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the sake of simplicity, we consider a 2-dimensional risk-neutral correlated Black—
choles model for two risky assets X' and X under its unique risk neutral probability
(but a general d-dimensional model can be defined likewise):

X0 = rxPdr, X0 =1,

(2.2)

[=T¥]

]

Eﬂxl = X} (rdt +01dW)), X} = x}, dX? = X2(rdt + 02dW?), X2 = x
.

i‘-'. 5. . . T e i P
- with the usual notations (» interest rate, o; > 0 volatility of X*). In particular, W =
;?,I.I(Wl, Wz) denotes a correlated bi-dimensional Brownian motion such that

(W W2, =pt, pe[-1,1].

This implies that W2 can be decomposed as WE=pW!+/1=p2 W2, where
(W1, W?) is a standard 2-dimensional Brownian motion. The filtration (F)teto,r) of
this market is the augmented filtration of W,ie F = }',W =o(Ws, 0<s<t, Np)
where Mp denotes the family of P-negligible sets of A (5). By “filtration of the mar-
ket”, we mean that (F)reqo,ry is the smallest filtration satisfying the usual conditions
to which the process (X, );¢fo,r is adapted. By “risk-neutral”, we mean that e "' X, is
a (IP’, (F7):)-martingale. We will not go further into financial modeling at this stage,
for which we refer e.g. to [185] or [163], but focus instead on numerical aspects.
For every te [0, T, we have

2
. . _.ﬂ- i .
X)=e", X!=xiet~PrtaW ;_1 9

(One easily verifies using It6’s Lemma, see Sect. 12.8, that X, thus defined satis-
fies (2.2); formally finding the solution by applying Itd’s Lemma to log X, fi=1,2,
assuming a priori that the solutions of (2.2) are positive),

When r = 0, X is called a geometric Brownian motion associated to W with
volatility o; > 0. _

A European vanilla option with maturity T > O s an option related to a European
payoff

J h, =hn(X,)

which only depends on X at time T. In such a complete market the option premium
it time O is given by

Vo =eTEh(X,) [T

One shows that, owing to the 0-1 Kolmogorov law, this filtration is right continuous, i.e. F; = (6

>t Fs. A right continuous filtration which contains the P-negligible sets satisfies the so-called
usual conditions”.
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34
at any time t € [0, T1,
v, = e TVE (X)) F).

crements implies that X 1 and X

and more generally,

W has independent stationary in

The fact that
ary 1atios, ie.

have independent station

X; (X .
~L L is independent of Fi.
X X '
t/ =12 0 /i=12

As a consequence, if We define forevery T > 0, xo = (%¢» x e ©, 4-00)?,

. o0, T) = e TERCE),

ot

then
v, = e TVE (h(X:)| F)

- (X
— ¢ TTNE (h (X; x (ﬁ) ) \Jﬂ)
£/ =12
X
T {Eh ((x’ "T‘FL) )AX by independence
X0 [ =12/ dpi=xl,i=12

= v(Xr, T - t)

> Examples. 1. Vanilla call with strike price K:
h(x', x%) = (' - K),.
rm for such a call option — the celebrated Black-Scholé

There is a closed fo
ck (without dividend) — given by

formula for option on sto

e Cal?S = Clxg, Ko 7,01, T) = %0®oldn) = cfrood) @
£ 2 .
. log(xo/K) + (r + HT 4

withd; = _______-—————-*—""2"—', dy=dy— 0 JT, 24

1 T , =di — 01 ['.

where ®¢ denotes the c.d.f. of the N(©; 1)-distribution.

2. Best-of-call with strike price K:
h, = (max(X}, X7) — K),-
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1asi-closed form is available involvip
elated) no;

n,

the regular Monte Carlo procedure on the example of a
On an organized market, unlike jts cousin the Exchange

variables, or, equivalently, as
om variables. In our case, we write it as a function of
»L.e. abi-variate standard normal distribution (VAN A %,
~ namely

/'
< e"'ﬁz, £z, 7% ‘

2 2 2
= (max (xol exp(—%T+a'1ﬁZl>, %7 exp(—gleﬂrzﬁ(leﬂ/l - pzzz)))—Ke‘”)
+

: where Z = (Z', z2) £ ps, (0; 1) (the dependence of @inxi, etc, is dropped). Then,

- simulating a M/ -sample (Z,,,)ls,,,S m of the A(0; 1) distribution using e.g. the Box—
~ Muller method yields the estimate

Best-of-Call, = e"/IE((max(X;, X2~ K)+) /%
=Ep(Z!, 7%

)
¥

1 M
ZW:MEWM.

One computes an estimate for the variance using the same sample

k7 _IM 2_M—2~
Vu(@) = 23" o(Za) W —TPm = Var(p(2))

m=]

since M is large enough. Then one designs a confidence interval for I W(Z) at level
a€ (0, 1) by setting
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1. Application to the computation of the 7y (i.e. @"(x)). Show that, if ¢ is differentiable
with a derivative having polynomial growth,

1

®"(x) =
) x20T

E((¢/(XDXE = oK) Wr)

and that, if ¢ is continuous with compact support,

i . 1 X Wf 1
CD(JC) ZmE (,D(XT) —(;_YT—WT—ZT_ .

Extend this identity to the case where ¢ is simply Borel with polynomial growth.
Note that a (somewhat simpler) formula also exists when the function ¢ is itself
twice differentiable, but such a smoothness assumption is not realistic, at least for
financial applications. E
2. Variance reduction for the 6 (7). The above formulas are clearly not the uniqu :
representations of the § as an expectation: using that EW,=0and EX] = xei (
one derives immediately that i

7

, X*
®'(x) = cp’(xe’.{)erf +E ((QDI(X:) = w'(xerf)) ';T'>
as soon as ¢ is differentiable at xe” ' When ¢ is simply Borel

1
! T Xy r
@) = —=B((p00) e D)W, ).

3. Variance reduction for the ~y. Show that

T T ew= SE((P o x; - XD — el e + e P W)

4. Testing the variance reduction, if any. Although the former two exercises are entis
tled “variance reduction” the above formulas do not guarantee a variance reduction at
a fixed time T'. It seems intuitive that they do only when the maturity T is small
form some numerical experiments to test whether or not the above formulas induct
some variance reduction.

As the maturity increases, test whether or not the regression method introd v-;::
in Sect. 3.2 works with these “control variates”. i

5. Computation of the vega ( 8). Show likewise that Ep(X7) is differentiable
respect to the volatility parameter o under the same assumptions on ¢, namely

7In this exercise we slightly anticipate the next chapter, which is entirely devoted to va
reduction.

8Which is not a greek letter...
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3 X / X X
2o B = E(o/(xnxx(w, - oT))

ferentiable with a derivative having polynomial growth. Derive without any
ymputations - but with the help of the previous exercises — that

o " x (W2 1
%‘EMX,) =E (QD(XT) (;7 - W, ~ ;))

1ply Borel with polynomial growth. [Hint: use the former exercises.]
srivative is known (up to an appropriate discounting) as the vega of the

ated to the payoff ©(X7). Note that the vy and the vega of a Call satisfy
ounting by ¢~'1) T

1

vega(x, K,r,0,T) = x2aT'y(x, K,r,o,T), g
»

1e key of the tracking error formula.

the beginning of this section can be seen as an introduction to the so-called

xcess method (see Sect.2.2.4 at the end of this chapter and Sect. 10.2.2).

irect Diffferentiation on the State Space: The
sg-Likelihood Method

formulas established in the former section for the Black~Scholes model
ined by working directly on the state space (0, +00), taking advantage of
X7 has asmooth and explicit probability density p, (x, y) with respect to
le measure on (0, 4+00), which is known explicitly since it is a log-normal

bability density also depends on the other parameters of the model like
¥, 0, the interest rate r and the maturity 7' Let us denote by 6 one of
tefers which is assumed to lie in a parameter set ©. More generally,
nagine that X r(6) is an Rvalued solution at time T to a stochastic
equation whose coefficients b(8, x) and o(4, x) depend on a parameter
Animportant result of stochastic analysis for Brownian diffusions is that,
m ellipticity assumptions (or the less stringent “parabolic Hérmander
sumptions”, see [24, 139]), combined with smoothness assumptions on
%t and the diffusion coefficient, such a solution of an SDE does have a
ity p, (0, x, y)—atleastin (x, y) ~ with respect to the Lebes gue measure
aore details, we refer to [25] or [11, 98]. Formally, we then get

®(9) = Ep(X*(6) = /R PP, (6, %, Y)udy)
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i be viewed as ancestors of Malliavin calculus, provide the d-hedge for
ptions in local volatility models (see Theorem 10.2 and the application that

ises. 1, Provide simple assumptions to justify the above formal computations
at some point & or for all § running over a non-empty open interval ® of
imain of R if @ is vector valued). [Hint: use the remark directly below
12.2.]

ute the probability density p, (o, x, y) of X 77 in a Black-Scholes model
tands for the volatility parameter).

tablish all the sensitivity formulas established in the former Sect,2.2.2
g the exercises at the end of the sectio7 using this approach.

these formulas to the case ¢(x) := ¢’/ (x — K), and retrieve the classical
ons for the greeks in a Black-Scholes model: the 4, the + and the vega.
isection we focused on the case of the marginal X +(0) attime T of a Brow-
usion as encountered in local volatility models viewed as a generalization
ack—Scholes models investigated in the former section. In fact, this method,
s the log-likelihood method, has a much wider range of application since it
cany family (X (6)),., of R%-valued vectors, (® C R?) such that, for every
e distribution of X (6) has a probability density p(d, y) with respect to a
»measure x on RY, usually the Lebesgue measure.

The Tangent Process Method

hen both the payoff function/functional and the coefficients of the SDE are
nough, one can differentiate the function/functional of the process directly
ect to a given parameter. The former Sect.2.2.2 was a special case of this
or vanilla payoffs in a Black-Scholes model. We refer to Sect. 10.2.2 for
ailed developments.

/T




3 Variance Reduction

% g

50 £C.+.
Var(X) is an estimator of the variance (see (2.1)) and Do(x) =

x 2 d
\‘ - 3 is the c.d.f. of the normal distribution.

e
o V2T e : . .
In numerical probability, W€ adopt the following reverse point of view based on
confidence interval

the target Or Eﬁnlw& accuracy € > 0: 10 make X,, enter a
[m—e¢m 4+ el with a confidence level o = 2®0(ga) — 1, one aeeds to perform a

gObﬁO ONH*O mwaﬂwwﬁwOB Om wwNO
Q var X

i

M=M (g, a) 5
€

line to estimate the variance

ate need not to be as sharp

inning of the simulation on

V,, is computed on-
s chapter. This estim
processed at the beg

of course, the estimator

esented in the previou
£ m, so it can be

In practice,
Var(X) as pr
as the estimation 0

a smaller sample size.
As a first conclusion, this shows that, a confidence
Monte Carlo simulation grows linearly with the variance

and ncu%mnow_z as the inverse of the E@moacma accurac

level being fixed, the size of 2
of X for a given accuracy

y for a given variance.

Variance reduction: (not s0) naive approach
o random variables X, X'e hwwnm. A, P) satisfying

Assume now that we know tw

m=EX=EXeR, Var(X), Var(X"), Var(X — X) =EX -~ X'y >0

that X and X' are not a.s- equal).

bution...) is more w%ﬂowa&%

(the last condition only says
tor (distri

... ~otinne Which random vec

s o mieendy heen pointed outin the previous

| The Monte Carlo Method Revisited: Static C

(ii1) the variance Var(X — 8) < Var(:

Then, the random variable
X'=X-
can be simulated at the same cost as X

EX' =EX=m and Var(
Um@imo-. 3.1 A random variable B sa
variate for X. |

> mﬁnwmm? mgi that if the simulation |
x and &’ respectively, then (iii) becomes

i)y & Var(X -
The product of the variance of a randon

nm:& the effort. It will be a central not
Multilevel methods in Chap. 9.

Toy-example. In the previous chapter, w:
neutral Black-Scholes model X* = x e
nmwom function is &mﬂmﬁsmm@_m outside
:_scozm with polynomial growth at infir
differentiable on (0, +00) and |

:
9?3“:@ \S\C«\jm
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e

2 g )
.}ﬁf“‘:x,-exp (r—%)t+20ijW,’ , t€[0,T], x>0,i=1,...,d,
j:l

Al

‘where
: 2 2
| Ui.=zgij’ i=1,...,d.

i=1

» Exercise. Show that if the matrix oo™ is positive definite (then ¢ > d) and one
may assume without modifying the model that X** only depends on the first ; com-
ponents of a d-dimensional standard Brownian motion. [Hint: consider the Cholesky
decomposition in Sect. 1.6.2.]

Now, let us describe the two phases of the variance reduction procedure;

-PHASE I: E = ¢7T'k, as a pseudo-control variate and computation of its expecta- / T)

tion E &,
The vanilla Call option has a closed form in a Black-Scholes model and elemen-
fary computations show that

Z o Iog(Xﬁf"’/x,-) _i.N((r -% Z a,-o-,?)T;a*ao*a T)

1<i<d 1<i<d

where o is the column vector with components o, i = 1,...,d.
Consequently, the premium at the origin ¢"'E k, admits a closed form (see
Sect. 12.2 in the Miscellany Chapter) given by

d he
P ( i
e‘/]Ek, — CanBS (I le“ e“%(Z)gsa azof,—a oo a)T’ K, r, /—*a*oo‘*a, T) . |

i=1 T
( ’ 1
"PHASE L. Joint simulation of the pair (., k,). ‘
We need to simulate M independent copies of the pair (h..k.) or, to be more
recise of the quantity

T T , RE
e, —k,)=e" ((Z o K) - (ezu.-w log(X7™) _ K)+> )
i=] + it A
his task clearly amounts to simulating M independent copies, of the g-dimensional
tandard Brownian motion W at time 7', namely

(m) _ L(m) A(m) -
W = (W WEy =1, M

s
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i.e. M independent copies Z™ = ™, ..., Z{m) of the N(0; 1) distribution in

d
order to set W™ = JTZMW m=1,...,M.

