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1 Convergence de Mesures

1.1 Rappels de Topologie

Exercice 1.  Soient (F,7g) et (F,7r) deux espaces topologiques et f : E'— F. Montrer que
f est continue si, et seulement si

VA C E, f(A) C f(A).

Exercice 2 (Un exercice francophoneE[). Montrer qu’une application bijective et continue
entre deux espaces topologiques compacts est un homéomorphisme.

Exercice 3 (Bases et Sous-Bases de Topologie).  Soit £ un ensemble. Une base de topologie
sur E est une collection Bg de sous-ensembles de E satisfaisant les deux conditions suivantes.

(i) La réunion de tous les éléments de Bg couvre E, c’est-a-dire

U B=FE

BeBEg

(ii) Pour tout point x € FE appartenant a l'intersection de deux éléments By, By € Bg (i.e.,
x € By N By), il existe un élément B3 € By tel que « € B3 et By C B N Bs.

On définit une classe 73 de sous-ensembles de E' comme suit.
Aergps Ve A, dB € Bg;z € B C A.

1. Montrer que 7g est une topologie dont tout ouvert s’écrit comme réunion d’éléments de I'g.
Cette topologie est dite engendrée par Bg.

Considérons maintenant un autre ensemble F' munit d’une base de topologie Br qui engendre la
topologie Tp et f: E — F.

3. Montrer que f est continue si, et seulement si
VA € Bp, fHA) € 5.

Que signifie cette assertion dans le cas d’'un espace métrique ?

Une sous-base Sg de topologie de E est une collection de sous-ensembles de E dont la réunion
est F.

4. Montrer que la classe des intersections finies d’éléments de Sg est une base de topologie. La
topologie engendrée est appelée topologie engendrée par S.

5. Montrer que le résultat de la question 3 reste vrai en remplagant VA € I'r par VA € Sg ou
Sr est une sous-base qui engendre 7f.

Exercice 4 (Topologie Initiale). Soient I un ensemble d’indice et (E;, 7;)ier une famille
d’espaces topologiques. Soit F' un ensemble . On considére pour tout ¢ € I une application m; :
F — E;. On appelle topologie initiale relative a ((E;, 7;)icr, F, (mi)icr) la topologie la plus petite
sur F' rendant continues toutes les applications ;. Pour ¢ € I, O € 7;, on pose : S; 0 = 7; 1(0).
1. Montrer que {S; 0;0 € 7;,i € I} est une sous-base.

2. En déduire que la topologie engendrée par cette sous-base est la topologie initiale.

3. Faire le lien avec la topologie faible—sx.
4

. Soit (G, X)) un troisiéme espace topologique et Z : G — F une application. Montrer que Z est
continue si, et seulement si pour tout ¢ € I, m; o Z est une application continue de G dans FE;.

1. Essayez de deviner pourquoi.



Exercice 5 (Topologie Produit). Soient I un ensemble d’indice et (Ej, 7;)iesr une famille
d’espaces topologiques. On définit le produit [[,.; E; par :

[1E = {(I):I—> JEsvierl o) e E}

il el

et on y pense bien stir comme une famille (u;);e; dont chaque u; est dans F;. On définit de plus les
applications projections comme suit. Pour j € I, 7 : & = (23)icr € [L;e; Ei — mj(x) = z; € Ej.
La topologie produit est la topologie initiale relative ((E;, 7i)ier, [ Lic; Eis (Ti)icr)

E;.

2. Montrer que si I est dénombrable et les F; sont séparables, alors []

1. Donner la forme d'un ouvert de [[.c;

se1 Pi est séparable.
3. Montrer que si I est fini et les F; sont des espaces métriques de distance d;, alors la topologie
produit n’est autre que celle de ’espace métrique produit, c’est a dire engendrée (entre autres)

par la distance d définie par :

Vo = (wi)ier, y = (Wi)ier € HEi,d(a:,y) = Zdi($i7yi)-

icl i€l

4. On considére maintenant le cas ou I = N et pour tout ¢ € N, F; est un espace métrique de
distance d;. On définit d : [ ;o Bi ¥ [ [;en Bi — R* par :

1 di(xi,y)

€N ieN
1. Montrer que d est une distance.
2. Montrer que la topologie induite par d coincide avec la topologie produit.
3. Montrer qu’une suite (z"),ecn converge pour d si, et seulement si elle converge composante

par composante.

