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CHAPTER 1

THE SEWING BOUND

The problem of interest in this book is the study of differential equations driven by
irregular functions (more specifically: continuous but not differentiable). This will be
achieved through the powerful and elegant theory of rough paths. A key motivation
comes from stochastic differential equations driven by Brownian motion, but the
goal is to develop a general theory which does not rely on probability.

This first chapter is dedicated to an elementary but fundamental tool, the Sewing
Bound, that will be applied extensively throughout the book. It is a general Holder-
type bound for functions of two real variables that can be understood by itself,
see Theorem 1.9 below. To provide motivation, we present it as a natural a priori
estimate for solutions of differential equations.

Notation. We fix a time horizon 7> 0 and two dimensions k,d € N. We use “path”
as a synonymous of “function defined on [0, 7]” with values in R%. We denote by ||
the Euclidean norm. The space of linear maps from R? to R¥, identified by k x d
real matrices, is denoted by R* @ (R?)* ~ R¥*? and is equipped with the Hilbert-
Schmidt norm |-| (i.e. the Euclidean norm on R¥*?). For A € R*® (R%)* and v € R?
we have |Av| <|A]|v].

1.1. CONTROLLED DIFFERENTIAL EQUATION

Consider the following controlled ordinary differential equation (ODE): given a con-
tinuously differentiable path X:[0,7] — R and a continuous function o: R*— RF®
(RY)* , we look for a differentiable path Z:[0,T] — R* such that

Zi=0(Z)X,,  tel0,T). (1.1)

By the fundamental theorem of calculus, this is equivalent to

t
Zt:ZO+/a(ZS)XSds, te[0,7]. (1.2)
0

In the special case k=d =1 and when o(z) = Az is linear (with A\ € R), we have
the explicit solution Z; = zpexp(A (X; — Xy)), which has the interesting property of
being well-defined also when X is non differentiable.

For any dimensions k,d € N, if we assume that o(-) is Lipschitz, classical results
in the theory of ODEs guarantee that equation (1.1)-(1.2) is well-posed for any
continuously differentiable path X, namely for any Z, € R* there is one and only one
solution Z (with no explicit formula, in general).

13



14 THE SEWING BOUND

Our aim is to extend such a well-posedness result to a setting where X is contin-
uous but not differentiable (also in cases where o(-) may be non-linear). Of course,
to this purpose it is first necessary to provide a generalized formulation of (1.1)-(1.2)
where the derivative of X does not appear.

1.2. CONTROLLED DIFFERENCE EQUATION

Let us still suppose that X is continuously differentiable. We deduce by (1.1)-(1.2)
that for 0 <s<t<T

Zi-2,=0(2) (X=X + (0(2,) - 0(2)) X du, (1.3)

which implies that Z satisfies the following controlled difference equation:
Zy—Zs=0(Zs) (Xi — Xs) +o(t — s), 0<s<t<T, (1.4)
because u— o(Z,) is continuous and u— X,, is (continuous, hence) bounded on [0, 77.

Remark 1.1. (UNIFORMITY) Whenever we write o(t — s), as in (1.4), we always
mean uniformly for 0 <s<t<T, ie.

Ve>030>0: 0<s<t<T, t—s<¢ implies |o(t—s)|<e(t—s). (1.5)

This will be implicitly assumed in the sequel.

Let us make two simple observations.

o If X is continuously differentiable we deduced (1.4) from (1.1), but we can
easily deduce (1.1) from (1.4): in other terms, the two equations (1.1) and
(1.4) are equivalent.

e If X is not continuously differentiable, equation (1.4) is still meaningful,
unlike equation (1.1) which contains explicitly X.

For these reasons, henceforth we focus on the difference equation (1.4), which pro-
vides a generalized formulation of the differential equation (1.1) when X is continuous
but not necessarily differentiable.

The problem is now to prove well-posedness for the difference equation (1.4).
We are going to show that this is possible assuming a suitable Holder reqularity on
X, but non trivial ideas are required. In this chapter we illustrate some key ideas,
showing how to prove uniqueness of solutions via a priori estimates (existence of
solutions will be studied in the next chapters). We start from a basic result, which
ensures the continuity of solutions; more precise result will be obtained later.

LEMMA 1.2. (CONTINUITY OF SOLUTIONS) Let X and o be continuous. Then any
solution Z of (1.4) is a continuous path, more precisely it satisfies

|Zy— Z,| < C | Xy — Xi| +o(t —s), 0<s<t<T, (1.6)

for a suitable constant C'< oo which depends on Z.



1.3 SOME USEFUL FUNCTION SPACES 15

Proof. Relation (1.6) follows by (1.4) with C := ||0(Z)| e = supo<i<r |0(Z¢)|,
renaming |o(t — s)| as o(t —s). We only have to prove that C' < oco. Since o is
continuous by assumption, it is enough to show that Z is bounded.

Since o(t — s) is uniform, see (1.5), we can fix § >0 such that |o(t — s)| <1 for
all 0 < s <t < T with |t —s| <. It follows that Z is bounded in any interval [3, ]
with |[f — 5| <6, because by (1.4) we can bound

sup |Z| <|Zs|+|o(Zs)| sup | Xy — X5+ 1< 00.

te(s,i] te(s,i]
We conclude that Z is bounded in the whole interval [0, 7], because we can write
[0, 7] as a finite union of intervals [3,#] with |t — 5| <. O

Remark 1.3. (COUNTEREXAMPLES) The weaker requirement that (1.4) holds for
any fizred s €[0,T] as t|s is not enough for our purposes, since in this case Z needs
not be continuous. An easy conterexample is the following: given any continuous

path X:[0,2] — R, we define Z:[0,2] — R by

X if 0<t<1,
T X410 1<t<2.

Note that Z; — Z;=X; — X, when either 0 <s<t<1lor 1 <s<t<2, hence Z satisfies
the difference equation (1.4) with o(-)=1 for any fized s €[0,2) as t|s, but not
uniformly for 0 <s <t <2, since 7 is discontinuous at t=1.

For another counterexample, which is even unbounded, consider

1 .
<
AN if 0<t<1,
0 if 1<t<2,

which satisfies (1.4) as t|s for any fixed s € [0, 2], for X;=t and o(z) = 2%

1.3. SOME USEFUL FUNCTION SPACES

For n > 1 we define the simplex
0,T)%:={(t1,...,tn): 0<t;<--- <, <T} (1.7)

(note that [0, 775 =[0,77). We then write C,,=C([0,T]%,R¥) as a shorthand for the
space of continuous functions from [0, T|% to R":

Cn:=C([0,T)%, RF):={F:[0,T]* —R*: F is continuous}. (1.8)

We are going to work with functions of one ( f;), two (Fy;) or three (Gyyt) ordered
variables in [0, T, hence we focus on the spaces Cy, Cy, Cs.

e On the spaces (5 and C3 we introduce a Holder-like structure: given any
n € (0,00), we define for F € Cy and G € Cs

Fst’ ‘Gsut’
1Fly= s L g sy Gl
! 0<s<t<T (t—s)"’ ! 0<s<u<t<T (t—s)"’
s<t

(1.9)
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and we denote by C3 and CJ the corresponding function spaces:
Cl:={FeCy ||F|,<oc0}, Cd:={GeCs ||G|,<ox}, (1.10)
which are Banach spaces endowed with the norm ||-||,, (exercise).

e On the space C of continuous functions f:[0,7] — R* we consider the usual
Holder structure. We first introduce the increment o f by

Of)se:=fe—fs,  0<s<t<T, (1.11)

and note that 0f € Cy for any f € Cy. Then, for a € (0, 1], we define the
classical space C*=C%([0,T],R*) of a-Hélder functions

Ca:{f: [07T]—>1Rk ||5f||a0<81<1}t)<TH<oo} (112)

(for a =1 it is the space of Lipschitz functions). Note that ||0f ], in (1.12)
is consistent with (1.11) and (1.9).

Remark 1.4. (HOLDER SEMI-NORM) We stress that f—||df||« is a semi-norm on
C® (it vanishes on constant functions). The standard norm on C? is

[ fllee =11 loo + 110 llac (1.13)
where we define the standard sup norm
[ flloo:= sup |fil. (1.14)
t€[0,T)

For f:[0,7] —R* we can bound ||f [l < | £(0)] + T 5]l (see (1.39) below),
hence

[ e <TFO)+ @ +T) [0 f lla- (1.15)

This explains why it is often enough to focus on the semi-norm ||0 f||q -

Remark 1.5. (HOLDER EXPONENTS) We only consider the Holder space C* for
a € (0, 1] because for o> 1 the only functions in C* are constant functions (note that
10f]]a < oo for a>1 implies f,=0 for every t [0, T7]).

On the other hand, the spaces Cj and C3 in (1.10) are interesting for any
exzponent 1 € (0, 00). For instance, the condition || F ||, < oo for a function F' € Cy
means that |Fy| <C (t —s)", which does not imply F'=0 when 1> 1 (unless F'=4f
is the increment of some function f € ().

In our results below we will have to assume that the non-linearity o: R —
R* ® (R?%)* belongs to classes of Hélder functions, in the following sense.

DEFINITION 1.6. Let v>0. A function F:RF—RY is said to be globally ~-Hélder
(or globally of class C7) if

o forve€(0,1] we have

[Flev:= sup M< +o0

z,yeRk £y "T— ylfy
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o forye(n,n+1] andn={1,2,..}, Fisn times continuously differentiable and

|D™F(x) — D™F(y)|
|z =y

[D(”)F]cw = sup
z,yeRF z#£y

where D™ is the n-fold differential of F.
Moreover F:RF— RY is said to be locally ~-Hdlder (or locally of class C7) if
e fory€(0,1] we have for all R>0

<400

z,yeRk £y |':E - y|
lz],ly|<R

o forye(n,n+1] andn={1,2,...}, Flisn times continuously differentiable and

|D™F(x) — D™F(y)|

|x—y[7*" < +00.

sup

z,yeRF 24y
lz|,ly|<R

We stress that in the previous definition we do not assume F of D™F to be
bounded. The case v =1 corresponds to the classical Lipschitz condition.

1.4. LOCAL UNIQUENESS OF SOLUTIONS

We prove uniqueness of solutions for the controlled difference equation (1.4) when
X €C% is an Hélder path of exponent a > % For simplicity, we focus on the case
when o: RF — RF @ (R?)* is a linear application: o € (R* @ (R%)*) @ (RF)*, and we
write o Z instead of o(Z) (we discuss non linear o(-) in Chapter 2).

THEOREM 1.7. (LOCAL UNIQUENESS OF SOLUTIONS, LINEAR CASE) Fiz a path
X:0,T)—R% in C*, with a € ]%, 1] , and a linear map o: RF—=RF@ (RY*. If T >0
is small enough (depending on X ,a,0), then for any zo € R there is at most one
path Z:[0,T] — RF with Zy= zy which solves the linear controlled difference equation
(1.4), that is (recalling (1.11))

0 — (0 Zs) 6 Xse=o0(t — s), 0<s<t«T. (1.16)
Proof. Suppose that we have two paths Z, Z: [0, T] — R* satisfying (1.16) with

Zo= 7y and define Y :=Z — Z. Our goal is to show that Y =0.
Let us introduce the function R € Cy=C([0,T]%, R") defined by

Ry:=0Yy— (0Y)) 06Xy, 0<s<t<T, (1.17)
and note that by (1.16) and linearity we have
Ry=o(t—s). (1.18)
Recalling (1.9), we can estimate

18 o< [ [ 1Y [loo 10X [l + [ R la
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and since Ry =o(t —s) =o((t — s)*), we have |R||o < +oc and therefore ||0Y ||, <
+00. Since Yy =0, we can bound

1Y [loo <[¥ol 4+ sup [¥; = Yo| ST [|0Y ||
o<t<T

Since 1< T (t —s) > for 0< s <t < T, we can also bound

HRHa < re HRHQa )
so that
[0Y ][a T (|| |6Y [|a [[0X [l + | R |20)-

Suppose we can prove that, for some constant C =C(X,a,0) < o0,

| R]|2a <C'||0Y ||a (1.19)
Then we obtain
[0Y [[a T (Jo| 16X [|o+C) [[6Y [[a -

If we fix T small enough, so that 7% (|o| ||[0X |« + C) <1, we get ||0Y || =0, hence
dY =0. This means that Y; =Y} for all s,¢€[0,T], and since Yy=0 we obtain Y =0,
namely our goal Z = Z. This completes the proof assuming the estimate (1.19)
(where the hypothesis « >% will play a key role). O

To actually complete the proof of Theorem 1.7, it remains to show that the
inequality (1.19) holds. This is performed in the next two sections:

e in Section 1.5 we present a fundamental estimate, the Sewing Bound, which
applies to any function Ry =o0(t —s) (recall (1.18));

e in Section 1.6 we apply the Sewing Bound to Ry in (1.17) and we prove the
desired estimate (1.19) for « >% (see the assumptions of Theorem 1.7).

1.5. THE SEWING BOUND

Let us fix an arbitrary function R € Co=C([0,T]%, R*) with Ry =o0(t — s). Our goal
is to bound | Rg| for any given 0<a<b<T.

We first show that we can express Ry, via “Riemann sums” along partitions
P={a=to<ti<...<ty,=0>b} of [a,b]. These are defined by

#P
]P<R) ::Z Rti,ﬂfia (120)
i=1

where we denote by #P :=m the number of intervals of the partition P. Let us
denote by |P|:=maxi<i<m (t;i — ti—1) the mesh of P.

LEMMA 1.8. (RIEMANN SUMS) Given any R € Cy with Ryy=o0(t — s), for any 0 <
a<b<T and for any sequence (Py)n>0 of partitions of [a,b] with vanishing mesh
lim,, o0 |Pn| =0 we have

lim Ip, (R)=0.

n—oQ
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If furthermore Py={a,b} is the trivial partition, then we can write

oo

Ru=Y_ (Ip,(R)—Ip,,,(R)), 0<a<b<T. (1.21)
n=0

Proof. Writing P, ={a=tf§<t{ <...<tlp, =b}, we can estimate

#Pn | Rt;-l_ ) tJT-L | #Pn " "

e G0 S &

hence |Ip,(R)| — 0 as n — oo, because the final sum equals b — a and the bracket
vanishes (since Ry =o(t —s) and |P,| =maxi<j<up, (1] —t7_1) —0).
We deduce relation (1.21) by the telescopic sum

N-1
]7)0< IPN Z Ipn IP7L+1(R))7
n=0
because limy_, o Ipy(R) =0 while Ip,(R) = Ry for Py={a,b}. O

If we remove a single point ¢; from a partition P = {t,<t; <... <t,}, we obtain
a new partition P’ for which, recalling (1.20), we can write

I’P’<R) _]P<R):Rtiflti+l_Rti71ti_Rtit (122)

141"

The expression in the RHS deserves a name: given any two-variables function F' € Cy,
we define its increment 0F € C5 as the three-variables function

0Fyi:=Fy—Fy—Fu,  0<s<u<t<T. (1.23)
We can then rewrite (1.22) as
Ipi(R) = Ip(R) =Ry, 1it,,1 (1.24)
and recalling (1.9) we obtain the following estimate, for any 7 > 0:
I (R) — Lp(B)| < IR i1 — ti1]" (1.25)

We are now ready to state and prove the Sewing Bound.