The resulting pointwise estimator of the premium is given, with obvious notations,
by

M d s e
f__M_ Z (h(Tm) _ k;’")) + Callgs (nxiai e‘%(ngar ajo; —a*oo a)T’ K,r, /a*aa*a, T) )

m=1 i=1

Remark. The extension to more general payoffs of the form cp( Doi<i<a X ;”‘f) is

straightforward provided ¢ is non-decreasing and a closed form exists for the vanilla
£x;

option with payoff (p(eZISisd o; log(Xr )).

» Exercise. Other ways to take advantage of the convexity of the exponential function |
can be explored: thus one can start from

Xi,x,'
> at = (¥ an) T AT
1<i<d 1<i<d 1<i<d i

%3 O X . . . . .
where &; = —————, i = 1,...,d. Compare on simulations the respective
leksd ak_xk
performances of these different approaches.

2. Asian options and the Kemna~-Vorst control variate in a Black-Scholes model

(see [166]). Let .
1 X
hr = (']'; /(; Xt dt)

be a generic Asian payoff where ¢ is non-negative, non-decreasing function defined
on R, and let

2
X; =xexp ((r—— %—)t-{—aW,), x>0, tel0,T],

be a regular Black-Scholes dynamics with volatility o > 0 and interest rate r.
the (standard) Jensen inequality applied to the probability measure %I[O,T](r)_
implies ]

1/TX"dt>xe (I/T((r 2/2)t+aW)dt
T 0 t — Xp T o o H

T T
= X eXp ((r——¢72/2)5+-;—,/ W,dt).
0
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above inequality in 4 “Black—

T
exp ((r —(6%/3)/2)T + %/0 W,dt).

Vorst (pseudo-)controj

hy > kXY,

B PHASE I: The ran
the vanilia Oplion re

option related to the payoff p(Xx ;) has

dom variable kXY

§ an admissible control varjate 4y SO0n as
lated to the Payoff

X ) has a closeq form, Indeed, if 5 vanilla
a closed form

o,

7B p(x*) = Premium (x, 7, o, T),
|
then, one hags

. (L2 o
e"/lE kTKV = Premlumgs (x e Gt )T. r, E’ T)
— PHASE II: Ope has to simulate independent copies of 4, — kTK Y
independent copies of the pair (4, kTK . Theoretically Speaking, this requires us to
know how to simulate paths of the standard Brownjan motion ( W,),E[oﬂ exactly and,
- oreover, to compute with an infinite

accuracy integrals of the form % fOT J(@)dr.
In practice these two tasks are clearly impossible (one cannot even compute a
real-valued function i

, Le in practice,
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3.3 Application to Option Pricing: Using Parity Equations
to Produce Control Variates

The variance reduction by regression introduced in the former section still relies on
the fact that k, =2 Ky_,z OF equivalently, that the additional complexity induced by
the simulation of & given that of X is negligible. This condition may look demanding
but we will see that in the framework of derivative pricing this requirement is always
fulfilled as soon as the payoff of interest satisfies a so-called parity equation, i.e. that -
the original payoff can be duplicated by a “gynthetic” version.

Furthermore, these parity equations are model free so they can be applied for
various specifications of the dynamics of the underlying asset. 3

In this section, we denote by (S;):=0 the risky asset (with Sp = 5o > 0) and set

SO = ¢, the riskless asset. We work under the risk-neutral risk-neutral probability
IP (supposed to exist), which means that

(e7'S:), cor) 152 martingale on the scenarii space (£2, AP
(with respect to the augmented filtration of (Sy)sejo,)- Furthermore, to comply with
usual assumptions of AO A theory, we will assume that this risk neutral probability:

is unique (complete market) o justify that we may price any detivative under this
probability. However this has no real impact on what follows. -

—1
Vanilla Call-Put parity (d = 1) / i ('>>‘ ‘

We consider a Call and a Put with common maturity T and strike K. We denote b'
Callg(X, T) = e‘ff"E ((S; — K);) and Puto(K, T) = e'iylE (K - ST)+':..
the premium of this Call and this Put option, respectively. Since

£\ e (S, —K)y— (K =S)r =5~ K

o \

and (e™" S,) €(0.T) is a martingale, one derives the classical Call-Put parity r-.'l;
Cally(K, T) — Puto(K, T) = 50 — e"l{K
so that Callg(K, T) = E (X) = E(X) with - I
X = e"f(ST ~K); and X' = e’/(K — 8 )4 + 50— e"/K.

As a result one sets

E=X—X’=e_'fST—S0,

which turns out to be the terminal value of a martingale null at time 0 (this is in f
the generic situation of application of this parity method). :
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ote that the simulation of X involves that of S, so that the additional cost of the

lation of E is definitely negligible.

m Call-Put parity
sonsider an Asian Call and an Asian Put with common maturity T, strike K and
aging period [To, T1, 0<Ty<T.
As __ ,— 1 1 T -
cangs = /B[ (g Jr St - k)| r
At 5 ¢
rl ‘N\‘&:-

As — g~ /4
Putds = e ”/IE[(K — e [ sar) |-
Still using that S, =¢S5 isa P-martingale and, this time, the Fubini—Tonelli
eorem yield
Cal As As 1- e—r(T—TO) r/K
145 _ puths = sg—e— — €
s

that
call =E(X) =EX")

1 e—r(T—To) 1 T
X =s K +e (K -1 S dt)
OTHT - To) T—Toln /4
‘his leads to r .
- _It 1 1 — e T
S et | Sdt —So—7 7
ST T T T T

Remark. In both cases, the parity equation directly follows from the P-martingale

woperty of S; = e S,

33.1 Complexity Aspects in the General Case

¢ often neglects the cost of the computation of Amin

In practical implementations, on
mputed: this leads us to stop its computation after

since only a rough estimate is co
the first 5% or 10% of the simulation.
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— However, one must be aware that the case of the existence of parity equations is
quite specific since the random variable E is involved in the simulation of X, so the
complexity of the simulation process is not increased: thus in the recursive approach
the updating of A, and of (the empirical mean) 7;\4 is (almost) costless. Similar
observations can be made to some extent on batch approaches. As a consequence, in
that specific setting, the complexity of the adaptive linear regression procedure and
the original one are (almost) the same!

— Warning! This is no longer true in general...and in a general setting the com-
plexity of the simulation of X and X" is double that of X itself. Then the regression
method is efficient if and only if .

min

o2 < %min (Var(X), Var(X"))

(provided one neglects the cost of the estimation of the coefficient Amin).
The exercise below shows the connection with antithetic variables which then
appears as a special case of regression methods.

» Exercise (Connection with the antithetic variable method). Let X, X' € L*(P)
such that E X = E X’ = m and Var(X) = Var(X').

1
(a) Show that Apin = =

X+X X+X\ 1

(b) Show that X = and Var( 3 ) = (Var(X) + Cov(X, X")).

Characterize the pairs (X, X") for which the regression method does reduce the
variance. Make the connection with the antithetic method.

3.3.2 Examples of Numerical Simulations

Vanilla B-S Calls (See Figs.3.2,3.3 and 3.4)

The model parameters are specified as follows

>

T=1,%=100, r =5 0=200 K=90,..

-

The simulation size is set at M = 106,

» -~ B

-
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15 in a Heston model (See Figs. 3.5, 3.6and 3.7)

nics of the risky asset is this time a stochastic volatility model, namely
1 model, defined as follows. Let 9, k, a such that 9%/(2ak) < 1 (so that v,
5. positive, see 11831, Proposition 6.2.4,p. 130).

= S;(rdt+ JUdW}),  so=% > 0, te[0,T1, (risky asset)
= k(a — vp)dt + 9o dWE, v >0
o (W', W), = pt, pe[-1,1], 1€ 0, T]

Jff is an Asian call with strike price K

T
AsCall®! = e"’/]E [(-1— [ Ssds — K) .
T Jo .

fly, no closed forms are available for Asian payoffs, even in the Black-

model, and this is also the case in the Heston model. Note however that
closed forms do exist for vanilla European options in this model (see [150D),
s the origin of its success. The simulation has been carried out by replacing
/e diffusion by an Euler scheme (see Chap.7 foran introduction to the Euler
cretization scheme). In fact, the dynamics of the stochastic volatility process
\t fulfill the standard Lipschitz continuous assumptions required to make the
sheme converge, at least at its usual rate. In the present case it is even difficult
e this scheme because of the term J/Ur. Since our purpose here is to illustrate
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StD-AsCaltPar(s_O!K),
3 R

o

6

StD-AslnterCaIl(s_O,K)

K > StD-AsCall(s_0,K),
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-~ Crude Call. ~ss Syntheric Parity Call.

0.9}k

0.7}
0.6t
05f
04f
0.3}

K --> lambda(K)

0.2f

Ol

0 . I A L L )
90 95 100 105 110 115 120

Tig. 35 HESTON ASIAN CALLS. Standard Deviation (MC Premium). K = 90

Strikes K=90,...,120

, ooy 120, —0-0-0-
=06¢- Interpolated Synthetic Call

L

920 95 100

tic Asian Call

St

3

=|

So :S0>0,

-

Strikes K=90,...,120

Fi g:3.6 HESTON ASIAN CALLS. K 1~ Amin(K), K = 90, ..., 120, for the Interpolated Syn-

= S(k—”l)T (1 + %lz + /]ﬁw[@(ng ++/1 —-pZZli)),

/ =
5%,1 =k(a—1-1&—n_1£)'§+19 lﬁﬂ&—nl_lT,Z,?, 50=U0>O, ﬁ .‘(g ’\W*
R

105 110 115 120




- Pre-conditioning
&

h, = (X} - X* - K),.
» one can write
WL W) =VT(V1= 22+ p2,, 2,),

hete Z = (Z1, Z,) is an N (0; Ip)-distributed random vector. Then, see e.g.
Sect. 12.2 in the Miscellany Chapter)

s

121]
e—f]E (hr 1Z,) = e"d []E ((xle(r—%i)ﬂ-mﬁ(«/l—nz Zi+p2) / !

2
-2
= _XZe(r 4 VT +03/T 23 . K) >:,
% +/ dlza=2,

2.2 2
_Far -z JTZ,
— Callgs (xle = +0'1P‘\/TZZ’ x2e(r #)T+02V/T2Z,
.' +K,r;o'lvl_p29T)-

inally, one takes advantage of the closed form available for vanilla Call options in
- aBlack-Scholes model to compute

.

i Premiumps(xy, x;, K, 01, 05,7, T) = E E(e™h,|2Z,)
T

w1th a smaller variance than with the original payoff.
Fffﬁ. Barrier options. This example will be detailed in Sect. 8.2.3 devoted to the pricing

E(of some classes) of barrier options in a general model using the simulation of a

| continuous Euler scheme (using the so-called Brownian bridge method).

3.5 Stratified Sampling

.;;The starting idea of stratification is to localize the Monte Carlo method on the

‘elements of a measurable partition of the state space E of a random variable
X:(Q2,A4P) - (E 8.

Let (A;)e; be a finite £-measurable partition of the state space E. The A;’s are
called strata and (Ai)ier a stratification of E. Assume that the weights
pi=P(XeA), iel,

are known, (strictly) positive and that, still for every i € 7,

LX|Xe A) 2o,
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Of course there is no reason why the solution to the above problem should be 6y
(if so, such a parametric model is inappropriate). At this stage one can follow two
strategies: 3

~ Try to solve by numerical means the above minimization problem. ;

— Use one’s intuition to select a priori a good (though sub-optimal) f€ © by :
applying the heuristic principle: “focus light where needed”.

» Example (The Cameron-Martinformula and Importance Sampling by mean trans-
lation). This example takes place in a Gaussian framework. We consider (as a starting
motivation) a one dimensional Black-Scholes model defined by i

X7 = xetTHoWr = xobT+oVTZ 7 L Arao: 1),

withx > 0,0 >0and u=r— 92— Then, the premium of an option with payo
h: (0, +00) — (0, +o00) reads

' e —r/ X _ﬁ—dz
A : e NER(XD) =Ep(Z) = | p(2)e™?
R

T

where ¢(z) = e‘/h (xe“”"‘/f‘), ze R,
From now on, we forget about the financial framework and deal with

0
g
2

e

V2

and the random variable Z plays the role of X in the above theoretical part. The
is to introduce the parametric family

E@(Z)=f<ﬁ(1)go(z)dz where g,(2) =
R

Yo=Z+0, fe®:=R

We consider the Lebesgue measure on the real line A; as a reference measure, so

_ -0
=

e 2
9, () = Ner

Elementary computations show that

, yeER, e ®:=R.