5. Montrer que le produit dénombrable d’espaces polonais est polonais.

Exercice 6. Donner un exemple d’un espace topologique séparable ayant un sous-ensemble non
séparable.

Exercice 7 (Topologie de Kuratowski). Dans cet exercice, on souhaite caractériser une
topologie par une approche opératoire, notamment par les opérateurs de fermeture et d’inté-
rieur. On va commencer par se donner un espace topologique (E,T) et considérer I'opérateur

f:P(E)— P(F) défini par :

VAeP(E),fA=A= () F
Ffermé, ACF

Dans un premier temps, on va exhiber des propriétés importantes de f puis dans un second
temps montrer que la donnée d’ un opérateur vérifiant de telles propriétés induit une topologie.

1. Montrer les propriétés suivantes de f :
1. f0=0.

.VYA,Be P(E),AC B= fAC fB.

. VAeP(E),AC f(A).

. fof=1f.

.VYA,BeP(E),f(AUB)= fAU fB.

A-t-on nécessairement f(ANB) = fAN fB? Prouver ou donner un contre exemple.

(G2 B NGV V]



On se donne maintenant un ensemble F et un opérateur opérateur f : P(E) — P(E) qui vérifie
les propriétés (a) a (e) de la question précédente. On pose :

7={0 € P(E); fcO = cO},

ol c¢ désigne 'opérateur de complémentation.
2. Montrer que 7 est une topologie telle que ’adhérence d’une partie A est fA.

3. Peut on vérifier la continuité des applications entre deux espaces topologiques en utilisant
exclusivement f 7

4. Expliquer comment peut-on retrouver rapidement ce qui précéde en utilisant un opérateur
d’intérieur ¢ & la place d’un opérateur de fermeture.

5. Dans cette question, il s’agit de faire un petit jeu. Si on prend un ensemble A, on peut s’amuser
& construire 1A, fiA,ifiA,icA,.... En prenant

A=10,1[U]1,2] U{3} U ([4,5]NQ)

dans la topologie usuelle de R, montrer que I’on peut former au moins 14 ensembles différents.
Montrer qu’en fait ce nombre 14 est maximal.

Exercice 8 (Preuve topologique de Furstenberg sur l'infinité des nombres premiers). Dans
cet exercice, on se propose de démontrer que I’ensemble des nombres premiers est infini par un
moyen topologique. On se place dans Z et pour a € Z*,b € Z, on définit :

S(a,b) ={na+b;ne€Z}=aZ+b.

L. Montrer que (S(a,b))(qpezxz est une base de topologie sur Z . On munit alors Z de la
topologie induite par cette base.

2. Montrer que les S(a, b) sont aussi fermés.

3. Montrer que :

N-11 = | S0,

p premier

et en déduire que I’ensemble des nombres premiers ne peut pas étre fini.

1.2 Espaces Polonais

Exercice 9. Montrer qu’un sous-espace fermé d’un espace polonais est lui-méme un espace
polonais pour la topologie induite.

Exercice 10. Le but de cet exercice est de montrer que tout sous-ensemble ouvert d’un espace
polonais est lui-méme un espace polonais pour la topologie induite. On considére alors un espace
polonais F et d une distance compléte sur qui métrise sa topologie. On définit dy : U x U — R4
par :

1 1

v U,d =d B '
z,y € U,do(z,y) = d(z,y) + d(z,U¢) d(y,U°)

1. Montrer que dy définie une distance sur U.
2. Montrer que dg induit sur U la topologie trace de E sur U.

3. Montrer que (U, dp) est un espace métrique complet. Conclure.

Exercice 11.  On munit C([0, +oo[,R) x C(]0,+00[,R) de application d définie par :

Vf,g9 € C([0, 400, R),d(f, g) = sup{1 A |f(t) — g(t)[; € [0, 4+00)}.



1. Montrer que d définie une distance sur C([0, +oo[, R).

2. Montrer qu’une suite de fonctions converge pour d si, et seulement si elle converge uniformé-
ment.

3. Montrer que C([0, +oo[,R), muni de d n’est pas séparable et donc n’est pas polonais.

On définit maintenant sur C([0, +oo[,R)) x C([0, +oc[,R)) I'application D :

sup{[f(t) — g(®)[; € [0, n]}
1+ sup{|f(t) — g(t)];t € [0,n]}

©=1
Vf,g € C([0,+oo,R Z?

