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1 Convergence de Mesures

1.1 Rappels de Topologie

Exercice 1. Soient (E, τE) et (F, τF ) deux espaces topologiques et f : E → F . Montrer que
f est continue si, et seulement si

∀A ⊂ E, f(A) ⊂ f(A).

Exercice 2 (Un exercice francophone 1). Montrer qu’une application bijective et continue
entre deux espaces topologiques compacts est un homéomorphisme.

Exercice 3 (Bases et Sous-Bases de Topologie). Soit E un ensemble. Une base de topologie
sur E est une collection BE de sous-ensembles de E satisfaisant les deux conditions suivantes.

(i) La réunion de tous les éléments de BE couvre E, c’est-à-dire⋃
B∈BE

B = E.

(ii) Pour tout point x ∈ E appartenant à l’intersection de deux éléments B1, B2 ∈ BE (i.e.,
x ∈ B1 ∩B2), il existe un élément B3 ∈ BE tel que x ∈ B3 et B3 ⊂ B1 ∩B2.

On définit une classe τB de sous-ensembles de E comme suit.

A ∈ τE ⇔ ∀x ∈ A,∃B ∈ BE ;x ∈ B ⊂ A.

1. Montrer que τE est une topologie dont tout ouvert s’écrit comme réunion d’éléments de ΓE .
Cette topologie est dite engendrée par BE .

Considérons maintenant un autre ensemble F munit d’une base de topologie BF qui engendre la
topologie τF et f : E → F .

3. Montrer que f est continue si, et seulement si

∀A ∈ BF , f
−1(A) ∈ τE .

Que signifie cette assertion dans le cas d’un espace métrique ?

Une sous-base SE de topologie de E est une collection de sous-ensembles de E dont la réunion
est E.

4. Montrer que la classe des intersections finies d’éléments de SE est une base de topologie. La
topologie engendrée est appelée topologie engendrée par S.

5. Montrer que le résultat de la question 3 reste vrai en remplaçant ∀A ∈ ΓF par ∀A ∈ SF où
SF est une sous-base qui engendre τF .

Exercice 4 (Topologie Initiale). Soient I un ensemble d’indice et (Ei, τi)i∈I une famille
d’espaces topologiques. Soit F un ensemble . On considère pour tout i ∈ I une application πi :
F → Ei. On appelle topologie initiale relative à ((Ei, τi)i∈I , F, (πi)i∈I) la topologie la plus petite
sur F rendant continues toutes les applications πi. Pour i ∈ I,O ∈ τi, on pose : Si,O = π−1

i (O).

1. Montrer que {Si,O;O ∈ τi, i ∈ I} est une sous-base.

2. En déduire que la topologie engendrée par cette sous-base est la topologie initiale.

3. Faire le lien avec la topologie faible−∗.
4. Soit (G,Σ) un troisième espace topologique et Z : G → F une application. Montrer que Z est

continue si, et seulement si pour tout i ∈ I, πi ◦Z est une application continue de G dans Ei.

1. Essayez de deviner pourquoi.
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Exercice 5 (Topologie Produit). Soient I un ensemble d’indice et (Ei, τi)i∈I une famille
d’espaces topologiques. On définit le produit

∏
i∈I Ei par :

∏
i∈I

Ei =

{
Φ : I →

⋃
i∈I

Ei;∀i ∈ I,Φ(i) ∈ Ei

}
,

et on y pense bien sûr comme une famille (ui)i∈I dont chaque ui est dans Ei. On définit de plus les
applications projections comme suit. Pour j ∈ I, πj : x = (xi)i∈I ∈

∏
i∈I Ei 7→ πj(x) = xj ∈ Ej .

La topologie produit est la topologie initiale relative ((Ei, τi)i∈I ,
∏

i∈I Ei, (πi)i∈I)

1. Donner la forme d’un ouvert de
∏

i∈I Ei.

2. Montrer que si I est dénombrable et les Ei sont séparables, alors
∏

i∈I Ei est séparable.

3. Montrer que si I est fini et les Ei sont des espaces métriques de distance di, alors la topologie
produit n’est autre que celle de l’espace métrique produit, c’est à dire engendrée (entre autres)
par la distance d définie par :

∀x = (xi)i∈I , y = (yi)i∈I ∈
∏
i∈I

Ei, d(x, y) =
∑
i∈I

di(xi, yi).

4. On considère maintenant le cas où I = N et pour tout i ∈ N, Ei est un espace métrique de
distance di. On définit d :

∏
i∈NEi ×

∏
i∈NEi → R+ par :

∀x = (xi)i∈N, y = (yi)i∈N ∈
∏
i∈N

Ei, d(x, y) =
∑
i∈N

1

2i
di(xi, yi)

1 + di(xi, yi)
.

1. Montrer que d est une distance.
2. Montrer que la topologie induite par d coïncide avec la topologie produit.
3. Montrer qu’une suite (xn)n∈N converge pour d si, et seulement si elle converge composante

par composante.