2
gﬂ(y) —et5 yeR, e ®:=R

[

Hence, we derive the Cameron—~Martin formula
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| Ep(2) = FE(pr)e ™)
' 2
- e%ZIE(go(Z + 9)e~9<Z+€>) = e_aT]E(Lp(Z ¥ 9)e~92).
mark. In fact, a standard change of variable based on the invariance of the

e measure by translation yields the same result in a much more straight-
way: setting z = u + 6 shows that

2 £ du 02
Ew(Z) = / u+6 et 28 e TE (e %p(Z +6
w2) = | ¢lut6) i ™0z +9))
2
= e%'IE(cp(Z + 6)e‘9(z+‘9)).
'. tobe noticed again that there is no need to account for the normalization constants
0 compute the ratio iy
: The next step is to 0choose a “good” 6 which significantly reduces the variance,
following Condition (3.13) (using the formulation involving “Yy = Z - 8”), such

pel 2
E (eT o(Z + 9)6_9(Z+€)) <E¢*(2),

e"HZ]E(goz(Z + 0)6‘202) <E*(2)

or, equivalently, if one uses the formulation of (3.13) based on the original random
}g&?ﬁ&ble (here 2),

2
E(¢*(2)e% %) < EG(2).
Consequently the variance minimization amounts to the following problem
[\ 2
i.- Igl]jél [E%’_E (QDZ(Z)E—M) —_ g-'ez]E ((pZ(Z + g)e-—ZHZ)] )
| =

- Itis clear that the solution of this optimization problem and the resulting choice
of  highly depends on the function 4.

- Optimization approach: When h is smooth enough, an approach based on large
leviation estimates has been proposed by Glasserman et al. (see [115]). We propose
; simple recursive/adaptive approach in Sect. 6.3.1 of Chap. 6 based on Stochastic
Approximation which does not depend upon the regularity of the function % (see
iso [12] for a pioneering work in that direction).

~Heuristic suboptimal approach: Let us tex?poran'ly return to our pricing problem
ovolving the specified function p(z) = ¢™"
Vhen x << K (deep-out-of-the-money optioh), most simulations of p(Z) will pro-

(xexp(uT+oﬁz)~K)+, ze R. Tt
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jow that the function f defined on [0, 1]2 by
fa' ="+ A1L &L xHelo, 11 0. -
i ‘ ?’ & LA 1
finite variation in the measure sense [Hint: consider the distribution of (U, 1 — U), o [1 .

= U([0, 1D]. /”jf 1
o the class of functions with ﬁmte variation, the Koksma-Hlawka Inequal-

provides an error bound for —Z &) — / f(x)dx based on the star
' k=1
pancy.

oposition 4.3 (Koksma-Hlawka Inequality (1943 when d=1)) Let Ei,-.. 60
an n-tuple of [0, 1)¢-valued vectors and let f : [0, 1]¢ — R be a function with
lite variation (in the measure sense). Then

<V(HDE(&r, ... &)

1 n
2y 5@~ [ e
o [0.1)¢

wof. Set i, = % ZZ=’1 8¢, — Adjo,1¢- It is a signed measure with O-mass. Then, if
has finite variation with respect to a signed measure v,

1 ~
2Y f@ - [ o0 = [ f@i@n
= 10,134

= FOE(0, 11%) + fw 01— <)

=0+ / (/ l{usl-—x}V(dv)) ﬁn(dx)
[0,1¢
= / B (10, 1 — v (dv),
[0,11#

jere we used Fubini’s Theorem to interchange the integration order (which is
ssible since |v| ® |7i,| is a finite measure). Finally, using the extended triangle
squality for integrals with respect to signed measures,
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d lower bound can be derived from the first one, using the Hammersley
introduced and analyzed in the next section (see the exercise at the end of

1 4).
s other hand, there exists (see Sect.4.3.3 that follows) sequences for which

(logn)*
n

where C(£) < +co.

Yn>1, D) =C()

on this, one can derive from the Hammersley procedure (see again Sect.4.3.4 yt
w) the existence of a real constant C, € (0, +00) such that ¢ Jririv.,
. 14log nyt-! . \te

- n % Hlogn
Vnz1, 3G, &0 (0,07 Dy &) < c:,——g?—-—.

spite of more than fifty years of investigation, the gap between these asymptotic
and upper-bounds have not been significantly reduced: it has still not been
ved whether there exists a sequence for which C(§) = 0, i.e. for which the rate

)" would not be optimal.

T fact, it is widely shared in the QMC community that in the above lower bounds,
L can be replaced by d — 1in (4.9) and % by d in (4.10) so that the rate O (Q‘%ﬂ)—'j—>
mmonly considered as the lowest possible rate of convergence to 0 for the star
pancy of a uniformly distributed sequence. When d = 1, Schmidt proved that

onjecture is true.
is leads to a more convincing definition of a sequence with low discrepancy.

tion 4.8 A[0, 11%-valued sequence (€,)>1 is asequence with low discrepancy

(logn)?

D;(§)=0( ) as n— +00.

b

, ".I For more insight about the other measures of uniform distribution (L?-discrepancy
(©), diaphony, etc), we refer e.g. to [46, 219].

Examples of Sequences

% Van der Corput and Halton sequences

Let p1, ..., pa be the first d prime numbers. The d-dimensional Halton sequence is
defined, for every n > 1, by:

&= (®p(n), ..., ©p0)) (4.11)
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The only natural upper-bound for the left-hand side of this inequality is

2
. = s - d\ ) d
73(£,©) /[O,H,,(n;f““”k” /[O’udf d) u

2

sup Zf({u - / fdrg

uel0,1¢ | 7

One can show that f, : v — f({u + v}) has finite variation on [0, 1]¢ as soon as
has (in the same sense) and that SUP,cpo,1p V (fu) < 00 (more precise results
be established). Consequently

o (f,&) < sup V(£)Dj&r,.... &)

uef0,1)4

so that, if £ = (£,)n> is a sequence with low discrepancy (say Faure, Halton, Ka ul
tani or Sobol’ etc),

1
o M’r-v o< cilen” s
‘K ﬂ ‘ I"l"‘ e
Consequently, inthat case, it is clear that randomized QM C provides a very significar

variance reduction (for the same complexity) of a magnitude proportional to & -
(with an impact of magnitude —"ﬂ)— on the confidence interval). But one must bed
in mind once again that such functlons with finite variations become dramatma

sparse among Riemann integrable functions as d increases.
2

C
In fact, an even better bound of the form 02( &< f"c

some classes of functions as emphasized in the Pros part of Sect.4.3.5: when't

sequence (§,)n>1 is the orbit of a (uniquely) ergodic transform and f is a cobo

ary for this transform. But of course this class is even sparser. For sequences ob

by iterating rotations — of the torus or of the Kakutani adding machine — som

teria can be obtained involving the rate of decay of the Fourier coefficients ¢
=(pl, ..., pHe 74, off as | pll := p' x --- x p? goes to infinity since, in

can be obtained

case, one has 02( [ < —= Hence the gain in terms of variance becomes pr

portional to ; for such functlons (a global budget/complexity being prescribe
the simulation).

By contrast, if we consider Lipschitz continuous functions, things go radi
differently: assume that f : [0, 1] — R is Lipschitz continuous and isotropi
periodic, i.e. for every x € [0, 1]¢ and every vector e; = (J;;)1< j<dr i =1,...,d1
the canonical basis of R? (§;; j stands for the Kronecker symbol) f(x + ¢;) = f (
soonasx + ¢; € [0, 1]¢, then S can be extended as a Lipschitz continuous functi
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sle R¢ with the same Lipschitz coefficient, say [ fLip- Furthermore, it satisfies
= f({x}) forevery x & RY. Then, it follows from Proinov’s Theorem 4.3 that

e C; is Proinov’s constant). This time, still for a prescribed budget, the “gain”
tor in terms of variance is proportional to n“%(log n)?, which is no longer a
... but a loss as soon as d > 2!

‘For more results and details, we refer to the survey [271] on randomized QMC
e references therein,

inally, randomized QMCis a specific (and not so easy to handle) variance reduc-
yn method, not a QMC speeding up method. It suffers from one drawback shared
 all QM C-based simulation methods: the sparsity of the class of functions with
ite variation and the difficulty for identifying them in practice whend > 1.

Scrambled (Randomized) QMC

mixing randomness and the Quasi-Monte Carlo method is undoubt-
y a way to improve rates of convergence of numerical integration over unit
sercubes, the approach based on randomly “shifted” sequences with low discrep-
(or nets) described in the former section turned out to be not completely satisfac-
y and it is no longer considered as the most efficient way to proceed by the QMC
mmunity.
A new idea emerged at the very end of the 20th century inspired by the pioneering
by A. Owen (see [221]): to break the undesired regularity which appears even
the most popular sequences with low discrepancy (like Sobol’ sequences), he
proposed to scramble them in an i.i.d. random way so that these regularity features
isappear while preserving the quality, in terms of discrepancy, of these resulting
sequences (or nets).
" The underlying principle — ot constraint — was to preserve their “geometric-
pmbinatorial” properties. Typically, if a sequence shares the (s, d)-property in a
siven base (or the (s, m, d)-property for a net), its scrambled version should share it
Several attempts to produce efficient deterministic scrambling procedures have
made as well, but of course the most radical way to get rid of regularity features
was to consider a kind of i i.d. scrambling as originally developed in [221]. This has
been successfully applied to the “best” Sobol’ sequences by various authors.

e principle of

i Al

2
i e " 2
ap P rwran- [ sax) SUDiG 60
el |5 0,134 . (8 3{
2 (logn): = 43N
< C2 2. Cd Tre -
< G EoCi W\‘%’

t
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utral probability)

S o? .
St = shexp ((r = —2’-)t -I—a,-ﬁZ"’), i=1,....,d,

=W, W=W'..., W¢) is ad-dimensional standard Brownian motion.
adence is unrealistic but corresponds to the most unfavorable case for numer-
seriments. We also assume that sy =s9 >0, i=1,....d, and that the d
share the same volatility o; = o > 0. One considers the geometric index

E...s¢ ¥ One shows that e~ % & =171, itself has arisk neutra] Black-Scholes
ics. We want to test the regularized Put Spread option on this geometric index
strikes K < K3 (at time T/2). Let ¥(so, K1, K2, 1,0, T) denote the premium
me 0 of a Put Spread on any of the assets Si. We have

&, K1, Ky, 7,0, Ty =7(x, K3, 7,0, T) w(x, Ky, r,o,T), e
nx, K,r,0,T) = Ke, By(—dp) — x Po(—d1), '
4 = log(x/K) + (r + g—;)T

o/T/d

"
4

, do=di—oT/d.

Jsing the martingale property of the discounted vatue of the premium of a European
yields that the premium e "E ((K1 —L)y - K — IT)+) of the Put Spread
tion on the index / satisfies on the one hand

1 e"flE ((Ki =)+ — (K2 = L)) = %b(soeg;(%_l)r, K. Ka.r,0//d,T)

one the other hand,

T (K ~ )3 — Ko~ L)1) =Eg(@), )T

o2
g(z) =2 e—rT/Zw(eT(%“l)%I%’ Kl’ KZ’ r,o, T/2)

=100, K, =98, K,=102, r=5% o0=20% T=2

,' The results are displayed in Fig.5.5 in a log-log-scale for the dimensions d =
4,6, 8, 10.

. First, we recover theoretical rates (namely —2/d) of convergence for the error
‘ounds. Indeed, some slopes 3(d) can be derived (using aregression) for the quantiza-
n errors and we found 3(4) = —0.48, 3(6) = —0.33, B(8) = —0.25 and B(10) =
—0.23 for d = 10 (see Fig. 5.5). These rates plead for the implementation of the
f;&ichardson—Romberg extrapolation. Also note that, as already reported in [231],
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vthat quantization-based stratification has a uniform efficiency among the class of
sehitz continuous functions. The first step is the universal stratified sampling for
chitz continuous functions detailed in the simple proposition below, where we use
tations introduced in Sect.3.5. Also keep in mind that for a random vector Y €

2, A, P), Y[, = (E Y1)/ where | - | denotes the canonical Buclidean norm.

sition 5.4 (Universal stratification) Let X € L2,(R2, A, P) and let (A;)ier be
ification of R%. For every i € I, we define the local inertia of the random vector
the stratum A; by

?=E(X ~EXIXeA)IXeA).
) Then, for every Lipschitz continuous function F : R%, |- ) > (R?, |-,

. Viel, sup op; =01 (5.33)
[Flup=t

ere oF,; is non-negative and defined by

o= minE (F0) ~al’ X e 4) = E(1FCO - E (7% IXeA)PIX € Ay). TR
. :
|
)) Suboptimal choice: g; = p;.
sup (Z pia;l.) = po? =X —E(Xlo(Xe A}, ieD) ||f . (534
Flup=l \ jgr iel
}) Optimal choice of the g;. (see (3.10) for a closed form of the q;)

2 2
sup Piori} = Pigdi
(Fhis! (Z r > (Z ') (5.35)

iel iel

=X ~E(X|o({X € A}, i€ 1))"12-

iemark. Any real-valued Lipschitz continuous function can be canonically seen as
nR?-valued Lipchitz function, but then the above equalities (5.33)(5.35) only hold
s tnequalities.

‘roof. (a) Note that

ok, =Var (FX) |X € &) =E(FX) —EFX)IX € A)|1X € A)
<E((FX) - FEXIX € ADYIX € A))
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At this stage, we assume that d = 1. Either Yoo(w) = {y,} and the proof is com
plete, or Yoo (w) is a non-trivial compact interval as a compact connected
R. The function L is constant on this interval, consequently its derivative L’ is
0n Yoo (w) s0 that Yoo (w) C {(VLIK) = ojn{L= L(y.)}. Hence the conclusio
When {(VL|h) = 0} n {L = £} is locally finite, the conclusion is obvious since s
connected components are reduced to single points,

6.3 Applications to Finance

6.3.1 Application to Recursive Variance Reduction
by Importance Sampling

This section was originally motivated by the seminal paper [12]. Finally, we fol
the strategy developed in [199] which provides, in our mind, an easier to implemen
procedure. Assume we want to compute the expectation

2 dz
EpZ) = -4
w(Z) fR ) p(z)e o)} (

where p : RY — R is integrable with respect to the normalized Gaussian meas
In order to deal with a consistent problem, we assume throughout this section

P(p(Z) #0) > 0.