1. Montrer que D est une distance.

2. Montrer qu’'une suite de fonctions converge pour D si, et seulement si elle converge uniformé-
ment sur tout compact de [0, +ool.

3. Montrer que munit de D, C([0, +o00[; R) est polonais.

1.3 Topologie de la Convergence en Loi

Exercice 12. Soit (E,d) un espace métrique et M(E) I'ensemble des mesures de probabilité
boréliennes munit de la topologie faible.

1. Est-ce que p +— p(FE) est continue ?
2. Qu’en est-il de p — u(A) pour un borélien A7

Exercice 13. Soient E et F' deux espaces métriques, et f : E — F une fonction continue.
Montrer que A : M(E) — M(F') définie par :

Vi€ M(E),A(p) = po f
est continue.

Exercice 14. Soit X un espace métrique. Pour p,v € M(X), on définie la distance en
variation totale entre u et v par :

dyr(uv) = sup [u(A) - v(A)].
AeB(X)

1. Montrer que la topologie engendrée par dyr est plus fine que la topologie faible.

2. La réciproque est-elle vraie en génerale?

Exercice 15 (Distance de Lévy-Prohorov). Soit (X,d) un espace métrique séparable. On
définie sur M(X) x M(X) lapplication suivante :

(u,v) = drp(p,v) =inf{e > 0;VA € B(X), u(A) < v(A°) +eet v(A) < u(A°) + €},
ot pour A C X et € > 0 on note

A ={z € X;3y € A avec d(z,y) < €}.

—_

Pour z,y € X, calculer drp(dz,dy).

o

Montrer que drp est une distance sur M(X).

w

. Montrer que l'on a en fait :
drp(p,v) =inf{e > 0;VA € B(X), u(A) < v(A°) + €}.

4. Montrer que la convergence pour drp implique la convergence faible.

O



On veut montrer maintenant que la réciproque est vrai. Soient alors pu, pq, pio, ... des éléments
de M(X) tels que p,, = p. Fixons un € > 0. Soit (2, )nen une suite dense dans X.

5. Montrer qu’il existe un entier m pour lequel

m
1 (U B(a:i,e)> >1—e
i=0
Soit U I'ensemble des ouverts de la forme
U B(zi,e),J C {1,...,m}.
icJ
6. Montrer que pour n assez grand on a :

VU €U, pn(U) =2 p(U) — €.

Pour A € B(X), on pose :

U(A) = U Bz, €).
i=1,...,m;ANB(z;,e)#0
7. Montrer que pour n assez grand, on a pu(A) < up(U(A)) + 2e.

8. Conclure que drp(pin, p) — 0.
n—oo
9. En déduire que dp métrise la topologie de la convergence en loi sur M(X).

Exercice 16 (M(FE) compact = E compact.).  Soit (E,d) un espace métrique.

1. Montrer que l'application F': x — §, est un homéomorphisme de E sur son image
Eq:={0y,y € E} C M(E).

2. Montrer que E4 est un fermé de M(E).

3. En déduire que si M(FE) est compact, alors E est compact.

Exercice 17. Partie A. Soit (E,T) un espace topologique. On dit que (E, T) posséde la propriété
de Baire si toute intersection dénombrable d’ouverts denses est dense.

1. Montrer qu’il est équivalent de dire que (E,T) posséde la propriété de Baire si, et seulement
si toute union dénombrable de fermés d’intérieurs vides est d’intérieur vide.

2. Montrer qu’un espace topologique métrisable par une distance compléte posséde la propriété
de Baire.

Partie B. On souhaite maintenant utiliser la partie A pour montrer que l’espace Mp(R) des
mesures boréliennes finies sur R n’est pas polonais pour la topologie de la convergence vague,

définie comme étant la topologie la plus petite sur Mp(R) rendant continues toutes les fonctions
(Ag, f € C.(R,R)) définies par

VfeC(R,R), Af: p € Mp(R) — / fdu € R.
R

1. Montrer qu’un ouvert non vide de la topologie vague contient nécessairement un ensemble non
vide de la forme

{MGMF(R)a/RfId,UGOIa ,/prd,UEOp}

ot p est un entier et fi,..., f, sont des fonctions continues a supports compacts et O1,---, 0,
sont des ouverts de R.