THEOREM 1.9. (SEWING BOUND) Given any R € Cy with Ry =o(t — s), the fol-
lowing estimate holds for any n € (1,00) (recall (1.9)):

IR, <K, |0R]l,  where — FK,:=(1—21-7)"1 (1.26)

Proof. Fix R e C, such that ||0R|[, < oo for some 7 >1 (otherwise there is nothing
to prove). Also fix 0 <a<b<T and consider for n >0 the dyadic partitions P, :=

{th:=a+ ;—n (b—a): 0<i<2"} of [a,b]. Since Py={a,b} is the trivial partition, we
can apply (1.21) to bound

Bl €3 I, (R) — I, (R, (1.27)
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If we remove from P, all the “odd points” tgj;ll, with 0 <7 <2"—1, we obtain
Pn. Then, iterating relations (1.24)-(1.25), we have
2n—1

Ip,(R) = I, (R)] < 3 ISRpgipes o
7=0

o “lajiatasta

2(b—a)”
< 2 jorl, (2522

= 2= |I5R ||, (b—a)". (1.28)

Plugging this into (1.27), since °7 271D = (1 — 217771 we obtain
|Rap| < (1 =2'"7)"1|6R]|,, (b— a)", 0<a<b<T, (1.29)
which proves (1.26). O

Remark 1.10. Recalling (1.11) and (1.23), we have defined linear maps

RN} (1.30)
which satisfy 6 00 =0. Indeed, for any f € C; we have
5<5f)8wf: (ft_ fs) - (fu_ fS) - (ft_ fu) =0.

Intuitively, 0F € C'3 measures how much a function F' € Cy differs from being the
increment 0 f of some f € C4, because 0F =0 if and only if F=0f for some f € Cy
(it suffices to define f;:= F; and to check that §fs = dFose + Fse = Fyr).

Remark 1.11. The assumption Ry =o(t —s) in Theorem 1.9 cannot be avoided:
if R:=0f for a non constant f € C, then R =0 while || R[], > 0.

1.6. END OF PROOF OF UNIQUENESS

In this section, we apply the Sewing Bound (1.26) to the function Ry defined in
(1.17), in order to prove the estimate (1.19) for o> %

We first determine the increment dR through a simple and instructive computa-
tion: by (1.17), since §(6Z) =0 (see Remark 1.10), we have

ORsyt = Rg— Rsyu— Ru
= (G- - (Y- Y) - (% %)
—(0Y,) (Xi = Xy) + (0 ¥0) (Xu = Xo) + (0 1) (Xi — Xy
= [o (Yu =Y (Xp — Xu). (1.31)
Recalling (1.9), this implies
16R |20 < [o [[|6Y (o [[6X [|a-

We next note that if « >% (as it is assumed in Theorem 1.7) we can apply the
Sewing Bound (1.26) for n=2a > 1 to obtain

HRH2a< Kaq H5RH204< Ko ‘U’ HéyHa H(;XHa'
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This is precisely our goal (1.19) with C=C(X,a,0) := Ks, || [|[6X || a-

Summarizing: thanks to the Sewing bound (1.26), we have obtained the estimate
(1.19) and completed the proof of Theorem 1.7, showing uniqueness of solutions to

the difference equation (1.4) for any X € C* with a € ]%, 1] In the next chapters we
extend this approach to non-linear o(-) and to situations where X € C* with a < %

Remark 1.12. For later purpose, let us record the computation (1.31) withouth o
given any (say, real) paths X and Y, if

Ast:}/;(SXsty v0<5<t<T,
then

1.7. WEIGHTED NORMS

We conclude this chapter defining weighted versions ||-||,,.» of the norms |||, intro-
duced in (1.9): given F' € Cy and G € Cs, we set for n, 7 € (0, 00)

_t Fst|
Fll, ,:= 1 _s<rr€ 7T | , 1.33
1E = sup  Loct-sene " gy (1.33)
-t Gsut|
Gllyri= sup lyoci—s<rye f’—, 1.34
H H77 O<sCuct<T {o<t } (t—S)n ( )

where Cy and Cj are the spaces of continuous functions from [0, 7% and [0, 7]% to
R*, see (1.8). Note that as 7— oo we recover the usual norms:

[l = Tim [l (1.35)

Remark 1.13. (NORMS VS. SEMI-NORMS) While ||-||,, is a norm, |||, is a norm

for 7> T but it is only a semi-norm for 7 <T (for instance, | F ||, =0 for F' € Cy

implies Fys; =0 only for ¢ — s < 7: no constraint is imposed on Fy; for t — s> 7).
However, if F'=¢f, that is F;= f; — f, for some f € C}, we have the equivalence

T\ *
1551 < o7 < (1) 071 (1.36)

The first inequality is clear. For the second one, given 0 < s <t < T, we can write
s=to<t1<---<ty=t with ¢;, — t,_1 <7 and N<1+§ (for instance, we can
consider t; = s + i *=2 where N := (t;sb; we then obtain §f = ZN dft,_,t, and

N i=1
10f syl SNOF lgr /7 (ti—ti1)" < ||0f |l €T/ (£ — 5)7, which yields (1.36).
Remark 1.14. (FROM LOCAL TO GLOBAL) The weighted semi-norms ||-||,.» will
be useful to transform local results in global results. Indeed, using the standard
norms ||-||, often requires the size T'> 0 of the time interval [0, 7] to be small, as

in Theorem 1.7, which can be annoying. Using |||, will allow us to keep T >0
arbitrary, by choosing a sufficiently small 7> 0.
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Recalling the supremum norm || f||« of a function f € C}, see (1.14), we define
the corresponding weighted version

_t
[ flloo,r:= sup e 7| fi]. (1.37)
0<t<T
We stress that |||l - i @ norm equivalent to ||| for any 7> 0, since
r
I lloo,r < [llloe < €7 [I+[loo,r (1.38)

Remark 1.15. (EQUIVALENT HOLDER NORM) It follows by (1.36) and (1.38) that
|lloo,r + || lla, 7 25 @ norm equivalent to ||-||co:=||-||cc+ ||| on the space C* of Hélder
functions, see Remark 1.4, for any 7> 0.

We will often use the Holder semi-norms ||df|, and ||0f|s.» to bound the
supremum norms || f||« and || f||, -, thanks to the following result.

LEMMA 1.16. (SUPREMUM-HOLDER BOUND) For any f € Cy and n € (0, 00)

1 oo < [fol +T 16 F [l (1.39)
[ lloor <[fol +3 (T AT) [0 f Iy, ¥T>0. (1.40)

Proof. Let us prove (1.39): for any f € C; and for ¢t € ]0, T we have

<ol 41— fol = ol + LTl gy,

The proof of (1.40) is slightly more involved. If ¢ € |0,7 AT, then

< fol 4 tre T LIl p ATy 58

n
which, in particular, implies (1.40) when 7 >7T. When 7 < T, it remains to consider
T<t<LT: 1n this case, we define N:=min{n € N: n7 >t} >2 so that - <7‘ We
set tk—k for £ >0, so that ty=t. Then

_t N itk | _tk —
CHAII Y (e o LS
=1 k k—1

N

t—ty

< fol + AT 16F e Y e 7
k=1

By deﬁnition of N we have (N —1)7 <t; since T <t we obtain N7 <2t and therefore

! Smcet—tk—(N—k)

N 2 renaming ¢:= N — k we obtain

N?

N N-1
_t=tk vt 1—e 7 1
E e T = e ZNT: — < < 3.

The proof is complete. O
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We finally show that the Sewing Bound (1.26) still holds if we replace ||-|,, by
H'Hn,ﬂ for any 7 > 0.

THEOREM 1.17. (WEIGHTED SEWING BOUND) Given any R € Cy with Rgy=o0(t —s),
the following estimate holds for any n € (1,00) and 7>0:

IRy < Ky |0R|],,»  where K,:=(1-2""n"1 (1.41)

Proof. Given 0 <a<b<T, let us define

|5Rsut|

(D0 (1.42)

||5R||n,[a7b] = sup

s,u,t€[a,b]:
s<u<t, s<t

Following the proof of Theorem 1.9, we can replace ||0R||; by [|[0R]|y, 0,5 in (1.28)
and in (1.29), hence we obtain |Ra| < Ky [[0R],[a,6) (b —a)?. Then for b —a <7 we
can estimate

v |Ru b
< 1O o < K [9R
and (1.41) follows taking the supremum over 0 <a<b<T withb—a <. O

1.8. A DISCRETE SEWING BOUND

We can prove a version of the Sewing Bound for functions R = (Rst)s<teT defined on
a finite set of points T:={0=11<--- <tyr} CRy (this will be useful to construct
solutions to difference equations via Euler schemes, see Sections 2.6 and 3.9). The
condition Ry =o0(t — s) from Theorem 1.9 is now replaced by the requirement that
R vanishes on consecutive points of T, i.e. Ry, =0 for all 1 <o <#T.

We define versions ||-||;/, of the norms |||, - restricted on T for 7> 0, recall
(1.33)-(1.34):

—L | As

T 1.4
|t—8|n’ ( 3)

”AH;]P,T = sup lyo<is<rye
0<s<t

s,teT
|Bsut|

1.44
|t_8|n ( )

t
T ._ -7
|Blln,- = sup Lio<t—s<ry€ ™
0<s<ukt
s,u,teT, s<t

for A:{(s,t)eT*0<s<t}—Rand B: {(s,u,t)eT*0<s<u<t,s<t}—R.

THEOREM 1.18. (DISCRETE SEWING BOUND) If a function R=(Rst)s<teT vanishes
on consecutive points of T (i.e. Ry, =0), then for any n>1 and 7 >0 we have

. 1
IRy, <Cyl|6R]] - with Cn::2nz sz"C(n)<oo. (1.45)

n>1

Proof. We fix s,t € T with s <t and we start by proving that
| Rt < Cy OR|y (¢ —5)".
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We have s =t and ¢t ={t;,, and we may assume that m > 2 (otherwise there is
nothing to prove, since for m =1 we have R;;,,,=0).

Consider the partition P={s=t; <tp11<...<tgrm, =t} with m intervals. Note
that for some index i € {k+1,...,k+m — 1} we must have t;,1 —t;_1 < 2(t_1s),
otherwise we would get the contradiction

k+m—1 k+m—1 9 (t B 8)
2<t—8)2 Z (t1+1—tz_1)> Z —_1 2<t—8)
i=k+1 i=k+1

Removing the point ¢; from P we obtain a partition P’ with m — 1 intervals. If we
define Ip(R) ::me "Ry, asin (1.20), as in (1.24) we have

27 (t — 8)77 |(5Ruvw|
re (m_ 1)"7 s<u<v<w<t ‘w_u’n
u,v,weT

Iterating this argument, until we arrive at the trivial partition {s,t}, we get

5 Ruww|

I — < +— )1 ’ﬂ 1.4

| P(R) R$t| N 077( S) séui&gwgt |w - u|77’ ( 6)
u,v,weT

with C), := Zn>1 ~ _ <00 because 7 >1. We finally note that Ip(R) =0 by the
assumption Ry, , =0. Finally if t — s <7 then w —u <7 in the supremum in (1.46)

w

t
and since e "< e  we obtain

¢ |Rul <Cy (¢ — )" I8RIIE.
and the proof is complete. O

We also have an analog of Lemma 1.16. We set for f: T— R and 7 >0

HfHOOT —supe T’ft’

LEMMA 1.19. (DISCRETE SUPREMUM-HOLDER BOUND) For T:={0=t;<--- <
tur} CRy set

Then for all f: T—R, 7>22M and n>0
1l < | fol =577 [0 f [l (1.47)

Proof. We define 7j:=0 and for i > 1, as long as TN (7;_1,7;—1 + 7] is not empty,
we set

Ti:=max TN (T;_1, ;-1 + 7], i=1,...,N,
so that Ty =maxT. We have by construction T; + M >T; 1+ 7 for all i =1,...,
N —1, and since Mé%

Ti—TZ-_@T—M%.
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For i =N we have only Ty >Iy_1. Therefore for i=1,... N

! _Ti_Tk _E o
L i =
k=1 k— dk—1

o
e 7|fr,

T;— T,

< fol+7I0f 12D e 7
k=1

Xk
. !fo!+T”H5fHET<1+Ze )
k=0

< ol 477 16f [lg,r-

Now for t € T\{7;}; we have T; <t < T;;; for some ¢ and then

- < o t— T ~ | fe— [ < — 5 fIIE
e 7| fil < e Tlfnl+( i)e (t—T)" <e | frl+ 7" 6f
< L fol +577 116 [l
The proof is complete. O

1.9. EXTRA (TO BE COMPLETED)

We also introduce the usual supremum norm, for F'€ C5 and G € Cs:

[Elloo:=sup [Ful,  [|Gllo:=sup |G,

0<s<t<T 0<s<u<t<T
and a corresponding weighted version, for 7 € (0, 00):
_t _t
| F'|oo,r:= sup e 7 |Fy, |Glloor:=sup e 7 |Gsu- (1.48)
0<s<t<T 0<s<u<t<T
Note that

im {|Flloor = [1Flleo,  tm [|Gllgr=Glly,  tm [|H [l =[H]l-
T—+400 T— 400 T— 400

We have
H‘FH??FF< HGHOO,T ||H||?77 (Fsut:Gsu Hut)a (149)

Note that [-|,),- is only a semi-norm on C}! if 7 <T'; we have at least

T 1
Ml < Il < e { -l + =5 [Fllooir |- (1.50)
T

However, if 7 > T we have again equivalence of norms

T
b7 <l <erllllgr 72T (1.51)






CHAPTER 2

DIFFERENCE EQUATIONS: THE YOUNG CASE

Fix a time horizon T > 0 and two dimensions k,d € N. We study the following
controlled difference equation for an unknown path Z: [0, 7] — R":

Zy—Zs=0(Zs) (Xi— Xs) +o(t —s), 0<s<t<T, (2.1)

where the “driving path” X: [0, 7] — R? and the function ¢: R*¥ — R* @ (R?%)* are
given, and o(t — s) is uniform for 0 < s <t <7 (see Remark 1.1).

The difference equation (2.1) is a natural generalized formulation of the con-
trolled differential equation

Zi=0(Z) Xy, 0<t<T. (2.2)

Indeed, as we showed in Chapter 1 (see Section 1.2), equations (2.1) and (2.2) are
equivalent when X is continuously differentiable and o is continuous, but (2.1) is
meaningful also when X is non differentiable.

In this chapter we prove well-posedness for the difference equation (2.1) when
the driving path X € C* is Holder continuous in the regime a € B, 1}, called the
Young case. The more challenging regime o < %, called the rough case, is the object
of the next Chapter 3, where new ideas will be introduced.

2.1. SUMMARY

Using the increment notation ¢ fs:= fi — fs from (1.11), we rewrite (2.1) as
0 g=0(Zs) 0 X5+ 0(t —s), 0<s<t<T, (2.3)
so that a solution of (2.3) is any path Z:[0, 7] — R such that the “remainder”
72 =67, — o(Z,) 6 X, satisfies ZE =o(t —s). (2.4)

We summarize the main results of this chapter stating local and global existence,
uniqueness of solutions and continuity of the solution map for the difference equation
(2.3) under natural assumptions on o. We will actually prove more precise results,
which yield quantitative estimates.

THEOREM 2.1. (WELL-POSEDNESS) Let X:[0,7]—R? be of class C* with a € E, 1]
and let o:RF— R* @ (RY)*. Then we have:

e local existence: if o is locally v-Hdélder with v € (é -1, 1] (e.g. of class C*),
then for every 2o € R¥ there is a possibly shorter time horizon T'=T, x »(20) €
10, 7] and a path Z:[0,T'] —RF starting from Zy= zy which solves (2.3) for
0<s<t<T';

27
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e global existence: if o is globally v-Hélder with ~y € (é —1,1] (e.g. of class
C' with |[Vo |l <oc), then we can take T} x ,(20) =T for any 20 € RY;

e uniqueness: if o is of class C with vy € (%,2] (e.g. if o is of class C?), then
there is exactly one solution Z of (2.3) with Zy= zo;

e continuity of the solution map: if o is differentiable with bounded and
globally (v —1)-Holder gradient with y € (%, 2] (i.e. [|[Vo | <00, [Voler-1<
00 ), then the solution Z of (2.3) is a continuous function of the starting point
20 and driving path X : the map (29, X )+~ Z is continuous from R* x C*— C*.

