
lowing estimate holds for any η ∈ (1,∞) (recall ( 1.9)):

∥R∥η!Kη ∥δR∥η where Kη := (1− 21−η)−1 . (1.26)

Proof. Fix R∈C2 such that ∥δR∥η<∞ for some η> 1 (otherwise there is nothing
to prove). Also fix 0! a< b! T and consider for n# 0 the dyadic partitions Pn :=
{tin :=a+

i

2n
(b−a): 0≤ i≤2n} of [a, b]. Since P0={a, b} is the trivial partition, we

can apply (1.21) to bound

|Rab|!
∑

n=0

∞

|IPn(R)− IPn+1(R)| . (1.27)
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If we remove from Pn+1 all the “odd points” t2j+1n+1 , with 0≤ j ≤ 2n−1, we obtain
Pn. Then, iterating relations (1.24)-(1.25), we have

|IPn(R)− IPn+1(R)| !
∑

j=0

2n−1

|δRt2j
n+1t2j+1

n+1 t2j+2
n+1 |

! 2n ∥δR∥η
(
2(b− a)
2n+1

)η

= 2−(η−1)n ∥δR∥η (b− a)η . (1.28)

Plugging this into (1.27), since
∑

n=0
∞ 2−(η−1)n=(1− 21−η)−1, we obtain

|Rab|! (1− 21−η)−1 ∥δR∥η (b− a)η, 0! a< b!T , (1.29)

which proves (1.26). "

Remark 1.10. Recalling (1.11) and (1.23), we have defined linear maps

C1−→
δ
C2−→

δ
C3 (1.30)

which satisfy δ ◦ δ=0. Indeed, for any f ∈C1 we have

δ(δf)sut=(ft− fs)− (fu− fs)− (ft− fu)= 0.

Intuitively, δF ∈C3 measures how much a function F ∈C2 differs from being the
increment δf of some f ∈C1, because δF ≡ 0 if and only if F = δf for some f ∈C1
(it suffices to define ft :=F0t and to check that δfst= δF0st+Fst=Fst).

Remark 1.11. The assumption Rst= o(t− s) in Theorem 1.9 cannot be avoided:
if R := δf for a non constant f ∈C1, then δR=0 while ∥R∥η> 0.

1.6. End of proof of uniqueness
In this section, we apply the Sewing Bound (1.26) to the function Rst defined in
(1.17), in order to prove the estimate (1.19) for α> 1

2
.

We first determine the increment δR through a simple and instructive computa-
tion: by (1.17), since δ(δZ)= 0 (see Remark 1.10), we have

δRsut := Rst−Rsu−Rut

= (Yt−Ys)− (Yu−Ys)− (Yt−Yu)
−(σYs) (Xt−Xs)+ (σYs) (Xu−Xs)+ (σYu) (Xt−Xu)

= [σ (Yu−Ys)] (Xt−Xu). (1.31)

Recalling (1.9), this implies

∥δR∥2α! |σ | ∥δY ∥α ∥δX∥α.

We next note that if α> 1

2
(as it is assumed in Theorem 1.7) we can apply the

Sewing Bound (1.26) for η=2α> 1 to obtain

∥R∥2α!K2α ∥δR∥2α!K2α |σ | ∥δY ∥α ∥δX∥α .
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This is precisely our goal (1.19) with C =C(X,α, σ) :=K2α |σ | ∥δX∥α.

Summarizing: thanks to the Sewing bound (1.26), we have obtained the estimate
(1.19) and completed the proof of Theorem 1.7, showing uniqueness of solutions to
the difference equation (1.4) for any X ∈Cα with α∈

]1
2
,1
]
. In the next chapters we

extend this approach to non-linear σ(·) and to situations where X ∈ Cα with α! 1

2
.

Remark 1.12. For later purpose, let us record the computation (1.31) withouth σ:
given any (say, real) paths X and Y , if

Ast=Ys δXst, ∀0! s! t!T ,
then

δAsut=−δYsu δXut , ∀0! s!u! t!T . (1.32)

1.7. Weighted norms
We conclude this chapter defining weighted versions ∥·∥η,τ of the norms ∥·∥η intro-
duced in (1.9): given F ∈C2 and G∈C3, we set for η, τ ∈ (0,∞)

∥F ∥η,τ := sup
0!s!t!T

1{0<t−s!τ } e
− t

τ
|Fst|

(t− s)η , (1.33)

∥G∥η,τ := sup
0!s!u!t!T

1{0<t−s!τ } e
− t

τ
|Gsut|
(t− s)η , (1.34)

where C2 and C3 are the spaces of continuous functions from [0, T ]!2 and [0, T ]!3 to
Rk, see (1.8). Note that as τ→∞ we recover the usual norms:

∥·∥η= lim
τ→∞

∥·∥η,τ . (1.35)

Remark 1.13. (norms vs. semi-norms) While ∥·∥η is a norm, ∥·∥η,τ is a norm
for τ # T but it is only a semi-norm for τ <T (for instance, ∥F ∥η,τ =0 for F ∈C2
implies Fst=0 only for t− s! τ : no constraint is imposed on Fst for t− s> τ).

However, if F = δf , that is Fst= ft− fs for some f ∈C1, we have the equivalence

∥δf ∥η,τ ! ∥δf ∥η!
(
1+

T
τ

)
e
T
τ ∥δf ∥η,τ . (1.36)

The first inequality is clear. For the second one, given 0! s < t! T , we can write
s = t0 < t1 < · · · < tN = t with ti− ti−1! τ and N ! 1 + T

τ
(for instance, we can

consider ti= s+ i t− s
N

where N :=
⌈ t− s

τ

⌉
); we then obtain δfst=

∑
i=1
N δfti−1ti and

|δfti−1ti|! ∥δf ∥η,τ eti/τ (ti− ti−1)η! ∥δf ∥η,τ eT /τ (t− s)η, which yields (1.36).

Remark 1.14. (from local to global) The weighted semi-norms ∥·∥η ,τ will
be useful to transform local results in global results. Indeed, using the standard
norms ∥·∥η often requires the size T > 0 of the time interval [0, T ] to be small , as
in Theorem 1.7, which can be annoying. Using ∥·∥η,τ will allow us to keep T > 0
arbitrary , by choosing a sufficiently small τ > 0.
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Recalling the supremum norm ∥f ∥∞ of a function f ∈C1, see (1.14), we define
the corresponding weighted version

∥f ∥∞,τ := sup
0!t!T

e−
t
τ |ft| . (1.37)

We stress that ∥·∥∞,τ is a norm equivalent to ∥·∥∞ for any τ > 0, since

∥·∥∞,τ ! ∥·∥∞! e
T
τ ∥·∥∞,τ . (1.38)

Remark 1.15. (Equivalent Hölder norm) It follows by (1.36) and (1.38) that
∥·∥∞,τ+∥·∥α,τ is a norm equivalent to ∥·∥Cα :=∥·∥∞+∥·∥α on the space Cα of Hölder
functions, see Remark 1.4, for any τ > 0.

We will often use the Hölder semi-norms ∥δf ∥α and ∥δf ∥α,τ to bound the
supremum norms ∥f ∥∞ and ∥f ∥∞,τ, thanks to the following result.

Lemma 1.16. (Supremum-Hölder bound) For any f ∈C1 and η ∈ (0,∞)

∥f ∥∞! |f0|+T η ∥δf ∥η , (1.39)

∥f ∥∞,τ ! |f0|+3 (τ ∧T )η ∥δf ∥η ,τ , ∀τ > 0. (1.40)

Proof. Let us prove (1.39): for any f ∈C1 and for t∈ ]0, T ] we have

|ft|! |f0|+ |ft− f0|= |f0|+ tη
|ft− f0|

tη
! |f0|+T η ∥δf ∥η.

The proof of (1.40) is slightly more involved. If t∈ ]0, τ ∧T ], then

e−
t

τ|ft|! |f0|+ tη e−
t

τ
|ft− f0|

tη
! |f0|+(τ ∧T )η ∥δf ∥η,τ ,

which, in particular, implies (1.40) when τ #T . When τ <T , it remains to consider
τ < t! T : in this case, we define N :=min {n∈N: nτ ≥ t}≥ 2 so that t

N
! τ . We

set tk= k t

N
for k≥ 0, so that tN= t. Then

e−
t

τ|ft|!|f0|+
∑

k=1

N

(tk− tk−1)η e−
t−tk
τ

[
e−

tk
τ
|ftk− ftk−1|
(tk− tk−1)η

]

!|f0|+(τ ∧T )η ∥δf ∥η,τ
∑

k=1

N

e−
t−tk
τ .

By definition of N we have (N −1)τ <t; since τ <t we obtain Nτ <2t and therefore
t

Nτ
≥ 1

2
. Since t− tk=(N − k) t

N
, renaming ℓ :=N − k we obtain

∑

k=1

N

e−
t−tk
τ =

∑

ℓ=0

N−1

e−ℓ
t
Nτ =

1− e−
t
τ

1− e−
t
Nτ

! 1

1− e−
1

2

! 3.

The proof is complete. "
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We finally show that the Sewing Bound (1.26) still holds if we replace ∥·∥η by
∥·∥η,τ, for any τ > 0.

Theorem 1.17. (weighted sewing bound) Given any R∈C2 with Rst=o(t−s),
the following estimate holds for any η ∈ (1,∞) and τ > 0:

∥R∥η,τ !Kη ∥δR∥η,τ where Kη := (1− 21−η)−1 . (1.41)

Proof. Given 0! a! b!T , let us define

∥δR∥η,[a,b] := sup
s,u,t∈[a,b]:
s!u!t, s<t

|δRsut|
(t− s)η . (1.42)

Following the proof of Theorem 1.9, we can replace ∥δR∥η by ∥δR∥η,[a,b] in (1.28)
and in (1.29), hence we obtain |Rab|!Kη ∥δR∥η,[a,b] (b− a)η. Then for b− a! τ we
can estimate

e−
b
τ
|Rab|

(b− a)η ! e
−b
τKη ∥δR∥η,[a,b]!Kη ∥δR∥η,τ ,

and (1.41) follows taking the supremum over 0! a! b!T with b− a! τ . "

1.8. A discrete Sewing Bound

We can prove a version of the Sewing Bound for functions R=(Rst)s<t∈T defined on
a finite set of points T := {0= t1< · · ·<t#T}⊆R+ (this will be useful to construct
solutions to difference equations via Euler schemes, see Sections 2.6 and 3.9). The
condition Rst= o(t− s) from Theorem 1.9 is now replaced by the requirement that
R vanishes on consecutive points of T, i.e. Rtiti+1=0 for all 1! i <#T.

We define versions ∥·∥η,τT of the norms ∥·∥η,τ restricted on T for τ > 0, recall
(1.33)-(1.34):

∥A∥η,τT := sup
0!s<t
s,t∈T

1{0<t−s!τ } e
− t

τ
|Ast|
|t− s|η , (1.43)

∥B∥η,τT := sup
0!s!u!t

s,u,t∈T, s<t

1{0<t−s!τ } e
− t
τ
|Bsut|
|t− s|η (1.44)

for A: {(s, t)∈T2: 0! s< t}→R and B: {(s, u, t)∈T3: 0! s!u! t, s< t}→R.

Theorem 1.18. (Discrete Sewing Bound) If a function R=(Rst)s<t∈T vanishes
on consecutive points of T (i.e. Rti ti+1=0), then for any η> 1 and τ > 0 we have

∥R∥η,τT !Cη ∥δR∥η,τT with Cη := 2η
∑

n≥1

1
nη

=2η ζ(η)<∞ . (1.45)

Proof. We fix s, t∈T with s< t and we start by proving that

|Rst|!Cη ∥δR∥ηT (t− s)η .
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We have s= tk and t= tk+m and we may assume that m# 2 (otherwise there is
nothing to prove, since for m=1 we have Rtiti+1=0).

Consider the partition P={s= tk<tk+1< ... < tk+m= t} with m intervals. Note
that for some index i ∈ {k + 1, . . . , k +m − 1} we must have ti+1− ti−1≤ 2 (t− s)

m− 1 ,
otherwise we would get the contradiction

2 (t− s)≥
∑

i=k+1

k+m−1

(ti+1− ti−1)>
∑

i=k+1

k+m−1
2 (t− s)
m− 1 = 2 (t− s) .

Removing the point ti from P we obtain a partition P ′ with m− 1 intervals. If we
define IP(R) :=

∑
i=k
k+m−1Rtiti+1 as in (1.20), as in (1.24) we have

|IP(R)− IP ′(R)|= |δRti−1titi+1|!
2η (t− s)η
(m− 1)η sup

s!u<v<w!t
u,v,w∈T

|δRuvw|
|w−u|η .

Iterating this argument, until we arrive at the trivial partition {s, t}, we get

|IP(R)−Rst|≤Cη (t− s)η sup
s!u<v<w!t
u,v,w∈T

|δRuvw|
|w−u|η , (1.46)

with Cη :=
∑

n≥1
2η

nη
<∞ because η > 1. We finally note that IP(R) = 0 by the

assumption Rti ti+1=0. Finally if t− s! τ then w−u! τ in the supremum in (1.46)

and since e−
t

τ! e−
w

τ we obtain

e−
t

τ |Rst|!Cη (t− s)η ∥δR∥η,τT ,

and the proof is complete. "

We also have an analog of Lemma 1.16. We set for f :T→R and τ > 0

∥f ∥∞,τ
T := sup

t∈T
e−

t

τ |ft| .

Lemma 1.19. (Discrete supremum-Hölder bound) For T := {0= t1< · · · <
t#T}⊆R+ set

M := max
i=2, . . . ,#T

|ti− ti−1|.

Then for all f :T→R, τ # 2M and η> 0

∥f ∥∞,τ
T ! |f0|+5 τ η ∥δf ∥η,τT . (1.47)

Proof. We define T0 := 0 and for i# 1, as long as T∩ (Ti−1, Ti−1+ τ ] is not empty,
we set

Ti :=maxT∩ (Ti−1, Ti−1+ τ ], i=1, . . . , N ,

so that TN =maxT. We have by construction Ti+M >Ti−1+ τ for all i= 1, . . . ,
N − 1, and since M ! τ

2

Ti−Ti−1# τ −M # τ
2
.
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For i=N we have only TN >TN−1. Therefore for i=1, . . .N

e−
Ti
τ |fTi| ! |f0|+

∑

k=1

i

(Tk−Tk−1)η e−
Ti−Tk
τ

[
e−

Tk
τ
|fTk− fTk−1|
(Tk−Tk−1)η

]

! |f0|+ τ η ∥δf ∥η,τT
∑

k=1

i

e−
Ti−Tk
τ

! |f0|+ τ η ∥δf ∥η,τT

(
1+
∑

k=0

∞

e−
k
2

)

! |ft0|+4τ η ∥δf ∥η,τT .

Now for t∈T\{Ti}i we have Ti<t<Ti+1 for some i and then

e−
t
τ|ft| ! e−

t
τ|fTi|+(t−Ti)η e−

t
τ
|ft− fTi|
(t−Ti)η

! e−
Ti
τ |fTi|+ τ η ∥δf ∥η,τT

! |f0|+5τ η ∥δf ∥η,τT .

The proof is complete. "

1.9. Extra (to be completed)

We also introduce the usual supremum norm, for F ∈C2 and G∈C3:

∥F ∥∞ := sup
0!s!t!T

|Fst| , ∥G∥∞ := sup
0!s!u!t!T

|Gsut| ,

and a corresponding weighted version, for τ ∈ (0,∞):

∥F ∥∞,τ := sup
0!s!t!T

e−
t

τ |Fst| , ∥G∥∞,τ := sup
0!s!u!t!T

e−
t

τ |Gsut| . (1.48)

Note that

lim
τ→+∞

∥F ∥∞,τ = ∥F ∥∞ , lim
τ→+∞

∥G∥η,τ = ∥G∥η , lim
τ→+∞

∥H∥η,τ = ∥H∥η .

We have
∥F ∥η,τ ! ∥G∥∞,τ ∥H∥η, (Fsut=GsuHut), (1.49)

Note that ∥·∥η,τ is only a semi-norm on Cn
η if τ <T ; we have at least

∥·∥η,τ ! ∥·∥η! e
T
τ

(
∥·∥η,τ +

1
τ η
∥·∥∞,τ

)
. (1.50)

However, if τ ≥T we have again equivalence of norms

∥·∥η,τ ! ∥·∥η! e
T

τ ∥·∥η,τ , τ ≥T . (1.51)
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Chapter 2
Difference equations: the Young case

Fix a time horizon T > 0 and two dimensions k, d ∈N. We study the following
controlled difference equation for an unknown path Z: [0, T ]→Rk:

Zt−Zs= σ(Zs) (Xt−Xs)+ o(t− s) , 0! s! t!T , (2.1)

where the “driving path” X : [0, T ]→Rd and the function σ:Rk→Rk ⊗ (Rd)∗ are
given, and o(t− s) is uniform for 0! s! t!T (see Remark 1.1).

The difference equation (2.1) is a natural generalized formulation of the con-
trolled differential equation

Żt= σ(Zt)Xt
˙ , 0! t!T . (2.2)

Indeed, as we showed in Chapter 1 (see Section 1.2), equations (2.1) and (2.2) are
equivalent when X is continuously differentiable and σ is continuous, but (2.1) is
meaningful also when X is non differentiable.

In this chapter we prove well-posedness for the difference equation ( 2.1) when
the driving path X ∈ Cα is Hölder continuous in the regime α ∈

]1
2
, 1
]
, called the

Young case. The more challenging regime α! 1

2
, called the rough case, is the object

of the next Chapter 3, where new ideas will be introduced.