6



2. En déduire qu’un ouvert non vide de la topologie vague contient des mesures de masse totale
arbitrairement grande.

3. On pose, pour n € N :
Fo = {pn € Mp(R); pu(R) < n}.
Montrer que F,, est fermé.
4. Montrer que F, est d’intérieur vide.

5. Montrer alors que Mp(R) ne posseéde pas la propriété de Baire. Conclure.

1.4 Tension

Exercice 18. Montrer que toute suite de variables aléatoires réelles bornée dans L' admet
une sous-suite qui converge en loi.

Exercice 19 (Un théoréme de Paul Lévy). Soit p une mesure borélienne de probabilité sur
R. On définit sa transformée de Fourier par :

Fp):teR— /Rexp(itaj)u(d:v).

On veut montrer le théoréme de Paul Lévy suivant :

Théoréme. Soient p et py, po, ... des mesures de probabilité boréliennes sur R. Alors la suite
(t4n)nen converge faiblement vers p si, et seulement si la suite F(u,) converge simplement vers

]:(/Ln)

1. Montrer le sens "facile" du théoréme.

2. Soient v une mesure de probabilité borélienne et € > 0,

"))t = /R Zsin(er) 1),

T

1. Montrer que :

—€

v <{x ER: 2] > i}) < i/_ (1— F)(1)) dt.

3. Montrer que (fy,)nen est tendue.

2. En déduire que :

4. Conclure la preuve du théoréme.

Exercice 20.  Soit (X, d) un espace métrique. Le but est de montrer que 'on peut extraire
une sous-suite convergente de toute partie tendue de M(X), sans 'hypothése de séparabilité.
Soit alors A une famille tendue de M(X).

1. Montrer qu’il existe un borélien A de X tel que
e l'espace métrique (A, d) soit séparable,
e pour toute mesure p € A, pu(A) = 1.
2. Soit i : A — X linjection canonique. Montrer que pour p € A, 'application

i*p: B e B(A) — u(B),

définit bien une mesure de probabilité borélienne sur (A, d).

3. Montrer que 'on peut extraire de la famille

{i* s p € A}
une suite qui converge dans M(A).

4. En déduire que 'on peut extraire de A une suite qui converge dans M (X).

EN|



1.5 Arzela—Ascoli

Exercice 21.  On considére la suite de fonctions (fy,)nen donnée par :

Vi € N, ¥t € [0, 00[, fu(t) = sin (\/t n 4(n71')2> .

1. Montrer que la famille (f,)nen est équicontinue. Montrer que la suite (fy)nen convergent
simplement vers 0.

2. La suite (fy)nen admet-elle une sous-suite qui converge uniformément ? Commenter.

Exercice 22.  Soit K : C([a,b],R) — C([a,b],R) donnée par :

b
s € [0, (K)(s) = [ hls0)f ()t
ou k € C([a,b] x [a,b],R). Montrer que K est un opérateur compact.

1.6 Tension dans C([0, 1], R)

Exercice 23. On considére l’espace (C([0,1],R), || - ||s0), muni de sa tribu borélienne. On consi-
dere sur cet espace la mesure de Wiener W qui est la loi d’un mouvement brownien standard sur
[0,1]. Dans le cours, on a vu qu’une mesure sur un espace polonais est toujours tendue. Le but
de cet exercice est d’exhiber des compacts explicites qui vérifient la propriété de tension.

1. Montrer qu’il existe un sous-espace vectoriel H de C([0,1],R) et une norme || - ||g sur H tels
que :
o (H,| - ||m) soit un espace de Banach,
o linjection canonique i : (H,|| - ||g) = (C([0,1],R), || - ||s0) soit compacte,
o W(H)=1.

2. En déduire que W est tendue.
3. Existe-t-il un compact K de C([0,1],R) tel que W(K) = 1 ¢ Justifier.

Exercice 24 (Point de vue fonctionnel sur le critére de Kolmogorov).  On considére 'espace
des fonctions continues C([0,1];R) nulles en 0 munit de la norme infinie. Pour 1 < p < oo et
0 € (0,1), et f € Cy([0,1];R) on définit la quantité

o \*
me:(Amﬁ@ﬂﬁﬁdwﬁ

)

° () = £(5)
— S
|llao := sup LD ZIEN
stefon] |t — sl
s#t

On introduit les espaces suivants pour 1 < p < oo
Wo ([0, 1 R) == {f € Co([0, 1; R); || fllazp < 00}

On fixe pour la suite a et p tels que o > %.