5. Montrer que le produit dénombrable d’espaces polonais est polonais.

Exercice 6. Donner un exemple d’un espace topologique séparable ayant un sous-ensemble non
séparable.

Exercice 7 (Topologie de Kuratowski). Dans cet exercice, on souhaite caractériser une
topologie par une approche opératoire, notamment par les opérateurs de fermeture et d’inté-
rieur. On va commencer par se donner un espace topologique (E, τ) et considérer l’opérateur
f : P(E) → P(E) défini par :

∀A ∈ P(E), fA = Ā =
⋂

F fermé,A⊂F

F.

Dans un premier temps, on va exhiber des propriétés importantes de f puis dans un second
temps montrer que la donnée d’ un opérateur vérifiant de telles propriétés induit une topologie.

1. Montrer les propriétés suivantes de f :

1. f∅ = ∅.
2. ∀A,B ∈ P(E), A ⊂ B ⇒ fA ⊂ fB.
3. ∀A ∈ P(E), A ⊂ f(A).
4. f ◦ f = f .
5. ∀A,B ∈ P(E), f(A ∪B) = fA ∪ fB.

A-t-on nécessairement f(A ∩B) = fA ∩ fB ? Prouver ou donner un contre exemple.
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On se donne maintenant un ensemble E et un opérateur opérateur f : P(E) → P(E) qui vérifie
les propriétés (a) à (e) de la question précédente. On pose :

τ = {O ∈ P(E); fcO = cO},

où c désigne l’opérateur de complémentation.

2. Montrer que τ est une topologie telle que l’adhérence d’une partie A est fA.

3. Peut on vérifier la continuité des applications entre deux espaces topologiques en utilisant
exclusivement f ?

4. Expliquer comment peut-on retrouver rapidement ce qui précède en utilisant un opérateur
d’intérieur i à la place d’un opérateur de fermeture.

5. Dans cette question, il s’agit de faire un petit jeu. Si on prend un ensemble A, on peut s’amuser
à construire iA, fiA, ifiA, icA, . . . . En prenant

A = [0, 1[∪]1, 2] ∪ {3} ∪ ([4, 5] ∩Q)

dans la topologie usuelle de R, montrer que l’on peut former au moins 14 ensembles différents.
Montrer qu’en fait ce nombre 14 est maximal.

Exercice 8 (Preuve topologique de Furstenberg sur l’infinité des nombres premiers). Dans
cet exercice, on se propose de démontrer que l’ensemble des nombres premiers est infini par un
moyen topologique. On se place dans Z et pour a ∈ Z∗, b ∈ Z, on définit :

S(a, b) = {na+ b;n ∈ Z} = aZ+ b.

1. Montrer que (S(a, b))(a,b)∈Z∗×Z est une base de topologie sur Z . On munit alors Z de la
topologie induite par cette base.

2. Montrer que les S(a, b) sont aussi fermés.

3. Montrer que :
Z\{−1, 1} =

⋃
p premier

S(p, 0),

et en déduire que l’ensemble des nombres premiers ne peut pas être fini.

1.2 Espaces Polonais

Exercice 9. Montrer qu’un sous-espace fermé d’un espace polonais est lui-même un espace
polonais pour la topologie induite.

Exercice 10. Le but de cet exercice est de montrer que tout sous-ensemble ouvert d’un espace
polonais est lui-même un espace polonais pour la topologie induite. On considère alors un espace
polonais E et d une distance complète sur qui métrise sa topologie. On définit d0 : U ×U → R+

par :

∀x, y ∈ U, d0(x, y) = d(x, y) +

∣∣∣∣ 1

d(x, U c)
− 1

d(y, U c)

∣∣∣∣ .
1. Montrer que d0 définie une distance sur U .

2. Montrer que d0 induit sur U la topologie trace de E sur U .

3. Montrer que (U, d0) est un espace métrique complet. Conclure.

Exercice 11. On munit C([0,+∞[,R)× C([0,+∞[,R) de l’application d définie par :

∀f, g ∈ C([0,+∞[,R), d(f, g) = sup{1 ∧ |f(t)− g(t)|; t ∈ [0,+∞)}.
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1. Montrer que d définie une distance sur C([0,+∞[,R).
2. Montrer qu’une suite de fonctions converge pour d si, et seulement si elle converge uniformé-

ment.
3. Montrer que C([0,+∞[,R), muni de d n’est pas séparable et donc n’est pas polonais.

On définit maintenant sur C([0,+∞[,R))× C([0,+∞[,R)) l’application D :

∀f, g ∈ C([0,+∞[,R), D(f, g) =

+∞∑
n=1

1

2n
sup{|f(t)− g(t)|; t ∈ [0, n]}

1 + sup{|f(t)− g(t)|; t ∈ [0, n]}
.