In the first part of this chapter, we give for granted the existence of solutions and
we focus on their properties: we prove a priori estimates in Section 2.3, uniqueness
of solutions in Section 2.4 and continuity of the solution map in Section 2.5. A key
role is played by the Sewing Bound from Chapter 1, see Theorems 1.9 and 1.17, and
its discrete version, see Theorem 1.18.

The proof of local and global existence of solutions of (2.3) is given at the end
of this chapter, see Section 2.6, exploiting a suitable Euler scheme.

2.2. SET-UP

We collect here some notions and tools that will be used extensively.

We recall that O} denotes the space of continuous functions f:[0,7] — R*. Sim-
ilarly, C5 and C's are the spaces of continuous functions of two and three ordered
variables, i.e. defined on [0,7]% and [0, 7%, see (1.7)-(1.8).

We are going to exploit the weighted semi-norms ||-||,,-, see (1.33)-(1.34) (see also
(1.9) for the original norm ||-||,,). These are useful to bound the weighted supremum
norm || f||e.- of a function f € Cy, see (1.37) and (1.40):

[ flloc,r < [fol £3 (T AT) |6 f Iy, vn,7>0. (2.5)
It follows directly from the definitions (1.33)-(1.34) that
lly.r < AT N-llgsre s V0" >0, (2.6)

because (t —s)"> (t — )™ (T AT)™ for 0<s <t <T with t —s< 7.

Remark 2.2. The factor (1 AT)" in the RHS of (2.6) can be made small by
choosing T small while keeping T fized. This is why we included the indicator function
L{o<t—s<r} in the definition (1.33)-(1.34) of the norms ||-||,, -: without this indicator

function, instead of (7 A T)”, we would have T, which is small only when T is small.

We will often work with functions F' € Cy or F' € C5 that are product of two
factors, like Fy= gs Hg or Fyyy =Gy Hyy. We show in the next result that the semi-
norm || F||, - can be controlled by a product of suitable norms for each factor.
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LEMMA 2.3. (WEIGHTED BOUNDS) For any 1,1’ € (0,00) and 7 >0, we have
Zf Fst:gsHst or Fst:gtHst then HF||7],T< HgHoo,T HHHU7 (27)
if  Fau=Gsy Huyt then | Elgn,e KNG g7 (1 []1- (2.8)

Proof. If F,;= g, Hy, by (1.37) we can estimate e~*/7 | g;| < ||g]|o.» to get (2.7). If
Fyu = g, Hy, for s <t we can bound e /7 <e™*/7 in the definition (1.33)-(1.34) of
||l.-, hence again by (1.37) we can estimate e™*/7 |g;| <||g||oo.r to get (2.7).

If Fyy= Gy Hy, we can further bound (t — )"+ > (t —u)? (u —s)" in (1.34)
and then estimate e™*/7 G,/ (u — 8)" < ||G ||,).-, which yields (2.8). O

We stress that in the RHS of (2.7) and (2.8) only one factor gets the weighted
norm or semi-norm, while the other factor gets the non-weigthed norm ||-|,. We
will sometimes need an extra weight, which can be introduced as follows.

LEMMA 2.4. (EXTRA WEIGHT) For any n,7 € (0,00) and 0 <7 <7, we have
T
Zf Fst: Js Hst or Fst: gt Hst then HFHW,T < HgHOOﬂ'e? HHHUJ" (29)

Proof. Recall the definition (1.33)-(1.34) of ||-||,;,» and note that for 0 <s <t <T we
have e ™7 | g:| <||g|loo.r and e ™7 | g5| < || g ||so.+ (see the proof of Lemma 2.3). Finally,
for t — s <7 <7 we can estimate |Hy| <el/Te ™7 |Hy| <e™/7 ||H|,-(t—s)". O

—s/T

We recall that R* @ (R?)* ~TR¥*?is the space of linear applications from R? to R*
equipped with the Hilbert-Schmidt (Euclidean) norm |-|. We say that a function is of
class C™ if it is continuously differentiable m times. Given o: R — R* ® (R%)* of class
C?, that we represent by o}(z) with € {1,...,k} and j€{1,...,d}, we denote by Vo:
R*— RF @ (RY)* ® (RF)* its gradient and by V?0: R* - R* ® (RY)* ® (R*)* @ (R¥)*
its Hessian, represented for i,a,b€ {1,...,k} and j€{1,...,d} by

% 2 1
aO'j 80’j

(Vo(eDiu=32), (Vo= 50(2).

Remark 2.5. (NORM OF THE GRADIENT OF LIPSCHITZ FUNCTIONS) For a locally
Lipschitz function 1: R¥ — R’ we can define the “norm of the gradient” at any point
(even where ¢ may not be differentiable):

IV (2)] ::limsupM €1[0,00).

y—z ‘y—Z’

Similarly, |V?(z)]| is well defined as soon as 1 is differentiable with locally Lipschitz
gradient V1) (which is slightly less than requiring 1 € C?).

2.3. A PRIORI ESTIMATES

In this section we prove a priori estimates for solutions of (2.3) assuming that o is
globally Lipschitz, that is [|[Vo || < 0o (recall Remark 2.5).
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We first observe that if the driving path X is of class C%, then any solution Z of
(2.3) is also of class C*, as soon as ¢ is continuous.

LEMMA 2.6. (HOLDER REGULARITY) Let X be of class C* with a €10, 1] and let o
be continuous. Then any solution Z of (2.3) is of class C®.

Proof. We know by Lemma 1.2 that Z is continuous, more precisely by (1.6)
we have [0Z4| < C |0 Xs| + o(t — s) with C' < 0o. Since [0 X| < |[0X o (t — s)* and
o(t —s)=o((t — s)*) for any o <1, it follows that Z € C*. O

We next formulate the announced a priori estimates. It is convenient to use the
weighted semi-norms |||, - in (1.33)-(1.34) (note that the usual norms |||, in (1.9)
can be recovered by letting 7— 00).

THEOREM 2.7. (A PRIORI ESTIMATES) Let X be of class C* with a € |3,1] and let
o be globally ~-Holder with v € (é -1, 1]. Then, for any solution Z:[0,T] — R* of
(2.3), the remainder Z2":= 07, — 0(Z,) 6 Xy satisfies Z12€ CLV® | more precisely
for any 7 >0

1ZP v+ )0 S Cayxo 102113, with Cay x,0:= Ky41)a [6X [laloler,  (2.10)
where K, = (1—2'"7)"1. Moreover, if either T or 7 is small enough, we have

’|5Z’|a,7<1\/(2H5XHa lo(Zo)|) for (T AT) <éay.x.0, (2.11)

where we define
1

Ea,v,X,0 =
! 2(K(y41)a+3) [[0X o [o]er

(2.12)

If o is globally Lipschitz, namely if we can take v=1, we can improve (2.11) to
10Z]|ar <2|10X o lo(Zo)] for (TAT)*<eni1x.0- (2.13)

Proof. We first prove (2.10). Since Zs[f] =o(t — s) by definition of solution, see (2.4),
we can estimate Z\3 in terms of 6Z%, by the weighted Sewing Bound (1.41). Let

us compute 622, = 72 — 78 _ 7. recalling (2.4) and (1.32), since 606 =0, we have

672, = 60(2)u 6 X = (0(Z0) — 0(Z4)) (Xi — Xa) . (2.14)
Since |o(2) — 0 (2)| < [o]cr |2 — 2|7 for all 2,z € R, we can bound

160(Z)llha.r < loler 0212+ (2.15)
hence by (2.8) we obtain

10Z2 (3 1yar < 10X [la [0 162113 -
Applying the weighted Sewing Bound (1.41), for (v + 1)a > 1 we then obtain

12204 1y0r < Ky 10X [l [l 1021121 (2.16)
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which proves (2.10).
We next prove (2.11). To simplify notation, let us set €:= (7 AT)?. Recalling
(2.7) and (2.6), we obtain by (2.4)

16Zla.r < No(Z)6X Nlar + 1 2P]a.r
< o (D) lloor 16X o+ 2Pl (34177 (2.17)

We can estimate ||0(Z)||w.» by (2.5) and (2.15):
l0(2)loo.r <o (Zo)[ +3€7 [oler (62127 -
Plugging this and (2.16) into (2.17), we get

10Z]la < (lo(Z0)|+3€7 [oler 10Z]|a,-) [0X o +
+" Ko [[0X ] aloler 102]a,-

1 e? ~y
= l0X|lalo(Zo)| +5 2 10Z]|

o, T
av’Yv 70

where €44, x,, is defined in (2.12). For €7 < e, 4 x,, the last term is bounded by
%||6Z||g’7 which is finite by Lemma 2.6. If ||0Z ||, <1 then (2.11) holds trivially; if

not, %H(SZHZ[T < %||(5Z||a77. Bringing this term in the LHS we obtain (2.11).
To prove (2.13), we argue as for (2.11) and since 7 =1 we obtain

£

1
162 ]lar < 10X o [0 (Zo)| + 5 2 162 [lec -

For € <e,.1,x,» the last term is bounded by %||(5Z||Q7T which is finite by Lemma 2.6.
Bringing this term in the LHS we obtain (2.13), and this completes the proof. [

2.4. UNIQUENESS

In this section we prove uniqueness of solutions to (2.3) assuming that o is of class
C1 with locally Hélder gradient (we stress that we make no boundedness assumption
on o). This improves on Theorem 1.7, both because we allow for non-linear ¢ and
because we do not require that the time horizon 7" > 0 is small.

We first need an elementary but fundamental estimate on the difference of incre-
ments of a function. Given ¥: R* — R, we use the notation

Cyr:=sup{|¥(z)]: xeRF, |z|<R}. (2.18)

LEMMA 2.8. (DIFFERENCE OF INCREMENTS) Let ¢: RF— R’ be of class Ci.t? for
some 0< p<1 (i.e. ¢ is differentiable with V1 of class Cf.). Then for any R >0
and for all x,%,y, y € R* with max {|z|, ly|,|Z], ||} < R we can estimate

[9(z) = w(y)) - [0() - (@) (219)
<Chl(w~y)— (@~ )|+ Cl {lz —yl+ |2 — g1} ly — 9],

where Cr:=sup {|V¢(z)|: |z|< R} andCﬁ::sup{w: |x|,|y|<R}.

|z —y|”
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Proof. For z,w € R* we can write
U(z) = d(w) =d(z,w) (z — w),
where ¢(z, w) := folvw(u z+ (1 —u)w)du € R ® (R¥)*, therefore
(&) — ()] - 0@ — 03] = [B(x) - 0()] ~ () — (3
Uz, 1) (z—2) = (y,9) (y — 7))
= ) (o)~ (- 3)]
+ [P, ) =y, )] (y— 7).
By definition of C% and Cf we have |¢)(x, z)| < Cf and
[0, 2) = (y, )| < [P, 2) = Py, )|+ |d(y, &) = d(y, 9)]
Crfle -yl + 1z - 7|7},

hence (2.19) follows. O

<
<

We are now ready to state and prove the announced uniqueness result.

THEOREM 2.9. (UNIQUENESS) Let X be of class C* with o € } ,1] and let o be of
class C7 for some ~y > — (for instance, we can take o € C?). Then for every z, € R*
there exists at most one solution Z to (2.3) with Zy= z.

Proof. Let Z and Z be two solutions of (2.3), i.e. they satisfy (2.4), and set
Y:=2Z-27.
We want to show that, for 7 >0 small enough, we have
1Y [0, < 2[¥0l,

where the weighted norm ||-||o» was defined in (1.37). In particular, if we assume
that Zy= Z,, we obtain ||Y ||o»=0 and hence Z = Z.
We know by (2.5) that for any 7> 0

1Y oo, r < Yol +-37%[|0Y [| 1,7 (2.20)

where we recall that the weighted semi-norm ||-||,,» was defined in (1.33). We now

deﬁng Y2 as the difference between the remainders Z2 and Z®@ of the solutions Z
and Z as defined in (2.4), that is

via.=zB 7B _ 5y, — (0(Z) — 0(Z,)) 6 X (2.21)

(We are slightly abusing notation, since Y 1s not the remainder of Y when o is not
linear.) By assumption o € C” for some =y > —: renaming vy as y A 2, we may assume

that v e ]— 2] We are going to prove the followmg inequalities: for any 7 >0
16Y Jlar < 1 1Y [loc,r + 70D [V P07, (2.22)

VP lar < 2 Y [loo,r +c2 70D Y0, (2.23)
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for finite constants ¢;, ¢/ that may depend on X ,o,Z, 7 but not on T.

Let us complete the proof assuming (2.22) and (2.23). Note that (y—1)a >0
by assumption. If we fix 7 >0 small, so that ¢ 7" D> <1 from (2.23) we get
Y| 0r <22 ||Y ||oo.r which plugged into (2.22) yields HéYHa <21 |V ||oor
7> 0 small (it suffices that 2¢, 7079 < ¢;). Finally, plugging this into (2.20) and
possibly choosing 7 > 0 even smaller, we obtain our goal ||Y ||e < 2|Yo| which
completes the proof.

It remains to prove (2.22) and (2.23). Using the notation from Lemma 2.8 we set
Cf = sup{|Vo(@)|: |z[<[Z]leoV 1 Z]loc} .

" Vo(z VU 4
ot = sup{ THI=RIO, o)y <20 v 1211 .

so that |0(Z;) —o(Z,)| < C{|Z; — Z;| and, therefore,
lo(Z) = o(Z)[|oc,r < CTIY [loc,r- (2.24)
We now exploit (2.21) to estimate ||dY ||o.-: applying (2.7) we obtain

16Y lar < 110(Z) = 0(Z)oo.r 10X la+ 1Y P ar
< CLIY floor 10X [la+ 700 Y B, (2.25)

where we note that ||V, , <7D ||y, . by (2.6). We have shown that (2.22)
holds with ¢; = C1 [[6X ||4-

We finally prove (2.23). Since Y& ] —o(t — ), see (2.21) and (2.4), we bound Z
by its increment §Z through the weighted Sewing Bound (1.41):

Y Phar <Ko 16V Pha.r, (2.26)
hence we focus on HéY[Q]HW,T. By (2.21) and (1.32), since d 00 =0, we have

Applying the estimate (2 9) for & = Zy, y = Zs, T = Zy, § = Zs, We can write

]5a(Z)Su—5a(Z)Su\ < {\5Zsu—5Zsu\+C{’{\6Zsu|7*1+]5Zsu|7*1}|Zs—Zs|
= C110Yau| + CU{|0Zeu| "1 + |6 Zsu| 71} |l (2.28)

hence by (2.7) we get

160(Z) =60 (2)llv-1ar < CLIOY [(v-1par+ (2.29)
CrISZIL +UOZIE ™"} Y lloo.r-

If we take 7 <1 we can bound [[0Y ||(y—1)a,r < ||0Y ||a, by (2.6) (recall that we are
assuming v < 2). Then by (2.27) we obtain, recalling (2.8),

18Y Plsar <N10X [la 160(Z) = 60(2) (- 1ya,r < E1 (1Y [l + Y Tloo,r) »
for a suitable (explicit) constant ¢; = é(0, Z, Z, X). Applying (2.22), we obtain

1Y P lya,r < (1 + 1) E1 1Y loor 4+ E1 7O DY R0 7,
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which plugged into (2.26) shows that (2.23) holds. The proof is complete. O
We conclude with an example of (2.19).

Example 2.10. If o:R— R is o(z) =22, then we have

(
=@—-7)(z+2)—(y—9) (y+9)
=[(z-2)—(y—P(y+9) +(@—-2)[(z+2) - (y+9)]
=[(z—2)—(y=9](y+9) + (v —2) [(z —y) + (T — 9)],

where in the second last equality we have summed and subtracted (y — ) (z + 7).
If we use this formula for x = Z;, y=Z, and ¥ = Z,;, y = Zs, then we obtain

5(Z2 - Z2)st: 5<Z - Z)st (Zs + Zs) + (Zt - Zt) [6Zst + 5Zst]7
which is in the spirit of (2.19) with p=1. It follows that
16022 = Z3)[la <221l 16(Z = 2)la+ 12 = Zls [16Z ||+ 102 ],

which is the form that (2.29) takes in this particular case.