1. Montrer que
1o

We([0,1);R) € Wy *7 ([0, 1]; R)

et que l'injection canonique

1

iy WEP(0,1);R) — Wy 7

,O0

([0’ 1];R)

est continue.



2. Montrer que l'injection
1
100

is: Wy P 7([0,1;R) = Co([0, 1]; R)

est compacte. En déduire que i3 o i1 est compacte.

3. Soit (X;)ier une famille de variables aléatoires a valeurs dans Cp([0, 1]; R). On suppose que la
famille de variable aléatoire réelle (||X;||a;p)icr est tendue. Déduire de la question précédente
que la famille (X;);er est tendue dans Cy([0, 1]; R).

4. En utilisant ce qui précéde, donner une démonstration du critére de tension de Kolmogorov
du cours.

1.7 Convergence de Processus

Exercice 25 (Tribu borélienne et tribu cylindrique). Soit RO T'ensemble de toutes les
fonctions de [0,1] dans R qu’on munit de la tribu cylindrique (c’est & dire la plus petite tribu
qui rendre mesurable les applications évaluation). Montrer que C([0, 1], R) n’est pas mesurable
pour cette tribu.

Exercice 26. Réécrire le critére de Kolmogorov du cours dans le langage des mesures, sans
processus.
Exercice 27. Soient X,,, n > 0, et X des processus croissants, continus, de [0, 1] dans R.

Montrer que (X, )nen converge en loi vers X pour la topologie uniforme sur C([0,1],R) si, et
seulement si (X, )nen converge vers X au sens des marginales de dimensions finies.

Exercice 28. Montrer le théoréme de Donsker dans le cas ol les variables aléatoires ont un
moment d’ordre 4.

Exercice 29. Le but de cet exercice est de calculer la loi, que 'on notera par v, du su-
premum supycjo,] Bt d’un mouvement brownien standard (Bj)seo,yjsur [0,1]. On se place sur
(C([0,1],R), ]|  |loo) que 'on munit de sa tribu borélienne.

On définit A : C([0,1]) — R par :

Vfe C([O’ 1])7A(f) = sup f(t)
te€(0,1]

1. Montrer que A est mesurable.

2. Soit (Xp)n>1 une suite de variables aléatoires i.i.d. centrées et de variance 1. On pose Sy =0
et pour tout entier n > 1

S, =X1+ -+ X, et M,, = max S;.

0<i<n
My
Montrer que Windl

On se place alors dans le cas particulier ou P(X; = 1) =P(X; = —1) = %

3. Montrer que pour tout entier positif a :
P(M,, > a) = 2P(S,, > a) + P(S,, = a).

4. En déduire que v est la loi de la valeur absolue d’une variable aléatoire normale centrée réduite.
Exercice 30.  Un mouvement brownien fractionnaire d’exposant de Hurst H €]0, 1] est un
processus continue (Wt)te[o,l] gaussien et centré, de covariance donnée par la formule suivante

Vs,t € [0,1], EPF[WW,] = = (s + ¢ — s —¢1).

1
2



On admet que pour tout réel H €]0, 1], il existe un un mouvement brownien fractionnaire d’ex-
posant de Hurst H et on note par Py sa loi. La mesure Py est don un élément de M(C([0,1])),
et sous Py, le processus canonique est un mouvement brownien d’exposant de Hurst H.

1. Montrer que lapplication H +— Py de |0, 1[ dans M(C([0, 1])) est continue.

2. Soit H €]0, 1] et soit X = (X¢).e[o,1] un processus de loi Py. Montrer que pour tout « €]0, H],
les trajectoires de X sont presque stirement Holdériennes d’exposant «.

2. Par exemple, pour H = %, Pr est la mesure de Wiener.

10



2 Grandes Déviations

Exercice 31.  Soit f € L*([0,1]). Calculer :

1 %
dn ([ r@ras)

Exercice 32.  Calculer et dessiner I'allure des transformées de Log-Laplace et de leur trans-
formée de Légendre des lois suivantes :

. Poisson de paramétre p > 0.
. Exponentielle de paramétre p > 0.

. Géométrique de paramétre p € (0, 1].

. Normale de moyenne m € R et de variance o2 > 0.

Cp=e ! Y om0 %(5”.