2.1. Summary
Using the increment notation δfst := ft− fs from (1.11), we rewrite (2.1) as

δZst= σ(Zs) δXst+ o(t− s), 0! s! t!T , (2.3)

so that a solution of (2.3) is any path Z: [0, T ]→Rk such that the “remainder”

Zst
[2] := δZst−σ(Zs) δXst satisfies Zst

[2]= o(t− s) . (2.4)

We summarize the main results of this chapter stating local and global existence,
uniqueness of solutions and continuity of the solution map for the difference equation
(2.3) under natural assumptions on σ. We will actually prove more precise results,
which yield quantitative estimates.

Theorem 2.1. (Well-posedness) Let X: [0, T ]→Rd be of class Cα with α∈
]1
2
,1
]

and let σ:Rk→Rk⊗ (Rd)∗. Then we have:

• local existence: if σ is locally γ-Hölder with γ∈
( 1
α
−1,1

]
(e.g. of class C1),

then for every z0∈Rk there is a possibly shorter time horizon T ′=Tα,X ,σ
′ (z0)∈

]0, T ] and a path Z: [0, T ′]→Rk starting from Z0= z0 which solves ( 2.3) for
0! s! t!T ′;
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• global existence: if σ is globally γ-Hölder with γ ∈
( 1
α
− 1, 1

]
(e.g. of class

C1 with ∥∇σ∥∞<∞), then we can take Tα,X ,σ
′ (z0)=T for any z0∈Rd;

• uniqueness: if σ is of class Cγ with γ ∈
( 1
α
,2
]
(e.g. if σ is of class C2), then

there is exactly one solution Z of ( 2.3) with Z0= z0;

• continuity of the solution map: if σ is differentiable with bounded and
globally (γ−1)-Hölder gradient with γ∈

( 1
α
,2
]
(i.e. ∥∇σ∥∞<∞, [∇σ]Cγ−1<

∞), then the solution Z of ( 2.3) is a continuous function of the starting point
z0 and driving path X: the map (z0,X) '→Z is continuous from Rk×Cα→Cα.

In the first part of this chapter, we give for granted the existence of solutions and
we focus on their properties: we prove a priori estimates in Section 2.3, uniqueness
of solutions in Section 2.4 and continuity of the solution map in Section 2.5. A key
role is played by the Sewing Bound from Chapter 1, see Theorems 1.9 and 1.17, and
its discrete version, see Theorem 1.18.

The proof of local and global existence of solutions of ( 2.3) is given at the end
of this chapter, see Section 2.6, exploiting a suitable Euler scheme.

2.2. Set-up

We collect here some notions and tools that will be used extensively.
We recall that C1 denotes the space of continuous functions f : [0, T ]→Rk. Sim-

ilarly, C2 and C3 are the spaces of continuous functions of two and three ordered
variables, i.e. defined on [0, T ]!2 and [0, T ]!3 , see (1.7)-(1.8).

We are going to exploit the weighted semi-norms ∥·∥η,τ , see (1.33)-(1.34) (see also
(1.9) for the original norm ∥·∥η). These are useful to bound the weighted supremum
norm ∥f ∥∞,τ of a function f ∈C1, see (1.37) and (1.40):

∥f ∥∞,τ ! |f0|+3 (τ ∧T )η ∥δf ∥η ,τ , ∀η , τ > 0. (2.5)

It follows directly from the definitions (1.33)-(1.34) that

∥·∥η,τ ! (τ ∧T )η ′ ∥·∥η+η ′,τ , ∀η , η ′> 0, (2.6)

because (t− s)η# (t− s)η+η ′ (τ ∧T )−η ′ for 0! s! t!T with t− s! τ .

Remark 2.2. The factor (τ ∧ T )η ′ in the RHS of (2.6) can be made small by
choosing τ small while keeping T fixed . This is why we included the indicator function
1{0<t−s!τ } in the definition (1.33)-(1.34) of the norms ∥·∥η ,τ: without this indicator
function, instead of (τ ∧T )η ′ we would have T η ′, which is small only when T is small.

We will often work with functions F ∈ C2 or F ∈ C3 that are product of two
factors, like Fst= gsHst or Fsut=GsuHut. We show in the next result that the semi-
norm ∥F ∥η,τ can be controlled by a product of suitable norms for each factor.
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Lemma 2.3. (Weighted bounds) For any η , η ′∈ (0,∞) and τ > 0, we have

if Fst= gsHst or Fst= gtHst then ∥F ∥η,τ ! ∥g∥∞,τ ∥H∥η, (2.7)

if Fsut=GsuHut then ∥F ∥η+η ′,τ ! ∥G∥η,τ ∥H∥η ′ . (2.8)

Proof. If Fst= gtHst, by (1.37) we can estimate e−t/τ |gt|! ∥g∥∞,τ to get (2.7). If
Fst= gsHst, for s! t we can bound e−t/τ ! e−s/τ in the definition (1.33)-(1.34) of
∥·∥η,τ, hence again by (1.37) we can estimate e−s/τ |gs|! ∥g∥∞,τ to get (2.7).

If Fsut=GsuHut, we can further bound (t− s)η+η
′# (t− u)η (u− s)η

′ in (1.34)
and then estimate e−s/τGsu/(u− s)η! ∥G∥η,τ, which yields (2.8). "

We stress that in the RHS of (2.7) and (2.8) only one factor gets the weighted
norm or semi-norm, while the other factor gets the non-weigthed norm ∥·∥η. We
will sometimes need an extra weight, which can be introduced as follows.

Lemma 2.4. (Extra weight) For any η , τ̄ ∈ (0,∞) and 0< τ ! τ̄, we have

if Fst= gsHst or Fst= gtHst then ∥F ∥η ,τ ! ∥g∥∞,τ e
T

τ̄ ∥H∥η ,τ̄ . (2.9)

Proof. Recall the definition (1.33)-(1.34) of ∥·∥η,τ and note that for 0!s! t!T we
have e−t/τ |gt|!∥g∥∞,τ and e−s/τ |gs|!∥g∥∞,τ (see the proof of Lemma 2.3). Finally,
for t− s! τ ! τ̄ we can estimate |Hst|! eT /τ̄ e−t/τ̄ |Hst|! eT /τ̄ ∥H∥η,τ̄ (t− s)η. "

We recall thatRk⊗(Rd)∗≃Rk×d is the space of linear applications fromRd toRk

equipped with the Hilbert-Schmidt (Euclidean) norm |·|. We say that a function is of
class Cm if it is continuously differentiablem times. Given σ:Rk→Rk⊗(Rd)∗ of class
C2, that we represent by σji(z) with i∈{1,..., k} and j∈{1,..., d}, we denote by ∇σ:
Rk→Rk⊗ (Rd)∗⊗ (Rk)∗ its gradient and by ∇2σ:Rk→Rk⊗ (Rd)∗⊗ (Rk)∗⊗ (Rk)∗

its Hessian, represented for i, a, b∈ {1, . . . , k} and j ∈ {1, . . . , d} by

(∇σ(z))jai =
∂σj

i

∂za
(z), (∇2σ(z))jab

i =
∂2σj

i

∂za∂zb
(z).

Remark 2.5. (norm of the gradient of Lipschitz functions) For a locally
Lipschitz function ψ:Rk→Rℓ we can define the “norm of the gradient” at any point
(even where ψ may not be differentiable):

|∇ψ(z)| := lim sup
y→z

|ψ(y)− ψ(z)|
|y− z | ∈ [0,∞) .

Similarly, |∇2ψ(z)| is well defined as soon as ψ is differentiable with locally Lipschitz
gradient ∇ψ (which is slightly less than requiring ψ ∈C2).

2.3. A priori estimates

In this section we prove a priori estimates for solutions of (2.3) assuming that σ is
globally Lipschitz , that is ∥∇σ∥∞<∞ (recall Remark 2.5).
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We first observe that if the driving path X is of class Cα, then any solution Z of
(2.3) is also of class Cα, as soon as σ is continuous.

Lemma 2.6. (Hölder regularity) Let X be of class Cα with α∈ ]0, 1] and let σ
be continuous. Then any solution Z of ( 2.3) is of class Cα.

Proof. We know by Lemma 1.2 that Z is continuous, more precisely by (1.6)
we have |δZst|!C |δXst|+ o(t− s) with C <∞. Since |δXst|! ∥δX∥α (t− s)α and
o(t− s)= o((t− s)α) for any α! 1, it follows that Z ∈ Cα. "

We next formulate the announced a priori estimates. It is convenient to use the
weighted semi-norms ∥·∥η,τ in (1.33)-(1.34) (note that the usual norms ∥·∥η in (1.9)
can be recovered by letting τ→∞).

Theorem 2.7. (A priori estimates) Let X be of class Cα with α∈
]1
2
, 1
]
and let

σ be globally γ-Hölder with γ ∈
( 1
α
− 1, 1

]
. Then, for any solution Z: [0, T ]→Rk of

( 2.3), the remainder Zst
[2] := δZst−σ(Zs) δXst satisfies Z [2]∈C2

(γ+1)α, more precisely
for any τ > 0

∥Z [2]∥(γ+1)α,τ!Cα,γ ,X,σ ∥δZ∥α,τγ with Cα,γ ,X ,σ :=K(γ+1)α ∥δX∥α [σ]Cγ , (2.10)

where Kη=(1− 21−η)−1. Moreover, if either T or τ is small enough, we have

∥δZ∥α,τ ! 1∨ (2 ∥δX∥α |σ(Z0)|) for (τ ∧T )αγ ! εα,γ ,X ,σ, (2.11)

where we define

εα,γ ,X ,σ :=
1

2 (K(γ+1)α+3) ∥δX∥α [σ]Cγ
. (2.12)

If σ is globally Lipschitz, namely if we can take γ=1, we can improve ( 2.11) to

∥δZ∥α,τ ! 2 ∥δX∥α |σ(Z0)| for (τ ∧T )α! εα,1,X ,σ . (2.13)

Proof. We first prove (2.10). Since Zst
[2]=o(t−s) by definition of solution, see (2.4),

we can estimate Z [2] in terms of δZ [2], by the weighted Sewing Bound (1.41). Let
us compute δZsut

[2] =Zst
[2]−Zsu

[2]−Zut
[2]: recalling (2.4) and (1.32), since δ◦ δ=0, we have

δZsut
[2] = δσ(Z)su δXut=(σ(Zu)−σ(Zs)) (Xt−Xu) . (2.14)

Since |σ(z)−σ(z̄)|! [σ]Cγ |z− z̄ |γ for all z, z̄ ∈Rd, we can bound

∥δσ(Z)∥γα,τ ! [σ]Cγ ∥δZ∥α,τγ , (2.15)

hence by (2.8) we obtain

∥δZ [2]∥(γ+1)α,τ ! ∥δX∥α [σ]Cγ ∥δZ∥α,τγ .

Applying the weighted Sewing Bound (1.41), for (γ+1)α> 1 we then obtain

∥Z [2]∥(γ+1)α,τ !K(γ+1)α ∥δX∥α [σ]Cγ ∥δZ∥α,τγ , (2.16)
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which proves (2.10).
We next prove (2.11). To simplify notation, let us set ε := (τ ∧ T )α. Recalling

(2.7) and (2.6), we obtain by (2.4)

∥δZ∥α,τ ! ∥σ(Z) δX∥α,τ + ∥Z [2]∥α,τ
! ∥σ(Z)∥∞,τ ∥δX∥α+ εγ ∥Z [2]∥(γ+1)α,τ . (2.17)

We can estimate ∥σ(Z)∥∞,τ by (2.5) and (2.15):

∥σ(Z)∥∞,τ ! |σ(Z0)|+3 εγ [σ]Cγ ∥δZ∥α,τγ .

Plugging this and (2.16) into (2.17), we get

∥δZ∥α,τ ! (|σ(Z0)|+3 εγ [σ]Cγ ∥δZ∥α,τγ ) ∥δX∥α+
+ εγK(γ+1)α ∥δX∥α [σ]Cγ ∥δZ∥α,τγ

= ∥δX∥α |σ(Z0)|+
1
2

εγ

εα,γ ,X ,σ
∥δZ∥α,τγ ,

where εα,γ ,X ,σ is defined in (2.12). For εγ ! εα,γ ,X ,σ the last term is bounded by
1

2
∥δZ∥α,τγ which is finite by Lemma 2.6. If ∥δZ∥α,τ! 1 then (2.11) holds trivially; if

not, 1

2
∥δZ∥α,τ

γ ! 1

2
∥δZ∥α,τ. Bringing this term in the LHS we obtain (2.11).

To prove (2.13), we argue as for (2.11) and since γ=1 we obtain

∥δZ∥α,τ ! ∥δX∥α |σ(Z0)|+ 1
2

ε
εα,1,X ,σ

∥δZ∥α,τ .

For ε! εα,1,X,σ the last term is bounded by 1

2
∥δZ∥α,τ which is finite by Lemma 2.6.

Bringing this term in the LHS we obtain (2.13), and this completes the proof. "

2.4. Uniqueness

In this section we prove uniqueness of solutions to (2.3) assuming that σ is of class
C1 with locally Hölder gradient (we stress that we make no boundedness assumption
on σ). This improves on Theorem 1.7, both because we allow for non-linear σ and
because we do not require that the time horizon T > 0 is small.

We first need an elementary but fundamental estimate on the difference of incre-
ments of a function. Given Ψ:Rk→Rℓ, we use the notation

CΨ,R := sup {|Ψ(x)|: x∈Rk, |x|!R} . (2.18)

Lemma 2.8. (difference of increments) Let ψ:Rk→Rℓ be of class Cloc
1+ρ for

some 0< ρ! 1 (i.e. ψ is differentiable with ∇ψ of class Cloc
ρ ). Then for any R> 0

and for all x, x̄, y, ȳ ∈Rk with max {|x|, |y |, |x̄|, |ȳ |}!R we can estimate

|[ψ(x)− ψ(y)]− [ψ(x̄)− ψ(ȳ)]|
!CR′ |(x− y)− (x̄− ȳ)|+CR

′′ {|x− y |ρ+ |x̄− ȳ |ρ} |y− ȳ | , (2.19)

where CR′ := sup {|∇ψ(x)|: |x|!R} and CR′′ := sup
{
|∇ψ(x)−∇ψ(y)|

|x− y |ρ : |x|, |y |!R
}
.
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Proof. For z, w ∈Rk we can write

ψ(z)− ψ(w)= ψ̂(z, w) (z−w),

where ψ̂(z,w) :=
∫
0

1∇ψ(u z+(1−u)w) du∈Rℓ⊗ (Rk)∗, therefore

[ψ(x)− ψ(y)]− [ψ(x̄)− ψ(ȳ)] = [ψ(x)− ψ(x̄)]− [ψ(y)− ψ(ȳ)]

= ψ̂(x, x̄) (x− x̄)− ψ̂(y, ȳ) (y− ȳ)

= ψ̂(x, x̄) [(x− x̄)− (y− ȳ)]

+ [ψ̂(x, x̄)− ψ̂(y, ȳ)] (y− ȳ) .

By definition of CR′ and CR′′ we have |ψ̂(x, x̄)|!CR′ and

|ψ̂(x, x̄)− ψ̂(y, ȳ)| ! |ψ̂(x, x̄)− ψ̂(y, x̄)|+ |ψ̂(y, x̄)− ψ̂(y, ȳ)|
! CR

′′ {|x− y |ρ+ |x̄− ȳ |ρ},

hence (2.19) follows. "

We are now ready to state and prove the announced uniqueness result.

Theorem 2.9. (Uniqueness) Let X be of class Cα with α∈
]1
2
, 1
]
and let σ be of

class Cγ for some γ > 1

α
(for instance, we can take σ ∈ C2). Then for every z0∈Rk

there exists at most one solution Z to ( 2.3) with Z0= z0.

Proof. Let Z and Z̄ be two solutions of (2.3), i.e. they satisfy (2.4), and set

Y :=Z − Z̄ .

We want to show that, for τ > 0 small enough, we have

∥Y ∥∞,τ ! 2 |Y0|,

where the weighted norm ∥·∥∞,τ was defined in (1.37). In particular, if we assume
that Z0= Z̄0, we obtain ∥Y ∥∞,τ =0 and hence Z = Z̄.

We know by (2.5) that for any τ > 0

∥Y ∥∞,τ ! |Y0|+3τα ∥δY ∥α,τ , (2.20)

where we recall that the weighted semi-norm ∥·∥α,τ was defined in (1.33). We now
define Y [2] as the difference between the remainders Z [2] and Z̄ [2] of the solutions Z
and Z̄ as defined in (2.4), that is

Yst
[2] :=Zst

[2]− Z̄st
[2]= δYst− (σ(Zs)−σ(Z̄s)) δXst . (2.21)

(We are slightly abusing notation, since Y [2] is not the remainder of Y when σ is not
linear.) By assumption σ ∈Cγ for some γ> 1

α
: renaming γ as γ ∧ 2, we may assume

that γ ∈
]1
α
, 2
]
. We are going to prove the following inequalities: for any τ > 0

∥δY ∥α,τ ! c1 ∥Y ∥∞,τ + τ (γ−1)α ∥Y [2]∥γα,τ , (2.22)

∥Y [2]∥γα,τ ! c2 ∥Y ∥∞,τ + c2
′ τ (γ−1)α ∥Y [2]∥γα,τ , (2.23)
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for finite constants ci, ci′ that may depend on X, σ , Z , Z̄ but not on τ.
Let us complete the proof assuming (2.22) and (2.23). Note that (γ − 1)α> 0

by assumption. If we fix τ > 0 small, so that c2′ τ (γ−1)α <
1

2
, from (2.23) we get

∥Y [2]∥γα,τ ! 2 c2 ∥Y ∥∞,τ which plugged into (2.22) yields ∥δY ∥α,τ ! 2 c1 ∥Y ∥∞,τ for
τ > 0 small (it suffices that 2 c2 τ (γ−1)α<c1). Finally, plugging this into (2.20) and
possibly choosing τ > 0 even smaller, we obtain our goal ∥Y ∥∞,τ ! 2 |Y0| which
completes the proof.