1. Montrer que D est une distance.
2. Montrer qu’une suite de fonctions converge pour D si, et seulement si elle converge uniformé-

ment sur tout compact de [0,+∞[.
3. Montrer que munit de D, C([0,+∞[;R) est polonais.

1.3 Topologie de la Convergence en Loi

Exercice 12. Soit (E, d) un espace métrique et M(E) l’ensemble des mesures de probabilité
boréliennes munit de la topologie faible.
1. Est-ce que µ 7→ µ(E) est continue ?
2. Qu’en est-il de µ 7→ µ(A) pour un borélien A ?

Exercice 13. Soient E et F deux espaces métriques, et f : E → F une fonction continue.
Montrer que Λ : M(E) → M(F ) définie par :

∀µ ∈ M(E),Λ(µ) = µ ◦ f−1

est continue.

Exercice 14. Soit X un espace métrique. Pour µ, ν ∈ M(X), on définie la distance en
variation totale entre µ et ν par :

dV T (µ, ν) = sup
A∈B(X)

|µ(A)− ν(A)|.

1. Montrer que la topologie engendrée par dV T est plus fine que la topologie faible.
2. La réciproque est-elle vraie en génerale ?

Exercice 15 (Distance de Lévy-Prohorov). Soit (X, d) un espace métrique séparable. On
définie sur M(X)×M(X) l’application suivante :

(µ, ν) 7→ dLP (µ, ν) = inf{ϵ > 0;∀A ∈ B(X), µ(A) ≤ ν(Aϵ) + ϵ et ν(A) ≤ µ(Aϵ) + ϵ},

où pour A ⊂ X et ϵ ≥ 0 on note

Aϵ = {x ∈ X;∃y ∈ A avec d(x, y) < ϵ}.

1. Pour x, y ∈ X, calculer dLP (δx, δy).
2. Montrer que dLP est une distance sur M(X).
3. Montrer que l’on a en fait :

dLP (µ, ν) = inf{ϵ > 0;∀A ∈ B(X), µ(A) ≤ ν(Aϵ) + ϵ}.

4. Montrer que la convergence pour dLP implique la convergence faible.
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On veut montrer maintenant que la réciproque est vrai. Soient alors µ, µ1, µ2, . . . des éléments
de M(X) tels que µn ⇒ µ. Fixons un ϵ > 0. Soit (xn)n∈N une suite dense dans X.
5. Montrer qu’il existe un entier m pour lequel

µ

(
m⋃
i=0

B(xi, ϵ)

)
≥ 1− ϵ.

Soit U l’ensemble des ouverts de la forme⋃
i∈J

B(xi, ϵ), J ⊂ {1, . . . ,m}.

6. Montrer que pour n assez grand on a :

∀U ∈ U , µn(U) ≥ µ(U)− ϵ.

Pour A ∈ B(X), on pose :

U(A) =
⋃

i=1,...,m;A∩B(xi,ϵ) ̸=∅

B(xi, ϵ).

7. Montrer que pour n assez grand, on a µ(A) ≤ µn(U(A)) + 2ϵ.
8. Conclure que dLP (µn, µ) −−−→

n→∞
0.

9. En déduire que dLP métrise la topologie de la convergence en loi sur M(X).

Exercice 16 (M(E) compact ⇒ E compact.). Soit (E, d) un espace métrique.
1. Montrer que l’application F : x 7→ δx est un homéomorphisme de E sur son image

Ed := {δy, y ∈ E} ⊂ M(E).

2. Montrer que Ed est un fermé de M(E).
3. En déduire que si M(E) est compact, alors E est compact.

Exercice 17. Partie A. Soit (E, τ) un espace topologique. On dit que (E, τ) possède la propriété
de Baire si toute intersection dénombrable d’ouverts denses est dense.
1. Montrer qu’il est équivalent de dire que (E, τ) possède la propriété de Baire si, et seulement

si toute union dénombrable de fermés d’intérieurs vides est d’intérieur vide.
2. Montrer qu’un espace topologique métrisable par une distance complète possède la propriété

de Baire.
Partie B. On souhaite maintenant utiliser la partie A pour montrer que l’espace MF (R) des
mesures boréliennes finies sur R n’est pas polonais pour la topologie de la convergence vague,
définie comme étant la topologie la plus petite sur MF (R) rendant continues toutes les fonctions
(Λf , f ∈ Cc(R,R)) définies par

∀f ∈ Cc(R,R) , Λf : µ ∈ MF (R) 7→
∫
R
fdµ ∈ R.

1. Montrer qu’un ouvert non vide de la topologie vague contient nécessairement un ensemble non
vide de la forme {

µ ∈ MF (R);
∫
R
f1dµ ∈ O1, · · · ,

∫
R
fpdµ ∈ Op

}
où p est un entier et f1, . . . , fp sont des fonctions continues à supports compacts et O1, · · · , Op

sont des ouverts de R.