> Examples. (a) A typical example is provided by an option pricing in a 4
dimensional Black—Scholes model where, with the usual notations, :

o2
w(z) = e_/¢ ((x(’) e("‘zL)T+‘7iﬁ(AZ)l) ) , Xp = (Xé, L ’xg) € (0, +00)d
1<i=<d v

with A alower triangular matrix such that the covariance matrix R = AA* has diag
entries equal to 1 and ¢ a non-negative, continuous if necessary, payoff function. Th
dimension d corresponds to the number of underlying risky assets.

(b) Monte Carlo simulation of functionals of the Euler scheme of a diffusio
Milstein scheme) appear as integrals with respect to a multivariate Gaussian vect
Then the dimension d can be huge since it corresponds to the product of the nun
of time steps by the number of independent Brownian motions driving the d

of the SDE.

Variance reduction by mean translation: first approach (see [12]).

A change of variable 7 = ¢+ 0, forafixed e R, leads to

E¢@) = e FE (p(Z + 6)e02).
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6 Stochastic Approximation with Applications to Fin

).

increasing Lévy process — independent of the standard Brownian motion W
more insight on such processes, we refer to [40, 261].

6.3.2 Application to Implicit Correlation Search

We consider a 2-dimensional B-S toy model as defined by (2.2),i.e. Xto = e’ (riskles
asset) and

2
i T W :
X! =xelHeW 450, i=1,2,

for the two risky assets, where (W!, W?), = pt, pe [—1, 1] denotes the correlatio
between W' and W2, that is, the correlation between the yields of the risky asse
X! and X2, '
In this market, we consider a best-of call option defined by its payoff
(max(X, X} - K),.

A market of such best-of calls is a market of the correlation p since the respectiv
volatilities are obtained from the markets of vanilla options on each asset as impli
volatilities. In this 2-dimensional B-S setting, there is a closed formula for the pi
mium involving the bi-variate standard normal distribution (see [159]), but wt
follows can be applied as soon as the asset dynamics — or their time discretization E
can be simulated at a reasonable computational cost. .
We will use a stochastic recursive procedure to solve the inverse problem in p

Ppoc(xy, %3, K, 01, 09,7, p, T) = Proarier [Mark-to-market premium], (6.

where
/T 1.2 — —ri 1 oy2y
Pooc (53, 3, K, 01,2, 1, p, T) 1= B (max(x}, X2) ~ )., )

r - e‘ﬁ/lE ((max (xéemT-FO']«/TZl’x(2)ep2T+02\/T(pZI+«/1—p222)) . K)

€ whereu,-:r-%’zh,iz1,2,Z=(Z],Z2)i./\/(0;12). ]

It is intuitive and easy to check (at least empirically by simulation) that th
function p — Pg,c (xc',, x(z), K,o01,09,r, p,T) is continuous and (strictly) dec
ing on [—1, 1]. We assume that the market price is at least consistent, i.e.
Pruarker € [Ppoc(1), Ppoc(—1)] so that Eq. (6.24) in p has exactly one solution,
P« This example is not only a toy model because of its basic B-S dynamics, it is
due to the fact that, in such a model, more efficient deterministic procedures can b
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sed on the closed form for the option premium. OQur aim is to propose

alled upon, ba:
d illustrate below a general methodology for correlation search.
dge effects due to the fact that pe [—1,1]

The most convenient way to prevent &
fo use a trigonometric parametrization of the correlation by setting

p=cosf, e R.
Ithis stage, note that
JT= A2t =|sin|Z? & (sin§) Z*
:ce 72 & _72 Consequently, as soon as p = COS 8,

02+ JT= P22 £ (cos ) Z' + (sin§) Z*

swing to the independence of Z! and Z2.

In general, this introduces an over-parametrization, even inside [0, 2], since

Arccos(p*) € [0, 7] and 27 — Arccos(p*) € [, 27] are both solutions to our zero

search problem, but this is not at all a significant problem for practical implemen-
ion: a more careful examination would show that one of these two equilibrium

ts is “repulsive” and one is «attractive” for the procedure, see Sects. 6.4.1 and

5 for a brief discussion: this terminology refers to the status of an equilibrium

the ODE associated to a stochastic algorithm and the presence (or not) of noise.

A noisy repulsive equilibrium cannot, 4.5, be the limit of a stochastic algorithm.

. From now on, for convenience, we will just mention the dependence of the pre-

mium function in the variable 4, namely

eu17+01~/721 , xgeuz’f+az~/7((cost9)Zl+(sin0) ZZ)) _ K) -J . i
+

0 > Ppoc(0) 1= e‘f/lE [(max (x(l)

us function. Extracting the implicit cor-

The function Pg.c is a 27-periodic continuo
(with obvious notations) the equation

relation from the market amounts to solving

Pgoc(0) = Prarker (p = cos 0,

f the option (mark-to-market price). We need
tion on the market price, which is in
cedure: we assume that Prarker 1i€s in

where Ppapter 15 the quoted premium O

to slightly strengthen the consistency assump

fact necessary with almost any zero search pro
the open interval

Prastr € (Paoc(D) max Paoc(=D)

j‘e. that Pparker 1S ROt an extremal value of Pg,c. S0 we are looking for a zero of the

nction & defined on R by
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h(@) = PBoC(e) - Pmarker-

This function admits a representation as an expectation given by
ne)y=EH®,Z),
where H : R x R? — R s defined for every § € R and every z = (z!, 22) € R2 by

/T-I}-- H@, )= e—f (max (xéeﬂlT-Fal«/_fz"xgeu2T+ozx/T(zlcos'9+zz sinﬁ)) _ K) -P,
4 't

and Z = (Z',2%) £ N(0; I).

Proposition 6.1 Assume the above assumptions made on the P10 and the  functic
Pgoc. If, moreover, the equation Ppoc(0) = Puarkes has finitely many solutions
[0, 2], then the stochastic zero search recursive procedure defined by

9n+1 . an - 'Yn-HH(em Zn+1): 006 R,

where (Zy)n>1 is an i.i.d, N'(0; b)) distributed sequence and (Yndnz1 is a step sequenc

satisfying the decreasing step assumption (6. 7), a.s. converges toward solution 6, !
Py (6) = Prarker. %

Proof. Foreveryze R%, 0+ H (6, ) is continuous, 27-periodic and dominated b
a function g(z) such that g(Z) e L*(P) (g is obtained by replacing z! cos 6 + 72 sin{
by |z!| + |z2] in the above formula for H). One deduces that both the mean functio n
hand 6 — EH?(9, Z) are continuous and 2m-periodic, hence bounded. !

The main difficulty in applying the Robbins-Siegmund Lemma is to find
appropriate Lyapunov function. 3

2T
As the quoted value P,,q ., is not an extremum of the function P, / h(0)df >0
where Ay := max(+h, 0). The two functions A, are 27-periodic so th_

t+27 2r {
/ hi(6)d6 = f h1(8)d6 > 0 for every ¢ > 0. We consider any (fixed) sof U

t 0
tion 6 to the equation 4(8) = 0 and two real numbers B* such that

1

0 T b (6)d6

0<p <
T h_(6)df

and we set, for every 6 R,

L) i= hy(8) = B*h-(O)Ligz00) — B (6)1i9<a,).

The function ¢ is clearly continuous, 27-periodic “on the right” on [, +00) and “ot

the left” on (—o0, 6o]. In particular, it is a bounded function. Furthermore, owing to
the definition of %,
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indard Black—Scholes model (starting at x > 0 at ¢ = O with interest rate r and
ity T).

Show that the B-S premium Cpg(0) is even, increasing on [0, +00) contin-
s as a function of the volatility. Show that limy—.o Cas(0) = (x — ¢7"K) and
g +o0 Cps (o) = x.

Deduce from (a) that for any mark-to-market price Puarker € [(x — ¢ 77K)4, x],
e is a unique (positive) B-S implicit volatility for this price.

2 =
¢) Consider, for every o€ R, ‘

£

v

j.
e.

H(g,2) = x(0) (xe LT+ovTe _ Ke_")+,

where x(o) = (1 + lol)e‘%T. Carefully justify this choice of H and implement the
orithm with x = K = 100, r = 0.1 and a market price equal to 16.73. Choose
he step parameter of the form v, = f’:% n> 1, with ce [0.5, 2] (this is simply a
U ggestion).

armng The above exercise is definitely a toy exercise! More efficient methods

for extracting standard implied volatility are available (see e.g. [209], which is based

n a Newton—Raphson zero search algorithm; a dichotomy approach is also very
efficient).

Exermse (Extension to more general asset dynamics). We now consider a pair of
assets following two correlated local volatility models,

3 dX; = X(rdt + 0:(X)dW/), X§ =x' >0, i=1,2,
I
here the functions o; : R2 — R, are bounded Lipschitz continuous functions and
the Brownian motions W'! and W? are correlated with correlation pe [—1, 1] so that
W1 W2), = pt. (This ensures the existence and uniqueness of strong solutions for
m is SDE, see Chap. 7.)

Assume that we know how to simulate (X', l TZ), either exactly, or at least as
“an approximation by an Euler scheme from a d-dimensional normal vector Z =

L Z4) £ N©; 1)

~ Show that the above approach can be extended mutatis mutandis.

_6.3.3 The Paradigm of Model Calibration by Simulation

" Let ® C R? be an open convex set of R?. Let

Y : (© x Q, Bor(®) ® A) —> (RP, Bor(R?))
0, w) —> Ypw) = (Y (Ww), ..., Y§ W)
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Yo = (7 TXE™ = KDy~ Prana(Th K))_,

ill also have to make simulability assumptions on Yy and, if necessary, on its
lation-based approach

es with respect to 8 (see below). Otherwise our simu
2 meaningless.

is stage, there are essentially two approac
this problem by simulation:

arch approach of VL, which needs to have access
as an expectation of the

hes that can be considered in order

bbins-Siegmund zero se
epresentation of the gradient — assumed to exist —

ion L.

re direct treatment based on the
ariant of the Robbins—Siegmund approach b
_decreasing step) which does not require th

s an expectation.

ybbins—Siegmund approach
ke the following assumptions: for every b€ O,

so-called Kiefer—Wolfowitz procedure, which
ased on a finite difference method

e existence of a representation of

@) Pdw)-as., g —> Ya(w) is differentiable
at 8 with Jacobian O, Yo(w),
(Calgz) = { (i) 3 Us,, neighborhood of 6o in ®, such that

YoV \ 5o oo .
—;;g”—'-i is uniformly integrable.
16—601 J geUs, \ 160}

«“Extension to uniform integrability” which follows

hecks — using the exercise
its Jacobian is given by

em 2.2 —that @ —> E Yp is differentiable and that
Oy Yy = E 0pYp.

the function L is differentiable everywhere on © and its gradient (with respect
canonical Euclidean norm) is given by

Voc®. VLEO) =E @YY SEYs=E (G3sY) SEYs. v

iis stage we need a representation of VL(6) as an expectation. To this end,
Yy of Yy defined as follows: we

onstruct, for every 6 € ©, an independent copy

ider the product probability space (22, A®?, P®2) and set, for every (w, D)ye @2,
, &) = Yg(w) (the extension of Y, on 2 still denoted by Yp) and Ys(w, @) =
N It is sgpightforward by the product measure theorem that the two families
gce and (Yg)sco are independent with the same distribution. From now on we will
¢ the usual abuse of notation consisting in assuming that these two independent

es live on the probability space (£2, A, P).
Jow, one can write
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i=1....p

Yo = (e—rT, (X;c},a.A,a - K+ — Parker (T, Kl)>

ill also have to make simulability assumptions on Yy and, if necessary, on its
res with respect to 6 (see below). Otherwise our simulation-based approach
g meaningless.

is stage, there are essentially two approac
this problem by simulation:

ch approach of VL, which needs to have access
as an expectation of the

hes that can be considered in order

bbins—Siegmund zero sear
epresentation of the gradient — assumed to exist —
ion L.

rre direct treatment based on the s
ariant of the Robbins-Siegmund approac
| decreasing step) which does not require t

s an expectation.

o-called Kiefer—Wolfowitz procedure, which
h based on a finite difference method
he existence of a representation of

sbbins-Siegmund approach

ke the following assumptions: for every b€ O,

@) Pw)—-as., g —> Yp(w) is differentiable
at 8y with Jacobian Og, Yo W),
(Calgz) = { (i) 3 Ug,, neighborhood of 6o in ©, such that

Yo—Yeg ) . B .
Ys—Ya Y {5 yniformly integrable.
(“’”"ﬂ‘ BeUn, \ (6o} ¥ mice

«“Extension to uniform integrability” which follows

hecks — using the exercise
Jacobian is given by

em 2.2 — that § —> E Yp is differentiable and that its
aglE Yo = E 6y Y.
tiable everywhere on © and its gradient (with respect

.the function L is differen
. canonical Euclidean norm) is given by

Voco. VL@ =E @Y SEYs =E ((@%)) SEYe.

ris stage we need a representation of VL(0) as an expectation. To this end,

onstruct, for every 8 € ©, an independent copy Y, of Y, defined as follows: we
ider the product probability space (92, A®2, P®?) and set, for every (v, e 02,
\, &) = Yg(w) (the extension of Yy on Q2 still denoted by Yg) and Yolw, @) =
N Itis sgaightforward by the product measure theorem that the two families
geo and (Yp)gco are independent with the same distribution. From now on we will
¢ the usual abuse of notation consisting in assuming that these two independent

es live on the probability space (€2, A, P).
low, one can write
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4 Further Results on Stochastic Approximation

;‘It follows from the Burkhdlder—Davis-Gundy Inequality (6.49) that, for every

% [FN 5 +OO),
% 1+4

: N(s+6) g
| ~ ~ (0 |2+ -
8| sup MO - MO <CE| Y m(aMy?
| sstsstd k=N{(s)+1

, N(s+6) ~ 1+5
+5 Y w(AM)?