It remains to prove (2.22) and (2.23). Using the notation from Lemma 2.8 we set

C1
′ := sup {|∇σ(x)|: |x|! ∥Z∥∞∨∥Z̄∥∞} ,

C1
′′ := sup

{
|∇σ(x)−∇σ(y)|

|x− y |ρ : |x|, |y |! ∥Z∥∞∨∥Z̄∥∞
}
.

so that |σ(Zt)−σ(Z̄t)|!C1′ |Zt− Z̄t| and, therefore,

∥σ(Z)−σ(Z̄)∥∞,τ !C1′ ∥Y ∥∞,τ . (2.24)

We now exploit (2.21) to estimate ∥δY ∥α,τ : applying (2.7) we obtain

∥δY ∥α,τ ! ∥σ(Z)−σ(Z̄)∥∞,τ ∥δX∥α+ ∥Y [2]∥α,τ
! C1

′ ∥Y ∥∞,τ ∥δX∥α+ τ (γ−1)α ∥Y [2]∥γα,τ , (2.25)

where we note that ∥Y [2]∥α,τ!τ (γ−1)α ∥Y [2]∥γα,τ by (2.6). We have shown that (2.22)
holds with c1=C1

′ ∥δX∥α.
We finally prove (2.23). Since Yst

[2]= o(t− s), see (2.21) and (2.4), we bound Z [2]

by its increment δZ [2] through the weighted Sewing Bound (1.41):

∥Y [2]∥γα,τ !Kγα ∥δY [2]∥γα,τ , (2.26)

hence we focus on ∥δY [2]∥γα,τ . By (2.21) and (1.32), since δ ◦ δ=0, we have

δYsut
[2]=(δσ(Z)su− δσ(Z̄)su) δXut . (2.27)

Applying the estimate (2.19) for x=Zu, y=Zs, x̄= Z̄u, ȳ= Z̄s, we can write

|δσ(Z)su− δσ(Z̄)su| ! C1
′ |δZsu− δZ̄su|+C1

′′ {|δZsu|γ−1+ |δZ̄su|γ−1}|Zs− Z̄s|
= C1

′ |δYsu|+C1
′′ {|δZsu|γ−1+ |δZ̄su|γ−1} |Ys|. (2.28)

hence by (2.7) we get

∥δσ(Z)− δσ(Z̄)∥(γ−1)α,τ ! C1
′ ∥δY ∥(γ−1)α,τ + (2.29)

+ C1
′′ {∥δZ∥αγ−1+ ∥δZ̄∥αγ−1} ∥Y ∥∞,τ.

If we take τ ! 1 we can bound ∥δY ∥(γ−1)α,τ ! ∥δY ∥α,τ by (2.6) (recall that we are
assuming γ! 2). Then by (2.27) we obtain, recalling (2.8),

∥δY [2]∥γα,τ ! ∥δX∥α ∥δσ(Z)− δσ(Z̄)∥(γ−1)α,τ ! c̃1 (∥δY ∥α,τ + ∥Y ∥∞,τ) ,

for a suitable (explicit) constant c̃1= c̃1(σ , Z , Z̄ , X). Applying (2.22), we obtain

∥δY [2]∥γα,τ ! (c1+1) c̃1 ∥Y ∥∞,τ + c̃1 τ (γ−1)α ∥Y [2]∥γα,τ ,
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which plugged into (2.26) shows that (2.23) holds. The proof is complete. "

We conclude with an example of (2.19).

Example 2.10. If σ:R→R is σ(x)=x2, then we have

(σ(x)−σ(y))− (σ(x̄)−σ(ȳ))
= (x2− y2)− (x̄2− ȳ2)= (x2− x̄2)− (y2− ȳ2)
= (x− x̄) (x+ x̄)− (y− ȳ) (y+ ȳ)
= [(x− x̄)− (y− ȳ)] (y+ ȳ)+ (x− x̄) [(x+ x̄)− (y+ ȳ)]
= [(x− x̄)− (y− ȳ)] (y+ ȳ)+ (x− x̄) [(x− y)+ (x̄− ȳ)],

where in the second last equality we have summed and subtracted (y− ȳ) (x+ x̄).
If we use this formula for x=Zt, y=Zs and x̄= Z̄t, ȳ= Z̄s, then we obtain

δ(Z2− Z̄2)st= δ(Z − Z̄)st (Zs+ Z̄s)+ (Zt− Z̄t) [δZst+ δZst],

which is in the spirit of (2.19) with ρ=1. It follows that

∥δ(Z2− Z̄2)∥α! 2 ∥Z̄∥∞ ∥δ(Z − Z̄)∥α+ ∥Z − Z̄∥∞ [∥δZ∥α+ ∥δZ̄∥α],

which is the form that (2.29) takes in this particular case.

2.5. Continuity of the solution map

In this section we assume that σ is globally Lipschitz and of class C1 with a glob-
ally γ-Hölder gradient , i.e. ∥∇σ∥∞<∞ and [∇σ]Cγ<∞, with γ > 1

α
. Under these

assumptions, we have global existence and uniqueness of solutions Z: [0, T ]→Rk to
(2.3) for any time horizon T > 0, for any starting point Z0∈Rk and for any driving
path X of class Cα with 1

2
<α! 1 (as we will prove in Section 2.6).

We can thus consider the solution map:

Φ: Rk× Cα −→ Cα

(Z0 ,X) '−→ Z :=

{
unique solution of (2.3) for t∈ [0, T ]
starting from Z0

. (2.30)

We prove in this section that this map is continuous, in fact locally Lipschitz .

Remark 2.11. The continuity of the solution map is a highly non-trivial property.
Indeed, when X is of class C1, note that Z solves the equation

Zt=Z0+

∫

0

t

σ(Zs)Xs
˙ ds , (2.31)

which is based on the derivative Ẋ of X. We instead consider driving paths X ∈Cα
with α∈

]1
2
, 1
]
which are continuous but may be non-differentiable.

We shall see in the next chapters that the continuity of the solution map holds
also in more complex situations such as X ∈ Cα with α! 1

2
, which cover the case

when X is a Brownian motion and Z is the solution to a SDE.
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Before stating the continuity of the solution map, we recall that the space Cα is
equipped with the norm ∥f ∥Cα :=∥f ∥∞+∥δf ∥α, see Remark 1.4, but an equivalent
norm is ∥f ∥∞,τ + ∥δf ∥α,τ for any choice of the weight τ > 0, see Remark 1.15.

Theorem 2.12. (Continuity of the solution map) Let σ be globally Lipschitz
with a globally (γ−1)-Hölder gradient: ∥∇σ∥∞<∞ and [∇σ]Cγ−1<∞, with γ∈

( 1
α
,

2
]
. Then, for any T > 0 and α∈

]1
2
, 1
]
, the solution map (Z0, X) '→Z in ( 2.30) is

locally Lipschitz.
More explicitly, given M0,M ,D<∞, if we assume that

max {∥∇σ∥∞, [∇σ]Cγ−1}!D,

and we consider starting points Z0, Z̄0∈Rd and driving paths X, X̄ ∈ Cα with

max {|σ(Z0)|, |σ(Z̄0)|}!M0 , max { ∥δX∥α, ∥δX̄∥α}!M, (2.32)

then the corresponding solutions Z =(Zs)s∈[0,T ], Z̄ =(Z̄s)s∈[0,T ] of ( 2.3) satisfy

∥Z − Z̄∥∞,τ + ∥δZ − δZ̄∥α,τ !CM |Z0− Z̄0|+6M0 ∥δX − δX̄∥α, (2.33)

provided 0< τ ∧T ! τ̂ for a suitable τ̂ = τ̂α,γ ,T ,D,M0,M > 0, where we set

CM := 2 (∥∇σ∥∞M +1)! 2 (DM +1) .

Proof. Let us define the constant

cM := ∥∇σ∥∞M !DM . (2.34)

We fix two solutions Z and Z̄ of (2.3) with respective driving paths X and X̄. If we
define Y :=Z − Z̄, we can rewrite our goal (2.33) as

∥Y ∥∞,τ + ∥δY ∥α,τ ! 6M0 ∥δX − δX̄∥α+2 (cM +1) |Y0| . (2.35)

Let us introduce the shorthand

ε := (τ ∧T )α

and let us agree that, whenever we write for ε small enough we mean for 0< ε! ε0
for a suitable ε0>0 which depends on α, T ,M0,M ,D. By (2.5), for ε small enough,

∥Y ∥∞,τ ! |Y0|+ ε ∥δY ∥α,τ ! |Y0|+ 1
5
∥δY ∥α,τ , (2.36)

hence to prove (2.35) we can focus on ∥δY ∥α,τ.
Recalling (2.4), let us define Y [2] := Z [2]− Z̄ [2]. We are going to establish the

following two relations, for ε small enough:

4
5
∥δY ∥α,τ ! 2M0 ∥δX − δX̄∥α+ cM |Y0|+ ∥Y [2]∥α,τ , (2.37)

∥Y [2]∥α,τ !M0 ∥δX − δX̄∥α+
1
2
|Y0|+

1
5
∥δY ∥α,τ . (2.38)

Plugging (2.38) into (2.37) and applying (2.36), we obtain (2.35).
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It remains to prove (2.37) and (2.38). We record some useful bounds. Let us set

ε̄= ε̄α,D,M :=
1

2 (K2α+3)DM
. (2.39)

We exploit the a priori estimate (2.13) from Theorem 2.7: by (2.32), we have

for ε=(τ ∧T )α! ε̄: max{∥δZ∥α,τ , ∥δZ̄∥α,τ}! 2M0M, (2.40)

therefore

∥δσ(Z)∥α,τ ! ∥∇σ∥∞ ∥δZ∥α,τ ! 2 ∥∇σ∥∞M0M =2M0 cM , (2.41)

and applying (2.5) and (2.32) we get, for ε small enough,

∥σ(Z)∥∞,τ ! |σ(Z0)|+3ε ∥δσ(Z)∥α,τ !M0 (1+6 cM ε)! 2M0 . (2.42)

We can now prove (2.37). Defining Y [2] :=Z [2]− Z̄ [2], we obtain from (2.4)

δYst = δZst− δZ̄st = σ(Zs) δXst−σ(Z̄s) δX̄st+Yst
[2]

= σ(Zs) (δX − δX̄)st+(σ(Zs)−σ(Z̄s)) δX̄st+Yst
[2],

hence by (2.7) we can bound

∥δY ∥α,τ ! ∥σ(Z)∥∞,τ ∥δX − δX̄∥α
+∥δX̄∥α ∥σ(Z)−σ(Z̄)∥∞,τ + ∥Y [2]∥α,τ .

(2.43)

Let us look at the second term in the RHS of (2.43): by (2.5)

∥σ(Z)−σ(Z̄)∥∞,τ ! ∥∇σ∥∞ ∥Z − Z̄∥∞,τ

! ∥∇σ∥∞ (|Y0|+3ε ∥δY ∥α,τ).
(2.44)

Hence by (2.32) and (2.34) we get, for ε small enough,

∥δX̄∥α ∥σ(Z)−σ(Z̄)∥∞,τ ! cM |Y0|+
1
5
∥δY ∥α,τ . (2.45)

Plugging this into (2.43) we then obtain, by (2.42),

4
5
∥δY ∥α,τ ! 2M0 ∥δX − δX̄∥α+ cM |Y0|+ ∥Y [2]∥α,τ , (2.46)

which proves (2.37).
We finally prove (2.38). Since Yst

[2]=Zst
[2]− Z̄st

[2]= o(t− s), see (2.4), the weighted
Sewing Bound (1.41) and (2.6) give

∥Y [2]∥α,τ ! εγ−1 ∥Y [2]∥γα,τ !Kγα εγ−1 ∥δY [2]∥γα,τ . (2.47)

To estimate δY [2]= δZ [2]− δ Z̄ [2], note that by (2.4) and (1.32) we can write

δYsut
[2]= δσ(Z)su (δX − δX̄)ut+(δσ(Z)− δσ(Z̄))su δX̄ut , (2.48)

hence by (2.8)

∥δY [2]∥γα,τ!∥δσ(Z)∥(γ−1)α,τ ∥δX−δX̄∥α+∥δX̄∥α ∥δσ(Z)−δσ(Z̄)∥(γ−1)α,τ . (2.49)
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The first term is easy to control: by (2.41), for ε small enough,

Kγα εγ−1 ∥δσ(Z)∥(γ−1)α,τ ∥δX − δX̄∥α!M0 ∥δX − δX̄∥α . (2.50)

Let us now focus on the second term. By (2.19) we have, see also (2.28),

|δσ(Z)su− δσ(Z̄)su|! ∥∇σ∥∞ |δYsu|+ [∇σ]Cγ−1 {|δZsu|γ−1+ |δZ̄su|γ−1} |Ys| .

We apply (2.9) for H = δZ, g=Y and τ̄ =(ε̄)1/α from (2.39):

∥δσ(Z)− δσ(Z̄)∥(γ−1)α,τ ! ∥∇σ∥∞ ∥δY ∥(γ−1)α,τ +

+[∇σ]Cγ−1 e
T
τ̄ (∥δZ∥α,τ̄γ−1+ ∥δZ̄∥α,τ̄γ−1)∥Y ∥∞,τ

! D ∥δY ∥α,τ +2 (2M0M)γ−1 e
T
τ̄D ∥Y ∥∞,τ , (2.51)

where we applied (2.40). Hence by (2.51), recalling (2.32), for ε small enough we
obtain

Kγα εγ−1 ∥δX̄∥α ∥δσ(Z)− δσ(Z̄)∥(γ−1)α,τ ! 1
10
∥δY ∥α,τ +

1
2
∥Y ∥∞,τ , (2.52)

and since ∥Y ∥∞,τ ! |Y0|+ 1

5
∥δY ∥α,τ, see (2.36), we obtain

Kγα εγ−1 ∥δX̄∥α ∥δσ(Z)− δσ(Z̄)∥(γ−1)α,τ ! 1
2
|Y0|+

1
5
∥δY ∥α,τ.

Finally, plugging this bound and (2.50) into (2.49) and (2.47), we obtain

∥Y [2]∥α,τ !M0 ∥δX − δX̄∥α+
1
2
|Y0|+

1
5
∥δY ∥α,τ ,

which proves (2.38) and completes the proof. "

Remark 2.13. An explicit choice for τ̂ in Theorem 2.12 is

τ̂ α := e
−T
τ̄

10 (K2α+3) (1+M0) (1+D (M +M2))
, (2.53)

with τ̄ = τ̄α,D,M defined in (2.39). This is obtained by tracking all the points in
the proof of Theorem 2.12 where ε=(τ ∧T )α was assumed to be small enough: see
Section 2.8 for the details.

2.6. Euler scheme and local/global existence

In this section we discuss global existence of solutions, under the assumption that σ
is globally γ-Hölder with γ ∈

( 1
α
− 1, 1

]
, i.e. [σ]Cγ<∞ (again with no boundedness

assumption on σ). We also state a result of local existence of solutions for equation
(2.3), where we only assume that σ is locally γ-Hölder with γ ∈

( 1
α
− 1, 1

]
(with no

boundedness assumption on σ).
We fix X: [0, T ]→Rd of class Cα with α∈

]1
2
,1
]
and a starting point z0∈Rk. We

split the proof in two parts: we first assume that σ:Rk→Rk⊗ (Rd)∗ is globally γ-
Hölder, then we consider the case when σ is locally γ-Hölder.
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First part: globally Hölder case.

We consider a finite set T={0= t1< · · ·<t#T}⊂R+ and we define an approximate
solution Z =ZT=(Zt)t∈T through the Euler scheme

Z0 := z0, Zti+1 :=Zti+σ(Zti) δXti,ti+1 for 1! i!#T− 1. (2.54)

Let us define the “remainder”

Rst := δZst−σ(Zs) δXst for s< t∈T. (2.55)

We assume that σ is globally γ-Hölder, namely [σ]Cγ<∞, with γ∈
( 1
α
−1,1

]
. We set

ε̂α,γ ,X ,σ :=
1

2 (C(γ+1)α+5) ∥δX∥α [σ]Cγ
, (2.56)

where the constant Cη is defined in (1.45). We prove the following a priori estimates
on the Euler scheme (2.54), which are analogous to those in Theorem 2.7.