1
2
3
4. Bernoulli de paramétre p € [0, 1] sur {a,b} (i.e., pdp + (1 — p)da).
)
6
7. p(dx) = 1 ) (z)e ™ dm.

Exercice 33.  Soit 4 une mesure de probabilité sur R et A sa tranformée de Log-Laplace. On
définie :

Dy ={XA e R;A(N) < 0}
1. Montrer que si 0 est dans I'intérieur de Dy, alors A* est une bonne fonction de taux.

2. Montrer que si Dy = R alors :

lim —— = +o0.
EEEE]
Exercice 34. Soit ' un espace métrique localement compact. Soit (un)n>0 satisfaisant un

PGD de bonne fonction de taux I. Montrer que (n)n>0 est exponentiellement tendue, c’est a
dire : pour tout réel @ > 0, il existe une partie compacte K de F telle que pour tout n > 1,
pn (K€) < e ™.

Exercice 35. Soit (Zy)n>0 une suite de variables aléatoires réelles satisfaisant un PGD de
fonction de taux I. Soit (X, )n>0 une suite de variables aléatoires réelles telles que pour tout
n e N*:
1
X, UL Z,et P(X,=1)=P(X,=-1) = 3

On pose Y,, = Z,, + X,,. Montrer que (Y},),>0 suit un PGD dont on précisera la fonction de taux.

Exercice 36.
Soit (X, d) un espace métrique et ((Z,, Z),))n>0 des variables aléatoires a valeurs dans X x X.
On suppose que :

1. (Zn)n>0 suit un PGD de bonne fonction de taux I,

2. (Zn)n>o et (Z],)n>0 sont exponentiellement équivalentes, c’est-a-dire que pour tout 6 > 0 :

1
limsup — log P(d(Z,, Z))) > §) = —oo0.
n

n—0

Montrer que (Z] )50 suit un PGD de bonne fonction de taux I.
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Exercice 37. Soient X1, ..., X, une suite de v.a.i.i.d & valeurs dans R. On pose :

1 n
1=

On admettra que (Ly,)nen suit un PGD de bonne fonction de taux I, donnée parE| :

dv dv :
i g dv g
Vo € M(R), L(v) = {fdu 08 gttt LV < s

+00 si non.

1. Montrer que U, = L, ® L,, satisfait un PGD dans M(RZ) dont on donnera la fonction de
taux.

2. En déduire que pour tout h € Cy(R? R), la suite de variables aléatoires :

1
) Z h(Xkl,Xk2),n> 1
1<ky,ka<n
satisfait un PGD sur R dont on donnera la fonction de taux.
3. Montrer que :
1
!
U= — Y a2

1<ki#k2<n
satisfait un PGD dans M(R?) dont on donnera la fonction de taux. On pourra utiliser I'exer-
cice 6 et la distance de Lévy-Prohorov.

4. Montrer que pour tout h € Cy(R% R), la suite de variables aléatoires :

1
_ E h(Xg,, X, > 2
’]’L(’]’L* 1) ( kl? k2)7n
1<k1#k2<n

satisfait un PGD sur R dont on donnera la fonction de taux.

Exercice 38.  Soit (E,d) un espace métrique. Soit I : E — [0, +00] une bonne fonction de
taux. Soit (n)n>1 une suite de mesures de probabilités boréliennes sur E qui satisfait un principe
de grandes déviations de fonction de taux I. Soit f : E — R une fonction continue et bornée.

1. Soient z € E et 6 > 0. En considérant la partie G = {y € E : f(y) > f(x) — 0}, montrer que

n—oo N

lim inf 1 log/ O dpn (t) > f(x) — I(z) — 6.
E

2. Soient a > 0 et 6 > 0 des réels. Notons K = {z € E : I(z) < a}. Montrer qu'il existe un
entier N > 1, des points z1,...,xy de K et des réels r1,...,rny > 0 tels que :

1. Vie{l,...,N},\Vy € B(z;,7i), I(y) > I(x;) — 0 et f(y) < f(zi) + 9.
2. K CUY, Bz, ).

3. En déduire que

1
lim sup — log/ e dp,, (t) < max {mj\zgx (f(zi) — I(zi) +20), || flloo — a} :
E

n—oo TN =1

4. Montrer que la limite

1
lim 1og/ @ dpy, (x)
R

n—oo 1

existe et en donner une expression simple.