2.5. CONTINUITY OF THE SOLUTION MAP

In this section we assume that o is globally Lipschitz and of class C! with a glob-
ally v-Holder gradient, i.e. |[Vo| e < oo and [Vo]er < 0o, with v > % Under these

assumptions, we have global existence and uniqueness of solutions Z: [0, 7] — R* to
(2.3) for any time horizon 7' >0, for any starting point Zy € R* and for any driving
path X of class C* with %< a <1 (as we will prove in Section 2.6).

We can thus consider the solution map:

o: RFxC* — (C*

(Zo,X) — Z ._{ unique solution of (2.3) for t €[0,7] . (2.30)
0 =

starting from Zj
We prove in this section that this map is continuous, in fact locally Lipschitz.

Remark 2.11. The continuity of the solution map is a highly non-trivial property.
Indeed, when X is of class C', note that Z solves the equation

¢
Zt:Z0+/ o(Zs) Xsds, (2.31)
0

which is based on the derivative X of X. We instead consider driving paths X € C*
with a € B, 1} which are continuous but may be non-differentiable.

We shall see in the next chapters that the continuity of the solution map holds
also in more complex situations such as X € C* with a < %, which cover the case
when X is a Brownian motion and Z is the solution to a SDE.
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Before stating the continuity of the solution map, we recall that the space C* is
equipped with the norm || f|ce:= || floo + ||0f |la, sSee Remark 1.4, but an equivalent
norm is || flloo.r + |0 f [|a.r for any choice of the weight >0, see Remark 1.15.

THEOREM 2.12. (CONTINUITY OF THE SOLUTION MAP) Let o be globally Lipschitz
with a globally (v —1)-Hélder gradient: ||V ||oo <00 and [Vo|er-1 <00, with v € (%,
2}. Then, for any T >0 and o € }%, 1], the solution map (Zo, X)+— Z in (2.30) is
locally Lipschitz.

More explicitly, given My, M, D < oo, if we assume that

max {[|Vo [, [Voler1} <D,

and we consider starting points Zy, Zo € R and driving paths X, X € C* with

max {|0(Zo),Jo(Zo)|} < Mo, max { 6 [l 95X [la} < M, (2.32)
then the corresponding solutions Z = (Zs)sejo.r), £ = (Zs)sepo,r) of (2.3) satisfy

1Z = Z|oo,e + 10Z = 6Z || a7 < Car | Zo — Zo| + 6 Mo [|0.X — 6X ||, (2.33)
provided 0 <7 AT <7 for a suitable T =T . 1,0,0m,m >0, where we set

Cr:=2(|VolleM+1)<2(DM+1).
Proof. Let us define the constant
ari=||VolleM<DM. (2.34)

We fix two solutions Z and Z of (2.3) with respective driving paths X and X. If we
define Y :=7 — Z, we can rewrite our goal (2.33) as

1Y oo + 10 [ar <6 Mo [|6X — 0X [la+2 (ear +1) [Yo] - (2.35)

Let us introduce the shorthand
e:=(TANT)*

and let us agree that, whenever we write for ¢ small enough we mean for 0 <e<¢g
for a suitable £g >0 which depends on o, T, My, M, D. By (2.5), for e small enough,

1
1Y llos,r < Yol + € [10Y [la.r < [Yol + = [10Y a7, (2.36)

hence to prove (2.35) we can focus on ||0Y |4,

Recalling (2.4), let us define Y := 72 — 72 We are going to establish the
following two relations, for e small enough:

4 _
2 10 Jla,r S2Mp[|0X = 0X [|a + ear [Yo[ + 1Y Hfqr (2.37)
= 1 1
||Y[2]||oz,~r < MO ||5X - (5XH04+ §|%| + g H(SYHOM'- (2'38)

Plugging (2.38) into (2.37) and applying (2.36), we obtain (2.35).
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It remains to prove (2.37) and (2.38). We record some useful bounds. Let us set

1

E=Eq,D,M = 2(K2a+3) DM (239)

We exploit the a priori estimate (2.13) from Theorem 2.7: by (2.32), we have
fore=(rAT)*<e: max{||0Z||a.r, |07 ||a.r} <2 Mo M, (2.40)

therefore

160(Z)|lar <NV oo 16Z s 2[[Volloo Mo M =2 My car, (2.41)
and applying (2.5) and (2.32) we get, for ¢ small enough,
lo(Z)||oo,r < |o(Zo)| +3e |00(2) || ar < Mo (1 +6erre) <2 M - (2.42)

We can now prove (2.37). Defining Y := ZP — 712 we obtain from (2.4)

Yy = 6Zuy—02y = 0(Zy)0Xy—0(Zs) X+ Y
= 0(Z,) (0X = 6X)u+ (0(2,) — 0(Z,)) 6Xa + Y,

hence by (2.7) we can bound
10Y lla.r < [10(2)]loc,r [16X = 0X |

) | (2.43)
HI0X [l |0(2) = 7(Z)l|oc,r + [V a7 -
Let us look at the second term in the RHS of (2.43): by (2.5)
0(2) ~ (D lr < Vol |1Z ~ Z ] -
< Voo (Y0 +3€ [[0Y [la.7)-
Hence by (2.32) and (2.34) we get, for e small enough,
i, _ 1
10X la llo(Z) = o(2) oo, < enr [Yol + 2 [16Y [Jacr- (2.45)
Plugging this into (2.43) we then obtain, by (2.42),
4 _
£ 10 flor <2 Mo 10X = 6X [loc+ ear [¥5] + [Vl (2.46)

which proves (2.37). B
We finally prove (2.38). Since Y2 =22 — ZB—o(t — 5), sce (2.4), the weighted
Sewing Bound (1.41) and (2.6) give

Y Pl <Y P 0 < Koo e [0V Plar - (2.47)
To estimate §Y' 2 =523 —§ Z2 note that by (2.4) and (1.32) we can write
0V =60(2)su (0X = 6X )ut + (00(Z) — 60(Z))su 6 Xut » (2.48)

hence by (2.8)
1Y Plsar <160(2) | (3 - 1)ar 16X = 0X |la+ 16X ||a 160(Z) = 60(Z) |7 - 10, (2:49)
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The first term is easy to control: by (2.41), for ¢ small enough,
Ko 100(2) - 1yarr 10X — 5 [l < Mo [0 — 65 . (2.50)
Let us now focus on the second term. By (2.19) we have, see also (2.28),
160( ) — 60(2)aud <1V e 1Yol + [V0ler 1 {157+ (5700 1.
We apply (2.9) for H=0Z, g=Y and 7= (&)"/* from (2.39):
160(2) = 60(D)llir-ar < 190w Y 1 tyar +
HVoler-1e7 (I6Z1157 + 1BZ 12 DY lloo,r
< D0Y lar+22Mo M) 17D ||Y || 0. (2.51)

where we applied (2.40). Hence by (2.51), recalling (2.32), for ¢ small enough we
obtain

a5 0 160(2) = 60(Z) -t 35 16Y s + 5V s (2:52)
and since [|Y ||oo,r < | Y0 —|—% |0Y ||, 7, s€€ (2.36), we obtain
Kya " 15X o 80(2) = 0(2) s < ¥l + 5 1Y -
Finally, plugging this bound and (2.50) into (2.49) and (2.47), we obtain
¥ Py < Mo [6X = 6X -+ 5 %51 + 217 [l
which proves (2.38) and completes the proof. O
Remark 2.13. An explicit choice for 7 in Theorem 2.12 is

_r
~ e T

7= 10 (K2a +3) (1 4+ Mo) (1 + D (M + M?2))’ (253)

with 7 =7, p am defined in (2.39). This is obtained by tracking all the points in
the proof of Theorem 2.12 where e = (7 AT)* was assumed to be small enough: see
Section 2.8 for the details.

2.6. EULER SCHEME AND LOCAL/GLOBAL EXISTENCE

In this section we discuss global existence of solutions, under the assumption that o
is globally y-Holder with v € (é -1, 1}, i.e. [o]cr < oo (again with no boundedness
assumption on o). We also state a result of local existence of solutions for equation
(2.3), where we only assume that o is locally v-Hélder with € (é -1, 1} (with no
boundedness assumption on o).

We fix X:[0,7]— R? of class C® with o € B, 1] and a starting point zo € R*. We
split the proof in two parts: we first assume that o: R* — R* @ (R?)* is globally -
Holder, then we consider the case when o is locally y-Hélder.
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First part: globally Holder case.

We consider a finite set T={0=t; <--- <tgr} C R, and we define an approximate
solution Z = ZT = (Z;);e through the Euler scheme

Z(]I: 20, th‘+1::Zti+0-(Zti> 5Xtiati+1 for 1 <Z<#T— 1. (254)
Let us define the “remainder”
Rst::(SZSt—O'(ZS> 6Xst for s<teT. (255)

We assume that o is globally v-Hélder, namely [o]cv < 0o, with vy € (é —1, 1}. We set

N 1
Ea o= )
T2 (Crygnyat 5) 10X o [0]e

(2.56)

where the constant C), is defined in (1.45). We prove the following a priori estimates
on the Euler scheme (2.54), which are analogous to those in Theorem 2.7.

LEMMA 2.14. If o is globally v-Hélder, namely [o]cr < 0o, with v € (% —1,1], then

IR (54100 < Clytya [oler (16Z13)7 16X o, (2.57)
and for TV < E€q 0y x 0 16Z]| <1V (2]|0(20)] |6X ||a) - (2.58)

Proof. Since 0Rsy = (0(Zs) — 0(Zy)) 0 Xy, recall (1.32), and since Ry, , =0 by
(2.54), we can apply the discrete Sewing Bound (1.45) with n=(y+1)a>1 to get

IR G410, < Ciranya 0BG 10, < Clrnalaler (10Z]130)7 10X o (2.59)

We have proved (2.57).
We next prove (2.58). Recalling (2.55) we can bound, by (2.6) for [|-||ya,m,,

162115+ < o (2) 15, 10X la+ 77 [ RN G 41)a,r
By (1.47)
lo(Z)llse,- <l (20)[ +577160(2) |a,r <l (20)[ 4+ 577 [o]er ([[6Z la.r) -
We thus obtain, combining the previous bounds,
102 la,r < lo(20) 10X [la+ {77 (Cra +5) [o]er 10X [lo} (162 la.r)” -
Now if ||6Z |5, <1 then (2.58) is proved, otherwise (||6Z |2 ,)Y < ||6Z||% , and then
for 7 as in (2.56) the term in brackets is less than + and we obtain (2.58). O

2

We can now prove the following

THEOREM 2.15. (GLOBAL EXISTENCE) Let X be of class C*, with a € }%, 1}, and
let o be globally ~-Holder with v € (% -1, 1] ,i.e. [o]er<oo. For every zo € RF, with
no restriction on T >0, there exists a solution (Z;)ieo,r) of (2.3) with Zy= z.
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Proof. Given n €N, we construct an approximate solution Z" = (Z}');eT, of (2.3)
defined in the discrete set of times T, := ({i27™ i=0,1,...}N[0,7]) U{T} through
the Euler scheme (2.54).

Z§ = 2, Zy =24 0(Z8) 0 Xy, for t;,t;11€T,. (2.60)
Let us define the “remainder”
v =020 —0(Z8) 60X for s<teT,. (2.61)
We fix T"> 0 such that

We extend Z" by linear interpolation to a continuous function defined on [0, 77,
still denoted by Z™. Given two points ¢; < s <t <t;,1 inside the same interval [t;, ;1]

of the partition T, since 0/ = til;_st 0Z{4,. ., we can bound for a € (0, 1]

’5225 :< t—s )1_a ’(SZZti+1| < |5Ztrzl'ti+1|
(t—s)* t (tigr—t)* ~ (tigr— 1)
Given two points s <t in different intervals, say t; < s <t;41 <t; <t <t;4; for some
i < j, by the triangle inequality we can bound 02| < |6Z3, |+ |0Z¢, 14, + [0Z14].
Recalling (1.9) and (1.43), we then obtain ||-||o <3 ||-||X", hence by (2.58) we get

1027 a,» <3V (6]o(20)] 10X ]a) - (2.62)

i+t1— L

The family (Z"),en is equi-continuous by (2.62) and equi-bounded, since Z§ = z
for all n € IN, hence by the Arzela-Ascoli Theorem it is compact in the space C'([0,T],
R*). Let us denote by Z:[0,7] — RF any limit point. Plugging (2.58) into (2.57),
by (2.61) we can write

if T9<é4 x .0 1025 — o(Z1) 6 Xo| < c(z0) (t —8)* Vs<teT,, (2.63)

where ¢(20) := Cly41)a [0ler (B3 V (6 |0 (20)] [|0X ||a))” |0X ||o . Letting n — oo and
observing that T,, C T, 1, we see that (2.63) still holds with Z" replaced by Z
and T, replaced by the set T:=J,. Tor= ({57: 4, n e N} N[0, T]) U{T} of
dyadic rationals:

if T*<é, x 0 |07 — 0(Zs) 6 Xt| < c(z0) (t — 5)** Vs<teT.

Since T is dense in [0, 7] and Z is continuous, this bound extends to all 0 < s <t < T,
which shows that Z is a solution of (2.3). This completes the proof. U

Second part: locally Lipschitz case.

We now assume that o is locally y-Hélder and we fix 2o € R*. We also fix T'> 0 such
that T'<Z4.x +(20), see (2.64), and we prove that there exists a solution Z: [0,7] — RF
of (23) with Z(]: 20-

THEOREM 2.16. (LOCAL EXISTENCE) Let X be of class C*, with o € B, 1}, and let o
be locally Lipschitz (e.g. of class C1). For any zo€ R* and for T >0 small enough, i.e.

1 1
2 (Coa+3) 10X [la {1+ 5UPle 2l <lo (o) [V ()]}

T < Eq x.0(20) = (2.64)
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there exists a solution (Zi)iecjo,m of (2.3) with Zy= 2.
Let & be a globally y-Holder function (depending on zg) such that
d(z)=0(z) Y|z — 2| <o(2) and [Glcv=sup |Vo(z)]. (2.65)

|z —20| <o (20)

Since T'< €4,x,0(20) < €a.x,0, see (2.64) and (2.56), by the first part of the proof
there exists a solution Z of (2.3) with & in place of o and Zy= z,. We will prove that

|Z; — 20| <o (20) forall te(0,T], (2.66)

therefore 6(Z;) = o(Z;) for all t € ]0,T], see (2.65). This means that Z is a solution
of the original (2.3) with o, which completes the proof of Theorem 2.16.

To prove (2.66), we apply the a priori estimate (2.13) with 7= 00: we note that
T <Enx.0(20) <eq.x.0 (see (2.64) and (2.12), and note that Ca, > K>,), therefore

167 lla < 216X [|a [0 (20)],
because 7 (29) =0(29). Then for every ¢ € [0, T] we can bound
21— 20l ST |02 [l 2T |0X || |0 (20)] <[ (20)],

where the last inequality holds because T < &4, x +(20) < (2 [|6X ||a) 7}, see (2.64).
This completes the proof of (2.66).

2.7. ERROR ESTIMATE IN THE EULER SCHEME
We suppose in this section that o is of class C? with ||V o ||e + || V20 |0 < +00.
THEOREM 2.17. The Euler scheme converges at speed n?*~!.

Proof. Let us set z;:=0y;/0yo, where (y;);>0 is defined by (2.60). Then

zi+1:zi+Va(yi) Zi 6Xt7;t Z>0

i+1)

This shows that the pair (y;, 2;)i>0 satisfies a recurrence which is similar to (2.60)
with a map X of class C! and therefore we can apply the above results to obtain
that |z;| < const. In particular the map yo — yi is Lipschitz-continuous, uniformly
over k>0.