N(s+6
= C (i:) IE k=N(s)+1
=t T Nto)

STt 5 ek |

; k=N (s)+1
N (s+6) ~
N(s+6) i+g Y wlAM
o T ) e
k=N(s)+1 S %
k=N (s)+1
8
N(s+6) 2 N(s+d)
<Gl Y > 1B |AM P,
k=N{(s)+1 E=N(s)+1

where Cpisapositive real constant. One finally derives that, forevery s € r,, +o0),

" pes N (5+6)
: E| sip MO -MO["| <A@ | 2 w
s<t<s+6 k=N(s)+1

1+5
< C,;A(E)((H- sp %) -
k>N (s)+1

Noting that My = MY, - MIE(:), t>0,n> N, we derive

~ ~ 1+£
Van>N, V¥s>0 E sup lM((t')') -M((s';) L C§(6+ sup 'yk) :
s<t<s+6 k=N({)+1
jThen, by Markov’s inequality, we have foreverye > 0and T > 0,
Hﬁl su ]P’( su IANJ(”) -MP| = e) < C’—d/—%—
" se[O,pT] ssts£)+5 D © =) = "ogs
The C-tightness of the sequence (M ™),y follows again from Theorem 6.7(b).
4 Furthermore, for every n > N,
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First note that (6.65) combined with the Koksma—~Hlawka Inequality (see Propo-
sition (4.3)) imply &M\ LN v 2 2 :
ISyl < CgV(H(y*, .)){ogm)?, (6.71)

where V (H (v,, .)) denotes the variation in the measure sense of H (., .). An Abel
transform yields (with the convention S§ = 0)

n—1

My = Fu(VAQG-1) 1S3) = Y (her1 VAGR) = % VAGe-1) | SF)
k=1
n—-1
= Fu(VAGn-) 1S}) = Y %(VAGD) — VAGE-1) | S;)
‘——V-""—"(a) k=1 .
®
n—1
=3 AT (VAGR) 1 SF) - ]
k=1 b

©
We aim at showing that m, converges in R toward a finite limit by inspecting the

above three terms. ]
One gets, using that y, < ¥, .

(@) < 1l VA lsupO((ogm)?) = O(vu(logn)?) — 0 as n — +oo.

Owing to (6.68), the partial sum (b) satisfies

n n—1
. . ~ iH(yk—lvé.k)l

v —VAW_) | SF c N T
;,M( AGK) A | k)l = AkZz;”)’ka 1+L(yk—1)| ¢

n—1

< C,C,V(HOw ) ) 7 (loghy,
k=1

where we used Inequality (6.71) in the second inequality.
Consequently the series Zkzl Vi (VL(yk) VL(yr-1) | S*) is (absolutely) con
vergent owing to Assumption (6.65).
Finally, one deals with term (c). First notice that

Vo1 = Fal < Vogt = + CA'Y,%_H'Yn = C,l\ max('y,%, Yokt = Vo)

for some real constant C; . One checks that the series (c) is also (absolutely) conver-
gent owing to the boundedness of VL, Assumption (6.65) and the upper-bound (6. 7

for S;. by
i

a8
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hen m, converges toward a finite limit m_. This induces that the sequence

my)n is bounded below since (s,), is non-negative. Now, we know from (6.70)

(5, + my) is also non-increasing, hence convergent in R, which in turn implies

the sequence (Sp)n=0 itself is convergent toward a finite limit. The same argu-
ents as in the regular stochastic case yield

L(yn) — L, asn— oo and Z%d)H(yn__}) < 400.
n>1

ne concludes, still like in the stochastic case, that (y) 18 bounded and eventuaily
onverges toward the unique zero of o, ie y..

b) is gbvious. o

Practitioner’s corner o The step assumption (6.65) includes all the step sequences
sfthe formy, = o, @€ (0, 1].Note thatassoonasg = 2, the condition -y, (log n)¢ —
0 is redundant (it follows from the convergence of the series on the right owing to

an Abel transform).

" One can replace the (slightly unrealistic) assumption on H (y«, .) by a more nat-
ural Lipschitz continuous assumption, provided one strengthens the step assump-

(6.65) into 1
Z’Yn =400, u(log n)n‘_ﬂ — 0

n>1

3" max (1 = w+1, 77) (o8 mn' " < +oo.

n>1

This is a strai%iltforward consequence of Proinov’s Theorem (Theorem 4.3), which ><

a\%wg r2l

. | mplies that .
' IS¥| < Clogm)n™ 1.

.
- Note that the above new assumptions are satisfied by the step sequences ¥, = o

B! - }I <p=l

o It is clear that the mean-reverting assumption on H is much more stringent in the
'r-.- ,_-QMC setting.
r '-?r Tt remains that theoretical spectrum of application of the above theorem is dra-
" matically more narrow than the original one. However, from a practical viewpoint,

 one observes on simulations a very satisfactory behavior of such quasi-stochastic
procedures, including the improvement of the rate of convergence with respect to the

~ regular MC implementation.

e

~ » Exercise. We assume now that the recursive procedure satisfied by the sequence
~ Owdnzo is given by

£
i Ir-

4
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The same reasoning as that carried out above shows that the first order term

t
o(x)o'(x) f W,dW, in (7.33) becomes
0

t
> a;(x)aj(x)/ Widw).
0

ij=1,2

t ;
In particular, when i # j, this term involves the two Lévy areas / W;d WS2 and
0 .

t
w2d W/, linearly combined with, a priori, different coefficients.

: If we return to the general setting of a d-dimensional diffusion driven by a
g-dimensional standard Brownian motion, with (differentiable) drift b : R? —» R4
and diffusion coefficient o = [oy;] : RY - M(d, q, R), elementary though tedious
computations lead us to define the (discrete time) Milstein scheme with step IrZ s
follows: :

_
Xl = X,

= e T - .
Ry = R+ b

1<i,j=q

omil ooty [ i j :
+o(XEYAW,, +Y_ oy0 (XEH[ (W = WidW],  (7.41)
7 .

k

=0,...,n—1,

where AWy = Wy, — Wi = \/%-Z,'C' 10 0(X) denotes the i-th column of
matrix o and, forevery i, je {1,...,4},

d d
Vi=('...,x)eR?, 08o;0;(x):= Q‘ﬁ(x)agj(x) eRY (142
Oxt

Remark. A more synthetic way to memorize this quantity is to note that it is
Jacobian matrix of the vector o; (x) applied to the vector 0 x).

The ability of simulating such a scheme entirely relies on the exact simulatio n
= 1 ]
rd

# S\, 8
*)( (W,in ‘Wri"_w“'wr%”wfé_uf," (W;r,ﬁ AW i =1 ;e])
k=1 o [

(:’\

-\ f .. .o

b

\

\ /

i.e. of identical copies of the qz-dimensionéiigandom yector
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\ 2 j"‘_‘- g

7.6.1 Main Results for & f(X,): the Talay-Tubaro and
Bally-Talay Theorems

We adopt the notations of the former Sect.7.1, except that we still consider, fo
convenience, an autonomous version of the SDE, with initial condition x € R¢, '

dX* =b(XH)dt + o(X[)dW,, X5 =1x.

The notations (X¥)ej0,r7 and (Xr* )refo,7] TESpectively denote the diffusion and the
Euler scheme of the diffusion with step —i— of the diffusion starting at x at time O (th
superscript " will often be dropped). 2
The first result is the simplest result on the weak error, obtained under less stringent.
assumptions on b and . 1

Theorem 7.7 (see [270]) Assume b and o are four times continuously differenriab
onR? with bounded existing partial derivatives (this implies that b and o are Lipschitz
continuous). Assume f : R? — Ris fourtimes differentiable with polynomial gro vth
as well as its existing partial derivatives. Then, for every x € R4,

Ef(X))-E f()_(;”x) =0 (;11-) as n— +oo. (7.44)

Proof (partial). Assume d = 1 for notational convenience. We also assume
b =0, o is bounded and f has bounded first four derivatives, for simplicity.
diffusion (X})s»0.xeR 1S @ homogeneous Markov process with transition semi-gi
(P)rs0 (see e.g. [162, 251] among other references) reading on Borel test functions
g (i.e. bounded or non-negative) :

Pg(x):=Eg(X]), t >0, xeR.
On the other hand, the Euler scheme with step % starting at x € R, denote@

X * o<k <n» 18 & discrete time homogeneous Markov chain with transition rea
on Borel test functions g !

Pg(x)= ]Eg(x + o(x)\/; z> . ZENO; .

To be more precise, this means for the diffusion process that, for any
function g, 3

Vs, 120, Pg(x)=E(gX;)|X; =x) =Eg(X{)




| Bias Reduction by Richardson-Romberg Extrapolanon (First Approach)

Browni an Increm

Rngkardsan—ﬂo /f;ﬁ?ﬂxﬂ‘apola}ionw

~variance decomposition of the quadratic error in a Monte Carlo simulation

et V be a vector space of continuous functions with linear growth satisfying (£,) (the
of non-continuous functions is investigated in [225]). Let f € V. For notational
enience, in view of what follows, we set W = W and X = X (including
= X e L*(Q, A, P) throughout this section). A regular Monte Carlo simulation
d on M independent copies (X Mym, m =1,..., M, of the Euler scheme X £
step {— induces the following global (squared) quadratic error

”IE F&X) -+ Z £ <X“>>’") = (E f(X,) ~ E f(XD))°

m=1

M
+EFERD) ~ = T F(EDY)
m=1

2

ey, Var(fXD) 3
_(;) T+ 0™, (7148)

II The above formula is the bias-variance decomposition of the approximation error
of the Monte Carlo estimator. The resulting quadratic error bound (7.48) emphasizes
this estimator does not take full advantage of the above expansion (£, ).

Richardson-Romberg extrapolation

take advantage of the expansion, we will perform a Richardson-Romberg extrap-
olation. In this framework (miginal]y introduced in the seminal paper [270]), one
considers the strong solution X @ ofa* copy > of Eq. (7.1), driven by a second Brow-
pian motion W(Z) and starting from X (independent of W with the same distri-
ution as X_) both defined on the same probability space (2, .A, P) on which W®
and X, ((,1) are defined. One may always consider such a Brownian motion by enlarging
the probability space 2 if necessary.
- Then we consider the Euler scheme w1th a twice smaller step -, denoted by X@,
associated to X, i.e. starting from X with Brownian increments built from W®,
 We assume from now on that (&,) (as defined in (7.47)) holds for f to get more
. remse estimates but the principle would work with a function simply satisfying
{ ,). Then combining the two time discretization error expansions related to X W
“and X, respectively, we get

Ef(X,) = EQ2fX®) - F&XD)) + 52 + 0.

4 Then, the new global (squared) quadratic error becomes
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Practitioner’s corner

‘om a practical viewpoint, one first simulates an Euler scheme with step i% using

white Gaussian noise (Z ,52)),21, then one simulates the Gaussian white noise Z
“the Euler scheme with step % by setting

2) )
O k. SR
k= s b

V2

umerical illustration. We wish to illustrate the efficiency of the Richardson—
omberg (RR) extrapolation in a somewhat extreme situation where the time dis-
etization induces an important bias. To this end, we consider the Euler scheme of
¢ Black—Scholes SDE

dX, = X, (rdt + odW,)

ith the following values for the parameters
Xo=100, r =0.15, ¢ =10, T = 1.

ote that such a volatility o = 100% per year is equivalent to a 4 year maturity
ith volatility 50% (or 16 years with volatility 25%). A high interest rate is chosen
cordingly. We consider the Euler scheme of this SDE with step A = %, namely

ka+1 =)—(,k(1+rh+a«/—ﬁzk+,), X():Xo,

here &, = kh,k =0, ..., n and (Zy)1<4<, is a Gaussian white noise. We purpose-
lly choose a coarse discretization step n = 10 so that & = -115. One should keep in
ind that, in spite of its virtues in terms of closed forms, both coefficients of the
lack—Scholes SDE have linear growth so that it is quite a demanding benchmark,
pecially when the discretization step is coarse. We want to price a vanilla Call
stion with strike K = 100, i.e. to compute

Co = e"/’/IE X, -~ K)4 fp

sing a crude Monte Carlo simulation and an RR extrapolation with consistent Brow- |
an increments as described in the above practitioner’s corner. The Black-Scholes
ference premium is CZS = 42.9571 (see Sect.12.2). To equalize the complex-
7 of the crude simulation and its RR extrapolated counterpart, we use M sample
whs, M = 2% k =14, ...,2% for the RR-extrapolated simulation (2!# ~ 32000
d 2%6 =~ 67000 000) and 3M for the crude Monte Carlo simulation. Figure 7.1
;picts the obtained results. The simulation is large enough so that, at its end, the
sserved error is approximately representative of the residual bias. The blue line
rude M C ') shows the magnitude of the theoretical bias (close to 1.5) for such a coarse
sp whereas the red line highlights the improvement brought by the Richardson—
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T Reference Price
— Crude Monte Carlo (Euler based)
_ Richardson-Rombergd Extrapolation (Euler

44

435

43

Estimated premium

18 20 22 24
=13,... 26

14 16

Simulation complexity 3 M with M= 2 LI A

Fig.7.1 CALL OPTION IN A B-$ MODEL PRICED BY AN EULER SCHEME. o =1.00, r =0.15%
T = 1.K = Xo = 100. Steph = 1/10(n = 10). Black line: reference price; Red line: (Consistent
Richardson-Romberg extrapolation of the Buler scheme of size M; Blue line: Crude Monte Carlo
simulation of size 3 M of the Euler scheme (equivalent complexity) 4

.