6



2. En déduire qu’un ouvert non vide de la topologie vague contient des mesures de masse totale
arbitrairement grande.

3. On pose, pour n ∈ N :
Fn = {µ ∈ MF (R);µ(R) ≤ n}.

Montrer que Fn est fermé.
4. Montrer que Fn est d’intérieur vide.
5. Montrer alors que MF (R) ne possède pas la propriété de Baire. Conclure.

1.4 Tension

Exercice 18. Montrer que toute suite de variables aléatoires réelles bornée dans L1 admet
une sous-suite qui converge en loi.

Exercice 19 (Un théorème de Paul Lévy). Soit µ une mesure borélienne de probabilité sur
R. On définit sa transformée de Fourier par :

F(µ) : t ∈ R 7→
∫
R
exp(itx)µ(dx).

On veut montrer le théorème de Paul Lévy suivant :

Théorème. Soient µ et µ1, µ2, . . . des mesures de probabilité boréliennes sur R. Alors la suite
(µn)n∈N converge faiblement vers µ si, et seulement si la suite F(µn) converge simplement vers
F(µn).

1. Montrer le sens "facile" du théorème.
2. Soient ν une mesure de probabilité borélienne et ϵ > 0,

1. Montrer que : ∫ ϵ

−ϵ
F(ν)(t)dt =

∫
R

2 sin(ϵx)

x
ν(dx).

2. En déduire que :

ν

({
x ∈ R : |x| ≥ 2

ϵ

})
≤ 1

ε

∫ ϵ

−ϵ
(1−F(ν)(t)) dt.

3. Montrer que (µn)n∈N est tendue.
4. Conclure la preuve du théorème.

Exercice 20. Soit (X, d) un espace métrique. Le but est de montrer que l’on peut extraire
une sous-suite convergente de toute partie tendue de M(X), sans l’hypothèse de séparabilité.
Soit alors Λ une famille tendue de M(X).
1. Montrer qu’il existe un borélien A de X tel que

• l’espace métrique (A, d) soit séparable,
• pour toute mesure µ ∈ Λ, µ(A) = 1.

2. Soit i : A → X l’injection canonique. Montrer que pour µ ∈ Λ, l’application

i∗µ : B ∈ B(A) 7→ µ(B),

définit bien une mesure de probabilité borélienne sur (A, d).
3. Montrer que l’on peut extraire de la famille

{i∗µ ;µ ∈ Λ}

une suite qui converge dans M(A).
4. En déduire que l’on peut extraire de Λ une suite qui converge dans M(X).
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1.5 Arzelà–Ascoli

Exercice 21. On considère la suite de fonctions (fn)n∈N donnée par :

∀n ∈ N,∀t ∈ [0,∞[, fn(t) = sin
(√

t+ 4(nπ)2
)
.

1. Montrer que la famille (fn)n∈N est équicontinue. Montrer que la suite (fn)n∈N convergent
simplement vers 0.

2. La suite (fn)n∈N admet-elle une sous-suite qui converge uniformément ? Commenter.

Exercice 22. Soit K : C([a, b],R) → C([a, b],R) donnée par :

∀s ∈ [a, b], (Kf)(s) =

∫ b

a
k(s, t)f(t)dt

où k ∈ C([a, b]× [a, b],R). Montrer que K est un opérateur compact.

1.6 Tension dans C([0, 1],R)

Exercice 23. On considère l’espace (C([0, 1],R), ∥ · ∥∞), muni de sa tribu borélienne. On consi-
dère sur cet espace la mesure de Wiener W qui est la loi d’un mouvement brownien standard sur
[0, 1]. Dans le cours, on a vu qu’une mesure sur un espace polonais est toujours tendue. Le but
de cet exercice est d’exhiber des compacts explicites qui vérifient la propriété de tension.
1. Montrer qu’il existe un sous-espace vectoriel H de C([0, 1],R) et une norme ∥ · ∥H sur H tels

que :
• (H, ∥ · ∥H) soit un espace de Banach,
• l’injection canonique i : (H, ∥ · ∥H) → (C([0, 1],R), ∥ · ∥∞) soit compacte,
• W(H) = 1.

2. En déduire que W est tendue.
3. Existe-t-il un compact K de C([0, 1],R) tel que W(K) = 1 ? Justifier.

Exercice 24 (Point de vue fonctionnel sur le critère de Kolmogorov). On considère l’espace
des fonctions continues C([0, 1];R) nulles en 0 munit de la norme infinie. Pour 1 ≤ p < ∞ et
θ ∈ (0, 1), et f ∈ C0([0, 1];R) on définit la quantité

∥f∥α;p :=

(∫
[0,1]2

|f(s)− f(t)|p

|t− s|αp+1
dsdt

) 1
p

et
∥f∥α;∞ := sup

s,t∈[0,1]
s ̸=t

|f(t)− f(s)|
|t− s|α

.