Let us call, for k>0, (2/"),5, as the sequence which satisfies (2.60) but has

initial value z{* = y(#;,). Since (y(t)):+>0 is a solution to (2.4), we have

k —2a
|#0 — y(ter)| Sne

Since the map yo— yi is Lipschitz-continuous uniformly over k>0, we have

20— 2D S 1)~ y(te)| S, (kL
Therefore
-1
=yt =147 A0 < 3 | — 20| S o=

k=0
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as t,; is bounded and n— oo. O

2.8. EXTRA: A VALUE FOR T

We can give an explicit expression for 7 = 7pz, a7 in Theorem 2.12, by tracking all
the points in the proof where 7 is small enough, namely:

e for (2.36) we need 7 < —5

o for (2.40) we need 7 < (par)®:= (2 (Koo +3) car) ™%

(2.42) we need 7 < (6.¢pr) 71, for (2.45) we need 7 < (15 ¢p7) ™%

(2.50) we need TV (2 K car) 7Y

(2.52) we need 7D (10 Ky car) 7! (first term in the RHS) and also
rlr—Hag (K epM My M? ||V2U||Oo) ' (second term in the RHS).

o for
o for
for

Since ¢y = M ||V ||oo, see (2.34), it is easy to check that all these constraints are
satisfied for 0 <7 <7 given by formula (2.53) in Remark 2.13.






CHAPTER 3

DIFFERENCE EQUATIONS: THE ROUGH CASE

We have so far considered the difference equation (2.3), that is
Zy—Zs=0(Zs) (Xi — Xs) +o(t — s), 0<s<t<T, (3.1)

where X is given, Z is the unknown and o(-) is sufficiently regular. This is a gen-

eralization of the differential equation Zt =0(Z) Xt which is meaningful for non
smooth X, as we showed in Chapter 2, where we proved well-posedness in the so-

called Young case, i.e. assuming that X € C* with a € } ! 1].
However, the restriction a > = is a substantial limitation: in particular, we Cannot
take X = B as a typical path of Browman motion, which is in C only for « < =. For

this reason, we show in this chapter how to enrich the difference equation (3. 1) and
prove well-posedness when X € C* with a € }3, 2} called the rough case. This will
be applied to Brownian motion in the next Chapter 4, in order to obtain a robust
formulation of classical stochastic differential equations.

Remark 3.1. (YOUNG VvS. ROUGH CASE) The restriction « >% for the study of

the difference equation (3.1) has a substantial reason, namely there is no solution to
(3.1) for general X € C* with a < % Indeed, taking the “increment” ¢ of both sides

of (3.1) and recalling (1.23) and (1.32), we obtain
(0(Zy) —o0(Zy)) (X — Xy) =o(t — s) for 0<s<u<t<T. (3.2)

If X eC? for any a € (0, 1], then we know from Lemma 2.6 that Z € C*, but not
better in general (e.g. when o(-) = c is constant we have Z =c¢ X), hence the LHS
of (3.2) is S(u—8)*(t —u)* < (t —5)?*, but not better in general. This shows that
the restriction « >% is generally necessary for (3.1) to have solutions.

3.1. ENHANCED TAYLOR EXPANSION

We fix d, k €N, a time horizon T'> 0 and a sufficiently regular function o: R* —
R* ® (RY)*. Our goal is to give a meaning to the integral equation

t
7, = ZO+/ o(Z) X,ds,  0<t<T, (3.3)
0

where Z:[0,T] — R¥ is the unknown and X:[0,7] — R?is a non smooth path, more
: ) 11
precisely X € C* with a € }g, 5].

43
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The difference equation (3.1) is no longer enough, for the crucial reason that
typically it admits no solutions for a < %, see Remark 3.1. We are going to solve

this problem by enriching the RHS of (3.1) in a suitable, but non canonical way:
this leads to the key notion of rough path which is central in this book.

To provide motivation, suppose for the moment that X is continuously differen-
tiable, so that (3.3) is meaningful. As we saw in (1.3), an integration yields for s <t

2= Ze=o(2) (X=X + [ (o2 = 012)) Rudu (3.4

In Chapter 1 we observed that the integral is o(t — s), which leads to the difference
equation (3.1). More precisely, the integral is O((t — s)?) if X € C' and ¢ is locally
Lipschitz (note that Z € C'). The idea is now to go further, expanding the integral
to get a more accurate local description, with a better remainder O((t — s)3).

To this purpose, we assume that o is differentiable and we introduce the key
function oy: R* — RF ® (RY)* ® (RY)* by

[0

S5
Sl

o9(2):=Vo(z)o(z), ie. [oa(2)]ie:= Z (2) ot (z2) . (3.5)

a=1

)

Za

Since %U(ZT) =Vo(Z,) Z, = oo(Z,) X, by (3.3), we can write for s <u

o(Z,)—o(Zs) = /UUQ(ZT) X, dr
= ) (Xu=X)+ [ (0x(Z) - 0n(Z)) X, (3.6)

where for z € R? and a € R? we define 05(z) a € R* @ (R%)* by

[oa(2) alj = [oa(2)]jea’.

1

If we assume that o9 is locally Lipschitz, then the last integral in (3.6) is O((u — s)?)
(recall that X € C'). Plugging this into (3.4), we then obtain

Z— Zy=0(Z) (Xs — X,) + 02(Z,) /t(Xu — X,)® X, du+O((t — 5)3), (3.7)

where now for z € R? and B € R?® R? we define o4(z) B € R* by

d

[o2(2) Bli= "> [03(2)]im B™. (38)

£,m=1

Let us rewrite the integral in the right-hand side of (3.7) more conveniently. To
this purpose we introduce the shorthands

t
XL i= X, — X, th::/(XT—XS)Q@XTdr, 0<s<t<T, (3.9)
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so that X' [0, T)2 — R¢ and X2 [0, T]2 — R¢® R, see (1.7). More explicitly:
t . .
(X§t>”:=/ (Xi—XHXPdr, i,je{l,...,d}.

We can thus rewrite (3.7), replacing O((t — s)?) by o(t — s), in the compact form
Zy— Zs=0(Zs) X+ 09(Z5) XE + ot — 5), 0<s<t<T, (3.10)

where for the product o9(Z,) X2 we use the contraction rule (3.8).

We have obtained an enhanced Taylor expansion: comparing with (3.1), we added
a “second order term” containing X2. The idea is to take this new difference equation,
that we call rough difference equation, as a generalized formulation of the differential
equation (3.3), just as we did in Chapter 1 (see Section 1.2). However, there is a
problem: the term X2 depends on the derivative X, see (3.9), so it is not clearly
defined for a non-differentiable X.

To overcome this problem, we will assign a suitable function X?= (th)ogsgth
playing the role of the integral (3.9) when X is not differentiable: this leads to the
notion of rough paths, defined in the next section and studied in depth in Chapter 7.
We will show in this chapter that rough paths are the key to a robust solution theory

of rough difference equations when X of class C* with a € (%, %}

3.2. ROUGH PATHS

Let us fix a path X:[0,7] — R% of class C* with a € (%, é} Motivated by the previous
section, we are going to reformulate the ill-posed integral equation (3.3) as the
difference equation (3.10), which contains X' and X2.

We can certainly define X := X; — X; as in (3.9), but there is no canonical
definition of X2 = f: (X, — X,) ® X, dr, since X may not be differentiable. We
therefore assign a function X2 which satisfies suitable properties. Note that when
X is continuously differentiable the function X2 in (3.9) satisfies:

e an algebraic identity known as Chen’s relation: for 0 <s<u<t<T
X5 - X2, - X5 =X, 0 X, = (X, — X,) ® (X; — X,), (3.11)
which follows from (3.9) noting that
t

th_Xgu_Xz%t:/ (X’I‘_XS)®XTdT:(Xu_XS)®(Xt_Xu);

u

e the analytic bounds

Xl Slt—sl,  IXHS[t—sl (3.12)

which follow from the fact that X is bounded.

The algebraic relation (3.11) is still meaningful for non-differentiable X, while the
analytic bounds (3.12) can naturally be adapted to the case of Holder paths X € C*
by changing the exponents 1,2 to a,2a. This leads to the following key definition.
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DEFINITION 3.2. (ROUGH PATHS) Fiz a € |3,7], d€N and a path X:[0,7] —R?

of class C*. An a-rough path over X is a pair X = (X', X?) where the functions
X0, T2 = RY and X% [0, T2 — RY@ R? satisfy, for 0<s<u<t<T:

e the algebraic relations
Xh=X—X,, 6X%,=X%-XZ,-XZ=Xl,®X,, (3.13)
where the second identity is called Chen’s relation;
e the analytic bounds
Xal Slt—sl*,  [XEIS[E—s. (3.14)

We call Ra.a(X) the set of d-dimensional a-rough paths X = (X', X?) over X and
Raa= UXeca Ra.a(X) the set of all d-dimensional a-rough paths.

When X is of class C, the choice (3.9) yields by (3.11)-(3.12) a a-rough path
for any a € (%, %} which we call the canonical rough path, see Section 7.7 below.
When X = B is Brownian motion, the theory of stochastic integration provides
a natural candidate for X2, in fact multiple candidates (think of Ito vs. Stratonovich
integration), as we discuss in Chapter 4 below. Incidentally, this makes it clear that
the construction of X2 is in general non canonical, i.e. there are multiple choices of
X2 for a given path X. This is a strength of the theory of rough paths, since it allows

to treat different non equivalent forms of integration.

Remark 3.3. The existence of rough paths over any given path X (i.e. the fact
that Ra.qa(X)#0) is a non trivial fact, which will be proved in Chapter 7.

Remark 3.4. (X2 As A “PATH”) The two-parameters function X% is determined
by the one-parameter function

L:=X3+ Xo ® (Xt — Xo), (3.15)
which intuitively describes the integral |, g X, ® X, dr. Indeed, we can write
th:]lt_]ls_Xs(g <Xt_X5> ) (316)

since X2 = X3, — X3, — (X, — Xo) ® (X; — X;) by Chen’s relation (3.13).

Vice versa, given a function I: [0, T] — RY, if we define X2 by (3.16), then Chen’s
relation (3.13) is automatically satisfied (recall (1.32)). In order to satisfy the ana-
lytic bound in (3.14), we must require that

T — I, — X, ® (X; — X,)| S (8 —s5)%, (3.17)

which is a natural estimate if I, — I, should describe “= fstXT @ X, dr”.

Summarizing: given any path X:[0,7]— R of class C?, it is equivalent to assign
X200, T2 = RI®@ RY satisfying (5.13)-(3.14) or to assign L: [0, T] —R? satisfying
(3.17), the correspondence being given by (3.15)-(3.16).



3.3 ROUGH DIFFERENCE EQUATIONS 47

3.3. ROUGH DIFFERENCE EQUATIONS

Given a time horizon 7' > 0 and two dimensions d, k € N, let us fix:

e apath X:[0,7] — R? of class C® with a € ]%,%},

e an a-rough path X = (X! X?) over X, see Definition 3.2;
o a differentiable function o: R — R* @ (R?)*, which lets us define the function

oo RF - RF @ (RY)* @ (RY)* (s (3.5)).

Motivated by the previous discussions, see in particular (3.10), we study in this
chapter the following rough difference equation for an unknown path Z: [0, 7] — R*:

024 =0(Zs) X3+ 02(Zs) X2+ o(t — 5), 0<s<t<T, (3.18)

where we recall the increment notation 7, := Z; — Z, and the contraction rule (3.8),
and we stress that o(t — s) is uniform for 0 <s<t<T, see Remark 1.1. In analogy
with (2.3)-(2.4), a solution of (3.18) is a path Z: [0, 7] — R* such that

7B =670 — 0(Z) XY — 03(Z) X2 =o0(t — 5) . (3.19)

We stress that the rough difference equation (3.18) is a generalization of the
integral equation (3.3), as we show in the next result.

PROPOSITION 3.5. If X and o are of class C' and oy is locally Lipschitz (e.g. if o is
of class C*), then any solution Z to the integral equation ( 3.3) satisfies the difference
equation (3.18) for the canonical rough path X= (X' X?) in (3.9).

Proof. If X € C?, then X= (X!, X?) defined in (3.9) is an a-rough path over X for
11 . . ) . .

any o € ]5,5], as we showed in (3.11)-(3.12). Given a solution Z of (3.3), if o9 is

locally Lipschitz we derived the Taylor expansion (3.10), hence (3.18) holds. O

We now state local and global existence, uniqueness of solutions and continuity of
the solution map for the rough difference equation (3.18) under natural assumptions
on o and oy, summarizing the main results of this chapter. We refer to the next
sections for more precise and quantitative results.

To be completed.

PROPOSITION 3.6. Let 2o€ R%. We suppose that o and o3 are of class C and globally
Lipschitz, namely ||Vo||so + ||Vo2lleo <+00. Let D:=max {1, ||V | s, |Vo2|le} and
M > 0.

There exists Tyr,p.o >0 such that, for all T € (0, Ty p.o) and X= (X', X?)ERy 4
such that ||X|o+ ||X3||2a < M, there exists a solution Z to (5.19) on the interval
[0,T] such that Zy= zy and

1Zla < 15 M (|o(20)] + |o2(20)])- (3.20)

The proof of this Proposition, based on a discretization argument, is postponed
to section 3.9 below.
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We are going to use the Sewing Bound (1.26), its weighted version (1.41) and its
discrete formulation (1.45).

3.4. SET-UP

We recall that the weighted semi-norms |||, - are defined in (1.33)-(1.34). We are
going to use the various properties that we recalled in Section 2.2, see in particular
(2.5), (2.6) and (2.7)-(2.8), as well as the natural generalization

<G llanr 1 [l

3.21
<Gl 1 H 12, (3:21)

if Fsut:Gsu Hut then ||F||37777 {

In all these bounds, whenever there is a product, only one factor gets the weighted
semi-norm, while the other factor gets the ordinary semi-norm. We sometimes need
to introduce an additional weight, which is possible applying (2.9).

In Chapter 2 a key tool to study the Young difference equation (2.4) was the
estimate on the “difference of increments” in Lemma 2.8. This tool is still crucial in
this chapter, but we will need an additional ingredient that we now present.

LEMMA 3.7. (TAYLOR IDENTITY) Let 21,20 € R* and z € R?. Ifo: RF— RF® (RY)* is

of class C1, defining oo: RF— RF @ (RY)*® (RY)* by (3.5) and setting 0z12:= 2 — 21,
we have the identities

0(z9) —0(21) —0a(21) @ 1 (3.22)
= VO'(Zl)((SZm — 0'(2’1) x) + /O [(VO’(Zl -+ 7”5212> — VO'(Zl)) 5212] dT’,

and

0(22) —0(21) —02(z1)x = /01[(02(21 +70212) — 0a(21)) | dr (3.23)
+ /Ol[Va(zl +70212) (0212 — 0 (21) )] dr
- /0 Vo +r621) ( /0 (Vo214 v021s) 21] dv) ar.

Proof. The first formula is based on elementary manipulations and on the fact that

1
0(z9) —o(2z1) = / [Vo(z1+1rdz12) 6210 dr.
0
For the second formula, setting 0z := 0z for short, we similarly write

0(z) —o(z) = Al[VJ(zl +710z)0z]dr

= /O[Va(zl—i-rdz) (5Z—U(zl)x)]dr+/0 [Vo(z1+7r6z2)o(z)x]dr

~
A
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and then, recalling the definition (3.5) of oy,

A /0 (0221 +162) 2] dr — /0 (Vo2 +162) (0(z1+162) — o(z1)) 2] dr-

J/

B
Finally

1 T
B = / Vo (z+1d2) (/ Vo (z1+v0z) dz ] dv)dr
0 0
from which (3.23) follows easily. O

We will see below that (3.22) is useful for the comparison between two solutions,
as in the proofs of uniqueness (Theorem 3.10) and continuity of the solution map
(Theorem 3.11), while (3.23) is well suited for a priori estimates on a single solution
(Theorem 3.9) or on a discretization scheme (Lemma 3.13).