Lemma 2.14. If σ is globally γ-Hölder, namely [σ]Cγ<∞, with γ ∈
( 1
α
−1, 1

]
, then

∥R∥(γ+1)αT !C(γ+1)α [σ]Cγ (∥δZ∥αT)γ ∥δX∥α, (2.57)

and for τ γα! ε̂α,γ ,X,σ: ∥δZ∥αT! 1∨ (2 |σ(z0)| ∥δX∥α) . (2.58)

Proof. Since δRsut= (σ(Zs)− σ(Zu)) δXut, recall (1.32), and since Rtiti+1= 0 by
(2.54), we can apply the discrete Sewing Bound (1.45) with η=(γ+1)α> 1 to get

∥R∥(γ+1)α,τT !C(γ+1)α ∥δR∥(γ+1)α,τT !C(γ+1)α [σ]Cγ (∥δZ∥α,τT )γ ∥δX∥α. (2.59)

We have proved (2.57).
We next prove (2.58). Recalling (2.55) we can bound, by (2.6) for ∥·∥γα,Tn,

∥δZ∥α,τT ! ∥σ(Z)∥∞,τ
T ∥δX∥α+ τ γα ∥R∥(γ+1)α,τT .

By (1.47)

∥σ(Z)∥∞,τ
T ! |σ(z0)|+5τ γα∥δσ(Z)∥γα,τT ! |σ(z0)|+5τ γα [σ]Cγ (∥δZ∥α,τT )γ .

We thus obtain, combining the previous bounds,

∥δZ∥α,τT ! |σ(z0)| ∥δX∥α+ {τ γα (Cγα+5) [σ]Cγ ∥δX∥α} (∥δZ∥α,τT )γ .

Now if ∥δZ∥α,τT ! 1 then (2.58) is proved, otherwise (∥δZ∥α,τT )γ! ∥δZ∥α,τT and then
for τ as in (2.56) the term in brackets is less than 1

2
and we obtain (2.58). "

We can now prove the following

Theorem 2.15. (Global existence) Let X be of class Cα, with α∈
]1
2
, 1
]
, and

let σ be globally γ-Hölder with γ ∈
( 1
α
−1,1

]
, i.e. [σ]Cγ<∞. For every z0∈Rk, with

no restriction on T > 0, there exists a solution (Zt)t∈[0,T ] of ( 2.3) with Z0= z0.
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Proof. Given n∈N, we construct an approximate solution Zn=(Zt
n)t∈Tn of (2.3)

defined in the discrete set of times Tn := ({i2−n: i=0,1, . . .}∩ [0, T ])∪{T } through
the Euler scheme (2.54).

Z0
n := z0, Zti+1

n :=Zti
n+ σ(Zti

n) δXti,ti+1 for ti, ti+1∈Tn . (2.60)

Let us define the “remainder”

Rst
n := δZst

n−σ(Zsn) δXst for s< t∈Tn . (2.61)

We fix T > 0 such that

We extend Zn by linear interpolation to a continuous function defined on [0, T ],
still denoted by Zn. Given two points ti!s<t! ti+1 inside the same interval [ti, ti+1]
of the partition Tn, since δZstn=

t− s
ti+1− ti

δZtiti+1
n , we can bound for α∈ (0, 1]

|δZstn|
(t− s)α =

(
t− s

ti+1− ti

)
1−α |δZtiti+1

n |
(ti+1− ti)α

! |δZtiti+1
n |

(ti+1− ti)α
.

Given two points s< t in different intervals, say ti! s! ti+1! tj! t! tj+1 for some
i < j, by the triangle inequality we can bound |δZstn|! |δZsti+1n |+ |δZti+1tj

n |+ |δZtjt
n |.

Recalling (1.9) and (1.43), we then obtain ∥·∥α! 3 ∥·∥αTn, hence by (2.58) we get

∥δZn∥α,τ ! 3∨ (6 |σ(z0)| ∥δX∥α) . (2.62)

The family (Zn)n∈N is equi-continuous by (2.62) and equi-bounded , since Z0n= z0
for all n∈N, hence by the Arzelà-Ascoli Theorem it is compact in the space C([0, T ],
Rk). Let us denote by Z: [0, T ]→Rk any limit point. Plugging (2.58) into (2.57),
by (2.61) we can write

if T α! ε̂α,X,σ: |δZstn−σ(Zsn) δXst|! c(z0) (t− s)2α ∀s< t∈Tn , (2.63)

where c(z0) := C(γ+1)α [σ]Cγ (3 ∨ (6 |σ(z0)| ∥δX∥α))γ ∥δX∥α . Letting n→∞ and
observing that Tn⊆Tn+1, we see that (2.63) still holds with Zn replaced by Z
and Tn replaced by the set T :=

⋃
ℓ∈NT2ℓ =

({ i

2n
: i, n ∈N

}
∩ [0, T ]

)
∪ {T } of

dyadic rationals:

if T α! ε̂α,X ,σ: |δZst−σ(Zs) δXst|! c(z0) (t− s)2α ∀s< t∈T.

Since T is dense in [0, T ] and Z is continuous, this bound extends to all 0!s<t!T ,
which shows that Z is a solution of (2.3). This completes the proof. "

Second part: locally Lipschitz case.
We now assume that σ is locally γ-Hölder and we fix z0∈Rk. We also fix T >0 such
that T ! ε̃α,X,σ(z0), see (2.64), and we prove that there exists a solution Z: [0,T ]→Rk

of (2.3) with Z0= z0.

Theorem 2.16. (Local existence) Let X be of class Cα, with α∈
]1
2
,1
]
, and let σ

be locally Lipschitz (e.g. of class C1). For any z0∈Rk and for T >0 small enough, i.e.

T α! ε̃α,X ,σ(z0) :=
1
2

1
(C2α+3) ∥δX∥α {1+ sup|z−z0|!|σ(z0)| |∇σ(z)|}

, (2.64)
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there exists a solution (Zt)t∈[0,T ] of ( 2.3) with Z0= z0.

Let σ̃ be a globally γ-Hölder function (depending on z0) such that

σ̃(z)= σ(z) ∀|z− z0|! σ(z0) and [σ̃]Cγ= sup
|z−z0|!σ(z0)

|∇σ(z)| . (2.65)

Since T ! ε̃α,X ,σ(z0)! ε̂α,X ,σ, see (2.64) and (2.56), by the first part of the proof
there exists a solution Z of ( 2.3) with σ̃ in place of σ and Z0=z0. We will prove that

|Zt− z0|!σ(z0) for all t∈ [0, T ] , (2.66)

therefore σ̃(Zt)= σ(Zt) for all t∈ [0, T ], see (2.65). This means that Z is a solution
of the original (2.3) with σ, which completes the proof of Theorem 2.16.

To prove (2.66), we apply the a priori estimate (2.13) with τ =∞: we note that
T ! ε̃α,X ,σ(z0)! εα,X,σ (see (2.64) and (2.12), and note that C2α#K2α), therefore

∥δZ∥α! 2 ∥δX∥α |σ(z0)|,

because σ̃(z0)=σ(z0). Then for every t∈ [0, T ] we can bound

|Zt− z0|!T α ∥δZ∥α! 2T α ∥δX∥α |σ(z0)|! |σ(z0)|,

where the last inequality holds because T α! ε̃α,X ,σ(z0)! (2 ∥δX∥α)−1, see (2.64).
This completes the proof of (2.66).

2.7. Error estimate in the Euler scheme
We suppose in this section that σ is of class C2 with ∥∇σ∥∞+ ∥∇2σ∥∞<+∞.

Theorem 2.17. The Euler scheme converges at speed n2α−1.

Proof. Let us set zi := ∂yi/∂y0,where (yi)i"0 is defined by (2.60). Then

zi+1= zi+∇σ(yi) zi δXtiti+1, i# 0.

This shows that the pair (yi, zi)i"0 satisfies a recurrence which is similar to (2.60)
with a map Σ of class C1 and therefore we can apply the above results to obtain
that |zi|! const. In particular the map y0→ yk is Lipschitz-continuous, uniformly
over k# 0.

Let us call, for k# 0, (zℓ(k))ℓ"k as the sequence which satisfies (2.60) but has
initial value zk

(k)= y(tk). Since (y(t))t"0 is a solution to (2.4), we have

|zk+1
(k) − y(tk+1)|$n−2α.

Since the map y0→ yk is Lipschitz-continuous uniformly over k# 0, we have

|zℓ
(k)− zℓ

(k+1)|$ |zk+1(k) − y(tk+1)|$n−2α, ℓ# k+1.

Therefore

|yℓ− y(tℓ)|= |zℓ
(0)− zℓ

(ℓ)|!
∑

k=0

ℓ−1

|zℓ
(k)− zℓ

(k+1)|$ ℓ
n2α

=
tℓ

n2α−1
→ 0
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as tℓ is bounded and n→∞. "

2.8. Extra: a value for τ̂

We can give an explicit expression for τ̂ = τ̂M0,M,T in Theorem 2.12, by tracking all
the points in the proof where τ is small enough, namely:

• for (2.36) we need τα! 1

15;

• for (2.40) we need τα! (ρ̂M)α := (2 (K2α+3) cM)−1;

• for (2.42) we need τα! (6 cM)−1, for (2.45) we need τα! (15 cM)−1;
• for (2.50) we need τ (γ−1)α! (2Kγα cM)−1;

• for (2.52) we need τ (γ−1)α! (10Kγα cM)−1 (first term in the RHS) and also

τ (γ−1)α!
(
Kγα e

T
ρ̂MM0M2 ∥∇2σ∥∞

)−1
(second term in the RHS).

Since cM =M ∥∇σ∥∞, see (2.34), it is easy to check that all these constraints are
satisfied for 0< τ ! τ̂ given by formula (2.53) in Remark 2.13.

2.8 Extra: a value for τ̂ 41





Chapter 3

Difference equations: the rough case

We have so far considered the difference equation (2.3), that is

Zt−Zs=σ(Zs) (Xt−Xs)+ o(t− s), 0! s! t!T , (3.1)

where X is given, Z is the unknown and σ(·) is sufficiently regular. This is a gen-
eralization of the differential equation Żt= σ(Zt)Xt

˙ which is meaningful for non
smooth X, as we showed in Chapter 2, where we proved well-posedness in the so-
called Young case, i.e. assuming that X ∈ Cα with α∈

]1
2
, 1
]
.

However, the restriction α> 1

2
is a substantial limitation: in particular, we cannot

take X=B as a typical path of Brownian motion, which is in Cα only for α< 1

2
. For

this reason, we show in this chapter how to enrich the difference equation (3.1) and
prove well-posedness when X ∈ Cα with α∈

]1
3
, 1
2

]
, called the rough case. This will

be applied to Brownian motion in the next Chapter 4, in order to obtain a robust
formulation of classical stochastic differential equations.

Remark 3.1. (Young vs. Rough case) The restriction α> 1

2
for the study of

the difference equation (3.1) has a substantial reason, namely there is no solution to
( 3.1) for general X ∈Cα with α! 1

2
. Indeed, taking the “increment” δ of both sides

of (3.1) and recalling (1.23) and (1.32), we obtain

(σ(Zu)−σ(Zs)) (Xt−Xu)= o(t− s) for 0! s!u! t!T . (3.2)

If X ∈ Cα, for any α ∈ (0, 1], then we know from Lemma 2.6 that Z ∈ Cα, but not
better in general (e.g. when σ(·)≡ c is constant we have Z = c X), hence the LHS
of (3.2) is $(u− s)α (t− u)α$ (t− s)2α, but not better in general. This shows that
the restriction α> 1

2
is generally necessary for (3.1) to have solutions.

3.1. Enhanced Taylor expansion

We fix d, k ∈N, a time horizon T > 0 and a sufficiently regular function σ:Rk→
Rk⊗ (Rd)∗. Our goal is to give a meaning to the integral equation

Zt=Z0+

∫

0

t

σ(Zs)Xs
˙ ds, 0! t!T , (3.3)

where Z: [0, T ]→Rk is the unknown and X: [0, T ]→Rd is a non smooth path, more
precisely X ∈ Cα with α∈

]1
3
, 1
2

]
.
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The difference equation (3.1) is no longer enough, for the crucial reason that
typically it admits no solutions for α! 1

2
, see Remark 3.1. We are going to solve

this problem by enriching the RHS of ( 3.1) in a suitable, but non canonical way:
this leads to the key notion of rough path which is central in this book.

To provide motivation, suppose for the moment that X is continuously differen-
tiable, so that (3.3) is meaningful. As we saw in (1.3), an integration yields for s<t

Zt−Zs= σ(Zs) (Xt−Xs)+

∫

s

t

(σ(Zu)−σ(Zs)) Ẋudu. (3.4)

In Chapter 1 we observed that the integral is o(t− s), which leads to the difference
equation (3.1). More precisely, the integral is O((t− s)2) if X ∈C1 and σ is locally
Lipschitz (note that Z ∈C1). The idea is now to go further, expanding the integral
to get a more accurate local description, with a better remainder O((t− s)3).

To this purpose, we assume that σ is differentiable and we introduce the key
function σ2:Rk→Rk⊗ (Rd)∗⊗ (Rd)∗ by

σ2(z) :=∇σ(z) σ(z), i.e. [σ2(z)]jℓ
i :=

∑

a=1

k
∂σj

i

∂za
(z) σℓ

a(z) . (3.5)

Since d

dr
σ(Zr)=∇σ(Zr) Żr=σ2(Zr) Ẋr by (3.3), we can write for s<u

σ(Zu)−σ(Zs) =

∫

s

u

σ2(Zr) Ẋr dr

= σ2(Zs) (Xu−Xs)+

∫

s

u

(σ2(Zr)−σ2(Zs)) Ẋr dr, (3.6)

where for z ∈Rd and a∈Rd we define σ2(z) a∈Rk⊗ (Rd)∗ by

[σ2(z) a]j
i=
∑

ℓ=1

d

[σ2(z)]jℓ
i aℓ.

If we assume that σ2 is locally Lipschitz, then the last integral in (3.6) is O((u− s)2)
(recall that X ∈C1). Plugging this into (3.4), we then obtain

Zt−Zs=σ(Zs) (Xt−Xs)+σ2(Zs)

∫

s

t

(Xu−Xs)⊗ Ẋudu+O((t− s)3), (3.7)

where now for z ∈Rd and B ∈Rd⊗Rd we define σ2(z)B ∈Rk by

[σ2(z)B]i=
∑

ℓ,m=1

d

[σ2(z)]ℓm
i Bmℓ. (3.8)

Let us rewrite the integral in the right-hand side of (3.7) more conveniently. To
this purpose we introduce the shorthands

Xst
1 :=Xt−Xs , Xst

2 :=

∫

s

t

(Xr−Xs)⊗ Ẋr dr, 0! s! t!T , (3.9)
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so that X1: [0, T ]!2 →Rd and X2: [0, T ]!2 →Rd⊗Rd, see (1.7). More explicitly:

(Xst
2 )ij :=

∫

s

t

(Xr
i−Xs

i) Ẋr
j dr, i, j ∈ {1, . . . , d} .

We can thus rewrite (3.7), replacing O((t− s)3) by o(t− s), in the compact form

Zt−Zs= σ(Zs)Xst
1 +σ2(Zs)Xst

2 + o(t− s), 0! s! t!T , (3.10)

where for the product σ2(Zs)Xst
2 we use the contraction rule (3.8).

We have obtained an enhanced Taylor expansion: comparing with (3.1), we added
a “second order term” containingXst

2 . The idea is to take this new difference equation,
that we call rough difference equation, as a generalized formulation of the differential
equation (3.3), just as we did in Chapter 1 (see Section 1.2). However, there is a
problem: the term Xst

2 depends on the derivative Ẋ, see (3.9), so it is not clearly
defined for a non-differentiable X.

To overcome this problem, we will assign a suitable function X2=(Xst
2 )0!s!t!T

playing the role of the integral (3.9) when X is not differentiable: this leads to the
notion of rough paths , defined in the next section and studied in depth in Chapter 7.
We will show in this chapter that rough paths are the key to a robust solution theory
of rough difference equations when X of class Cα with α∈

( 1
3
, 1
2

]
.

3.2. Rough paths

Let us fix a path X: [0,T ]→Rd of class Cα with α∈
( 1
3
, 1
2

]
. Motivated by the previous

section, we are going to reformulate the ill-posed integral equation (3.3) as the
difference equation (3.10), which contains X1 and X2.

We can certainly define Xst
1 :=Xt−Xs as in (3.9), but there is no canonical

definition of Xst
2 =

∫
s

t
(Xr −Xs) ⊗ Ẋr dr, since X may not be differentiable. We

therefore assign a function Xst
2 which satisfies suitable properties . Note that when

X is continuously differentiable the function X2 in (3.9) satisfies:

• an algebraic identity known as Chen’s relation: for 0! s! u! t!T

Xst
2 −Xsu

2 −Xut
2 =Xsu

1 ⊗Xut
1 =(Xu−Xs)⊗ (Xt−Xu) , (3.11)

which follows from (3.9) noting that

Xst
2 −Xsu

2 −Xut
2 =

∫

u

t

(Xr−Xs)⊗ Ẋr dr=(Xu−Xs)⊗ (Xt−Xu) ;

• the analytic bounds

|Xst
1 |$ |t− s| , |Xst

2 |$ |t− s|2, (3.12)

which follow from the fact that Ẋ is bounded.

The algebraic relation (3.11) is still meaningful for non-differentiable X, while the
analytic bounds (3.12) can naturally be adapted to the case of Hölder paths X ∈Cα
by changing the exponents 1, 2 to α, 2α. This leads to the following key definition.