On introduit les espaces suivants pour 1 ≤ p ≤ ∞

Wα;p
0 ([0, 1];R) := {f ∈ C0([0, 1];R); ∥f∥α;p < ∞} .

On fixe pour la suite α et p tels que α > 1
p .

1. Montrer que

Wα;p
0 ([0, 1];R) ⊂ W

α− 1
p
,∞

0 ([0, 1];R)

et que l’injection canonique

i1 : W
α;p
0 ([0, 1];R) → W

α− 1
p
,∞

0 ([0, 1];R)

est continue.
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2. Montrer que l’injection

i2 : W
α− 1

p
,∞

0 ([0, 1];R) → C0([0, 1];R)

est compacte. En déduire que i2 ◦ i1 est compacte.
3. Soit (Xi)i∈I une famille de variables aléatoires à valeurs dans C0([0, 1];R). On suppose que la

famille de variable aléatoire réelle (∥Xi∥α;p)i∈I est tendue. Déduire de la question précédente
que la famille (Xi)i∈I est tendue dans C0([0, 1];R).

4. En utilisant ce qui précède, donner une démonstration du critère de tension de Kolmogorov
du cours.

1.7 Convergence de Processus

Exercice 25 (Tribu borélienne et tribu cylindrique). Soit R[0,1] l’ensemble de toutes les
fonctions de [0, 1] dans R qu’on munit de la tribu cylindrique (c’est à dire la plus petite tribu
qui rendre mesurable les applications évaluation). Montrer que C([0, 1],R) n’est pas mesurable
pour cette tribu.

Exercice 26. Réécrire le critère de Kolmogorov du cours dans le langage des mesures, sans
processus.

Exercice 27. Soient Xn, n ≥ 0, et X des processus croissants, continus, de [0, 1] dans R.
Montrer que (Xn)n∈N converge en loi vers X pour la topologie uniforme sur C([0, 1],R) si, et
seulement si (Xn)n∈N converge vers X au sens des marginales de dimensions finies.

Exercice 28. Montrer le théorème de Donsker dans le cas où les variables aléatoires ont un
moment d’ordre 4.

Exercice 29. Le but de cet exercice est de calculer la loi, que l’on notera par ν, du su-
premum supt∈[0,1]Bt d’un mouvement brownien standard (Bt)t∈[0,1]sur [0, 1]. On se place sur
(C([0, 1],R), ∥ · ∥∞) que l’on munit de sa tribu borélienne.

On définit Λ : C([0, 1]) → R par :

∀f ∈ C([0, 1]),Λ(f) = sup
t∈[0,1]

f(t).

1. Montrer que Λ est mesurable.
2. Soit (Xn)n≥1 une suite de variables aléatoires i.i.d. centrées et de variance 1. On pose S0 = 0

et pour tout entier n ≥ 1

Sn = X1 + · · ·+Xn et Mn = max
0≤i≤n

Si.

Montrer que Mn√
n
⇒ ν.

On se place alors dans le cas particulier où P(X1 = 1) = P(X1 = −1) = 1
2 .

3. Montrer que pour tout entier positif a :

P(Mn ≥ a) = 2P(Sn > a) + P(Sn = a).

4. En déduire que ν est la loi de la valeur absolue d’une variable aléatoire normale centrée réduite.

Exercice 30. Un mouvement brownien fractionnaire d’exposant de Hurst H ∈]0, 1[ est un
processus continue (Wt)t∈[0,1] gaussien et centré, de covariance donnée par la formule suivante

∀s, t ∈ [0, 1], EPH [WsWt] =
1

2

(
s2H + t2H − |s− t|2H

)
.
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On admet que pour tout réel H ∈]0, 1[, il existe un un mouvement brownien fractionnaire d’ex-
posant de Hurst H et on note par PH sa loi. La mesure PH est don un élément de M(C([0, 1])),
et sous PH , le processus canonique est un mouvement brownien d’exposant de Hurst H. 2.

1. Montrer que l’application H 7→ PH de ]0, 1[ dans M(C([0, 1])) est continue.

2. Soit H ∈]0, 1[ et soit X = (Xt)t∈[0,1] un processus de loi PH . Montrer que pour tout α ∈]0, H[,
les trajectoires de X sont presque sûrement Höldériennes d’exposant α.

2. Par exemple, pour H = 1
2
, PH est la mesure de Wiener.
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2 Grandes Déviations

Exercice 31. Soit f ∈ L∞([0, 1]). Calculer :

lim
n→∞

(∫ 1

0
|f(x)|ndx

) 1
n

.

Exercice 32. Calculer et dessiner l’allure des transformées de Log-Laplace et de leur trans-
formée de Légendre des lois suivantes :

1. Poisson de paramètre µ > 0.

2. Exponentielle de paramètre µ > 0.

3. Géométrique de paramètre p ∈ (0, 1].

4. Bernoulli de paramètre p ∈ [0, 1] sur {a, b} (i.e., pδb + (1− p)δa).

5. Normale de moyenne m ∈ R et de variance σ2 > 0.

6. µ = e−1
∑

n>0
1
n!δn.