3.5. A PRIORI ESTIMATES

In this section we prove a priori estimates for solutions of the rough difference
equation (3.18) for globally Lipschitz o and o9, i.e. ||Vo || <00 and ||[Vog||e < 00.
A sufficient condition is that o, Vo, V2o are bounded, see (3.5), but it is interesting
that boundedness of o is not necessary (think of the case of linear o).

Given a solution Z of (3.18), we define the “remainders” Z& and ZP by
ZH =624 —o0(Z) XL~ 02(Z) X2, 20 =624 o(Z)XL,. (3.24)

Let us first show, by easy arguments, that any solution Z of (3.18) has the same
Holder regularity C* of the driving path X (in analogy with Lemmas 1.2 and 2.6),

and that the “level 2 remainder” Z2 is in C3°, that is | 22| < (t — s)2.

LEMMA 3.8. (HOLDER REGULARITY) Let o be of class C' and let Z be a solution
of (3.18). There is a constant C'=C(Z) < oo such that

2] 2
‘Zst‘gc‘XstJ"”O(t;S)’ 0<s<t«T. (3.25)
‘52815‘ <C (’Xst‘ + |Xst‘) + 0<t - S)’

In particular, if X=(X',X?) is an a-rough path, then Z2 € C3* and Z is of class C*.

Proof. If X= (X' X?) is an a-rough path, then by the first bound in (3.25) we have
1ZZ < (t—s)2+o(t — s) < (t — 5)2, that is Z12 € C3*. Similarly, the second bound
in (3.25) gives |0Zs| S(t— )+ (t —s)**+o(t —s) S (t — s)*, that is Z is of class C*.

It remains to prove (3.25). This follows by (3.18) with C':=supo<s<r {|0(Zs)| +
|02(Zs)|}, so we need to show that C' < oco. Since ¢ and o5 are continuous (because
o is of class C), it is enough to prove that Z is bounded: supo<;<r | Z¢] < 00.

Arguing as in the proof of Lemma 1.2, we fix § > 0 such that |o(t —s)| <1 for
all 0< s <t < T with |t — s < 4. Since [0,7] is a finite union of intervals [5,#] with
t —5<J, we may focus on one such interval: by (3.18) we can bound

sup | Zy| <|Zs| 4|0 (Zs)| sup |Xg|+ |oa(Zs)| sup [XZ|+1<oo.

te(s,t] te(s,i] te(s,i]
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This completes the proof that supg<i<r |2 < oc0. O

We next get to our main a priori estimates, showing in particular that the

“level 3 remainder” Z1 is in C3°, that is | 21| < |t — s[>, Let us first record a useful
computation: recalling (1.23) and (1.32), by 600 =0 and (3.13), we have

0Ty = 2 — 2o~ Ziy
= (0(Z,) = 0(Z,) — 02(Z,) X},) Xy + (02(Z0) — 02(Z)) X (3.26)
Baw

THEOREM 3.9. (ROUGH A PRIORI ESTIMATES) Let X be of class C* with o € |5, |
and let X= (X', X?) be an a-rough path over X. Let o and o be globally Lipschitz.
For any solution Z of ( 3.18), recalling the “remainders” ZB and Z? from (3.24),

we have ZB e C3%: more precisely, for any >0,
HZ[S]HBa,T < K?)a cév,X,o (||5Z Ha,T + HZ[Q]HQOc,T) ) (327)
where we recall that Kz, = (1—2'73*) "1 and we define the constant

Cax,0 =V oo [XMa+ [ VOrlloo IX2[l2a + (Vo 5+ I Voalleo) IXHE. (3.28)

Moreover, if either T or T is small enough, we have

16Z [lar + 12|20, < 2(0(Z0) [ XM|a + 02( Z0) [|X2|20) (3.29)
for (TAT)*<ehxo,
where we set
1
/ - _
X T Kya +8) (hsge T 1)

(3.30)

Proof. Let us prove (3.27). Since 3> 1 and Z = o(t — s), see (3.19), we can
apply the weighted Sewing Bound (1.41) which gives || 28|30 < K3a [|[02)]34.-. It
remains to estimate 6Z5% from (3.26): applying (3.21) we can write

10230 <N Bll2ar XM o+ 1602(2) a7 X720 - (3.31)
We now focus on By, from (3.26): by (3.23) we have

1 1
B,, = / [(02(Zs + 1 Z4) — 02(Z,)) XL,] du+ / Vo (Z+udZy) 22 du
0 0

—/OIVU(ZS +udZs) (AU[VO'(ZS + 00 Z54) 6 Zsy XL dv) du,
so that, by (2.8),
1Bll26,r < (IV2lloo + Vo 2) XMl 16Z [la,r + V0 lloo 127207 (3.32)
We can plug this estimate into (3.31), together with the elementary bound
1602(2)]|ar <[IVO2|oo [|6Z ]| 7 - (3.33)
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Recalling that || 25|54, < K34 [|621|34., we have proved (3.27)-(3.28).

We next prove (3.29), for which we need to estimate Z2 and §Z. Writing 22 =
02(Z) X2+ Z3 and setting e := (7 AT)* for short, we can bound by (2.6) and (2.7)

122 20r < 102(2) s 15|20+ € |2l 30,r

By (2.5) we have ||09(Z)||0o,r < 02(Z0) + 3¢ ||602(Z) || a,r and we can bound ||002(Z)||a.
by (3.33). Applying (3.27) and recalling (3.28), we then obtain

1220, < 02(Z0) [IX2]|20+€ (K30 +3) ch x0 (102 ]lar + 1 2] 20.,7)
1 ¢

< 02(20) X oo+ 7 (102 lar + 1 2P 207) (3.34)

&,X,O’
where we recall that €, x , is defined in (3.30).
Similarly, writing 6%, = 0(Z,) X% + Z2) we can bound, by (2.6) and (2.7),
162 [lar < Nl0(Z) oo, XM [l +€ 1251207,

and since ||0(Z)||oo,r < 0(Zo) + 3¢ ||00(Z)||a.r < 0(Zo) + 3¢ ||V |0Z]0,r We get,
recalling (3.28),

10Z )l < 0(Z0) XM la+3e o 10Z [la,r+€ 1 2P]|2a,r

1 ¢
< 0(Zo) IIXlllonjg, 16Z|ar+€ 127 20,7 - (3.35)

a, X, o

Finally, for ¢ <eg x , (hence e < %, see (3.28)), by (3.34) and (3.35) we obtain

1
10Z Jlar + 2P 120, < 0(Z0) 11X |+ 02(Z0) X220+ 5 (102 [ler + 1 2P l20.7) -

Since |07 ||a.r + || Z1]|2a.- < 00 by Lemma 3.8, we have proved (3.29). O

3.6. UNIQUENESS

In this section we prove uniqueness of solutions of (3.18) under the assumption that
o:RF— RF@ (RY)* is of class C7 with v >% (e.g. it suffices that o is of class C?).
This implies that oy from (3.5) is of class C* with locally (v — 2)-Hélder gradient
Voo, We stress that ¢ and o9 are not required to be bounded.

THEOREM 3.10. (UNIQUENESS) Let X be of class C* with o € E,%}, let X= (X1

X?) be an a-rough path over X, and let o be of class C7 with v >£ (e.g. if o is of

class C®). Then for every zo € R there exists at most one solution Z to (3.18) such
that Zo =Z20-

Proof. Let us fix two solutions Z, Z of (3.18) and define their difference

Y. =2-27.
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Our goal is to show that, for 7 >0 small, we have ||Y || » <2 |Yo|. In particular, if
Zo=Zy, then Yy =0 and therefore ||Y ||, =0, i.e. Z=Z, which completes the proof.
We know by (2.5) that

1Y oo, < [Yol + 37 [|0Y [[a,- - (3.36)

With some abuse of notation, we denote by Y;[tz] = Zg] — Zs[f] and Ys[tg} = ZS[‘:’] — ZSE]
the “differences of remainders”, recall (3.24), so that we can write

Yo = (0(Z) —0(Z)) Xb+ Y2, (3.37)
Y = (04(Z,) — 02(Z)) X5+ VI (3.38)

We are going to show that, for 7 > 0 small enough, the following bounds hold:

10Y la,r < et Y Nlooir + 7% 1Y Plza,r (3.39)
1Y P20 < c2 1Y [loc,r + 7072 [V Pa,r (3.40)
Y ¥lar < s Y flooir +c5 702V Bl 7, (3.41)

for suitable constants c;, ¢/ that may depend on 7, Z, X', X2, o, but not on 7.

We can easily complete the proof, assuming (3.39)-(3.41): if we fix 7> 0 small
enough so that 577" < %, by (3.41) we have ||[YB!||., . <2¢c3]|Y|lcor; plugging
this into (3.40) and taking 7 >0 small, we obtain ||Y?/||2, ; <2 ¢ [|Y ||co.r, Which
plugged into (3.39) yields ||0Y ||a,r <2¢1 ||Y ||co,r, for 7> 0 is small enough. Finally,
by (3.36) we obtain, for 7> 0 small, our goal [|Y||cc,r < 2|Yp).

It remains to prove (3.39)-(3.41). Recalling (2.18), let us define the constants

Ci:=Cv0zlviZlr CT =00 z1aviZlr C2i= ONos 2o 2]
Vio(z)— Vo >
opri=sup { ADTGW, o)y < 2 v 121

[Voa(z) — Voo(y)|

lz—y|7 2

: |w|,|y|<||Z||oov||Z||oo}.

(Note that ||Z]|se; || Z ||eo < 00 because Z, Z are continuous, see Lemma 3.8.)
We can prove (3.39) and (3.40) arguing as in the proof of Theorem 2.9, see (2.24)
and (2.25). Indeed, from (3.37) we can bound, by (2.6) and (2.7),

16Y o < 10(Z) = 0(Z) so.r X o+ 7 1Y Pl 20,7
< CLIY floorr XMoot 7 1Y P26 r (3.42)

because |0(Z;) — o (Z,)| < C1|Z, — Zy|, hence (3.39) holds with ¢; = C{ [|X!||,. Simi-
larly, by (3.38) we can bound

Y P20, < Nloa(2) = 02(Z)lloo,r [IXP 120+ 7072 [V E| 0 -
< G Nloor 13|20+ 702 Y Bl 7 (3.43)

because |02(Z;) — 02(Z;)| < C3 | Zy — Zy|, hence also (3.40) holds with ¢y = C3 || X?||24.
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We finally prove (3.41). Since Y, = ZB — ZB = o(t — ), see (3.19), we can bound
7B by its increment 625 through the weighted Sewing Bound (1.41):

Y har <Kya 18Y o, (3.44)
We are going to prove the following estimate:
16Y ¥l |ar < 311V llooyr + €5 10Y [lar + 5 1Y Pl2a,r (3.45)

for suitable constants ¢, ¢4, &§ that depend on Z, Z, X!, X2, o, but not on 7. Plugging
the estimates (3.39) and (3.40) (that we already proved) for [|0Y ||a.» and ||Y/[|24 -,
we obtain (3.41) for suitable (explicit) constants cs, 3.

Let us then prove (3.45). Recalling (3.26), for 0 <s<u <t <7 we can write

6}/;[32 = (Bsu - BSU) lext + (502(2) - 502<Z))su Xit )
where By, :=0(Z,) — 0(Zs) — 02(Z,) X!, and similarly for B,,, hence by (3.21)
16Y Bl ar <15 = Bllysyar X+ 1502(2) — 6022y yer e (3.46)

To obtain (3.45) we need to show that || B — B||(y—1)a,r and ||602(Z) — 609(Z) || (y-2)a,
can be bounded by linear combinations of ||Y ||ccr [[0Y [|a,r and 1Y ®|5,--
We start from ||009(Z) — 002(Z)||(y—2)a,r Which can be bounded as in (2.29):

1605(Z) = 005 Z)||(v-2)0,r < C3118Y [lar +C5 LNOZ N5+ 6Z 127 HY [loo,r-

We next focus on || B — B||(y-1)a,, which we are going to estimate by the following
o and [ Y|y,

explicit linear combination of ||Y ||ec.7, |

1B = Bll(-var < CIY lloc.r 12|20+ CT Y #]|20,-
CLNOY Jlar [16Z lla+2 CT" Y Nloo+ 192115 (3.47)
CT110Z o 1Y [lar

which completes the proof of (3.45) when plugged into (3.46).
It only remains to prove (3.47). Recalling (3.24), it follows by (3.22) that

Bey = 0(2,) —0(Z,) —0o(Z) X1,
1
= Vo(Z,) ZP+ / (Vo (Zy+16Z) — Vo (Z4)) 6 Zgydr,
0

—~
Fsy

and likewise for B,, (with F, defined similarly), therefore
|Byw— Bou| < |Vo(Z,) 22 =V a(2,) Z2| + / | Py 6 Zgu — Fiou 624, dr (3.48)

By the elementary estimate |ab—ab|=|ab—ab+ab—ab|<|a—al|b|+|al |b— b,
that we apply repeatedly, we can bound
Vo(Z,) Zid = Vo(Z,) Zi| < Vo(Z) = Vo(Z)|Z3|+|Va(Z,)| |2 - Z2)
< O"WHZ”HCHYJEH,
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and note that by (2.7) we obtain the first line in the RHS of (3.47).
To complete the proof of (3.47), we look at the second term in the RHS of (3.48):

‘Fsu (5Zsu - Fsu 5Zsu| Fsu - Fsu| ‘6Zsu| + |Fsu’ |5Zsu - 5Zsu|

|
|Fouw — Fou| |6 Zsu| +C1' 1 [0 Zgu| |6Yeu], (3.49)

<
<

because |Fy,| < C{'r|6Z,|. We then see, applying (2.8), that the last term in (3.49)
produces the third line in (3.47). Finally, by (2.19) we estimate

Fyu— Foa| = [(Vo(Zut10Z00) —Vo(Z) — (Vo (Zu+16Zs) — Vo (Zy))]
< CFr |8z + O {Ir 6Zou 172+ [rd Zeu =2} Y]

We obtain by (2.7) for 0<r <1
IF = Fllty-2)a,r SCYNOY oy +2C1[Y [lo e 1021272

Applying again (2.8), we finally see that the first term in (3.49) yields the second
line in (3.47), which completes the proof. O

3.7. CONTINUITY OF THE SOLUTION MAP

In this section we assume that ¢ has bounded first, second and third derivatives,
while o5 has bounded first and second derivatives:

IV lloo: V20 [loc, (V20 ]loo <00, [Voa]|oc, | V02|00 < 00 (3.50)

(We stress that no boundedness assumption is made on o and o03.) Under these
assumptions, given any time horizon T'> 0, any starting point Z, € R* and any o-
rough path X= (X', X?) with %< a< %, we have global existence and uniqueness of
solutions Z:[0,T] — R” to (3.18) (as we will prove in Theorem 3.12).

Denoting by R, 4 the space of d-dimensional a-rough paths X = (X! X?), that
we endow with the norm || X5+ [|X?||2o We can thus consider the solution map:

O: R X Rog — C°
(Z0,X) +— Zim { unique solution of (3.18) for t € [0,T] . (3.51)
05 T

starting from Z,

We prove the highly non-trivial result that this map is locally Lipschitz. In the space
C® of Holder functions we work with the weighted norm || f||so,r + |0 ||a,, which is
equivalent to the usual norm || f|lca:=|| f|lco + ||0f ||a, see Remark 1.15.