3.2 Rough paths 45



Definition 3.2. (Rough paths) Fix α∈
]1
3
, 1
2

]
, d∈N and a path X: [0, T ]→Rd

of class Cα. An α-rough path over X is a pair X=(X1,X2) where the functions
X1: [0, T ]!2 →Rd and X2: [0, T ]!2 →Rd⊗Rd satisfy, for 0! s!u! t!T:
• the algebraic relations

Xst
1 =Xt−Xs , δXsut

2 :=Xst
2 −Xsu

2 −Xut
2 =Xsu

1 ⊗Xut
1 , (3.13)

where the second identity is called Chen’s relation;

• the analytic bounds

|Xst
1 |$ |t− s|α , |Xst

2 |$ |t− s|2α . (3.14)

We call Rα,d(X) the set of d-dimensional α-rough paths X= (X1,X2) over X and
Rα,d=

⋃
X∈CαRα,d(X) the set of all d-dimensional α-rough paths.

When X is of class C1, the choice (3.9) yields by (3.11)-(3.12) a α-rough path
for any α∈

( 1
3
, 1
2

]
which we call the canonical rough path, see Section 7.7 below.

When X =B is Brownian motion, the theory of stochastic integration provides
a natural candidate for X2, in fact multiple candidates (think of Ito vs. Stratonovich
integration), as we discuss in Chapter 4 below. Incidentally, this makes it clear that
the construction of X2 is in general non canonical , i.e. there are multiple choices of
X2 for a given path X. This is a strength of the theory of rough paths, since it allows
to treat different non equivalent forms of integration.

Remark 3.3. The existence of rough paths over any given path X (i.e. the fact
that Rα,d(X)=/ ∅) is a non trivial fact, which will be proved in Chapter 7.

Remark 3.4. (X2 as a “path”) The two-parameters function Xst
2 is determined

by the one-parameter function

It :=X0t
2 +X0⊗(Xt−X0) , (3.15)

which intuitively describes the integral
∫
0

t
Xr⊗ Ẋr dr. Indeed, we can write

Xst
2 = It− Is−Xs⊗ (Xt−Xs) , (3.16)

since Xst
2 =X0t

2 −X0s
2 − (Xs−X0)⊗ (Xt−Xs) by Chen’s relation (3.13).

Vice versa, given a function I: [0, T ]→Rd, if we define X2 by (3.16), then Chen’s
relation (3.13) is automatically satisfied (recall (1.32)). In order to satisfy the ana-
lytic bound in (3.14), we must require that

|It− Is−Xs⊗ (Xt−Xs)|$ (t− s)2α , (3.17)

which is a natural estimate if It− Is should describe “=
∫
s

t
Xr⊗ Ẋr dr”.

Summarizing: given any path X: [0, T ]→Rd of class Cα, it is equivalent to assign
X2: [0, T ]!2 →Rd⊗Rd satisfying ( 3.13)-( 3.14) or to assign I: [0, T ]→Rd satisfying
( 3.17), the correspondence being given by (3.15)-(3.16).
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3.3. Rough difference equations
Given a time horizon T > 0 and two dimensions d, k ∈N, let us fix:

• a path X: [0, T ]→Rd of class Cα with α∈
]1
3
, 1
2

]
;

• an α-rough path X=(X1,X2) over X, see Definition 3.2;

• a differentiable function σ:Rk→Rk⊗ (Rd)∗, which lets us define the function

σ2:Rk→Rk⊗ (Rd)∗⊗ (Rd)∗ (see (3.5)) .

Motivated by the previous discussions, see in particular (3.10), we study in this
chapter the following rough difference equation for an unknown path Z: [0, T ]→Rk:

δZst= σ(Zs)Xst
1 + σ2(Zs)Xst

2 + o(t− s), 0! s! t!T , (3.18)

where we recall the increment notation δZst :=Zt−Zs and the contraction rule (3.8),
and we stress that o(t− s) is uniform for 0! s! t!T , see Remark 1.1. In analogy
with (2.3)-(2.4), a solution of (3.18) is a path Z: [0, T ]→Rk such that

Zst
[3] := δZst−σ(Zs)Xst

1 − σ2(Zs)Xst
2 = o(t− s) . (3.19)

We stress that the rough difference equation (3.18) is a generalization of the
integral equation (3.3), as we show in the next result.

Proposition 3.5. If X and σ are of class C1 and σ2 is locally Lipschitz (e.g. if σ is
of class C2), then any solution Z to the integral equation ( 3.3) satisfies the difference
equation ( 3.18) for the canonical rough path X=(X1,X2) in ( 3.9).

Proof. If X ∈C1, then X=(X1,X2) defined in (3.9) is an α-rough path over X for
any α∈

]1
3
, 1
2

]
, as we showed in (3.11)-(3.12). Given a solution Z of (3.3), if σ2 is

locally Lipschitz we derived the Taylor expansion (3.10), hence (3.18) holds. "

We now state local and global existence, uniqueness of solutions and continuity of
the solution map for the rough difference equation (3.18) under natural assumptions
on σ and σ2, summarizing the main results of this chapter. We refer to the next
sections for more precise and quantitative results.

To be completed.

Proposition 3.6. Let z0∈Rd. We suppose that σ and σ2 are of class C1 and globally
Lipschitz, namely ∥∇σ∥∞+∥∇σ2∥∞<+∞. Let D :=max{1,∥∇σ∥∞,∥∇σ2∥∞} and
M > 0.

There exists TM,D,α>0 such that, for all T ∈ (0, TM,D,α) and X=(X1,X2)∈Rα,d

such that ∥X1∥α+ ∥X2∥2α!M, there exists a solution Z to ( 3.19) on the interval
[0, T ] such that Z0= z0 and

∥Z∥α! 15M(|σ(z0)|+ |σ2(z0)|). (3.20)

The proof of this Proposition, based on a discretization argument, is postponed
to section 3.9 below.
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We are going to use the Sewing Bound (1.26), its weighted version (1.41) and its
discrete formulation (1.45).

3.4. Set-up

We recall that the weighted semi-norms ∥·∥η,τ are defined in (1.33)-(1.34). We are
going to use the various properties that we recalled in Section 2.2, see in particular
(2.5), (2.6) and (2.7)-(2.8), as well as the natural generalization

if Fsut=GsuHut then ∥F ∥3η,τ
{
!∥G∥2η,τ ∥H∥η ,
!∥G∥η,τ ∥H∥2η .

(3.21)

In all these bounds, whenever there is a product, only one factor gets the weighted
semi-norm, while the other factor gets the ordinary semi-norm. We sometimes need
to introduce an additional weight, which is possible applying (2.9).

In Chapter 2 a key tool to study the Young difference equation (2.4) was the
estimate on the “difference of increments” in Lemma 2.8. This tool is still crucial in
this chapter, but we will need an additional ingredient that we now present.

Lemma 3.7. (Taylor identity) Let z1, z2∈Rk and x∈Rd. If σ:Rk→Rk⊗(Rd)∗ is
of class C1, defining σ2:Rk→Rk⊗ (Rd)∗⊗ (Rd)∗ by ( 3.5) and setting δz12 := z2−z1,
we have the identities

σ(z2)−σ(z1)−σ2(z1)x (3.22)

= ∇σ(z1)(δz12−σ(z1) x)+
∫

0

1

[(∇σ(z1+ r δz12)−∇σ(z1)) δz12] dr,

and

σ(z2)−σ(z1)− σ2(z1)x =

∫

0

1

[(σ2(z1+ r δz12)−σ2(z1))x]dr (3.23)

+

∫

0

1

[∇σ(z1+ r δz12) (δz12−σ(z1)x)] dr

−
∫

0

1

∇σ(z1+ rδz12)
(∫

0

r

[∇σ(z1+ v δz12) δz12x]dv
)
dr.

Proof. The first formula is based on elementary manipulations and on the fact that

σ(z2)−σ(z1)=
∫

0

1

[∇σ(z1+ r δz12) δz12] dr .

For the second formula, setting δz := δz12 for short, we similarly write

σ(z2)−σ(z1) =

∫

0

1

[∇σ(z1+ r δz) δz]dr

=

∫

0

1

[∇σ(z1+ r δz) (δz− σ(z1)x)]dr+
∫

0

1

[∇σ(z1+ r δz)σ(z1) x] dr
︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

A
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and then, recalling the definition (3.5) of σ2,

A=

∫

0

1

[σ2(z1+ r δz)x]dr−
∫

0

1

[∇σ(z1+ r δz) (σ(z1+ r δz)−σ(z1)) x] dr
︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

B

.

Finally

B =

∫

0

1

∇σ(z1+ r δz)

(∫

0

r

[∇σ(z1+ v δz) δz x] dv
)
dr

from which (3.23) follows easily. "

We will see below that (3.22) is useful for the comparison between two solutions,
as in the proofs of uniqueness (Theorem 3.10) and continuity of the solution map
(Theorem 3.11), while (3.23) is well suited for a priori estimates on a single solution
(Theorem 3.9) or on a discretization scheme (Lemma 3.13).

3.5. A priori estimates
In this section we prove a priori estimates for solutions of the rough difference
equation (3.18) for globally Lipschitz σ and σ2, i.e. ∥∇σ∥∞<∞ and ∥∇σ2∥∞<∞.
A sufficient condition is that σ, ∇σ, ∇2σ are bounded, see (3.5), but it is interesting
that boundedness of σ is not necessary (think of the case of linear σ).

Given a solution Z of (3.18), we define the “remainders” Z [3] and Z [2] by

Zst
[3]= δZst−σ(Zs)Xst

1 −σ2(Zs)Xst
2 , Zst

[2]= δZst−σ(Zs)Xst
1 . (3.24)

Let us first show, by easy arguments, that any solution Z of (3.18) has the same
Hölder regularity Cα of the driving path X (in analogy with Lemmas 1.2 and 2.6),
and that the “level 2 remainder” Zst

[2] is in C2
2α, that is |Zst

[2]|$ (t− s)2α.

Lemma 3.8. (Hölder regularity) Let σ be of class C1 and let Z be a solution
of ( 3.18). There is a constant C =C(Z)<∞ such that

{
|Zst

[2]|!C |Xst
2 |+ o(t− s),

|δZst|!C (|Xst
1 |+ |Xst

2 |)+ o(t− s),
0! s! t!T . (3.25)

In particular, if X=(X1,X2) is an α-rough path, then Z [2]∈C22α and Z is of class Cα.

Proof. If X=(X1,X2) is an α-rough path, then by the first bound in (3.25) we have
|Zst

[2]|$ (t− s)2α+ o(t− s)$ (t− s)2α, that is Z [2]∈C22α. Similarly, the second bound
in (3.25) gives |δZst|$ (t− s)α+(t− s)2α+o(t−s)$ (t− s)α, that is Z is of class Cα.

It remains to prove (3.25). This follows by (3.18) with C := sup0!s!T {|σ(Zs)|+
|σ2(Zs)|}, so we need to show that C <∞. Since σ and σ2 are continuous (because
σ is of class C1), it is enough to prove that Z is bounded: sup0!t!T |Zt|<∞.

Arguing as in the proof of Lemma 1.2, we fix δ̄ > 0 such that |o(t− s)|! 1 for
all 0! s! t!T with |t− s|! δ̄. Since [0, T ] is a finite union of intervals [s̄, t̄] with
t̄ − s̄! δ̄, we may focus on one such interval: by (3.18) we can bound

sup
t∈[s̄,t̄]

|Zt|! |Zs̄|+ |σ(Zs̄)| sup
t∈[s̄,t̄]

|Xst
1 |+ |σ2(Zs̄)| sup

t∈[s̄,t̄]
|Xst

2 |+1<∞.
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This completes the proof that sup0!t!T |Zt|<∞. "

We next get to our main a priori estimates, showing in particular that the
“level 3 remainder” Zst

[3] is in C23α, that is |Zst
[3]|$ |t− s|3α. Let us first record a useful

computation: recalling (1.23) and (1.32), by δ ◦ δ=0 and (3.13), we have

δZsut
[3] = Zst

[3]−Zsu
[3]−Zut

[3]

= (σ(Zu)−σ(Zs)−σ2(Zs)Xsu
1 )

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Bsu

Xut
1 +(σ2(Zu)−σ2(Zs))Xut

2 . (3.26)

Theorem 3.9. (Rough a priori estimates) Let X be of class Cα with α∈
]1
3
, 1
2

]

and let X=(X1,X2) be an α-rough path over X. Let σ and σ2 be globally Lipschitz.
For any solution Z of ( 3.18), recalling the “remainders” Z [3] and Z [2] from ( 3.24),

we have Z [3]∈C23α: more precisely, for any τ > 0,

∥Z [3]∥3α,τ !K3α cα,X,σ
′ (∥δZ∥α,τ + ∥Z [2]∥2α,τ) , (3.27)

where we recall that K3α=(1− 21−3α)−1 and we define the constant

cα,X,σ
′ := ∥∇σ∥∞ ∥X1∥α+ ∥∇σ2∥∞ ∥X2∥2α+(∥∇σ∥∞2 + ∥∇σ2∥∞) ∥X1∥α2 . (3.28)

Moreover, if either T or τ is small enough, we have

∥δZ∥α,τ + ∥Z [2]∥2α,τ ! 2 (σ(Z0) ∥X1∥α+σ2(Z0) ∥X2∥2α) (3.29)
for (T ∧ τ )α! εα,X,σ′ ,

where we set

εα,X,σ
′ :=

1
4 (K3α+3) (cα,X,σ

′ +1)
. (3.30)

Proof. Let us prove (3.27). Since 3α> 1 and Zst
[3]= o(t − s), see (3.19), we can

apply the weighted Sewing Bound (1.41) which gives ∥Z [3]∥3α,τ!K3α ∥δZ [3]∥3α,τ. It
remains to estimate δZ [3] from (3.26): applying (3.21) we can write

∥δZ [3]∥3α,τ ! ∥B∥2α,τ ∥X1∥α+ ∥δσ2(Z)∥α,τ ∥X2∥2α . (3.31)

We now focus on Bsu from (3.26): by (3.23) we have

Bsu =

∫

0

1

[(σ2(Zs+ u δZsu)−σ2(Zs))Xsu
1 ]du+

∫

0

1

[∇σ(Zs+u δZsu)Zsu
[2]]du

−
∫

0

1

∇σ(Zs+ u δZsu)

(∫

0

u

[∇σ(Zs+ v δZsu) δZsuXsu
1 ] dv

)
du ,

so that, by (2.8),

∥B∥2α,τ ! (∥∇σ2∥∞+ ∥∇σ∥∞2 ) ∥X1∥α ∥δZ∥α,τ + ∥∇σ∥∞ ∥Z [2]∥2α,τ . (3.32)

We can plug this estimate into (3.31), together with the elementary bound

∥δσ2(Z)∥α,τ ! ∥∇σ2∥∞ ∥δZ∥α,τ . (3.33)
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Recalling that ∥Z [3]∥3α,τ !K3α ∥δZ [3]∥3α,τ, we have proved (3.27)-(3.28).

We next prove (3.29), for which we need to estimate Z [2] and δZ. Writing Zst
[2]=

σ2(Zs)Xst
2 +Zst

[3] and setting ε := (τ ∧T )α for short, we can bound by (2.6) and (2.7)

∥Z [2]∥2α,τ ! ∥σ2(Z)∥∞,τ ∥X2∥2α+ ε ∥Z [3]∥3α,τ .

By (2.5) we have ∥σ2(Z)∥∞,τ!σ2(Z0)+3ε ∥δσ2(Z)∥α,τ and we can bound ∥δσ2(Z)∥α,τ
by (3.33). Applying (3.27) and recalling (3.28), we then obtain

∥Z [2]∥2α,τ ! σ2(Z0) ∥X2∥2α+ ε (K3α+3) cα,X,σ
′ (∥δZ∥α,τ + ∥Z [2]∥2α,τ)

! σ2(Z0) ∥X2∥2α+
1
4

ε
εα,X,σ
′ (∥δZ∥α,τ + ∥Z [2]∥2α,τ) , (3.34)

where we recall that εα,X,σ′ is defined in (3.30).
Similarly, writing δZst= σ(Zs)Xst

1 +Zst
[2] we can bound, by (2.6) and (2.7),

∥δZ∥α,τ ! ∥σ(Z)∥∞,τ ∥X1∥α+ ε ∥Z [2]∥2α,τ ,

and since ∥σ(Z)∥∞,τ ! σ(Z0)+ 3 ε ∥δσ(Z)∥α,τ ! σ(Z0)+ 3 ε ∥∇σ∥∞ ∥δZ∥α,τ we get,
recalling (3.28),

∥δZ∥α,τ ! σ(Z0) ∥X1∥α+3 ε cα,X,σ
′ ∥δZ∥α,τ + ε ∥Z [2]∥2α,τ

! σ(Z0) ∥X1∥α+
1
4

ε
εα,X,σ
′ ∥δZ∥α,τ + ε ∥Z [2]∥2α,τ . (3.35)

Finally, for ε! εα,X,σ′ (hence ε! 1

4
, see (3.28)), by (3.34) and (3.35) we obtain

∥δZ∥α,τ + ∥Z [2]∥2α,τ !σ(Z0) ∥X1∥α+ σ2(Z0) ∥X2∥2α+
1
2
(∥δZ∥α,τ + ∥Z [2]∥2α,τ) .

Since ∥δZ∥α,τ + ∥Z [2]∥2α,τ <∞ by Lemma 3.8, we have proved (3.29). "

3.6. Uniqueness

In this section we prove uniqueness of solutions of (3.18) under the assumption that
σ:Rk→Rk⊗ (Rd)∗ is of class Cγ with γ > 1

α
(e.g. it suffices that σ is of class C3).

This implies that σ2 from (3.5) is of class C1 with locally (γ − 2)-Hölder gradient
∇σ2. We stress that σ and σ2 are not required to be bounded.