7. µ(dx) = 1[0,∞)(x)e
−xdx.

Exercice 33. Soit µ une mesure de probabilité sur R et Λ sa tranformée de Log-Laplace. On
définie :

DΛ = {λ ∈ R; Λ(λ) < ∞}.

1. Montrer que si 0 est dans l’intérieur de DΛ, alors Λ∗ est une bonne fonction de taux.

2. Montrer que si DΛ = R alors :

lim
|x|→∞

Λ∗(x)

|x|
= +∞.

Exercice 34. Soit E un espace métrique localement compact. Soit (µn)n>0 satisfaisant un
PGD de bonne fonction de taux I. Montrer que (µn)n>0 est exponentiellement tendue, c’est à
dire : pour tout réel α ≥ 0, il existe une partie compacte K de E telle que pour tout n ≥ 1,
µn(K

c) < e−nα.

Exercice 35. Soit (Zn)n>0 une suite de variables aléatoires réelles satisfaisant un PGD de
fonction de taux I. Soit (Xn)n>0 une suite de variables aléatoires réelles telles que pour tout
n ∈ N∗ :

Xn ⊥⊥ Zn et P(Xn = 1) = P(Xn = −1) =
1

2
.

On pose Yn = Zn+Xn. Montrer que (Yn)n>0 suit un PGD dont on précisera la fonction de taux.

Exercice 36.
Soit (X, d) un espace métrique et ((Zn, Z

′
n))n>0 des variables aléatoires à valeurs dans X×X.

On suppose que :

1. (Zn)n>0 suit un PGD de bonne fonction de taux I,

2. (Zn)n>0 et (Z ′
n)n>0 sont exponentiellement équivalentes, c’est-à-dire que pour tout δ > 0 :

lim sup
n→0

1

n
logP (d(Zn, Z

′
n) > δ) = −∞.

Montrer que (Z ′
n)n>0 suit un PGD de bonne fonction de taux I.
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Exercice 37. Soient X1, . . . , Xn une suite de v.a.i.i.d à valeurs dans R. On pose :

Ln =
1

n

n∑
i=1

δXi .

On admettra que (Ln)n∈N suit un PGD de bonne fonction de taux Iµ donnée par 3 :

∀ν ∈ M(R), Iµ(ν) =

{∫
dν
dµ log dν

dµdµ si ν ≪ µ,

+∞ si non.

1. Montrer que Un = Ln ⊗ Ln satisfait un PGD dans M(R2) dont on donnera la fonction de
taux.

2. En déduire que pour tout h ∈ Cb(R2,R), la suite de variables aléatoires :

1

n2

∑
1≤k1,k2≤n

h(Xk1 , Xk2), n > 1

satisfait un PGD sur R dont on donnera la fonction de taux.
3. Montrer que :

U ′
n =

1

n(n− 1)

∑
1≤k1 ̸=k2≤n

δXk1
,Xk2

, n > 2

satisfait un PGD dans M(R2) dont on donnera la fonction de taux. On pourra utiliser l’exer-
cice 6 et la distance de Lévy-Prohorov.

4. Montrer que pour tout h ∈ Cb(R2,R), la suite de variables aléatoires :

1

n(n− 1)

∑
1≤k1 ̸=k2≤n

h(Xk1 , Xk2), n > 2

satisfait un PGD sur R dont on donnera la fonction de taux.

Exercice 38. Soit (E, d) un espace métrique. Soit I : E → [0,+∞] une bonne fonction de
taux. Soit (µn)n>1 une suite de mesures de probabilités boréliennes sur E qui satisfait un principe
de grandes déviations de fonction de taux I. Soit f : E → R une fonction continue et bornée.

1. Soient x ∈ E et δ > 0. En considérant la partie G = {y ∈ E : f(y) > f(x)− δ}, montrer que

lim inf
n→∞

1

n
log

∫
E
enf(t) dµn(t) ≥ f(x)− I(x)− δ.

2. Soient α > 0 et δ > 0 des réels. Notons K = {x ∈ E : I(x) ≤ α}. Montrer qu’il existe un
entier N > 1, des points x1, . . . , xN de K et des réels r1, . . . , rN > 0 tels que :
1. ∀i ∈ {1, . . . , N},∀y ∈ B(xi, ri), I(y) > I(xi)− δ et f(y) < f(xi) + δ.
2. K ⊆

⋃N
i=1B(xi, ri).

3. En déduire que

lim sup
n→∞

1

n
log

∫
E
enf(t) dµn(t) ≤ max

{
N

max
i=1

(f(xi)− I(xi) + 2δ) , ∥f∥∞ − α

}
.