THEOREM 3.11. (CONTINUITY OF THE SOLUTION MAP) Let o and oy satisfy (3.50)

(with no boundedness assumption on the functions o and oy). Then, for any T >0

and o € E, %} , the solution map (Zo, X)+— Z in (3.51) is locally Lipschitz.
More explicitly, given any My, M, D < oo, if we assume that

max {[|Vo ||, [[VZ0 [loo, [| V20 |0, |V 02l ls0, [|V205]|oc} < D, (3.52)
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and we consider starting points Zy, Zo € R and rough paths X, X € C* with
max {|o0(Zo)| , |o2(Zo)], [0(Zo)], |02 Zo) |} < Mo, (3.53)
max {[|X o, [IXZ |20, [XMa, X220} < M, (3.54)
then the corresponding solutions Z = (Zs)sejo, 11, 7= (Zs)se[o,T] of (3.18) satisfy

1Z = Z oo, +16Z =02 |lar + 122 — ZPa+
<y [ Zo— Zo| +30 My (X! = X+ X2 — X2||20). (3.55)

provided T satisfies 0 <T AT < 7' for a suitable 7'=7, 1 p nym >0, where we set

=16 {([|Vo oo+ [Vorlloc) M +1} <32(D M +1).

Proof. It is convenient to define the constant

=Vt ||Voa|leo) M <2D M. (3.56)

Let Z and Z be two solutions of (3.18) with respective routh paths X and X.
Defining Y :=Z — Z and Y12 := ZB2l — 713 see (3.24), we rewrite our goal (3.55) as

1Y (oo, + [10Y [lasr + Y B l20,r < 16 (cis+ 1) |Yg|
+30 Mo (X! = XY|o+ [IX2 = X220) . (3.57)

Throughout the proof we use the shorthand
e:=(TNT)* (3.58)

and we write for € small enough to mean for all 0 <e <eq, for a suitable g depending
on o, T, My, M, D. We claim that the following estimates hold for §Y and Y2

18Y Nl < €hr 1Y Nloor +2 Mo X! = KMo + € [V Plaa,r (3.59)
1Y P27 < i 1Y lloo,r +2 Mo [IX? = X|20 + € [V P30, (3.60)
and, moreover, for e small enough the following estimate holds for Y1 := ZBl — ZBI.

. - 1
€ HY[S]”?M,T < ”YHOOJ' + MO (HXl - XlHa + HX2 - X2H2a) + H(SYHOM' + Z HY[Q}Ha,T'
(3.61)

It is now elementary (but tedious) to deduce our goal (3.57). Plugging (3.61)
into (3.60) we obtain ||Y/[|y , < (---) +% | Y Bl » which yields || Y ||ga.» < % (...)
(since ||Y)]|34 » < 00 by Lemma 3.8). Making (...) explicit, we get

1Y P|aq, 7 <2 (¢h+ 1) [V [loo,r+4 Mo (| X" = XM a4 [1X2 = X[ 20) +2[10Y [|a,r  (3.62)
which plugged into (3.59) yields, for e small enough (it suffices that e < i),
1Y [Ja,r < 3 (ehr + 1) [[Y [foo,r + 6 Mo (IX" = X'l + X — XP[|2q) , (3.63)
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and looking back at (3.62) we obtain
1Y # a0, <8 (car + 1) 1Y [loor +16 Mo (| X! = X o+ | X2 = XZ|2a), (3.64)
so that, overall,

1Y llr 18 N+ 1Y P < 12 (cht+ 1) Y s )
+22 Mo (]| X = X0 + |X2 = X?||20) . (3.65)

It only remains to make ||Y ||oo, explicit. Since ||Y ||, r < |Yo| 43¢ [|0Y ||a,- by (2.5),

: 1
for e small enough (more precisely for € < m) we can bound

(chs + D) Y loo,r < (e + 1) [ o) +% 16Y a7 (3.66)
which inserted into (3.63) yields
1Y Jlar <4 (chr+ 1) [¥0] +8 Mo (X" = X + X2 — X2 |2a).
Plugging this into (3.66), and then (3.66) into (3.65), we obtain our goal (3.57).

It remains to prove (3.59), (3.60) and (3.61). We first state some useful bounds
that will be used repeatedly. Recalling (3.52) and (3.28)-(3.30), let us define

- = L 1
T T DM e+ 3) (2 (D24 D) (M2 4 M) £ D)}/ (3.67)

By the a priori estimate (3.29) we can then bound
for e = (T AT)* < 7% 102 ||ar 4+ 1 22|20, < 4 Mo M, (3.68)
hence
max {[|00(Z)|a.r, [002(Z)|la.} Smax{[[Vo|loo, [Vorloc} 02 la,r <4 Mochs,  (3.69)
which implies that, by (2.5) and for e small enough,
0ax {[0(Z) oo s [02(Z)lloor} < Mo+ 324 Mochy <2 My
We record the following simple bound, for any Lipschitz function f,
1£(2) = FDlloerr IV Sl 1Z = Zlloesr = 19 Lo [V Il (3.70)
We will also use a number of times the elementary estimate, for a,b,a,b € R,
lab—ab|=|ab—ab+ab—ab|<|a||b—0b|+|b]|a—al. (3.71)
We can now prove (3.59). Since 6Ys=6Zs — 6Zy=0(Z) Xt —o(Z) XL + V.2,
see (3.24) for Z and Z, by (2.7) and (3.53)-(3.54) we get, applying (3.71),

16Y llar < Mo(D)lloor X! =X+ 0(2) = 0(2)lloc,r 1K o+ [V Pl
< 2M[IX = XM o+ 10(2) = 0(2) oo, M + € Y Pllaa,r

because ||V, <e|[|Y?|20. by (2.6) (recall the definition (3.58) of £). Applying
(3.70) with f =0 and recalling cj; from (3.56), we obtain (3.59).
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The proof of (3.60) is similar. Since Z' = Z1Z — 5,(Z,) X2, and similarly for Z],
see (3.24), we can write Y2 = Z121 — Z121 = 5,(Z,) X2, — 05(Z,) X4 + Y}, therefore

st

Y P loar < lloo(2)lloo.r X2 = X2{|2a+ [l02(2) = 02(Z) oo, v X |20+ 1Y 20 -
< 2Mo X2 = X2la +[|02(2) = 02(Z2) [l oo, M + € [V |30,

since [|[YP||20.r <& [|[YB)||50.- by (2.6). Applying (3.70) for f =0y we obtain (3.60).

We finally prove (3.61). Since Y,'=ZB — ZB — (1 — 5), see (3.19), the weighted
Sewing Bound (1.41) yields

||Y[3]||3OL,T<K306 ||5Y[3]||3a,7' ) (372)
hence we can focus on Y B =578 — §ZBl Let us recall (3.26): for 0<s<u<<t<T

578 = (0(Z,) — 0(Zy) — 0o(Z,) XL) XL + 609( 2 )u X2 ,

sut

Baw
and analogously for §Z8 and B,,, therefore by (3.71) and (3.21) we obtain

16Y Psar < [1Bllzer X" =X la+ 1B = Bllzar 1K lar i
H602(Z) |7 [1X? = X220+ [1602(Z) = 605(Z) [la7 [ X¥|20 - (3.73)

It remains to estimate the four terms in the RHS: in view of (3.72), relation (3.61)
is proved if we show that, for e small enough,

€ Ko 1B a7 15 = X0 < My [ =X, (374
e Ko 1B~ Bllanr 1K e < (1Y lerr + 0¥ flor) 4 1Y P, (3:75)

e Ko 0022 e 152 = K2 < My X2~ K (3.76)

e Ko [09:(2) ~ 6o Z) o K20 < 5 (1Y o+ Y ) (377

We first deal with (3.76) and (3.77), then we focus on (3.74) and (3.75).
Proving (3.76) is very simple: since ||002(Z)||a,r <4 Mo cjs by (3.69), we see that
(3.76) holds for e small enough. To prove (3.77), note that by (2.51) we have

160(Z) = 60(Z)lv-1ya.r < VOl [18Y [la,r +4 Mo M [o]er=1 [ [oo,r
Applying (3.54) and (3.68) we obtain
1002(Z) = b02(Z)l|ar X220 < IV Oslloo M [6Y [lar + €7 |V 202|008 Mo M [|Y [,

which shows that (3.77) holds for e small enough.
Let us now prove (3.74). By (3.22) we have, for 0<s<t<T),

1
Bst = VO'(ZS) Zs[?] + / [(VU(ZS +r (SZSt) - VO'(ZS)) 6Z5t] dr (378)
T/ 0 )

Fst
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and similarly for E,; and F;. In particular, recalling (3.68), we get

1Bll2a,r < V0 lloo 12207 + IV [l [16Z 2.+
< [ Volleod Mo M +[|V20 || (4 Mo M)?,

hence we see that (3.74) holds for e small enough.
We finally prove (3.75), which is a bit tedious. In view of (3.78), we first consider

By~ By=(Vo(Z)—Vo(Z.)) 28+ Vo(Z) (25 - Z1).

Applying (2.9) with H = 7 and 7 from (3.67), we obtain

_ _ T
|E = Ell20,- <[[V(Z) = Vo (Z2)llsor ™ 12|20,z + [V [loo Y P|20,+

By (3.70) with f=Vo and the a priori estimate (3.68) we obtain

_ T
IE = Ell2a,r <[V20 oo Y [loo,r €7 4 Mo M +[[V0 |0 Y20, - (3.79)
We then consider Fy; — Fy;. By (2.19), for 0 <7 <1 we can estimate

(Vo (Zs+16Z4) —Va(Z,)) — (Vo (Zs+102y) — Vo(Z,))| 1024
< IV20 oo [0Yet] [0Zst] + [1V70[|oo maxe {(1—u) [Yo] +u [Yil} [6Za]?,

as well as
(Vo (Z,+162y) — Vo (Z)| |6Zss — 0 Zs| < || V30 || o [0 Zst| [6Yai] -

We can then estimate Fy; — F; from (3.78) as in (3.71): applying (2.9) twice with
H=6Z and H=(6Z)? always with 7 from (3.67), and recalling (3.68), we obtain

_ T T
IF = Fllaa,; < 2V oo 10Y [la,r €7 [10Z lasr + [IV?0 [loo [[Y |, 7 10Z]]2 2
T
< e {8MoM V0 |l 10Y [a,rt+(4 Mo M)? V0 [[oo [[Y |loo,r - (3.80)

Since ||B = Bll2a.r < ||E — E |20 + [|F — F||2a,- in view of (3.78), we see by (3.79)
and (3.80) that (3.75) holds for e small enough. The proof is complete. O

3.8. GLOBAL EXISTENCE AND UNIQUENESS
Let us suppose that o: RF— RF® (R?)* is of class C® with ||V || + || Vs e < +00.

THEOREM 3.12. Let a > % If o: RF - RF @ (RY)* is of class C? with |Vo | +
V|| < +00 then for every 20 € R* and T >0 there is a unique solution (Zy)iejo,y
to (3.19) such that Zy= z.

Proof. By Theorem 3.10 we have at most one solution. We now construct a solution
on an arbitrary finite interval [0, 7], arguing as in the proof of Theorem 2.15. We
define A C [0, 7] as the set of all s such that there is a solution (Z;)¢c,¢ to (3.19).
By Proposition 3.6, A is an open subset of [0,7] and contains 0. By the a priori
estimates of Theorem 3.9, A is a closed subset of [0, T]. Therefore A =0, T]. O



3.9 MILSTEIN SCHEME AND LOCAL EXISTENCE 59

3.9. MILSTEIN SCHEME AND LOCAL EXISTENCE

In this section we prove the local existence result of Proposition 3.6, under the
assumption that o, oy are of class C'*' and uniformly Lipschitz. To construct a solu-
tion to (3.10), we set t;:=—, i >0, and for a given y, € R

Ytiv1 = Yt + U(yn') X%iti-u + UQ(yti> X%itH-N i = 0.
We set D:=max {1, [|V0 |, ||Voa|leo}, T:={t;:t;<T} and

6ytitj = ytj — Yty

IoylIE = sup V=¥l
o<i<j<nt |tj —til

Atitj = J(yh) X%itj + OQ(yti) X%itj‘
The main technical estimate is the following
LEMMA 3.13. Let M >0. There exists Ty p.o >0 such that, for all T € (0,7 p o)
and X = (X!, X?) € Ry q such that ||X|o+ [|X3||2a < M, we have

loylla < 5M(Jo(yo)| + lo2(vo)]),
10y = Allsa Sarp.a (Io(y0)| + loa(yo)]).

Proof. Let us set Ry, := 0ys,e; — Asit;-

apply the discrete Sewing bound (Theorem 1.18) to R on T := {% 1< nT} and we
obtain

By the definitions, R, ,=0. Then we can

1
IRIE < Caall6R|E,  Caa=2 —

n3a'
n>1
Now, analogously to (3.26), since dR = —0JA,
6Rtitjtk = _(U(ytj) - O(Qti) - UZ(yti) X%itj)x%jtk - (UQ(yti) - UQ(ytj)) X%jtm
E:’j B{J
so that
[0R |30 < M (|| B|3a + 1C15)-

We set

Htitj = 5ytitj - U(yti) X%itja
and by (3.23) we obtain
Bi, =0 (yr,) — o(ys,) — 02(y1) X%it]- =
1

1
:/ (02(Ys, + udYrt;) — 02(y1,)) X%itjdu +/ Vo (ys, +udys,,) duHyy,
0 0

J/

-~

=

1
_/ Va(ytz' + UCSytitj) (O-(yti + U5ytitj) - U(yti))x%itjdu'
0

J/

~
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First

IE]2a < [IVoalleclldylla X lo < DM |0y |la-
Similarly

1G13a < IVolZlioylla 1XHlo < D2M|dy [la-

By the definition of Ry,

|Hyy,| < |Reg, +|U2(yti)X%¢tj

< [TR]3a + (loa(yo)| + TV ool [0y [[a)11X3 [ 20] 15 — £ >

< (T||R|3a+ M |oa(yo)| +T*D M |0yl &) [t; — ti**.
Therefore

|F|3a < D|H| 2%

< D(T*||R|[3a+ M|o2(yo)| +T*D M ||y ]|a)-
Finally
IBll3a < [|El3a+ IIF]%+ 1G5
< D[Mloo(yo)l + T R[|36 + DM(2+T%)||oylla] -
Analogously
1C|32 < D|dy]la-

Therefore

1R]|30 < Csa DM (M |oa(yo)| + T Rll30 + [1 + DM (2+T)]0ylla).
If T°C34 DM < 5 then
1R ]130 < 2C30 DM (M|o2(yo)| + [1+ DM (2+T¢)][|6y][a). (3.81)
We set
L(y) = 2C3a DM(M oa(yo)| + [1+ DM (2+T*)]|ldylla)
Now we obtain by (3.81)

loylla < IIRlla+1Alla
< T*L(y) + (lo (o)l + loa(yo)| + 2D T||dy | a) M.

If we assume also that 2D MT* < %, we obtain

16y]la <272 L(y) +2M (o (yo)| + lo2(y0))-

By the definition of L(y), if furthermore 2C5,DM[1+ DM 2+ T)] T?* < %, we
obtain finally

loy lla

L(y)

S5M(|o(yo)| + |oa(yo)|) ,

<
< 1203QDM2[1 +DM(2+TQ>](‘U<y0)‘ + ’Ug(y())‘) :ZK,
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and by (3.81)
1y — Allsa < K.
The proof is complete. O

Proof of Proposition 3.6. Arguing as in Theorem 2.16 we obtain the result of
local existence for equation (3.19) of Proposition 3.6. O






CHAPTER 4
STOCHASTIC DIFFERENTIAL EQUATIONS

In this chapter we connect the rough difference equations (RDE) discussed in the pre-
vious chapter, see (3.18), with the classical stochastic differential equations (SDE)
dY;=o(Y;) dB; driven by a Brownian motion B. Indeed, both RDE and SDE are
ways to make sense of the ill-posed differential equation Y, = oY) B,.

We fix a time horizon 7> 0 and two dimensions k,d € N. Let B = (By)cjo,1) be
a d-dimensional Brownian motion (with continuous paths) relative to a filtration
(Fi)tejo,r), defined on a probability space (£, .A,P). We fix a sufficiently regular
function o: RF — R* ® (R%)* and we consider a solution Y = (Y})ie[o,7) of the SDE

¢
dYi=0(Y;)dB;, ie. Yt:YO—i—/ o(Y;)dBs, t>0, (4.1)
0

where the stochastic integral is in the Ito sense. We always fix a version of Y with
continuous paths (we recall that the Ito integral is a continuous local martingale).