3. C’est le théoréme de Sanov dans sa version générale.
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Exercice 39 (Théoréme de Schilder, Borne inférieure). Soit la famille de mesure (pc)eso sur

Co([0,1],R) définie par
He = VeB,

ou B est un mouvement brownien standard sur [0, 1]. Un théoréme de Schilder affirme que cette
famille vérifie un PGD de bonne fonction de taux I définie par

SR (t)2dt, si b e HY([0,1];R),

400, sinon

Vh € O([0,1],R), I(h) = {

Dans cet exercice, on se propose de montrer la borne inférieure de ce principe de grandes dévia-
tions.

1. Montrer que I est une bonne fonction de taux.

2. Montrer que la borne inférieure est équivalente a

vh € C((0,1];R), V6 > 0, lim inf elog p1c(B(h, 6)) > —I(h).
€—>

3. Soient h € C([0,1];R), et § > 0. Montrer que pour tout ¢ > 0,

te(B(h,d)) > exp (-I(Z” - \2) P <{/01 W (s)dBg < c} (Be B(O,d/ﬁ)) .

4. Montrer que pour € et ¢ assez grand,

P ({/01 W (s)dBg < c} (Be B(O,d/@) >

5. Conclure la preuve de la borne inférieure.

=



3 Percolation

3.1 Mesurabilité

Exercice 40. Montrer que les ensembles ou les applications suivantes sont mesurables pour
la tribu produit :

1. {z <y}, pour tous z,y € Z>.

2. |C(z)], pour tout x € Z2.

3.2 Evénements Croissants

Exercice 41.

1. Montrer que I’événement x <> co est un événement croissant.

2. Montrer que A est un événement croissant si et seulement si A€ est un événement décroissant.
3. Montrer que 'union d’événements croissants est un événement croissant.
4

. Montrer que l'intersection d’événements croissants est un événement croissant.
Exercice 42.  Montrer que les événements croissants engendrent la tribu produit.

Exercice 43. Montrer que pour des événements croissants Aq,..., Ay, on a :
max{P,(4;),i <n} >1— (1 -Py(A U...UA,))Y"

Exercice 44. Soient A un événement croissant. Montrer que A peut s’écrire comme 'inter-
section décroissante d’événements croissants et ne dépendant que d’un nombre fini d’arrétés.

Exercice 45. Soient A un événement croissant et B un événement décroissant. Montrer que

AoB=A.

3.3 Percolation sur des Graphes

Exercice 46 (Graphes Transitifs).  Soit G = (E, V') un graphe. Un automorphisme de G est
une bijection ¢ : G — G telle que :

Va,y € Vio ~y & o) ~ d(y).

Soit Aut(G) I'ensemble des automorphismes de G.

1. Montrer que munit de la composition des applications, Aut(G) est un groupe.
2. Donner des exemples d’automorphismes de Z2.

On dit que G est transitif si 'action de Aut(G) sur G par évaluation est transitive.

3. Vérifier que G transitif est équivalent & :
Ve,y € G,3¢,,y € Aut(GQ); ¢ y(x) = y.

4. Montrer que Z? est transitif.

5. Montrer rigoureusement que si G est transitif, alors pour tout € V, |C(x)| a la méme loi.
Exercice 47.  Soit G = (E,V) un graphe infini connexe. On considére la percolation par
arétes sur G.

1. Soit ©¢(p) la probabilité sous P, qu’il existe un agrégat infini. Montrer que pour tout p € [0, 1],
©a(p) € {0,1}.
2. Montrer que © est croissante.
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On définie p.(G) = sup{p € [0,1]; ©(p) = 0}. On fixe maintenant un x € G. On note par C(x)
lagrégat de . Comme le graphe n’est pas nécessairement transitif, la loi de C'(x) dépend a priori
de x. Ainsi, la percolation en deux sommets distincts de G ne reléve pas de la méme étude. Par
contre, on va montrer que la probabilité critique est la méme quel que soit le somme considéré.
On définit alors O . (p) par :
0c.5(p) = By ¢ 00).