Theorem 3.10. (Uniqueness) Let X be of class Cα with α∈
]1
3
, 1
2

]
, let X=(X1,

X2) be an α-rough path over X, and let σ be of class C γ with γ > 1

α
(e.g. if σ is of

class C3). Then for every z0∈Rk there exists at most one solution Z to ( 3.18) such
that Z0= z0.

Proof. Let us fix two solutions Z, Z̄ of (3.18) and define their difference

Y :=Z − Z̄.
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Our goal is to show that, for τ > 0 small, we have ∥Y ∥∞,τ ! 2 |Y0|. In particular, if
Z0= Z̄0, then Y0=0 and therefore ∥Y ∥∞,τ=0, i.e. Z= Z̄, which completes the proof.

We know by (2.5) that

∥Y ∥∞,τ ! |Y0|+3 τα ∥δY ∥α,τ . (3.36)

With some abuse of notation, we denote by Yst
[2] :=Zst

[2]− Z̄st
[2] and Yst

[3] :=Zst
[3]− Z̄st

[3]

the “differences of remainders”, recall (3.24), so that we can write

δYst = (σ(Zs)− σ(Z̄s))Xst
1 +Yst

[2], (3.37)
Yst
[2] = (σ2(Zs)−σ2(Z̄s))Xst

2 +Yst
[3]. (3.38)

We are going to show that, for τ > 0 small enough, the following bounds hold:

∥δY ∥α,τ ! c1 ∥Y ∥∞,τ + τα ∥Y [2]∥2α,τ , (3.39)

∥Y [2]∥2α,τ ! c2 ∥Y ∥∞,τ + τ (γ−2)α ∥Y [3]∥γα,τ , (3.40)

∥Y [3]∥γα,τ ! c3 ∥Y ∥∞,τ + c3
′ τ (γ−2)α ∥Y [3]∥γα,τ , (3.41)

for suitable constants ci, ci′ that may depend on Z, Z̄ ,X1,X2, σ, but not on τ .
We can easily complete the proof, assuming (3.39)-(3.41): if we fix τ > 0 small

enough so that c3′ τ (γ−2)α<
1

2
, by (3.41) we have ∥Y [3]∥γα,τ ! 2 c3 ∥Y ∥∞,τ; plugging

this into (3.40) and taking τ > 0 small, we obtain ∥Y [2]∥2α,τ ! 2 c2 ∥Y ∥∞,τ, which
plugged into (3.39) yields ∥δY ∥α,τ! 2 c1 ∥Y ∥∞,τ, for τ > 0 is small enough. Finally,
by (3.36) we obtain, for τ > 0 small, our goal ∥Y ∥∞,τ ! 2 |Y0|.

It remains to prove (3.39)-(3.41). Recalling (2.18), let us define the constants

C1
′ :=C∇σ,∥Z∥∞∨∥Z̄∥∞, C1

′′ :=C∇2σ,∥Z∥∞∨∥Z̄∥∞, C2
′ :=C∇σ2,∥Z∥∞∨∥Z̄∥∞,

C1
′′′ := sup

{
|∇2σ(x)−∇2σ(y)|

|x− y |γ−2 : |x|, |y |! ∥Z∥∞∨∥Z̄∥∞
}
,

C2
′′ := sup

{
|∇σ2(x)−∇σ2(y)|

|x− y |γ−2 : |x|, |y |! ∥Z∥∞∨∥Z̄∥∞
}
.

(Note that ∥Z∥∞, ∥Z̄∥∞<∞ because Z, Z̄ are continuous, see Lemma 3.8.)
We can prove (3.39) and (3.40) arguing as in the proof of Theorem 2.9, see (2.24)

and (2.25). Indeed, from (3.37) we can bound, by (2.6) and (2.7),

∥δY ∥α,τ ! ∥σ(Z)−σ(Z̄)∥∞,τ ∥X1∥α+ τα ∥Y [2]∥2α,τ
! C1

′ ∥Y ∥∞,τ ∥X1∥α+ τα ∥Y [2]∥2α,τ , (3.42)

because |σ(Zt)−σ(Z̄t)|!C1′ |Zt− Z̄t|, hence (3.39) holds with c1=C1
′ ∥X1∥α. Simi-

larly, by (3.38) we can bound

∥Y [2]∥2α,τ ! ∥σ2(Z)−σ2(Z̄)∥∞,τ ∥X2∥2α+ τ (γ−2)α ∥Y [3]∥γα,τ
! C2

′ ∥Y ∥∞,τ ∥X2∥2α+ τ (γ−2)α ∥Y [3]∥γα,τ , (3.43)

because |σ2(Zt)−σ2(Z̄t)|!C2′ |Zt− Z̄t|, hence also (3.40) holds with c2=C2′ ∥X2∥2α.
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We finally prove (3.41). Since Yst
[3]=Zst

[3]− Z̄st
[3]=o(t−s), see (3.19), we can bound

Z [3] by its increment δZ [3] through the weighted Sewing Bound (1.41):

∥Y [3]∥γα,τ !Kγα ∥δY [3]∥γα,τ . (3.44)

We are going to prove the following estimate:

∥δY [3]∥γα,τ ! c̃3 ∥Y ∥∞,τ + c̃3
′ ∥δY ∥α,τ + c̃3

′′ ∥Y [2]∥2α,τ , (3.45)

for suitable constants c̃3, c̃3′′, c̃3′′ that depend on Z,Z̄ ,X1,X2,σ, but not on τ . Plugging
the estimates (3.39) and (3.40) (that we already proved) for ∥δY ∥α,τ and ∥Y [2]∥2α,τ,
we obtain (3.41) for suitable (explicit) constants c3, c3′ .

Let us then prove (3.45). Recalling (3.26), for 0! s!u! t! T we can write

δYsut
[3]=(Bsu− B̄su)Xut

1 +(δσ2(Z)− δσ2(Z̄))suXut
2 ,

where Bsu :=σ(Zu)−σ(Zs)−σ2(Zs)Xsu
1 and similarly for B̄su, hence by (3.21)

∥δY [3]∥γα,τ ! ∥B − B̄∥(γ−1)α,τ ∥X∥α+ ∥δσ2(Z)− δσ2(Z̄)∥(γ−2)α,τ ∥X2∥2α . (3.46)

To obtain (3.45) we need to show that ∥B− B̄∥(γ−1)α,τ and ∥δσ2(Z)−δσ2(Z̄)∥(γ−2)α,τ
can be bounded by linear combinations of ∥Y ∥∞,τ, ∥δY ∥α,τ and ∥Y [2]∥2α,τ .

We start from ∥δσ2(Z)− δσ2(Z̄)∥(γ−2)α,τ , which can be bounded as in (2.29):

∥δσ2(Z)− δσ2(Z̄)∥(γ−2)α,τ ! C2
′ ∥δY ∥α,τ +C2

′′ {∥δZ∥α
γ−1+ ∥δZ̄∥α

γ−1}∥Y ∥∞,τ.

We next focus on ∥B− B̄∥(γ−1)α,τ, which we are going to estimate by the following
explicit linear combination of ∥Y ∥∞,τ, ∥δY ∥α,τ and ∥Y [2]∥2α,τ :

∥B − B̄∥(γ−1)α,τ ! C1
′′ ∥Y ∥∞,τ ∥Z [2]∥2α+C1

′ ∥Y [2]∥2α,τ
+C1

′′ ∥δY ∥α,τ ∥δZ∥α+2C1
′′′ ∥Y ∥∞,τ ∥δZ∥α2 (3.47)

+C1
′′ ∥δZ̄∥α ∥δY ∥α,τ ,

which completes the proof of (3.45) when plugged into (3.46).
It only remains to prove (3.47). Recalling (3.24), it follows by (3.22) that

Bsu := σ(Zu)−σ(Zs)−σ2(Zs)Xsu
1

= ∇σ(Zs)Zsu
[2]+

∫

0

1

(∇σ(Zu+ r δZsu)−∇σ(Zu))︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Fsu

δZsudr,

and likewise for B̄su (with F̄su defined similarly), therefore

|Bsu− B̄su|! |∇σ(Zs)Zsu[2]−∇σ(Z̄s) Z̄su[2]|+
∫

0

1

|Fsu δZsu− F̄su δZ̄su| dr . (3.48)

By the elementary estimate |a b− ā b̄ |= |a b− ā b+ ā b− ā b̄ |! |a− ā||b|+|ā| |b− b̄ |,
that we apply repeatedly, we can bound

|∇σ(Zs)Zsu
[2]−∇σ(Z̄s) Z̄su

[2]| ! |∇σ(Zs)−∇σ(Z̄s)| |Zsu
[2]|+ |∇σ(Z̄s)| |Zsu

[2]− Z̄su
[2]|

! C1
′′ |Ys| |Zsu

[2]|+C1
′ |Ysu

[2]|,
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and note that by (2.7) we obtain the first line in the RHS of (3.47).
To complete the proof of (3.47), we look at the second term in the RHS of (3.48):

|Fsu δZsu− F̄su δZ̄su| ! |Fsu− F̄su| |δZsu|+ |F̄su| |δZsu− δZ̄su|
! |Fsu− F̄su| |δZsu|+C1

′′ r |δZ̄su| |δYsu|, (3.49)

because |F̄su|!C1
′′ r |δZ̄su|. We then see, applying (2.8), that the last term in (3.49)

produces the third line in (3.47). Finally, by (2.19) we estimate

|Fsu− F̄su| = |(∇σ(Zu+ r δZsu)−∇σ(Zu))− (∇σ(Z̄u+ r δZ̄su)−∇σ(Z̄u))|
! C1

′′ r |δYsu|+C1
′′′ {|r δZsu|γ−2+ |rδZsu|γ−2} |Ys| .

We obtain by (2.7) for 0! r! 1

∥F − F̄ ∥(γ−2)α,τ !C1′′ ∥δY ∥α,τ +2C1
′′′ ∥Y ∥∞,τ ∥δZ∥αγ−2 .

Applying again (2.8), we finally see that the first term in (3.49) yields the second
line in (3.47), which completes the proof. "

3.7. Continuity of the solution map

In this section we assume that σ has bounded first, second and third derivatives,
while σ2 has bounded first and second derivatives:

∥∇σ∥∞, ∥∇2σ∥∞, ∥∇3σ∥∞<∞, ∥∇σ2∥∞, ∥∇2σ2∥∞<∞. (3.50)

(We stress that no boundedness assumption is made on σ and σ2.) Under these
assumptions, given any time horizon T > 0, any starting point Z0∈Rk and any α-
rough path X=(X1,X2) with 1

3
<α! 1

2
, we have global existence and uniqueness of

solutions Z: [0, T ]→Rk to (3.18) (as we will prove in Theorem 3.12).
Denoting by Rα,d the space of d-dimensional α-rough paths X=(X1,X2), that

we endow with the norm ∥X1∥α+ ∥X2∥2α we can thus consider the solution map:

Φ: Rk×Rα,d −→ Cα

(Z0 ,X) '−→ Z :=

{
unique solution of (3.18) for t∈ [0, T ]
starting from Z0

. (3.51)

We prove the highly non-trivial result that this map is locally Lipschitz . In the space
Cα of Hölder functions we work with the weighted norm ∥f ∥∞,τ + ∥δf ∥α,τ, which is
equivalent to the usual norm ∥f ∥Cα := ∥f ∥∞+ ∥δf ∥α, see Remark 1.15.

Theorem 3.11. (Continuity of the solution map) Let σ and σ2 satisfy ( 3.50)
(with no boundedness assumption on the functions σ and σ2). Then, for any T > 0
and α∈

]1
3
, 1
2

]
, the solution map (Z0,X) '→Z in ( 3.51) is locally Lipschitz.

More explicitly, given any M0,M ,D<∞, if we assume that

max {∥∇σ∥∞, ∥∇2σ∥∞, ∥∇3σ∥∞, ∥∇σ2∥∞, ∥∇2σ2∥∞}!D, (3.52)
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and we consider starting points Z0, Z̄0∈Rd and rough paths X, X̄∈ Cα with

max {|σ(Z0)| , |σ2(Z0)| , |σ(Z̄0)| , |σ2(Z̄0)|}!M0 , (3.53)

max {∥X1∥α , ∥X2∥2α , ∥X̄1∥α , ∥X̄2∥2α}!M, (3.54)

then the corresponding solutions Z =(Zs)s∈[0,T ], Z̄ =(Z̄s)s∈[0,T ] of ( 3.18) satisfy

∥Z − Z̄∥∞,τ + ∥δZ − δZ̄∥α,τ + ∥Z [2]− Z̄ [2]∥2α,τ
!CM

′ |Z0− Z̄0|+ 30M0 (∥X1− X̄1∥α+ ∥X2− X̄2∥2α). (3.55)

provided τ satisfies 0< τ ∧T ! τ̂ ′ for a suitable τ̂ ′= τ̂α,T ,D,M0,M
′ > 0, where we set

CM
′ := 16 {(∥∇σ∥∞+ ∥∇σ2∥∞)M +1}! 32 (DM +1).

Proof. It is convenient to define the constant

cM
′ := (∥∇σ∥∞+ ∥∇σ2∥∞)M ! 2DM . (3.56)

Let Z and Z̄ be two solutions of (3.18) with respective routh paths X and X̄.
Defining Y :=Z − Z̄ and Y [2] :=Z [2]− Z̄ [2], see (3.24), we rewrite our goal (3.55) as

∥Y ∥∞,τ + ∥δY ∥α,τ + ∥Y [2]∥2α,τ ! 16 (cM′ +1) |Y0|
+ 30M0 (∥X1− X̄1∥α+∥X2− X̄2∥2α) . (3.57)

Throughout the proof we use the shorthand

ε := (τ ∧T )α (3.58)

and we write for ε small enough to mean for all 0<ε<ε0, for a suitable ε0 depending
on α, T ,M0,M ,D. We claim that the following estimates hold for δY and Y [2]:

∥δY ∥α,τ ! cM
′ ∥Y ∥∞,τ +2M0 ∥X1− X̄1∥α+ ε ∥Y [2]∥2α,τ , (3.59)

∥Y [2]∥2α,τ ! cM
′ ∥Y ∥∞,τ +2M0 ∥X2− X̄2∥2α+ ε ∥Y [3]∥3α,τ , (3.60)

and, moreover, for ε small enough the following estimate holds for Y [3] :=Z [3]− Z̄ [3]:

ε ∥Y [3]∥3α,τ ! ∥Y ∥∞,τ +M0 (∥X1 − X̄1∥α + ∥X2 − X̄2∥2α) + ∥δY ∥α,τ +
1
4
∥Y [2]∥α,τ.

(3.61)

It is now elementary (but tedious) to deduce our goal (3.57). Plugging (3.61)
into (3.60) we obtain ∥Y [2]∥2α,τ ! (· · ·)+ 1

4
∥Y [2]∥2α,τ which yields ∥Y [2]∥2α,τ! 4

3
(. . .)

(since ∥Y [2]∥2α,τ <∞ by Lemma 3.8). Making (. . .) explicit, we get

∥Y [2]∥2α,τ!2(cM′ +1)∥Y ∥∞,τ+4M0(∥X1−X̄1∥α+∥X2−X̄2∥2α)+2∥δY ∥α,τ (3.62)

which plugged into (3.59) yields, for ε small enough (it suffices that ε! 1

4
),

∥δY ∥α,τ ! 3 (cM′ +1) ∥Y ∥∞,τ +6M0 (∥X1− X̄1∥α+ ∥X2− X̄2∥2α) , (3.63)
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and looking back at (3.62) we obtain

∥Y [2]∥2α,τ ! 8 (cM′ +1) ∥Y ∥∞,τ + 16M0 (∥X1− X̄1∥α+ ∥X2− X̄2∥2α), (3.64)

so that, overall,

∥Y ∥∞,τ + ∥δY ∥α,τ + ∥Y [2]∥2α,τ ! 12 (cM′ +1) ∥Y ∥∞,τ

+ 22M0 (∥X1− X̄1∥α+∥X2− X̄2∥2α) . (3.65)

It only remains to make ∥Y ∥∞,τ explicit. Since ∥Y ∥∞,τ! |Y0|+3 ε ∥δY ∥α,τ by (2.5),
for ε small enough (more precisely for ε! 1

36 (cM′ +1)
) we can bound

(cM
′ +1) ∥Y ∥∞,τ ! (cM′ +1) |Y0|+

1
12
∥δY ∥α,τ , (3.66)

which inserted into (3.63) yields

∥δY ∥α,τ ! 4 (cM′ +1) |Y0|+8M0 (∥X1− X̄1∥α+ ∥X2− X̄2∥2α).

Plugging this into (3.66), and then (3.66) into (3.65), we obtain our goal (3.57).

It remains to prove (3.59), (3.60) and (3.61). We first state some useful bounds
that will be used repeatedly. Recalling (3.52) and (3.28)-(3.30), let us define

τ̄ = τ̄α,D,M := 1

{4 (K3α+3) (2 (D2+D) (M2+M)+ 1)}1/α
, (3.67)

By the a priori estimate (3.29) we can then bound

for ε=(τ ∧T )α! τ̄ α: ∥δZ∥α,τ + ∥Z [2]∥2α,τ ! 4M0M, (3.68)
hence

max{∥δσ(Z)∥α,τ ,∥δσ2(Z)∥α,τ}!max{∥∇σ∥∞ ,∥∇σ2∥∞}∥δZ∥α,τ!4M0cM
′ , (3.69)

which implies that, by (2.5) and for ε small enough,

max {∥σ(Z)∥∞,τ , ∥σ2(Z)∥∞,τ}!M0+3 ε 4M0 cM
′ ! 2M0.