We want to show that Y solves a rough difference equation driven by the rough
path B= (B!, B?) (see Definition 3.2) defined by

Bl := B, — B,, th::/t(BT—Bs)Q@dBT, 0<s<t<T, (4.2)

where the stochastic integral is in the Ito sense. More explicitly, for ¢, j € {1,...,d}

By =Bi- B, B)= [ (Bi-B)aB. (43)

where we write B;= (B},..., BY), so that B%: [0, 7]%2 —R%and B% [0, 7T]2 — R?® R~
Our first main result is that (B!, B?) is indeed a rough path over B.

THEOREM 4.1. (ITO ROUGH PATH) Almost surely, B:= (B!, B?) is an a-rough path
over B (see Definition 3.2) for any a € }%, é[

Our second main result is that, under suitable assumptions, the solution Y of
the SDE (4.1) solves the RDE (3.18) driven by the Ito rough path X =1B.

THEOREM 4.2. (SDE & RDE) If o(-) is of class C?, then almost surely a solution
Y = (Yy)ie,n) of the SDE (4.1) is also a solution of the RDE

§Ys =0 (Ye) Bl + 0o(Y,) B% + o(t — 5), 0<s<t<T. (4.4)

(We recall that o5(-) ==V o(-)o(-) is defined in (3.5).)
If o(-) is of class C® and, furthermore, o(-) and oo(-) are globally Lipschitz, i.e.
IV ||oo+ [|[Voaleo < 00, then almost surely both the SDE (4.1) and the RDE (4.4)

admit a unique solution Y = (Y;)icjo,m) and these solutions coincide.

63
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The key tool we exploit in this chapter is a local expansion of stochastic integrals,
see Theorem 4.3 in the next Section 4.1. The proofs of Theorems 4.1 and 4.2 are
direct consequences of this result, see Section 4.2.

In Sections 4.3 and 4.4 we discuss useful generalizations of the SDE (4.1), where
we add a drift and we allow for stochastic integration in the Stratonovich sense,
which leads to generalized versions of Theorems 4.1 and 4.2.

In Section 4.5 we present the celebrated result by Wong-Zakai on the limit of
solutions of the SDE (4.1) with a regularized Brownian motion (via convolution).

Finally, Section 4.6 is devoted to a far-reaching generalization of Kolmogorov’s
continuity criterion, which leads to the proof of Theorem 4.3 in Section 4.7.

NOTATION. Throughout this chapter we write fo < gst to mean that fs < Cgs for
all 0 <s<t<T, where C' <00 is a suitable random constant.

4.1. LOCAL EXPANSION OF STOCHASTIC INTEGRALS

We recall that B = (B;):c(o,1) is a d-dimensional Brownian motion. Let h = (h¢):epo,1]
be a stochastic process with values in R¥ @ (R%)*. We assume that h is adapted and
has continuous paths, in particular [ OT |hs|?ds < oo, hence the Ito integral

t
I:=1I,+ / h,dB, (4.5)
0

is well-defined as a local martingale. It is a classical result that the stochastic process
I = (I})¢ecjo,m admits a version with continuous paths, which we always fix.

We now state the main technical result of this chapter, proved in Section 4.7
below, which connects the regularity of A to the regularity of I.

THEOREM 4.3. (LOCAL EXPANSION OF STOCHASTIC INTEGRALS) Let h= (ht)te[o,T]
be adapted with continuous paths. Fix any o € ]0, %[ and recall (B, B?) from (4.2).
1. Almost surely I is of class C?, i.e.
|1, — I| < (t—s)?, VO<s<t<T. (4.6)
(We recall that the implicit constant in the relation < is random.)

2. Assume that, almost surely, |6hg.| < (r—s)P for some 3€]0,1] (i.e. h is of
class CP). Then, almost surely,

t
/ Ohg dB,

3. Assume that, almost surely, |0hg, — he BL.| < (r — )7 for some v €]0,1],
where h = (h¢)iepo,r) is an adapted process of class C7. Then, almost surely,

|01 — hs BY| = S(t—s)** P, VO<s<t<T. (4.7)

~ t ~
|5Ist - hs IB;t - hs Bgt = / (5h87“ - hS IB;T) dB?“

< (E—s)2t, VO<s<t<T. (4.8)
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4.2. BROWNIAN ROUGH PATH AND SDE

In this section we exploit Theorem 4.3 to prove Theorems 4.1 and 4.2.

Proof. (OF THEOREM 4.1) We need to verify that B= (B!, B?) satisfies the Chen
relation (3.13) and the analytic bounds (3.14).

The Chen relation §BZ,, = B!, ® By, for 0 < s <u<t<T holds by (4.3):

0(B)gy = (B — (B

3 -3
t u t
~ [Bi-myas- [ Bi-Byas- [ (5~ Biab;

- [ (Bi= By~ (Bi= BY) [ 148!~ (Bi- B)(B{ - B,

by the properties of the It6 integral and the fact that the times s <wu <t are ordered.

The first analytic bound |By| < |t — s|* for a € 0, %[ is a well-known almost sure
property of Brownian motion, which also follows from Theorem 4.3, applying (4.6)
with h=1. Finally, the second analytic bound |B%| < |t — s]** is also a consequence
of Theorem 4.3: it suffices to apply (4.7) with hs:= Bs and =« O
Proof. (THEOREM 4.2) We first prove the second part of the statement.

e When o is globally Lipschitz (||Vo |l < +00), it is a classical result that for
the SDE (4.1) there is existence of strong solutions and pathwise uniqueness.

e When o is of class C?, by Theorem 3.10 there is uniqueness of solutions for
the RDE (3.19), and if both ¢ and o9 are globally Lipschitz (||Vo||oo <400
and ||Vos|le < 400) there is also existence of solutions, by Theorem 3.12.

Therefore we only need to prove the first part of the statement: we assume that o is
of class C? and we show that given a solution Y = (Y;).e[0,77 of the SDE (4.1), almost
surely Y is also a solution to the RDE (4.4).

Since Y is solution to (4.1), recalling (4.2) we can write

8o — (Vo) Bl — ou(Ys) B = / (0(Y,) = 0(¥:)) dB, — 05(Y2) / (B.— B.)dB,

t
_ / (60(Y)or — 0a(Y2) BL,) dB,
Let us fix a € }O, %[ We prove below that, almost surely,
160 (Y )t — 02(Ya) Bl < (¢ —5)%, VO<s<t<T. (4.9)

This means that the assumptions of part 3 of Theorem 4.3 are satisfied by h, =0c(Y})
and h, = 0(Y,) with v=a: applying (4.8) we then obtain, almost surely,

|6Yo: — o (Ya) B, — 09(Y2) B2 < (t — s)*~.

If we fix o> %, this shows that Y is indeed a solution of the RDE (4.4).
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It remains to prove (4.9). By Itd’s formula and (4.1) we have, for 0 < s <t < T,

o) = U(Y5)+/ Z 0,0 (Y;) dY}“+§ Z O (V) (Y, Y?),

t t
= o)+ [ ) aB,+ [0 (4.10)
therefore

6o (Y )st — 0a(Y5) ]Bst—/t(ag(Yr) —09(Y;)) dBr+/tp(Yr) dr.

To prove (4.9), we show that both integrals in the RHS are O((t — s)%).

e Since o is of class C? and Y has continuous paths, the random function
r+— p(Y;) is continuous, hence bounded for r € [0, T, therefore

/S tp(Yr) dr

e Almost surely Y is of class C% thanks to (4.6) from Theorem 4.3 and (4.1).
Since o3 is of class C, hence locally Lipschitz, 1+ o5(Y;) is of class C* too.
Applying (4.7) from Theorem 4.3 we then obtain, almost surely,

S(t—s)S(t—s)*, VO<s<t<T.

S (t—s), VO<s<t<T.

/t(Uz(Y}) —09(Y;)) dB,

This completes the proof. [

4.3. SDE WITH A DRIFT
It is natural to consider the SDE (4.1) with a non-zero drift term:

Y= Yo+ /b ds+/ o(Y)dB,  t>0, (4.11)

where b: R¥— R* and o: RF — R* ® (RY)* are given and we recall that B = (B;);>0
is a d-dimensional Brownian motion. We can generalize Theorem 4.2 as follows.

THEOREM 4.4. (SDE & RDE WITH DRIFT) If o(-) is of class C* and b(-) is
continuous, then almost surely a solution Y = (Y})icjo,m of the SDE (4.11) is also a
solution of the RDE

Y =0b(Y,) (t — 5) + o (Ys) B+ 0o(Y.) B4 + ot — s), 0<s<t<T. (4.12)
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If o(+) and b(-) are of class C® and, furthermore, o(-), oa(-) and b(-) are globally
Lipschitz, i.e. ||[Vo oo+ [|[VOa|loo + || V| o < 00, almost surely the SDE (4.11) and
the RDE (4.12) have a unique solution Y = (Y;)icjo,r) and these solutions coincide.

Proof. We cast the generalized SDE (4.11) in the “usual framework” by adding a
component to the driving noise B, i.e. we define B:[0,T] — R x R by

B,:=(By,t)=(B},...,BLt), tel0,T],
and accordingly we define 5: R* — RF @ (R4*+1)* by
G()b:=0()b+b(-)t  for b=(bt)eR*xR,
that is 6(-)i=0(-)! Lyj<ay + b(-)" Ij=a+1}. We can then rewrite the SDE (4.11) as

t
Y,=6(Y)dB: e Yt:YO+/ 5(Y)dB,,  t>0. (4.13)
0
We next extend the Ito rough path B= (B! B?) from (4.2), defining
~ ~ ~ IBl
1 . _ — st
BL = B,— B, (t_s), (4.14)
¢
C B [ - Byar
Bgt = /(BT_ 5)®dBr: 5 (4 15)

One can show that B= (Iél, IEQ) 1S a rough path over B, following closely the proof
of Theorem 4.1. Indeed, if we fix o € ]0, %[, we have almost surely B € C*, hence

/:(BT — By)dr /St(r —s)dB,

We can now write the RDE which generalizes (4.4):

St -5, S (t—s)™+, (4.16)

Y =5 (Y;) B+ 62(Y:) BL +o(t — s). (4.17)

Interestingly, plugging the definitions of B and & into (4.17) we do not obtain (4.12),
because the components of B2, other than IBZ are missing in (4.12), see (4.15). The
point is that these components can be absorbed in the reminder o(t — s), see (4.16),
hence the RDE (/.17) and (4.12) are fully equivalent.

To complete the proof, we are left with comparing the SDE (4.13) with the
RDE (4.17). This can be done following the very same arguments as in the proof of
Theorem 4.2. The details are left to the reader. U

Remark 4.5. The strategy of adding the drift term as an additional component of
the driving noise, as in the proof of Theorem 4.4, suffers from a technical limitation,
namely we are forced to use the same reqularity exponent o for all components due
to Definition 3.2 of rough paths. This prevents us from exploiting the additional
regularity of the drift term: for instance, in the second part of Theorem 4.4, the
assumption that b(-) is of class C® could be removed, because the “driving noise” ¢
is smooth and the classical theory of ordinary differential equations applies.
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A natural solution would be to generalize Definition 3.2, allowing rough paths
to have a different regularity exponent for each component. The key results can be
generalized to this setting, but for simplicity we refrain from pursuing this path.

4.4. ITO VERSUS STRATONOVICH

We recall that B = (By)ic[o,7] is @ Brownian motion in R?. Given the Itd rough path
B = (B!, B?) over B constructed in Theorem 4.2, see (4.2), we can define a new
rough path B = (B!, B?) over B, called the Stratonovich rough path, given by

Bl :=Bl, B2 := IB§t+ ® Tdpa, VO<s<t<T,

that is (B%)" := (B%)" + t;‘s lgi—jy for i, 5 €{1,...,d}. The fact that B is indeed
an a-rough path over B, for any o € ]%, %[, is a direct consequence of Theorem 4.1
(note that B2 =B2 + 6f,; with f,= % Idga, hence 0B2 = 6IB? because §%=0).

Remark 4.6. (STRATONOVICH INTEGRAL) If X,Y:[0,7] — R are continuous
semimartingales, the Stratonovich integral of X with respecto to Y is defined by

N}

t t
/XsodY;::/Xsdﬁg+l<X,Y>t, teo,T), (4.18)
0 0

where | g X,dY; is the Ito integral and (-, ) is the quadratic covariation. For Brownian
motion B on R? we have (B, BY); =t 1}, hence it is easy to check by (4.2) that

St-_/lB ®odB,,  0<s<t<T. (4.19)

This explains why we call B = (B!, B?) the Stratonovich rough path.

Let us consider now the Stratonovich version of the SDE (4.11):

dY,=b(Yy) dt+o(V;) odB, i
t t

VieYor [ ds+ [o(¥)edn, e (4.20)
0 0

where b: R¥— R¥ and o: R¥ — R* ® (R?)* are given. This equation can be recast in
the It6 form by the conversion rule (4.18): since the martingale part of (o(Y;))¢>o is
fo 05(Y;)dBy) >0 by the Ito formula, see (4.10), we obtain

t t
Y22Y0+/ (b(Y;) +%Ter[02(Y;)]> ds+/ o(Y;) dBs, t>0.
0 0

This is precisely the SDE (4.11) with a different drift b(-):=b(-) +%TI']Rd[O'2(')].
As an immediate corollary of Theorem 4.4, we obtain the following result.
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THEOREM 4.7. (STRATONOVICH SDE & RDE) fo(:) is of class C? and b(-) is
continuous, then almost surely a solution Y = (Yy)icpo,1 of the Stratonovich SDE
(4.20) is also a solution of the following RDE, for 0<s<t<T:

6V = b(Y:) (t—s)+o(Y) B+ 0o(Y,) BE +o(t — s) (4.21)
= (b(Y;) + % Ter[ag(Ys)]) (t—3s) +0o(Ys) Bl +oa(Y) BE +o(t — s).

If o(+), oa(+), b(-) are of class C* and, furthermore, o(-), oa(-), b(-) are globally
Lipschitz, i.e. |V | oo+ [|[Voaleo + || VD]l < 00, almost surely the SDE (4.20) and
the RDE (4.21) have a unique solution Y = (Y;)epo, 1] and these solutions coincide.

In conclusion, if the coefficients b(-) and o(-) are sufficiently regular, the Ito
equation (4.11) can be reintepreted as the RDE

Yu=b(Y,) (t —s) +0(Y) B+ 0o(Ys) BL +o(t —s), 0<s<t<T,
while the Stratonovich equation (4.20) can be reintepreted as the RDE
Yo =0b(Y,) (t — s) + o (Ys) B+ 0o(Y,) BE + ot — s), 0<s<t<T.

In other words, rough paths allow to describe the It6 and the Stratonovich SDEs as
the same equation where only the second level of the rough path has been changed.
This shows that, in a sense, the relevant noise for a SDE is not only the Brownian
path (B;)¢>0, but rather the rough path B or B.

4.5. WONG-ZAKAI

In this section we want to show the following application of the previous results. We
consider a family (p.).~¢ of (even, compactly supported) mollifiers on R, namely p:
R — [0, 00) is smooth and even, has compact support, satisfies [, p(v)dr =1 and
we set

pg(x)::lp<§), e>0,zeR.
We consider a d-dimensional two-sided Brownian motion (B;);cr, namely a Gaussian
centered process with values in R? such that
By=0,  E[B!{B{]=1i=j Lisezo) (Is| Alt]),

which is equivalent to say that (By);>0 and (B_;):>0 are two independent d-dimen-
sional Brownian motions.

We consider the following problem: we define the regularization of (B);>o defined
by

Bf::(pE*B)t:/pg(t—s)Bsds, t>0.
R
We want now to consider the integral equation (3.3) controlled by B®, namely

t
Z§:ZO+/U(Z§) Beds, O0<t<T. (4.22)
0