3. Montrer que fg , est croissante, et donner ¢ ,(0) et g . (1). Pourquoi ne peut-on plus dire

que 0g , € {0,1} 7
On définit alors p.(G,x) = sup{p € [0,1];0g (p) = 0}.
4. Montrer que les trois assertions suivantes sont équivalentes :

1. B¢(p) = 1.

2. Il existe z € G tel que Og . (p) > 0.

3. Pour tout z € G, 05 .(p) > 0.
5. En déduire que pour tout = € G, p.(G,x) = p.(G).
6. Soit H un sous-graphe d’un graphe G, montrer que p.(H) > p.(G).
Exercice 48. Soit G = (E,V) un graphe connexe infini. Soit 0 un sommet de G. Un sous-
ensemble d’arétes A C E est appelé un ensemble de coupure pour o si en enlevant A de G, le
sommet o se trouve dans une composante connexe finie. De maniére équivalente, tout chemin

simple infini commengant a o doit traverser A. G est dit unidimensionnel s’il existe un sommet
o € G et une suite d’ensembles de coupure disjoints (A,)ne pour o telle que sup,,c |A4,| < oo.

1. Montrer que si G est uni-dimensionnel, p.(G) = 1.
2. Montrer que Z x {0,...,n} est unidimensionnel et en déduire que p.(Z x {0,...,n}) = 1.

Exercice 49.  Soit G = (V,E) un graphe. Pour un sommet z, on note par V(z) l’ensemble
des voisins de x. Montrer que :

1
sup,ev |V (#)] — 17

pe(G) >

Exercice 50. Soit G un graphe infini et connexe. Soit € G un sommet fixé. On appelle
qu’un ensemble de coupure est un ensemble II d’arétes tel que tout chemin infini auto-évitant
démarrant a x doit traverser une aréte de II. Un ensemble de coupure minimal est un ensemble II
tel que pour toute aréte e € I, 'ensemble IT\ {e} n’est pas un ensemble de coupure (c’est-a-dire
que IT est minimal par rapport a 'inclusion). Soit G un graphe infini connexe.

1. Montrer que tout ensemble de coupure fini doit contenir un ensemble de coupure minimal.

2. Montrer que pour la percolation sur G, x <> oo si, et seulement si, pour chaque ensemble de
coupure minimale finie II, IT contient au moins une aréte ouverte.

3. Soit (), 'ensemble des ensembles de coupure minimale de taille n. Montrer que s’il existe ng
et M > 1 tels que |C,| < M™ pour tout n > ng, alors p.(G) < -1,

Exercice 51 (Percolation sur un arbre de degré d.).  On considére un arbre enraciné infini 7'
de degré d > 3, c’est a dire un arbre dont tous les sommets sauf un ont d voisins. Le sommet
restant en a d — 1 et est appelé la racine. On considére une percolation de Berounilli sur 7. On
note par 7T,, les sommets de T" qui sont & n générations de la racine.

1. Montrer que (|C(0) N Ty|)nen est un processus de Galton-Watson de loi de reproduction
Bin(d — 1,p), en déduire que p.(T) = 71+

On considére maintenant un arbre infini T de degré d, c’est a dire, un graphe infini connexe sans
cycles.



2. Soit 0 € T et soient x1,...,xq les d voisins de 0. Montrer que pour tout y € T — {o}, il existe
un unique ¢ € {1,...,d} tel que le chemin le plus court de y vers o passe par x;. On appelle
y un descendant de x; par rapport a o.

3. Montrer que les ensembles T; des descendants des z; par rapport & o sont des arbres enracinés,
et un au moins est infini.

4. En déduire que p.(T) = ﬁ.
5. Montrer que 0(p.(T)) = 0.

3.4 Percolation sur Z2

Exercice 52. Montrer que p — 6(p) est strictement croissante pour p > pe.

Exercice 53 (Formule de Russo). On considére la percolation sur Z? ot I'on note par E
I’ensemble de ses arétes. Soit e une aréte. Pour w une configuration de percolation, on pose, pour

j€{0,1}:
wj,e(e/) = 16’756"‘)(6/) + 1e=cj.

Soit X : {0,1}¥ — R une variable aléatoire. On définie la dérivée de X au point e, notée 9. X,
par :
DX (W) = X(wie) = X(woe) = (X1,0 = Xoe) ().

On suppose que X ne dépend que sur un nombre fini d’arétes {ey,...,e,}.
1. Montrer que :

d

chE[X] =Y Ey0.X]

eckE

2. En utilisant cette formule, montrer que p — P[x <> y] est strictement croissante.

3. Peut-on, en utilisant cette formule, montrer que si A est un événement croissant, alors p —
P[A] est croissante ?
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