We record the following simple bound, for any Lipschitz function f ,

∥f(Z)− f(Z̄)∥∞,τ ! ∥∇f ∥∞ ∥Z − Z̄∥∞,τ = ∥∇f ∥∞ ∥Y ∥∞,τ . (3.70)

We will also use a number of times the elementary estimate, for a, b, ā, b̄ ∈R,

|a b− ā b̄ |= |a b− a b̄+ a b̄− ā b̄ |! |a| |b− b̄ |+ |b̄ | |a− ā| . (3.71)

We can now prove (3.59). Since δYst= δZst− δZ̄st= σ(Zs)Xst
1 − σ(Z̄s) X̄st

1 +Yst
[2],

see (3.24) for Z and Z̄, by (2.7) and (3.53)-(3.54) we get, applying (3.71),

∥δY ∥α,τ ! ∥σ(Z)∥∞,τ ∥X1− X̄1∥α+ ∥σ(Z)−σ(Z̄)∥∞,τ ∥X̄1∥α+ ∥Y [2]∥α,τ
! 2M0 ∥X1− X̄1∥α+ ∥σ(Z)−σ(Z̄)∥∞,τM + ε ∥Y [2]∥2α,τ ,

because ∥Y [2]∥α,τ ! ε ∥Y [2]∥2α,τ by (2.6) (recall the definition (3.58) of ε). Applying
(3.70) with f =σ and recalling cM

′ from (3.56), we obtain (3.59).
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The proof of (3.60) is similar. Since Zst
[3]=Zst

[2]−σ2(Zs)Xst
2 and similarly for Z̄ [3],

see (3.24), we can write Yst
[2]=Z [2]− Z̄ [2]=σ2(Zs)Xst

2 −σ2(Z̄s) X̄st
2 +Yst

[3], therefore

∥Y [2]∥2α,τ ! ∥σ2(Z)∥∞,τ ∥X2− X̄2∥2α+ ∥σ2(Z)−σ2(Z̄)∥∞,τ ∥X̄2∥2α+ ∥Y [3]∥2α,τ
! 2M0 ∥X2− X̄2∥2α+ ∥σ2(Z)−σ2(Z̄)∥∞,τM + ε ∥Y [3]∥3α,τ ,

since ∥Y [3]∥2α,τ ! ε ∥Y [3]∥3α,τ by (2.6). Applying (3.70) for f = σ2 we obtain (3.60).

We finally prove (3.61). Since Yst
[3]=Zst

[3]− Z̄st
[3]=o(t−s), see (3.19), the weighted

Sewing Bound (1.41) yields

∥Y [3]∥3α,τ !K3α ∥δY [3]∥3α,τ , (3.72)

hence we can focus on δY [3]= δZ [3]− δZ̄ [3]. Let us recall (3.26): for 0! s!u! t!T

δZsut
[3] =(σ(Zu)−σ(Zs)−σ2(Zs)Xsu

1 )
︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

Bsu

Xut
1 + δσ2(Z)suXut

2 ,

and analogously for δZ̄ [3] and B̄su, therefore by (3.71) and (3.21) we obtain

∥δY [3]∥3α,τ ! ∥B∥2α,τ ∥X1− X̄1∥α+ ∥B − B̄∥2α,τ ∥X̄1∥α,τ
+∥δσ2(Z)∥α,τ ∥X2− X̄2∥2α+ ∥δσ2(Z)− δσ2(Z̄)∥α,τ ∥X̄2∥2α . (3.73)

It remains to estimate the four terms in the RHS: in view of (3.72), relation (3.61)
is proved if we show that, for ε small enough,

εK3α ∥B∥2α,τ ∥X1− X̄1∥α ! M0 ∥X1− X̄1∥α , (3.74)

εK3α ∥B − B̄∥2α,τ ∥X̄1∥α,τ ! 1
2
(∥Y ∥∞,τ+∥δY ∥α,τ)+

1
4
∥Y [2]∥2α,τ , (3.75)

εK3α ∥δσ2(Z)∥α,τ ∥X2− X̄2∥2α ! M0 ∥X2− X̄2∥2α , (3.76)

εK3α ∥δσ2(Z)− δσ2(Z̄)∥α,τ ∥X̄2∥2α ! 1
2
(∥Y ∥∞,τ + ∥δY ∥α,τ) . (3.77)

We first deal with (3.76) and (3.77), then we focus on (3.74) and (3.75).
Proving (3.76) is very simple: since ∥δσ2(Z)∥α,τ ! 4M0 cM

′ by (3.69), we see that
(3.76) holds for ε small enough. To prove (3.77), note that by (2.51) we have

∥δσ(Z)− δσ(Z̄)∥(γ−1)α,τ ! ∥∇σ∥∞ ∥δY ∥α,τ +4M0M [σ]Cγ−1 ∥Y ∥∞,τ .

Applying (3.54) and (3.68) we obtain

∥δσ2(Z)− δσ2(Z̄)∥α,τ ∥X̄2∥2α! ∥∇σ2∥∞M ∥δY ∥α,τ +e
T

τ̄ ∥∇2σ2∥∞ 8M0M2 ∥Y ∥∞,τ ,

which shows that (3.77) holds for ε small enough.
Let us now prove (3.74). By (3.22) we have, for 0! s! t!T ,

Bst=∇σ(Zs)Zst
[2]

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Est

+

∫

0

1

[(∇σ(Zs+ r δZst)−∇σ(Zs)) δZst] dr
︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

Fst

(3.78)
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and similarly for Ēst and F̄st. In particular, recalling (3.68), we get

∥B∥2α,τ ! ∥∇σ∥∞ ∥Z [2]∥2α,τ + ∥∇2σ∥∞ ∥δZ∥α,τ2

! ∥∇σ∥∞ 4M0M + ∥∇2σ∥∞ (4M0M)2,

hence we see that (3.74) holds for ε small enough.
We finally prove (3.75), which is a bit tedious. In view of (3.78), we first consider

Est− Ēst=(∇σ(Zs)−∇σ(Z̄s))Zst
[2]+∇σ(Z̄s) (Zst

[2]− Z̄st
[2]) .

Applying (2.9) with H =Z [2] and τ̄ from (3.67), we obtain

∥E − Ē∥2α,τ ! ∥∇σ(Z)−∇σ(Z̄)∥∞,τ e
T

τ̄ ∥Z [2]∥2α,τ̄ + ∥∇σ∥∞ ∥Y [2]∥2α,τ .

By (3.70) with f =∇σ and the a priori estimate (3.68) we obtain

∥E − Ē∥2α,τ ! ∥∇2σ∥∞ ∥Y ∥∞,τ e
T

τ̄ 4M0M+∥∇σ∥∞ ∥Y [2]∥2α,τ . (3.79)

We then consider Fst− F̄st. By (2.19), for 0! r! 1 we can estimate

|(∇σ(Zs+ r δZst)−∇σ(Zs))− (∇σ(Z̄s+ rδZ̄st)−∇σ(Z̄s))| |δZst|
! ∥∇2σ∥∞ |δYst| |δZst|+ ∥∇3σ∥∞ max

0!u!1
{(1−u) |Ys|+u |Yt|} |δZst|2,

as well as

|∇σ(Zs+ r δZst)−∇σ(Zs)| |δZst− δZ̄st|! ∥∇2σ∥∞ |δZst| |δYst| .

We can then estimate Fst− F̄st from (3.78) as in (3.71): applying (2.9) twice with
H = δZ and H =(δZ)2, always with τ̄ from (3.67), and recalling (3.68), we obtain

∥F − F̄ ∥2α,τ ! 2 ∥∇2σ∥∞ ∥δY ∥α,τ e
T

τ̄ ∥δZ∥α,τ̄ + ∥∇3σ∥∞ ∥Y ∥∞,τ e
T

τ̄ ∥δZ∥α,τ̄2

! e
T
τ̄ {8M0M ∥∇2σ∥∞∥δY ∥α,τ+(4M0M)2∥∇3σ∥∞∥Y ∥∞,τ} . (3.80)

Since ∥B − B̄∥2α,τ ! ∥E − Ē∥2α,τ + ∥F − F̄ ∥2α,τ in view of (3.78), we see by (3.79)
and (3.80) that (3.75) holds for ε small enough. The proof is complete. "

3.8. Global existence and uniqueness

Let us suppose that σ:Rk→Rk⊗ (Rd)∗ is of class C3 with ∥∇σ∥∞+∥∇σ2∥∞<+∞.

Theorem 3.12. Let α> 1

3
. If σ:Rk→Rk ⊗ (Rd)∗ is of class C3 with ∥∇σ∥∞+

∥∇σ2∥∞<+∞ then for every z0∈Rk and T >0 there is a unique solution (Zt)t∈[0,T ]
to ( 3.19) such that Z0= z0.

Proof. By Theorem 3.10 we have at most one solution. We now construct a solution
on an arbitrary finite interval [0, T ], arguing as in the proof of Theorem 2.15. We
define Λ⊆ [0, T ] as the set of all s such that there is a solution (Zt)t∈[0,s] to (3.19).
By Proposition 3.6, Λ is an open subset of [0, T ] and contains 0. By the a priori
estimates of Theorem 3.9, Λ is a closed subset of [0, T ]. Therefore Λ= [0, T ]. "
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3.9. Milstein scheme and local existence
In this section we prove the local existence result of Proposition 3.6, under the
assumption that σ ,σ2 are of class C1 and uniformly Lipschitz. To construct a solu-
tion to (3.10), we set ti :=

i

n
, i# 0, and for a given y0∈Rk

yti+1= yti+ σ(yti)Xtiti+1
1 + σ2(yti)Xtiti+1

2 , i# 0.

We set D :=max {1, ∥∇σ∥∞, ∥∇σ2∥∞}, T := {ti: ti!T } and

δytitj := ytj− yti,

∥δy∥αT := sup
0<i<j!nT

|ytj− yti|
|tj− ti|α

,

Atitj : = σ(yti)Xtitj
1 +σ2(yti)Xtitj

2 .

The main technical estimate is the following

Lemma 3.13. Let M > 0. There exists TM,D,α> 0 such that, for all T ∈ (0, TM,D,α)
and X=(X1,X2)∈Rα,d such that ∥X1∥α+ ∥X2∥2α!M, we have

∥δy∥αT ! 5M(|σ(y0)|+ |σ2(y0)|),
∥δy−A∥3αT $M,D,α (|σ(y0)|+ |σ2(y0)|).

Proof. Let us set Rtitj := δytitj−Atitj. By the definitions, Rtiti+1=0. Then we can
apply the discrete Sewing bound (Theorem 1.18) to R on T :=

{ i

n
: i!nT

}
and we

obtain
∥R∥3αT !C3α∥δR∥3αT , C3α=23α

∑

n"1

1
n3α

.

Now, analogously to (3.26), since δR=−δA,

δRtitjtk = −(σ(ytj)−σ(yti)−σ2(yti)Xtitj
1 )

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Bij

Xtjtk
1 − (σ2(yti)−σ2(ytj))︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

Cij

Xtjtk
2 ,

so that
∥δR∥3αT !M(∥B∥2αT + ∥C∥αT).

We set

Htitj := δytitj−σ(yti)Xtitj
1 ,

and by (3.23) we obtain

Btitj= σ(ytj)−σ(yti)−σ2(yti)Xtitj
1 =

=

∫

0

1

(σ2(yti+ uδytitj)−σ2(yti))Xtitj
1 du

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Eij

+

∫

0

1

∇σ(yti+ uδytitj)duHtitj
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Fij

−
∫

0

1

∇σ(yti+uδytitj)(σ(yti+uδytitj)−σ(yti))Xtitj
1 du

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Gij

.
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First

∥E∥2αT ! ∥∇σ2∥∞∥δy∥αT∥X1∥α!DM ∥δy∥αT.

Similarly

∥G∥2αT ! ∥∇σ∥∞2 ∥δy∥αT∥X1∥α!D2M ∥δy∥αT.

By the definition of Rtitj

|Htitj | ! |Rtitj |+ |σ2(yti)Xtitj
2 |

! [T α∥R∥3αT +(|σ2(y0)|+T α∥∇σ2∥∞∥δy∥αT)∥X2∥2α] |tj− ti|2α

! (T α∥R∥3αT +M |σ2(y0)|+T αDM ∥δy∥αT)|tj− ti|2α.

Therefore

∥F ∥2αT ! D∥H∥2αT

! D(T α∥R∥3αT +M |σ2(y0)|+T αDM ∥δy∥αT).

Finally

∥B∥2αT ! ∥E∥2αT + ∥F ∥2αT + ∥G∥2αT

! D [M |σ2(y0)|+T α∥R∥3αT +DM(2+T α )∥δy∥αT] .

Analogously

∥C∥2αT !D∥δy∥αT.
Therefore

∥R∥3αT !C3αDM(M |σ2(y0)|+T α∥R∥3αT + [1+DM(2+T α )]∥δy∥αT).

If T αC3αDM ! 1

2
then

∥R∥3αT ! 2C3αDM(M |σ2(y0)|+ [1+DM(2+T α )]∥δy∥αT). (3.81)

We set

L(y) := 2C3αDM(M |σ2(y0)|+ [1+DM(2+T α )]∥δy∥αT)

Now we obtain by (3.81)

∥δy∥αT ! ∥R∥αT+ ∥A∥αT

! T 2αL(y)+ (|σ(y0)|+ |σ2(y0)|+2DT α∥δy∥αT)M.

If we assume also that 2DMT α! 1

2
, we obtain

∥δy∥α! 2T 2αL(y)+ 2M(|σ(y0)|+ |σ2(y0)|).

By the definition of L(y), if furthermore 2C3αDM [1 +DM(2 + T α )] T 2α! 1

2
, we

obtain finally

∥δy∥αT ! 5M(|σ(y0)|+ |σ2(y0)|) ,
L(y) ! 12C3αDM2[1+DM(2+T α )](|σ(y0)|+ |σ2(y0)|) :=K,

60 Difference equations: the rough case



and by (3.81)
∥δy−A∥3αT !K.

The proof is complete. "

Proof of Proposition 3.6. Arguing as in Theorem 2.16 we obtain the result of
local existence for equation (3.19) of Proposition 3.6. "
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Chapter 4
Stochastic Differential Equations

In this chapter we connect the rough difference equations (RDE) discussed in the pre-
vious chapter, see (3.18), with the classical stochastic differential equations (SDE)
dYt= σ(Yt) dBt driven by a Brownian motion B. Indeed, both RDE and SDE are
ways to make sense of the ill-posed differential equation Ẏt= σ(Yt)Bt

˙ .
We fix a time horizon T > 0 and two dimensions k, d∈N. Let B=(Bt)t∈[0,T ] be

a d-dimensional Brownian motion (with continuous paths) relative to a filtration
(Ft)t∈[0,T ], defined on a probability space (Ω,A,P). We fix a sufficiently regular
function σ:Rk→Rk⊗ (Rd)∗ and we consider a solution Y =(Yt)t∈[0,T ] of the SDE

dYt= σ(Yt) dBt i.e. Yt=Y0+

∫

0

t

σ(Ys)dBs , t# 0, (4.1)

where the stochastic integral is in the Ito sense. We always fix a version of Y with
continuous paths (we recall that the Ito integral is a continuous local martingale).

We want to show that Y solves a rough difference equation driven by the rough
path B=(B1,B2) (see Definition 3.2) defined by

Bst
1 :=Bt−Bs, Bst

2 :=

∫

s

t

(Br−Bs)⊗dBr, 0! s! t! T , (4.2)

where the stochastic integral is in the Ito sense. More explicitly, for i, j ∈ {1, . . . , d}

(Bst
1 )i :=Bt

i−Bs
i , (Bst

2 )ij :=

∫

s

t

(Br
i−Bs

i)dBr
j , (4.3)

where we write Bt=(Bt
1,.. .,Bt

d), so that B1: [0, T ]!2 →Rd and B2: [0, T ]!2 →Rd⊗Rd.
Our first main result is that (B1,B2) is indeed a rough path over B.

Theorem 4.1. (Ito rough path) Almost surely, B :=(B1,B2) is an α-rough path
over B (see Definition 3.2) for any α∈

]1
3
, 1
2

[
.

Our second main result is that, under suitable assumptions, the solution Y of
the SDE (4.1) solves the RDE (3.18) driven by the Ito rough path X=B.

Theorem 4.2. (SDE & RDE) If σ(·) is of class C2, then almost surely a solution
Y =(Yt)t∈[0,T ] of the SDE ( 4.1) is also a solution of the RDE

δYst=σ(Ys)Bst
1 +σ2(Ys)Bst

2 + o(t− s), 0! s! t!T . (4.4)

(We recall that σ2(·) :=∇σ(·)σ(·) is defined in ( 3.5).)
If σ(·) is of class C3 and, furthermore, σ(·) and σ2(·) are globally Lipschitz, i.e.

∥∇σ∥∞+ ∥∇σ2∥∞<∞, then almost surely both the SDE ( 4.1) and the RDE ( 4.4)
admit a unique solution Y =(Yt)t∈[0,T ] and these solutions coincide.
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The key tool we exploit in this chapter is a local expansion of stochastic integrals,
see Theorem 4.3 in the next Section 4.1. The proofs of Theorems 4.1 and 4.2 are
direct consequences of this result, see Section 4.2.