Romberg extrapolation: the residual bias is approximately equal to 0.07, L.e. the bi _'

is divided by more than 20.

» Exercises. 1. Let X, Y € LY, A P).
(@) Show that

|lcov(X, )| < 0(X)o(¥) and o(X +Y) <aX)+o)

where o(X) = +/Var(X) = X — EX||, denotes the standard-deviation of X. .
(b) Show that \a(X) — a(Y;Xﬁ o(X — Y)and, for every re R, (A X) = |Alo(X)

2. Let X and Y € L2(2, A, IP) have the same distribution. ;

(@) Show that |o(X) — (V)| £ (X = T)- Deduce that, for every o€ (—00, 011

{1, +o0),
Var(aX + (1 — @)Y) = Var(X). q

(b) Deduce that consistent Brownian increments produce the Richardson-Ro 5.§_f_}-
meta-scheme with the lowest asymptotically variance as 7 goes to infinity. E
3. (R Practitioner’s cOrner.. ). (@) Inthe above numerical illustration, carry onte
the Richardson-Romberg extrapolation based on Euler schemes versus crude Mo
. . . . . Ll
Carlo simulation with steps ,T—l and 2—7;1" n =5, 10, 20, 50, respectively with




:Further Proofs and Results

£.0) < 1Xoll, + C fo (1 + | Xgnry I )

t 3
+Chbéc <ﬁ + UO H]XS,\Tleugds]

t
~ I Xoll, + C fo (1 + [ Xon )

e (J?+ [fo | Xenm uj}dsﬁ .

“ Consequently, the function f, satisfies

i

t t 3
i =cC ( /0 fu(s)ds +C70° ( fo f3<s>ds> ) + 9@,

BDG ) 1\0!"""‘&‘?(4&-

p(t) = |1 Xoll, + C{t + Cyp V1

. (“A la Gronwall” Lemma). " Lf Dﬂifr\ :: £ %3\@8 ¥ C—
TN

wma73 (A la Gronwall’ Lemma) Let f:[0,T71—>R, and let
[0, T] — R be two non-negative non-decreasing functions satisfying

t t :
viel[0,T], f()= A/ f(s)ds + B (/ fZ(S)dS) + (@),
0 0
ere A, B are two positive real constants. Then
Vie[0,T), (B < 2P0,

roof. First, it follows from the elementary inequality /X'y < %(% + By), X,y >
0, B > 0, that

~ t 3 t 3 t
([ rows) (ro ros) < £2+3 [ roas
§ 0 0 2B 2Jo
gging this into the original inequality yields
t
f s @a+8Y [ fods+200.
0

ronwall’s Lemma 7.2 finally yields the announced result.
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1
t B t - 3
f(t)s/o ||b(s,xs)—b(g,xi)updsdrcgﬁf; UO ||a(s,Xs)—a@,X£)||2ds]

1
' _ t . 3
=/0 ub(s,xs)—b(g,xs_)npdwcf"gc fona(s,Xs)—a(g,Xi)“zdsg

14
2

t _ [ rt -
5[0 I, Xs) = bs, X ds + €7 0° L/O oG, X5) = a(s, Xi)”zl],%ds]
1
t - t - 2
=/O b6, Xs) — b, X£)||pds+cg§G UO o, Xs) — o(s, XQlI“ids] .

Let us temporarily set 7X = (1 || sup;ero, 1Xs1|)2: 7 € [0, T]. Using Assumptic n

(HP) (see (7.14)) and the Minkowski Inequality on (L*([0, T1, d1), | . | L2n) spaces,
we get k

t -
f) < Coor ( fo (1 +1Xslp) s — 9P + | Xs — X, )ds
t _ 1
+C3 ¢ [ /0 (A + 1 Xslp)s — 9P + | Xs — Xs_Hp)zds]
t -
< Cpo,T (j(; ((1 + 1 Xslip)Gs —Q)ﬁ + “Xs - Xillp)ds
BDG t 2,3 % t - % '::_.
/\ ( +Cip0 | (] o X5l ,) [ fo ks =9 ds] + [ fo x5 - x£||pds]

t t .
< Cha.r ( [ =5+ [ 1%~ %l o5

1 1
t 3 t - 2
+c5Pe {T,X UO (s—g)zﬁds] +UO ||Xs—X£||ids] ]) F

Now, using that 0 < s — 5 < —Z;— we obtain

T g t _
(&) < Chor ((1+C£§G) (;) ™+ f I1Xs — Xllp ds
0

, i N
+ CﬁlgG [,/0 x5 — X£||idsj| ),
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(Representing and estimating E f(X,) —E f (X )). It follows from the
n-Kac formula (7.68) and the terminal condition u (7', .) = f that

EfX,) = / E f(X*)Py, (dx) = f 1(0, x)Pyx, (dx) = Ex(0, Xo)
b R R
E f(X") = Eu(T, X"). It follows that

E (f(X%) = f(X,)) =E ((T, X) - u(0, X))

n

IE(u(tk,X ) —u(te—, X fee 1))

=

=1

er to evaluate the increment u(f,, X 1) — ulte—1, Xp_ l) we apply 1t6’s formula
e Sect. 12.8) between #,_; and #; to the function ¥ and use that the Euler scheme
isfies the pseudo-SDE with “frozen” coefficients

X} = b(t, X})dt + (¢, X})dW,.

o ng so, we obtain

™ - tk - tk - -—
ulty, XZ) —~ U(tp—t, XZH) = / Oru(s, X3 )ds +/ osu(s, X)dX?
f 1
T

1 - -
+= axxM(S, X?)d(Xn>s
2 Te—1

73 - ~ -
:/ (8 + L)u(s, s, X, X2)ds
1 :
k3 T _

+ [ os Xpou(s, KW,

Tk~1

is the “frozen” infinitesimal generator defined on functions

L .: Lg(s,s,x,x) = b(s, x)B.g(s, x) + %oz(g, X)0r:9(s, x)

|

4 dB,g(s $.%,x) = 0,g(s, x).

: ~ The bracket process of the local martingale M, = / duls, X No(s. X " AW is
f ven for every t € [0, T] by

T
o), = [ (Bt 2o, K.
] :
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We briefly reproduce the proof for the reader’s convenience. If z = 0, the e

obvious since W, L. —W,. If z>0, one introduces the hitting
=inf{s > 0: W = z} of [z, +00) by W (convention inf & = +o0). Th:
(]-' W) -stopping time since [z, +00) is a closed set and W is a continuous pt

(this uses that z > 0). Furthermore, 7 is a.s. finite since h_]rp W, =+o00a.s.C
t—+00

quently, still by continuity of its paths, W, = za.s. and W, — W-, is indepe
of F W Asa consequence, for every z > max(y, 0), using that Wr, = z on the
{r, < T},

IP’( sup W; >z, WTS)')=]P’(TzE - W, <y—2z)
t€[0,T]
=P <T,-(W,-W,)<y~7z)
=P(r, <T, W, 22z~ y)
=P(W, 22z —y)

since 2z — y > z. Consequently, one may write for every z > max(y, 0),

S

4

+o0 —_
(4

P( sup W, >z, W. < =/ h d with A =
Qm%r » <) AREIGL @)= =

Hence, since the involved functions are differentiable one has

(POW, 2 22— (3 + 1) — P(OW, = 22 -

IP’( sup W, >z |W, —y) = lim
t€[0, 7] 70 (IP’(W, =y+n)-—PW, < )’))/77

hT(2Z - y) N _2z-y) j
=——————— =g T =g 4 ~
7 () L s
y g T
> €

Corollary 8.1 Let A > Oand letx, ye R IfYW'T denotes the standard Brow
bridge of W between 0 and T, then for every z € R,

(3 (o omnt ) <)

T—exp(— 7@ —x)(- y)) if z > max(x, y), :

0 if z< max(x, y).
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First note that

! t
O - F AT =0+ (y/_ N th,r)

T
x'=x/A Y = -2/

en, the result follows by the previous proposition, using that for any real-valued
lom variable £, every a:€ R and every 8 € (0, +00),

i

7~ 7—o
| P(a+[3552)—P(£5—B——)—1-—P( > ) R
xercise, Show using —W £ W that
. _ant W.T
P(tel[%,fr] (x 0 JC)T e ) = Z)

exp (~ 75 (& — x)(z ~ y)) if 2 < min(x, y),

1 if z > min(x, y).

2.3 Application to Lookback Style Path-Dependent Options

this section, we focus on Lookback style options (including general barrier
ptions), i.e. exotic options related to payoffs of the form k, := (X, sup,¢;o 7 Xr).
e want to compute an approximation of e ﬁh using a Monte Carlo sim-
ation based on the continuous time Euler scheme, ie. we want to compute

T

i

7E f (X ", Sup,cro.7) X1*). We first note, owing to the chaining rule for conditional !“"‘"

2 ectatlon that
; o

E f(X", Sup X)) =E[E(fX", Sup X; XX e=0,...,m)].

Ve derive from Proposition 8.2 that

E (f(X2, ) X")IX,Z_xe,£=0,...,n)=f(xn, max MYE )

O<k<n—1 Xie s Xk+1

ere, owing to Proposition 8.3,

¥ )
M= swp (x40 —x)+ o6 0x" T
Y 1ef0,T/n] T

Ked
e
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are independent. This can also be interpreted as the random variables M X,

0,...,n — 1, being conditionally independent given X o k=0,...,n. Fo
Corollary 8.1, the distribution function G%% of M} is given by

k) =11~ __.__&1_..__ = - )] ‘
G* v(z)—[l exp( Ta2(t;g,x)(z x)(z—y) l{zzm(x,y)}, z

Then, the inverse distribution simulation rule (see Proposition 1.1) yields th

sup (x + —(y ~ 0 +o, orr? T’”) L @', UZu

1€[0,7/n] 5

=

G251 -1,

where we used that U & 1 — U. To determine (G™ *)7! (at 1 — u), itremains

the equation G}’ ‘,(z) = 1 — u under the constraint z > max{x, ), i.e.

1 —exp (—?F%Z?,—x)(z —x)z y)) =1—u, z2>max(x,y)

or, equivalently,
2 T 2740
- +z+xy+ i;a (7, x)logu) =0, z= max(x, y).

The above equation has two solutions, the solution below satisfying the c
Consequently,

(G711 - u) = (x +y 4/ (x — )2 — 2To2(1). x) log(u)/n
Finally, .

v vh — . -1 r
% ﬁ(gg;}]x,ux,ﬁxk.k_o,...,n})_ (,max @270

where (Uy)1<k<n are i.i.d. and uniformly distributed random variables ove
interval.

Pseudo-code for Lookback style options

We assume for the sake of simplicity that the interest rate r is 0. By ]
style options we mean the class of options whose payoff involve possibly
and the maximum of (X,) over [0, T}, i.e.
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]Ef()?;’,r;[gl;])z;').

gular Call on maximum is obtained by setting f (x, y) = (y — K),., the (maxi-
Lookback option by setting f (x, y) = y — x and the (maximum) partial look-
A Y)Y = (- M) A> L

- want to compute a Monte Carlo approximation of E f (X", sup,.( 7 X7)
the continuous Euler scheme. We reproduce below a pseudo-scnpt to 111ustrate
i to use the above result on the conditional distribution of the maximum of the
whian bridge.

t S =0.
m=1toM
o Simulate a path of the discrete time Euler scheme and set x; := X% ('") k=

j.. .., n. ‘

o Simulate £ := maxgsyzy 1 (Gl 50, (1= U™), where (Uk(m))lsksﬂ are
-~ id.d. with ([0, 1])-distribution.

- » Compute f(X™™, Em),

e Compute S, := f(X g8) 457

. (m)
 Bventually,

~

E f(X2, sup X7)~
1€(0,7]

X2

arge enough M (3).
Once one can simulate sup, g 1 X" (and its minimum, see exercise below), it
asy to price by simulation the exotic options mentioned in the former section
ookback, options on maximum) but also the barrier options, since one can decide
or not the continuous Buler scheme strikes a barrier (up or down). The
nian bridge is also involved in the methods designed for pricing Asian options.

4 xerclse. (a) Show that the distribution of the infimum of the Brownian bridge
4 y)re[o 77 starting at 0 and arriving at y at time T is given by

exp (—%z(z — y)) if z < min(y,0),

IP( inf YWT‘ _z) =
te(0,T]

1 if z > min(y, 0).