4. Montrer que la limite

lim
n→∞

1

n
log

∫
R
enf(x) dµn(x)

existe et en donner une expression simple.

3. C’est le théorème de Sanov dans sa version générale.
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Exercice 39 (Théorème de Schilder, Borne inférieure). Soit la famille de mesure (µϵ)ϵ>0 sur
C0([0, 1],R) définie par

µϵ :=
√
ϵB,

ou B est un mouvement brownien standard sur [0, 1]. Un théorème de Schilder affirme que cette
famille vérifie un PGD de bonne fonction de taux I définie par

∀h ∈ C([0, 1],R), I(h) =

{∫ 1
0 |h′(t)|2dt, si h ∈ H1([0, 1];R),
+∞, sinon

Dans cet exercice, on se propose de montrer la borne inférieure de ce principe de grandes dévia-
tions.

1. Montrer que I est une bonne fonction de taux.

2. Montrer que la borne inférieure est équivalente à

∀h ∈ C([0, 1];R), ∀δ > 0, lim inf
ϵ→0

ϵ logµϵ(B(h, δ)) ≥ −I(h).

3. Soient h ∈ C([0, 1];R), et δ > 0. Montrer que pour tout c > 0,

µϵ(B(h, δ)) ≥ exp

(
−I(h)

ϵ
− c√

ϵ

)
P
({∫ 1

0
h′(s)dBs ≤ c

}⋂
B ∈ B(0, δ/

√
ϵ)

)
.

4. Montrer que pour ϵ et c assez grand,

P
({∫ 1

0
h′(s)dBs ≤ c

}⋂
B ∈ B(0, δ/

√
ϵ)

)
>

1

4
.

5. Conclure la preuve de la borne inférieure.
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3 Percolation

3.1 Mesurabilité

Exercice 40. Montrer que les ensembles ou les applications suivantes sont mesurables pour
la tribu produit :
1. {x ↔ y}, pour tous x, y ∈ Z2.
2. |C(x)|, pour tout x ∈ Z2.

3.2 Évènements Croissants

Exercice 41.

1. Montrer que l’événement x ↔ ∞ est un événement croissant.
2. Montrer que A est un événement croissant si et seulement si Ac est un événement décroissant.
3. Montrer que l’union d’événements croissants est un événement croissant.
4. Montrer que l’intersection d’événements croissants est un événement croissant.

Exercice 42. Montrer que les événements croissants engendrent la tribu produit.

Exercice 43. Montrer que pour des événements croissants A1, . . . , An, on a :

max{Pp(Ai), i ≤ n} ≥ 1− (1− Pp(A1 ∪ . . . ∪An))
1/n.

Exercice 44. Soient A un évènement croissant. Montrer que A peut s’écrire comme l’inter-
section décroissante d’évènements croissants et ne dépendant que d’un nombre fini d’arrêtés.

Exercice 45. Soient A un évènement croissant et B un évènement décroissant. Montrer que
A ◦B = A.

3.3 Percolation sur des Graphes

Exercice 46 (Graphes Transitifs). Soit G = (E, V ) un graphe. Un automorphisme de G est
une bijection ϕ : G → G telle que :

∀x, y ∈ V, x ∼ y ⇔ ϕ(x) ∼ ϕ(y).

Soit Aut(G) l’ensemble des automorphismes de G.
1. Montrer que munit de la composition des applications, Aut(G) est un groupe.
2. Donner des exemples d’automorphismes de Z2.
On dit que G est transitif si l’action de Aut(G) sur G par évaluation est transitive.
3. Vérifier que G transitif est équivalent à :

∀x, y ∈ G, ∃ϕx,y ∈ Aut(G);ϕx,y(x) = y.

4. Montrer que Z2 est transitif.
5. Montrer rigoureusement que si G est transitif, alors pour tout x ∈ V , |C(x)| a la même loi.

Exercice 47. Soit G = (E, V ) un graphe infini connexe. On considère la percolation par
arêtes sur G.
1. Soit ΘG(p) la probabilité sous Pp qu’il existe un agrégat infini. Montrer que pour tout p ∈ [0, 1],

ΘG(p) ∈ {0, 1}.
2. Montrer que Θ est croissante.
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On définie pc(G) = sup{p ∈ [0, 1]; Θ(p) = 0}. On fixe maintenant un x ∈ G. On note par C(x)
l’agrégat de x. Comme le graphe n’est pas nécessairement transitif, la loi de C(x) dépend à priori
de x. Ainsi, la percolation en deux sommets distincts de G ne relève pas de la même étude. Par
contre, on va montrer que la probabilité critique est la même quel que soit le somme considéré.
On définit alors θG,x(p) par :

θG,x(p) = Pp(x ↔ ∞).