In Sections 4.3 and 4.4 we discuss useful generalizations of the SDE (4.1), where
we add a drift and we allow for stochastic integration in the Stratonovich sense,
which leads to generalized versions of Theorems 4.1 and 4.2.

In Section 4.5 we present the celebrated result by Wong-Zakai on the limit of
solutions of the SDE (4.1) with a regularized Brownian motion (via convolution).

Finally, Section 4.6 is devoted to a far-reaching generalization of Kolmogorov’s
continuity criterion, which leads to the proof of Theorem 4.3 in Section 4.7.

Notation. Throughout this chapter we write fst$ gst to mean that fst!C gst for
all 0! s! t!T, where C <∞ is a suitable random constant.

4.1. Local expansion of stochastic integrals

We recall that B=(Bt)t∈[0,T ] is a d-dimensional Brownian motion. Let h=(ht)t∈[0,T ]
be a stochastic process with values in Rk⊗ (Rd)∗. We assume that h is adapted and
has continuous paths, in particular

∫
0

T |hs|2ds<∞, hence the Itô integral

It := I0+

∫

0

t

hr dBr (4.5)

is well-defined as a local martingale. It is a classical result that the stochastic process
I =(It)t∈[0,T ] admits a version with continuous paths, which we always fix.

We now state the main technical result of this chapter, proved in Section 4.7
below, which connects the regularity of h to the regularity of I.

Theorem 4.3. (Local expansion of stochastic integrals) Let h=(ht)t∈[0,T ]
be adapted with continuous paths. Fix any α∈

]
0, 1

2

[
and recall (B1,B2) from ( 4.2).

1. Almost surely I is of class Cα, i.e.

|It− Is|$ (t− s)α, ∀0! s! t!T . (4.6)

(We recall that the implicit constant in the relation $ is random.)

2. Assume that, almost surely, |δhsr|$ (r− s)β for some β ∈ ]0, 1] (i.e. h is of
class Cβ). Then, almost surely,

|δIst−hsBst
1 |=

∣∣∣∣∣∣∣∣
∫

s

t

δhsr dBr

∣∣∣∣∣∣∣∣$ (t− s)α+β , ∀0! s! t!T . (4.7)

3. Assume that, almost surely, |δhsr− h̃sBsr
1 |$ (r − s)α+γ for some γ ∈ ]0, 1],

where h̃=(h̃t)t∈[0,T ] is an adapted process of class Cγ. Then, almost surely,

|δIst− hsBst
1 − h̃sBst

2 | =
∣∣∣∣∣∣∣∣
∫

s

t

(δhsr− h̃sBsr
1 )dBr

∣∣∣∣∣∣∣∣

$ (t− s)2α+γ , ∀0! s! t!T . (4.8)
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4.2. Brownian rough path and SDE

In this section we exploit Theorem 4.3 to prove Theorems 4.1 and 4.2.

Proof. (of Theorem 4.1) We need to verify that B=(B1,B2) satisfies the Chen
relation (3.13) and the analytic bounds (3.14).

The Chen relation δBsut
2 =Bsu

1 ⊗But
1 for 0! s! u! t!T holds by (4.3):

δ(B2)sut
ij = (B2)st

ij − (B2)su
ij − (B2)ut

ij

=

∫

s

t

(Br
i−Bs

i) dBr
j−
∫

s

u

(Br
i−Bs

i) dBr
j−
∫

u

t

(Br
i−Bu

i)dBr
j

=

∫

u

t

(Bu
i −Bs

i) dBr
j=(Bu

i −Bs
i)

∫

u

t

1dBr
j=(Bu

i −Bs
i)(Bt

j−Bu
j),

by the properties of the Itô integral and the fact that the times s!u! t are ordered.
The first analytic bound |Bst

1 |$ |t−s|α for α∈
]
0, 1

2

[
is a well-known almost sure

property of Brownian motion, which also follows from Theorem 4.3, applying (4.6)
with h≡1. Finally, the second analytic bound |Bst

2 |$ |t− s|2α is also a consequence
of Theorem 4.3: it suffices to apply (4.7) with hs :=Bs and β=α. "

Proof. (Theorem 4.2) We first prove the second part of the statement.

• When σ is globally Lipschitz (∥∇σ∥∞<+∞), it is a classical result that for
the SDE (4.1) there is existence of strong solutions and pathwise uniqueness.

• When σ is of class C3, by Theorem 3.10 there is uniqueness of solutions for
the RDE (3.19), and if both σ and σ2 are globally Lipschitz (∥∇σ∥∞<+∞
and ∥∇σ2∥∞<+∞) there is also existence of solutions, by Theorem 3.12.

Therefore we only need to prove the first part of the statement: we assume that σ is
of class C2 and we show that given a solution Y =(Yt)t∈[0,T ] of the SDE (4.1), almost
surely Y is also a solution to the RDE (4.4).

Since Y is solution to (4.1), recalling (4.2) we can write

δYst− σ(Ys)Bst
1 −σ2(Ys)Bst

2 =

∫

s

t

(σ(Yr)−σ(Ys))dBr−σ2(Ys)
∫

s

t

(Br−Bs)dBr

=

∫

s

t

(δσ(Y )sr−σ2(Ys)Bsr
1 ) dBr .

Let us fix α∈
]
0, 1

2

[
. We prove below that, almost surely,

|δσ(Y )st−σ2(Ys)Bst
1 |$ (t− s)2α, ∀0! s! t!T . (4.9)

This means that the assumptions of part 3 of Theorem 4.3 are satisfied by hr=σ(Yr)
and h̃r= σ2(Yr) with γ=α: applying (4.8) we then obtain, almost surely,

|δYst−σ(Ys)Bst
1 −σ2(Ys)Bst

2 |$ (t− s)3α.

If we fix α> 1

3
, this shows that Y is indeed a solution of the RDE (4.4).
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It remains to prove (4.9). By Itô’s formula and (4.1) we have, for 0! s< t!T ,

σ(Yt) = σ(Ys)+

∫

s

t∑

a=1

k

∂aσ(Yr) dYr
a+

1
2

∫

s

t∑

a,b=1

k

∂abσ(Yr) d⟨Y a, Y b⟩r

= σ(Ys)+

∫

s

t∑

a=1

k

∂aσ(Yr)
∑

c=1

d

σc
a(Yr) dBr

c+

+

∫

s

t 1
2

∑

a,b=1

k ∑

c=1

d

∂abσ (Yr) σc
a(Yr) σc

b(Yr)

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
p(Yr)

dr

= σ(Ys)+

∫

s

t

σ2(Yr) dBr+

∫

s

t

p(Yr) dr, (4.10)

therefore

δσ(Y )st−σ2(Ys)Bst
1 =

∫

s

t

(σ2(Yr)−σ2(Ys)) dBr+

∫

s

t

p(Yr)dr.

To prove (4.9), we show that both integrals in the RHS are O((t− s)2α).
• Since σ is of class C2 and Y has continuous paths, the random function

r '→ p(Yr) is continuous, hence bounded for r∈ [0, T ], therefore
∣∣∣∣∣∣∣∣
∫

s

t

p(Yr) dr

∣∣∣∣∣∣∣∣$ (t− s)$ (t− s)2α, ∀0! s! t!T .

• Almost surely Y is of class Cα, thanks to (4.6) from Theorem 4.3 and (4.1).
Since σ2 is of class C1, hence locally Lipschitz, r '→ σ2(Yr) is of class Cα too.
Applying (4.7) from Theorem 4.3 we then obtain, almost surely,

∣∣∣∣∣∣∣∣
∫

s

t

(σ2(Yr)−σ2(Ys)) dBr

∣∣∣∣∣∣∣∣$ (t− s)2α, ∀0! s! t!T .

This completes the proof. "

4.3. SDE with a drift
It is natural to consider the SDE (4.1) with a non-zero drift term:

dYt= b(Yt) dt+ σ(Yt) dBt i.e.

Yt=Y0+

∫

0

t

b(Ys)ds+
∫

0

t

σ(Ys)dBs, t# 0, (4.11)

where b:Rk→Rk and σ:Rk→Rk⊗ (Rd)∗ are given and we recall that B=(Bt)t"0
is a d-dimensional Brownian motion. We can generalize Theorem 4.2 as follows.

Theorem 4.4. (SDE & RDE with drift) If σ(·) is of class C2 and b(·) is
continuous, then almost surely a solution Y =(Yt)t∈[0,T ] of the SDE ( 4.11) is also a
solution of the RDE

δYst= b(Ys) (t− s)+ σ(Ys)Bst
1 + σ2(Ys)Bst

2 + o(t− s), 0! s! t!T . (4.12)
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If σ(·) and b(·) are of class C3 and, furthermore, σ(·), σ2(·) and b(·) are globally
Lipschitz, i.e. ∥∇σ∥∞+ ∥∇σ2∥∞+ ∥∇b∥∞<∞, almost surely the SDE ( 4.11) and
the RDE ( 4.12) have a unique solution Y =(Yt)t∈[0,T ] and these solutions coincide.

Proof. We cast the generalized SDE (4.11) in the “usual framework” by adding a
component to the driving noise B, i.e. we define B̃: [0, T ]→Rd×R by

B̃t := (Bt, t)= (Bt
1, . . . , Bt

d, t), t∈ [0, T ],

and accordingly we define σ̃:Rk→Rk⊗ (Rd+1)∗ by

σ̃(·) b̃ :=σ(·) b+ b(·) t for b̃=(b, t)∈Rd×R,

that is σ̃(·)ji=σ(·)ji 1{j!d}+ b(·)i1{j=d+1}. We can then rewrite the SDE (4.11) as

dYt= σ̃(Yt) dB̃t i.e. Yt=Y0+

∫

0

t

σ̃(Ys) dB̃s, t# 0 . (4.13)

We next extend the Ito rough path B=(B1,B2) from (4.2), defining

B̃st
1 := B̃t− B̃s=

(
Bst
1

t− s

)
, (4.14)

B̃st
2 :=

∫

s

t

(B̃r−B̃s)⊗dB̃r=

⎛

⎜⎜⎜⎜⎜⎜⎝

Bst
2

∫

s

t

(Br−Bs) dr
∫

s

t

(r− s) dBr

∫

s

t

(r− s) dr= (t− s)2
2

⎞

⎟⎟⎟⎟⎟⎟⎠. (4.15)

One can show that B̃=(B̃1, B̃2) is a rough path over B̃, following closely the proof
of Theorem 4.1. Indeed, if we fix α∈

]
0, 1

2

[
, we have almost surely B ∈ Cα, hence

∣∣∣∣∣∣∣∣
∫

s

t

(Br−Bs) dr

∣∣∣∣∣∣∣∣$ (t− s)α+1,
∣∣∣∣∣∣∣∣
∫

s

t

(r− s) dBr

∣∣∣∣∣∣∣∣$ (t− s)α+1. (4.16)

We can now write the RDE which generalizes (4.4):

δYst= σ̃(Ys) B̃st
1 + σ̃2(Ys) B̃st

2 + o(t− s) . (4.17)

Interestingly, plugging the definitions of B̃ and σ̃ into (4.17) we do not obtain ( 4.12),
because the components of B̃st

2 other than Bst
2 are missing in (4.12), see (4.15). The

point is that these components can be absorbed in the reminder o(t− s), see (4.16),
hence the RDE ( 4.17) and ( 4.12) are fully equivalent .

To complete the proof, we are left with comparing the SDE (4.13) with the
RDE (4.17). This can be done following the very same arguments as in the proof of
Theorem 4.2. The details are left to the reader. "
Remark 4.5. The strategy of adding the drift term as an additional component of
the driving noise, as in the proof of Theorem 4.4, suffers from a technical limitation,
namely we are forced to use the same regularity exponent α for all components due
to Definition 3.2 of rough paths. This prevents us from exploiting the additional
regularity of the drift term: for instance, in the second part of Theorem 4.4, the
assumption that b(·) is of class C3 could be removed, because the “driving noise” t
is smooth and the classical theory of ordinary differential equations applies.
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A natural solution would be to generalize Definition 3.2, allowing rough paths
to have a different regularity exponent for each component. The key results can be
generalized to this setting, but for simplicity we refrain from pursuing this path.

4.4. Itô versus Stratonovich

We recall that B=(Bt)t∈[0,T ] is a Brownian motion in Rd. Given the Itô rough path
B= (B1,B2) over B constructed in Theorem 4.2, see (4.2), we can define a new
rough path B̄=(B̄1, B̄2) over B, called the Stratonovich rough path, given by

B̄st
1 :=Bst

1 , B̄st
2 :=Bst

2 +
t− s
2

IdRd, ∀0! s! t!T ,

that is (B̄st
2 )ij := (Bst

2 )ij+ t− s
2

1{i=j} for i, j ∈ {1, . . . , d}. The fact that B̄ is indeed
an α-rough path over B, for any α∈

]1
3
, 1
2

[
, is a direct consequence of Theorem 4.1

(note that B̄st
2 =Bst

2 + δfst with ft=
t

2
IdRd, hence δB̄2= δB2 because δ2=0).

Remark 4.6. (Stratonovich integral) If X, Y : [0, T ]→R are continuous
semimartingales, the Stratonovich integral of X with respecto to Y is defined by

∫

0

t

Xs ◦dYs :=
∫

0

t

XsdYs+
1
2
⟨X, Y ⟩t, t∈ [0, T ], (4.18)

where
∫
0

t
XsdYs is the Itô integral and ⟨·, ·⟩ is the quadratic covariation. For Brownian

motion B on Rd we have ⟨Bi, B j⟩t= t1{i=j}, hence it is easy to check by (4.2) that

B̄st
2 :=

∫

s

t

B̄sr
1 ⊗◦dBr, 0! s! t!T . (4.19)

This explains why we call B̄=(B̄1, B̄2) the Stratonovich rough path.

Let us consider now the Stratonovich version of the SDE (4.11):

dYt= b(Yt) dt+ σ(Yt) ◦dBt i.e.

Yt=Y0+

∫

0

t

b(Ys)ds+
∫

0

t

σ(Ys) ◦dBs, t# 0, (4.20)

where b:Rk→Rk and σ:Rk→Rk⊗ (Rd)∗ are given. This equation can be recast in
the Itô form by the conversion rule (4.18): since the martingale part of (σ(Yt))t"0 is
(
∫
0

t
σ2(Ys)dBs)t"0 by the Itô formula, see (4.10), we obtain

Yt=Y0+

∫

0

t
(
b(Ys)+

1
2
TrRd[σ2(Ys)]

)
ds+

∫

0

t

σ(Ys)dBs, t# 0.

This is precisely the SDE ( 4.11) with a different drift b̂(·) := b(·)+ 1

2
TrRd[σ2(·)].

As an immediate corollary of Theorem 4.4, we obtain the following result.
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Theorem 4.7. (Stratonovich SDE & RDE) f σ(·) is of class C2 and b(·) is
continuous, then almost surely a solution Y = (Yt)t∈[0,T ] of the Stratonovich SDE
( 4.20) is also a solution of the following RDE, for 0! s! t!T :

δYst = b(Ys) (t− s)+ σ(Ys) B̄st
1 + σ2(Ys) B̄st

2 + o(t− s) (4.21)

=

(
b(Ys)+

1
2
TrRd[σ2(Ys)]

)
(t− s)+σ(Ys)Bst

1 +σ2(Ys)Bst
2 + o(t− s).

If σ(·), σ2(·), b(·) are of class C3 and, furthermore, σ(·), σ2(·), b(·) are globally
Lipschitz, i.e. ∥∇σ∥∞+ ∥∇σ2∥∞+ ∥∇b∥∞<∞, almost surely the SDE ( 4.20) and
the RDE ( 4.21) have a unique solution Y =(Yt)t∈[0,T ] and these solutions coincide.

In conclusion, if the coefficients b(·) and σ(·) are sufficiently regular, the Itô
equation (4.11) can be reintepreted as the RDE

δYst= b(Ys) (t− s)+σ(Ys)Bst
1 +σ2(Ys)Bst

2 + o(t− s), 0! s! t!T ,

while the Stratonovich equation (4.20) can be reintepreted as the RDE

δYst= b(Ys) (t− s)+σ(Ys) B̄st
1 +σ2(Ys) B̄st

2 + o(t− s), 0! s! t!T .
In other words, rough paths allow to describe the Itô and the Stratonovich SDEs as
the same equation where only the second level of the rough path has been changed.
This shows that, in a sense, the relevant noise for a SDE is not only the Brownian
path (Bt)t"0, but rather the rough path B or B̄.

4.5. Wong-Zakai
In this section we want to show the following application of the previous results. We
consider a family (ρε)ε>0 of (even, compactly supported) mollifiers on R, namely ρ:
R→ [0,∞) is smooth and even, has compact support, satisfies

∫
R
ρ(x) dx=1 and

we set
ρε(x) :=

1
ε
ρ
( x
ε

)
, ε> 0, x∈R.

We consider a d-dimensional two-sided Brownian motion (Bt)t∈R, namely a Gaussian
centered process with values in Rd such that

B0=0, E[Bs
iBt

j] =1(i=j)1(st"0) (|s|∧ |t|),

which is equivalent to say that (Bt)t"0 and (B−t)t"0 are two independent d-dimen-
sional Brownian motions.

We consider the following problem: we define the regularization of (Bt)t"0 defined
by

Bt
ε := (ρε ∗B)t=

∫

R
ρε(t− s)Bsds, t# 0.

We want now to consider the integral equation (3.3) controlled by Bε, namely

Zt
ε=Z0+

∫

0

t

σ(Zs
ε)Bs

ε˙ ds, 0! t!T . (4.22)
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