..Of course one needs to compute the empirical variance (approximately) given by

L i my2 _ [ 1 f: (m) i
=37 fEty —(— f(E'"))
Mm:l Mm:l

in order to design a confidence interval, without which the method is simply nonsense....
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(b) Derive a formula similar to (8.7) for the conditional distribution of the mi
of the continuous Euler scheme using now the inverse distribution functions

(F;‘,‘)’,‘)“l(u) = % (x +y- \/(x -y =2 Ta%t,?,x)log(u)/n) , ue ((
SN RY,

. . t B ‘ W.T/n
of the random variable te[g]Tf/n] (x + % (y—x)+ o(;{c)Y, )

Warning! The above method is not appropriate for simulating the joint distr
of the (n + 3)-tuple (X7, k =0, ..., n, infieo.71 X7, SUp;er0,77 X7)-

8.2.4 Application to Regular Barrier Options: Variance
Reduction by Pre-conditioning

By regular barrier options we mean barrier options having a constant lev
barrier. An up-and-out Call is a typical example of such options with a payof
by

h, = X; - K)+1{SUP:510.7'1 Xi<L)

where K denotes the strike price of the option and L (L > K ) its barrier.

In practice, the “Call” part is activated at T only if the process (X 1) hits the’
L < K between O and T In fact, as far as simulation is concerned, this “Call pa
be replaced by any Borel function f such that both f(Xr)and f(X 7 are inte
(this is always true if f has polynomial growth owing to Proposition 7.2)
that these so-called barrier options are in fact a sub-class of generalized may
Lookback options having the specificity that the maximum only shows up t
an indicator function.

Then, one may derive a general weighted formula for E ( fX 9l (SUPrernzy 3

which is an approximation of E ( f (X)L sup o 1y Xi<L1) -

L.

Proposition 8.4 (Up-and-Out Call option)

n—1 2 (R, —LIXE L)

_ _ = ) T T an
]E(f(Xﬁ)l{ T )—(?51‘}) =K [f(X:)l{maxoskgn X <L) H (1 —e e Xh

Proof of Equation (8.8). This formula is a typical application of pre-conditi
described in Sect. 3.4. We start from the chaining rule for conditional expectal

E (f(}zg)l{supre[o.rl X;'iL}) =E [E(f(XZ)I{S“Pm[O,T] Xr=i) IX;:(’ k=0,...,n
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we use the conditional independence of the bridges of the genuine Euler

: given the values X Z, k=0,...,n, established in Proposition 8.2. It fol-
that

= X T
=E (f(XT)kIl G in,. <L))
(X’,’;c L)X l—L)

n—1 2 %
- n TT TR
*E[f(xr)l{maxoskgn)??kSL} (1 —e k% )J >

k=0
hermore, we know that the random varigble in the right-

a lower variance since it is a conditional expectation of the r
eft-hand side, namely

n—1 2 (J?,’/" —L)(ir,’; =2
- *‘ﬁ'n—ﬁ'};—-
Var | f(X™")1 . [J(1-e " 7am
f( T) {maxoS/,S,, X,ksL}

=< Var (f(X:)I{SUPfEm.n X,"SL}) .

ercises. 1. Down-and-Out option. Show likewise that for every Borel function
'R, Pg, ),

-
7 > ‘ﬂ 1o
: =t h
ey (}_{,’;(—L)(}_(}; Ly ;
vh - v TT k=0 Ty e /
;z(f(Xr RV }) =E (f(X,)l [ e By 1& .

hand side always
andom variable in

=

\\_,/"‘“‘\,/—- " 9)
i that the expression in the second expectation has a lower variance, \
i # L
Extend the above results to barriers of the form ~m o T
3 7‘]‘/9‘6':-' e |
. at+b LRR =
L#):=e"" 4 beR. s

emark Formulas like (8.8) and

(8.9) can be used to produce quantization-based
ibature formulas (see [260]).

5 Asian Style Options

The family of Asian options is related to payoffs of the form
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owing to Kronecker’s Lemma (see Lemma 12.1 applied with a, = 12,0, and b,
g

\.-’"J'?f
1//70).
(c) First we decompose I, ., into 1
n = n 7I
Z; E Z 1
Irpn = ; 'ﬂ__il{isr} + ,Z; T[l{iST}, |

where the random variables Z- = Z; — E Z; are independent and centered. ;
Then, using that 7 and (Z, Jn>1 are independent, we obtain for every n, m > |,

~ 2 =~ ~
ntm n+m 2 >
Z; E Z: EZ Z;
E ~—1y = —t 42 —
Z T {i<r} Z G Z P vy
i=n+1 i=n+1 i n+l<i<j<n+m Y
n+m
Z Var(Z;)
i=n+1 i
sinceIEZi~j =EZE Zj = 0if i # j. Hence, for ail integers n, m > 1,
1
n+m Zi nt-m Var(Z,-) 2
2 Tz < 3
I i . T
i=n+1 B i=n-+1
TAR .‘
which implies, under the assumption an] 1‘%‘-)- < 400, that the series Z
i=l
n A

Z; . .
E —’-1{,-5T} is a Cauchy sequence hence convergent in the complete
— T
i=1 ! , Z ..
L), ). ll,). Its limit is necessarily /, = _S_ = since that is its a.s. limit,
: Gt i
i=]

On the other hand, as

2

izl

[E Z;|

Til{isr}

EZ| — < IEZ]
g-———m ﬁ—gﬁ < +o00,

=
2

n T

EZ :

one deduces that Z — 1<y is convergent in L2(P). Its limit is clearly Z

=1 M =

Finally, I, — I, in L2(?) (and IP-a.s.) and the estimate of Var(l.)isa .=5_f{

ward consequence of Minkowski’s Inequality. '
Unbiased Multilevel estimator

The resulting unbiased multilevel estimator reads, for every integer M > __;:.
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7R 1 my L Mz
TRML . Z N " = — bt N 9.109
py M; = (9.109)

m=1 i=1

e (19);51 and (Zi(i))i21 .i > 1, are independent sequences, distributed as 7 and
-1, Tespectively.

il .on 9.6 (Randomized Multilevel estimator) The unbiased multilevel esti-
(9.109) associated to the random variables (Z;)ien+ and the random time T
dled a Randomized Multilevel estimator and will be denoted in short by RML

| HOW ON.

Jowever, for a practical implementation, we need to specify the random time
o that the estimator has both a finite mean complexity and a finite variance or,
valently, a finite 1.2-norm and such a choice is closely connected to the balance
veen the rate of decay of the variances of the random variables Z; and the growth
heir computational complexity. This is the purpose of the following section,
re we will briefly investigate a geometric setting close to that of the multilevel
ework with geometric refiners. -
titioner’s corner FA

\view of practical implementation, we make the following “geometric” assumptions
1 the complexity and variance (which are consistent with a multilevel approach,
later) and specify a distribution for 7 accordingly. See the exercise in the next
sction for an analysis of an alternative non-geometric framework.

# Distribution of T: we assume 4 priori that 7 C5 G*(p), pe (0, 1), so that p, =
pl—pytandm,=(1—-pinz1
This choice is motivated by the assumptions below.

Complexity. The complexity of simulating Z, is of the form
k(Z,) = &N", n> 1.

Then, the mean complexity of the estimator I, is clearly

R =k Y pal"™

'| n>1

- As a consequence this mean complexity is finite if and only if
(1-pN <1

. kpN
aﬁd k(1) = —i_:_(_l—p_—?_pw

© Variance. We make the assumption that there exists some 8 > 0 such that




Hz X

472 10 Back to Sensitivity Comput

This approach has already been introduced i
oped further on, in Sect.10.2, mainly dev
diffusions.

n Chap. 2 and will be more deeply de
oted to the tangent process method

Otherwise, when g—f(x, z) does not exist or cannot be computed easily (whe
F can), a natural idea is to introduce a stochastic finite difference approach. 0

methods based on the introduction of an appropriate weight will be introduced in
last two sections of this chapter.

10.1 Finite Difference Method(s)

!
The finite difference method is in some way the most elementary and natural meth

for computing sensitivity parameters, known as Greeks when dealing with financ
derivatives, although it is an approximate method in its standard form. This 1:?
known in financial Engineering as the “Bump Method” or “Shock Method™, It can|
described in a very general setting which corresponds to its wide field of applicatis
Finite difference methods were been originally investigated in [1 17, 119, 194],

10.1.1 The Constant Step Approach

We consider the framework described in the introduction. We will distinguis
cases: in the first one — called the “regular setting” — the function x > F (x, Z
is “not far” from being pathwise differentiable whereas in the second one - ¢4l
the “singular setting” — f remains smooth but F becomes “singular”,

The regular setting

Proposition 10.1 Let x e R. Assume that F satisfies the Jollowing local
quadratic Lipschitz continuous assumption at x

380 >0, Ve (x —eo, x +20), |F(£, 2) - F(', 2) |, <c,, 14—z
aclt 2 x!
Assume the function I is twice differentiable with a Lipschitz continuou,
derivative on (x — €0, X + €p). Let (Zi)i=1 be a sequence of L.id. random
with the same distribution as 7. Then Joreveryee (0, ey), the mean quadra
or Root Mean Square Error (RMSE) satisfies
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sure that the statistical error becomes smaller. However, it is of course useless

arry on the simulation too far since the bias error is not impacted. Note that
i specification of the size M of the simulation breaks the recursive feature of the
or. Another way to use such an error bound is to keep in mind that, in order

e the error by a factor of 2, we need to reduce € and increase M as follows:

ewe/v2 and M~ 4M.

i g (what should never be done)! Imagine that we are using two independent
les (Zi)i>1 and (Zk)k>1 tosimulate copies F(x — e, Z)and F(x + ¢, Z). Then,

1 < Fx e Zy)— F(x —e, Zy)
Var (A—l- Z 2

k=1

41; s (Var(Fx + 2, 2)) + Var(FGx — &, 2))

_ Var(F(x, 2))
T 2Mer

_w that the asymptotic variance of the estimator of £ +€),;5 &= explodesase — 0
d the resulting quadratic error reads approximately

1" 52_ O'(F(X,Z))
[f ]Lip 2 + GW 4

ere o(F(x, Z)) = «/Var(F(x, Z)) is the standard deviation of F (x, Z). Thisleads
o consider the unrealistic constraint M (e) & €79 to keep the balance between the

s term and the variance term,; or equivalently to switch e ~ ¢/ V2and M ~» 8 M
) teduce the error by a factor of 2.

xamples (Greeks computation). 1. Sensitivity in a Black—Scholes model. Vanilla
offs viewed as functions of a normal distribution correspond to functions F of

£
it 671 h(zee= P 26 R, e (0, 400), [

i ere i : R — R is a Borel function with linear growth. If 4 is Lipschitz continu-
o2
IF(x, Z) = F(x', 2)| < [Rluiplx — x|e™ 7 T+oVT2
0 that elementary computations show, using that Z N ©O; D),

IF(x. Z) — F&'s 2, < [hluiple — x'1e %7
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The regularity of f follows from the following easy change of variable

— / _2 dZ . j oo __ Uoj /) +uT)? a
(x)=e’/h x etTHovTz) g 2——=ef,~/ h(y)e™ it ——
f / R ( ) 2T 0 2

yowv

where p=r — % This change of variable makes the integral appear as a’
convolution on (0, +00) (*) with similar regularizing effects as the standar
volution on the whole real line. Under the appropriate growth assumption (
function & (say polynomial growth), one shows from the above identity th
function f is in fact infinitely differentiable over (0, +00). In particular, it is
differentiable with Lipschitz continuous second derivative over any compact i
included in (0, 4+-00).

2. Diffusion model with Lipschitz continuous coefficients. Let X* = (X7,
denote the Brownian diffusion solution of the SDE

dX, = b(X)dt + HX)dW;, Xo==x,

where b and 9 are locally Lipschitz continuous functions (on the real line)»
most linear growth (which implies the existence and uniqueness of a strong s(
(X¥)rero,1) starting from Xg = x). In such a case, one should instead write

F(x,w) = h(X}(w)).

The Lipschitz continuity of the flow of the above SDE (see Theorem7.10)

that
IFCx, )= F(', I, < Coolhluplx — x')eT

where C y is a positive constant only depending on the Lipschitz continuou
ficients of b and 9. In fact, this also holds for multi-dimensional diffusion pt«
and for path-dependent functionals.

The regularity of the function f is aless straightforward question. But the
is positive in two situations: either h, b and o are regular enough to apply res
the flow of the SDE which allows pathwise differentiation of x — F(x, w) (s
orem 10.1 further on in Sect. 10.2.2) or ¥ satisfies a uniform ellipticity assu
¥ >gg > 0.

3. Euler scheme of a Brownian diffusion model with Lipschitz continuous
cients. The same holds for the Euler scheme. Furthermore, Assumption (10.]
uniformly with respect to n if -ﬁ- is the step size of the Euler scheme.

4. F can also be a functional of the whole path of a diffusion, provided F is Li
continuous with respect to the sup-norm over [0, T1.

4The convolution on (0, -~c0) is defined between two non-negative functions f and g on

+00
by £ © g(x) =f0 fx/y)g(»dy.
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Proposition 10.2 Ler x € R. Assume that F satisfies in a x open neighbe 3
(x — €0, x + &), g9 > 0, of x the following local mean quadratic 6-Hilder assy np

tion, 0 € (0, 1), at x: there exists a positive real constant (O

VfJ”e@~smx+ew,”F@ﬂZ%—F@ﬂszscmmﬂf~xﬂ¢g

Assume the function f is twice differentiable with a Lipschitz continuous se
derivative on (x — gy, x + €0). Let (Zy)>1 be a sequence of i.i.d. random ve

with the same distribution as 7, Then, for every e € (0, &), the RMSE satisfies

e\? C}’;ole
< ‘/([f//]Lip T):) + '_-‘(25)2(1_9')‘14_.