3. Montrer que θG,x est croissante, et donner θG,x(0) et θG,x(1). Pourquoi ne peut-on plus dire
que θG,x ∈ {0, 1} ?

On définit alors pc(G, x) = sup{p ∈ [0, 1]; θG,x(p) = 0}.
4. Montrer que les trois assertions suivantes sont équivalentes :

1. ΘG(p) = 1.
2. Il existe x ∈ G tel que θG,x(p) > 0.
3. Pour tout x ∈ G, θG,x(p) > 0.

5. En déduire que pour tout x ∈ G, pc(G, x) = pc(G).

6. Soit H un sous-graphe d’un graphe G, montrer que pc(H) ≥ pc(G).

Exercice 48. Soit G = (E, V ) un graphe connexe infini. Soit o un sommet de G. Un sous-
ensemble d’arêtes A ⊂ E est appelé un ensemble de coupure pour o si en enlevant A de G, le
sommet o se trouve dans une composante connexe finie. De manière équivalente, tout chemin
simple infini commençant à o doit traverser A. G est dit unidimensionnel s’il existe un sommet
o ∈ G et une suite d’ensembles de coupure disjoints (An)n∈ pour o telle que supn∈ |An| < ∞.

1. Montrer que si G est uni-dimensionnel, pc(G) = 1.

2. Montrer que Z × {0, . . . , n} est unidimensionnel et en déduire que pc(Z × {0, . . . , n}) = 1.

Exercice 49. Soit G = (V,E) un graphe. Pour un sommet x, on note par V (x) l’ensemble
des voisins de x. Montrer que :

pc(G) ≥ 1

supx∈V |V (x)| − 1
.

Exercice 50. Soit G un graphe infini et connexe. Soit x ∈ G un sommet fixé. On appelle
qu’un ensemble de coupure est un ensemble Π d’arêtes tel que tout chemin infini auto-évitant
démarrant à x doit traverser une arête de Π. Un ensemble de coupure minimal est un ensemble Π
tel que pour toute arête e ∈ Π, l’ensemble Π \ {e} n’est pas un ensemble de coupure (c’est-à-dire
que Π est minimal par rapport à l’inclusion). Soit G un graphe infini connexe.

1. Montrer que tout ensemble de coupure fini doit contenir un ensemble de coupure minimal.

2. Montrer que pour la percolation sur G, x ↔ ∞ si, et seulement si, pour chaque ensemble de
coupure minimale finie Π, Π contient au moins une arête ouverte.

3. Soit Cn l’ensemble des ensembles de coupure minimale de taille n. Montrer que s’il existe n0

et M > 1 tels que |Cn| ≤ Mn pour tout n > n0, alors pc(G) ≤ M−1
M .

Exercice 51 (Percolation sur un arbre de degré d.). On considère un arbre enraciné infini T
de degré d ≥ 3, c’est à dire un arbre dont tous les sommets sauf un ont d voisins. Le sommet
restant en a d− 1 et est appelé la racine. On considère une percolation de Berounilli sur T . On
note par Tn les sommets de T qui sont à n générations de la racine.

1. Montrer que (|C(0) ∩ Tn|)n∈N est un processus de Galton-Watson de loi de reproduction
Bin(d− 1, p), en déduire que pc(T ) =

1
d−1 .

On considère maintenant un arbre infini T de degré d, c’est à dire, un graphe infini connexe sans
cycles.
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2. Soit o ∈ T et soient x1, . . . , xd les d voisins de o. Montrer que pour tout y ∈ T− {o}, il existe
un unique i ∈ {1, . . . , d} tel que le chemin le plus court de y vers o passe par xi. On appelle
y un descendant de xi par rapport à o.

3. Montrer que les ensembles Ti des descendants des xi par rapport à o sont des arbres enracinés,
et un au moins est infini.

4. En déduire que pc(T) = 1
d−1 .

5. Montrer que θ(pc(T)) = 0.

3.4 Percolation sur Z2

Exercice 52. Montrer que p 7→ θ(p) est strictement croissante pour p > pc.

Exercice 53 (Formule de Russo). On considère la percolation sur Z2 où l’on note par E
l’ensemble de ses arêtes. Soit e une arête. Pour ω une configuration de percolation, on pose, pour
j ∈ {0, 1} :

ωj,e(e
′) = 1e′ ̸=eω(e

′) + 1e′=ej.

Soit X : {0, 1}E → R une variable aléatoire. On définie la dérivée de X au point e, notée ∂eX,
par :

∂eX(ω) = X(ω1,e)−X(ω0,e) = (X1,e −X0,e)(ω).

On suppose que X ne dépend que sur un nombre fini d’arêtes {e1, . . . , en}.
1. Montrer que :

d

dp
E[X] =

∑
e∈E

Ep[∂eX]

2. En utilisant cette formule, montrer que p 7→ P[x ↔ y] est strictement croissante.

3. Peut-on, en utilisant cette formule, montrer que si A est un évènement croissant, alors p 7→
P[A] est croissante ?
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