CHal‘F,Z (I

, 1 ¥ Fx+e Zy)~ Fx —¢, Zy)
Foo- g3 Ferety

k=1

2
H €
=V et oo

This variance of the finite difference estimator explodes as &€ — 0 as s00 n as
8 < 1. As a consequence, in such a framework, to divide the quadratic error by

factor of 2, we need to switch
B
1,

A dual point of view in this singular case is to (roughly) optimize the para
€ = &(M), given a simulation size of M in order to minimize the quadratic ¢
at least its natural upper-bounds. Such an optimization performed on ( 10.6) yiel

e~¢e/v/2 and Mw21“9><4MI: o?,g'

1

2€CHU’,FZ o ‘
Eopt = | — == '
pt [f//]upm ,

which of course depends on M so that it breaks the recursiveness of the estimat
Moreover, its sensitivity to [ £ L, (and to C,,, . ) makes its use rather unreali'
practice.

The resulting rate of decay of the quadratic error is O (M —§—:§)' This rate show

that when @ € (0, 1), the lack of L2-regularity of x = F(x, Z) slows down th
vergence of the finite difference method by contrast with the Lipschitz conti
case where the standard rate of convergence of the Monte Carlo method is pres

options). #
Let us consider, still in the standard risk neutral Black-Scholes model, a digi
Call option with strike price X > 0 defined by its payoff

h(€) = liesgy

e e

e
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dset F(x,2) = e‘fh (x e(”zzz)”"ﬁz) . ze R, x € (0, +00) (r denotes thecon- Iqﬂ

.'-.interest rate as usual). We know that the premium of this option is given for
ry initial price x > 0 of the underlying risky asset by ;
T

f() =EF(x,Z) with Z L N®©;1).

Setp=r— -‘221 1t is clear since Z £ _7 that

fx)= e"i’lIP’(x e THoVTZ > K)
ez 2 B AT

(sl 4T
oNT ’

where ©, denotes the c.d.f. of the N(0; 1) distribution. Hence the function f is
finitely differentiable on (0, +00).
" On the other hand, still using Z ] —7, forevery x,x' € R,

=et Lol

i

JFe ) - F&!, 2|
3 i

1 —1
log(x/K )+ log(x! /K 3T’
{ZZ”"L;FL} {ZZ—'LTJT_L }
2

2

s e—-2rTE

i -1
10g(x/K)+ET tog(x/ /K)+pT
{ZS‘ avT } {ZS 077‘ }

oT oNT

¥ o (d)o(log(max(x, xN/K)+ ,uT) _ cbo(log(min(x, x/K) +uT ))

~ Using that @ is bounded by Ko = 7%;, we derive that

-2rT
|F.2) - F&', D] < Wﬁ llogx —logx'| .

C onsequently for every interval I C (0, +00) bounded away from O, there exists a

al constant C..7,r > 0 such that
vx, xel, |F(x,2)—F& D, £ Croravlx - x'l,

._.e. the functional F is %—H'c‘;lder in L2(P) and the above proposition applies.
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» Exercises. 1. Prove the above Proposition 10.2.
2. Digital option. (a) Consider in the risk neutral Black—Scholes model a di
option defined by its payoff

h(&) = liexky

and set F(x,z) = e~ (x e"~5)T+ovTz , Z€R, xe (0, +o0) ( is a con
interest rate as usual). We still consider the computation of f(x) =E F(x, Z) w
Z £ N©; D).

Verify on a numerical simulation that the variance of the finite difference est

tor introduced in Proposition 10.1 explodes as & — 0 at the rate expected fron
preceding computations.

() Derive from the preceding a way to “synchronize” the step ¢ and the size 1
the simulation,

10.1.2 A Recursive Approach: Finite Difference
with Decreasing Step

In the former finite difference method with constant step, the bias never fades. Coi
quently, increasing the accuracy of the sensitivity computation, it has to be resm
from the beginning with a new &. In fact, it is €asy to propose a recursive versio
the above finite difference procedure by considering some variable steps € whicl
to 0. This can be seen as an application of the Kiefer-Wolfowitz principle origin
developed for Stochastic Approximation purposes.

We will focus on the “regular setting” (F Lipschitz continuous in L2) in
section, the singular setting is proposed as an exercise. Let (ex)k>1 be a sequenci
positive real numbers decreasing to 0. With the notations and the assumptions of
former section, consider the estimator

— 1 A F(x + €0, Zi) ~ F(x — &, Zy)
'), = I 2 '

i
28k (

k=1

It can be computed in a recursive way since

e — 1 F(x +FEeMtt Zy+1) — F(x —epmy1, Zyy1)  ——
! i ! — i
P = F, + ( — P&

Elementary computations show that the mean squared error satisfies
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X7, «wl Y9y =
e notes that, for any s > {, X*=Xs' ', the first term Q—Fa%—l in the above

oduct is clearly equal to DF(X)- (1.1 Y®) whereas the second term is the result
ormal differentiation of the SDE at time ¢ with respect to W, namely 9(X7).

interesting feature of this derivative in practice is that it satisfies the usual

jaining rules like
D,F*(X*) =2F(X*)D,F(X")

: .more generally
K DrCD(F(X"))=D<I>(F(Xx))D,F(Xx),

‘What is called Malliavin calculus is a way to extend this notion of differentiation
ore general functionals using some functional analysis arguments (closure of
rajors, etc) using, for example, the domain of the operator D F (see e.g. (16,

081).

get Bismut’s formula
k-Occone formula con-

the Bismut formula. Let X*, H,fandT be as in Sect. 10.4.1. We_ consider the

wo true martingales W al]t'wm ( X‘A':;

1 f_gaﬁe’f
'\
| F)dW,, te[0,T] A«f’ &)

: t . ]
=f H,dW; and N,=IEf(XJ;)+f E(f’(XT)Y}S,Y\
P Jo o ‘

nd perform a (stochastic) integration by parts. Owing to (10.17), we get, under
ppropriate integrality conditions,

T T T
IE(f(X;)/ Hdes)=0+IEf [...]dM,—HEf {...1dN;
0 0 0

T
+E( / E (/XY | F) 90 H: ds)
0
T
- / E(E (DY | F) 9K Hy ) ds
0

) ying to Fubini’s Theorem. Finally, using the characterization of conditional expec-
ation to get rid of the conditioning, we obtain

T T
E(f(x;‘)f HdeS) .—_f E(f’(XT)Y;” 19(X§)Hs> ds.
0 0

finally, a reverse application of Fubini’s Theorem and the identity Y}“) =] % leads

T T X
E(f(x;‘)f HdeS> :E(f’(X,.)YTf %&Hsdg,
0 4] s




12 Miscelle

i 30 31 132 33 (34 133 136 138 ]40 45
o(1)] 99865 .99904] 59031 [.99952|.99966 |.99976|.999841[.999928 | 999968 | 599997

12.2 Black-Scholes Formula(s) (To Compute Reference
Prices)

In a risk-neutral Black-Scholes model, the quoted price of a risky asset is a solutic
to the SDE dX; = X;(rdt + cdW,), Xo = x5 > 0, where r is the interest rate at
o > 0 is the volatility and W is a standard Brownian motion. 1t&’s formula (st
Sect. 12.8) yields that

Y

-2
X2 = x0TV W, £ N©; 1),

A vanilla (European) payoff of maturity 7 > 0 is of the form h, = p(X,)..
European option ¢ontract written on the payoff k7 is the right to recejve A,
the maturity T'. Its price — or premium - at time ¢ = 0 is given by e"/IE 1065
and, more generally at time ¢ € [0, T, it is given by ¢™"7E (p(X*)| X}°) =
e "TDE o(X7_,). In the case where p(x) = (x — K).. (call with strike price K
this premium at time # has a closed form given by

Call,(xo, K, R, 0, T) = Cally(xo, K, R, 0, T — 1),

where
Callg(xo, K., r, 0, 7) = x0®o(dy) — e " KDg(dy), T > 0, (12.1

with

P log (%) + (r + 923)7'
1= P

As for the put option written on the payoff 4, = (K — X°), the premium is

, dy=di—oT. (122

Put,(xo, K,r, 0, T) = Putg(xo, K, 7,0, T — 1),

where - i
Puty(x0, K, 7, 0, 7) = =" K ®o(—ds) — xo®o(~dy). (mg

The avatars of the regular Black—Scholes formulas can be obtained as follows:

o Stock without dividend (Black—Scholes): the risky asset is X.

o Stock with continuous yield X > O of dividends: the risky asset is e¥ X, and (
has to replace xo by e~ xq in the right-hand sides of (12.1), (12.2) and (12.3
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n
Q,(x,y) =1+ Z Lig<nlig<n
k=1

n ra Xr+1~1 Ys41— ~1

DI MM = mpmu,v:

r=0 s=0 u,=0 v;=0

roon

= szr+1ys+1 (" r+1 s-HJ + 77r.s> ?
r=0 s=0

where 75 € [0,1]. Owing to (12.8), (12.9) and the obvious fact that nx

R Xpr1Yst1 Vs+1
Z Z H_qu_l , we derive that for every (x,y)€ X1 2

O<r=<r 0gs=zn

r—1 rp Xrpr—lysu—1

l(D (x, }7)‘ ZZ Z Z Xr41Ys+1 ‘_ 11‘+1n s+1_\ - pzl‘+’11 s+1 + 7

r=0 s=0 u,=0 v;=0 P

€[—1,0]
< (n+ D@2+ D(pi— Dip2 =D

We conclude by noting that, on the one hand,r; + 1= L%%’%?J, i=12ar
the other hand,

n D;(§) < max ( sup la,,(x, y)l, nDIEH,n D:(gz)) )
(x,y)El0, 172
Finally, following the above lines — in a simpler way — one shows that
n DL < (i + D(pi — D, i = 1,2,

This completes the proof since (r; + D(pi — D = L, i = 1,2, and max(a, b}
for every a, be N*.

12.11 A Pitman-Yor Identity as a Benchmark

We aim at computing E cos(X 2), where X 2 denotes the second compone
! n  Clark-Cameron oscillator defined by (9. 10{) namely

x? =of (W! + ps)dW?, tel0,T].
0

Conditional on the process (Who<s<rr X % has a centered Gaussian distributi
stochastic variance
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8 +oo 2
E* [e;LB,ﬁ-%—(l—atCOthrﬂ)J ___/ ep.x+%(l—mcothm)e——§; _d_x_
) V2

1 +co

_ L
== ] exp(——E(x acothat—Z,ux))E.

Weseta = +/ocothat and b = w/a and we get

P
E* [euB,+—§tZ(1—(rtcom(or))J _ _l_e%z_ oo exp ( _ M)d_x _ f2 .
N i 2 N2r  aWt

Hence,

- b 2 ol
Ee¥i— [ 00 1 1 s 1 =5 (1- )
sinhot \/t /7 coth ot v/cosh ot

Since the right term of the above equality has no imaginary part, we obtained the
announced formula (9, 10%)

E cos(oX?) = ¢ —

_%(l_lmhm

al

Remark. Note that these computations are shortened when there is no drift term,

ie.
t
X/ =wl x? =a/ X;dw!,
]

Indeed, owing to the Cameron—Martin formula (see [251] p. 445),
Loz ”'%
E e~ Jo(WiYds _ (cosh «/20)

and the scaling property of the Brownian motion yields

sy? _gd e _22l rlognn A
Ee'™ =Ee™ThWds = F o= L0 — (cosh opy4 .

» Exercise. Prove in detail the identity (12.12).
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denote the Lévy area associated to (W', W2) at time 1. We admit that the character:

istic function of X reads 8] '
1

Jeoshu'

(see Formula (9.105) in Chap. 9 further on, applied here with 4 = 0, and Sect. 12.1]
of the Miscellany Chapter for a proof). :

(a) Show that

x(u) =Ee™X =

ue R,

1
C:=EX, = T E (B2 o,11,41

where B = (B1)tefo,17 denotes a standard Brownian motion.
(b) Establish the elementary identity

1 1
E Bl 2o,13,an = 7 +E (”B”LZ([O,I],d:) ~3 “B“zﬁ([o,”,dt))

and justify why E ||B|| 120,11, should be computed by a Monte Carlo simulation
using this identity. [Hint: An appropriate Monte Carlo simulation should yield ;
result close to 0.2485, but this approximation is not accurate enough to compute
optimal quantizers (*.] '
(c) Describe in detail 2 method (or possibly two methods) for computing a sn
database of N-quantizers of the Lévy area for levels running from N = 1 to Ninax
50, including, for every level N > 1, both their weights and their induced quadra
mean quantization error. [Hint: Use (5.15) to compute X -X "|I> when T is
stationary quantizer.] X

5. Clark—Cameron oscillator. Using the identity (9.103) in its full generality, ex
the quantization procedure of Exercise 4, to the case where

1
X = / (W, + us) dw?,
0

with 1 a fixed real constant.

6. Supremum of the Brownian bridge. Let

X = sup |W, —t W]
tef0,1]

denote the supremum of the standard Brownian bridge (see Chap. 8 for more d
see also Sect.4.3 for the connection with uniformly distributed sequences

4A more precise approximation is C = 0.24852267852801818 + 2.033 10~ obtained by impk
menting an ML2R estimator with a target RMSE € = 3.0 1077, see Chap. 9.



