Exercice 1. Soient (E, τ_E) et (F, τ_F) des espaces topologiques et $f: E \to F$. Montrer que F est continue si, et seulement si:

$$\forall A \subset E, f(\overline{A}) \subset \overline{f(A)}.$$

Exercice 2. Soient (E, τ_E) et (F, τ_F) des espaces topologiques compacts et $f: E \to F$ une application bijective et continue. Montrer que f est un homéomorphisme.

Exercice 3 (Bases et Sous-Bases de Topologie). Soit E un ensemble. Une base de topologie sur E est une collection Γ_E de sous-ensembles de E telle que:

- Tout $x \in E$ est contenue dans l'au moins un des éléments de Γ_E .
- Pour tout $x \in E$ qui se trouve à la fois dans deux éléments B_1 et B_2 de Γ_E , il existe un élément B_3 de Γ_E tel que $x \in B_3 \subset B_1 \cap B_2$.

On définie la classe τ_E sous-ensembles de E comme suit:

$$A \in \tau_E \Leftrightarrow \forall x \in A, \exists B \in \Gamma_E; x \in B \subset A$$

- 1. Montrer que τ_E est une topologie dont tout ouvert s'écrit comme réunion d'éléments de Γ_E . Cette topologie est dite engendrée par Γ_E .
- 2. Montrer que dans un espace métrique, l'ensemble des boules ouvertes de rayons rationnels est une base de topologie qui engendre la topologie métrique.

Considérons maintenant un autre ensemble F munit d'une base Γ_F qui engendre la topologie τ_F et $f: E \to F$.

3. Montrer que f est continue si, et seulement si:

$$\forall A \in \Gamma_F, f^{-1}(A) \in \tau_E.$$

Que signifie cette assertion dans le cas d'un espace métrique ?

Une sous-base S_E de topologie de E est une collection de sous-ensembles de E dont la réunion est E.

- 4. Montrer que la classe des intersections finies d'éléments de S_E est une base de topologie. La topologie engendrée est appelée topologie engendrée par S.
- 5. Montrer que le résultat de la question 3 reste vrai en remplaçant $\forall A \in \Gamma_F$ par $\forall A \in \mathcal{S}_F$ où \mathcal{S}_F est une sous-base qui engendre τ_F .

Exercice 4 (Topologie Initiale). Soient I un ensemble d'indice et $(E_i, \tau_i)_{i \in I}$ une famille d'espaces topologiques. Soit (F, Σ) un espace topologique et pour tout $i \in I$, on considère une application $\pi_i : F \to E_i$. On appelle topologie initiale relative à $((E_i, \tau_i)_{i \in I}, F, (\pi_i)_{i \in I})$ la topologie la plus petite sur F rendant continues toutes les applications π_i . Pour $i \in I, O \in \tau_i$, on pose: $S_{i,O} = \pi^{-1}(O)$.

- 1. Montrer que $\{S_{i,O}; O \in \tau_i, i \in I\}$ est une sous-base.
- 2. En déduire que la topologie engendrée par cette sous-base est la topologie initiale.
- 3. Faire le lien avec la topologie faible-*.

Exercice 5 (Topologie Produit). Soient I un ensemble d'indice et $(E_i, \tau_i)_{i \in I}$ une famille d'espaces topologiques. On définie le produit $\prod_{i \in I} E_i$ par:

$$\prod_{i \in I} E_i = \left\{ \Phi : I \to \bigcup_{i \in I} E_i; \forall i \in I, \Phi(i) \in E_i \right\},\,$$

et on y pense bien sûr comme une famille $(u_i)_{i\in I}$ dont chaque u_i est dans E_i . On définie de plus les applications projections comme suit. Pour $j \in I$, $\pi_j : x = (x_i)_{i\in I} \in \prod_{i\in I} E_i \mapsto \pi_j(x) = x_j \in E_j$. La topologie produit est la topologie initiale relative $((E_i, \tau_i)_{i\in I}, \prod_{i\in I} E_i, (\pi_i)_{i\in I})$

- 1. Donner la forme d'un ouvert de $\prod_{i \in I} E_i$.
- 2. Montrer que si I est dénombrable et les E_i sont séparables, alors $\prod_{i \in I} E_i$ est séparable.
- 3. Montrer que si I est fini et les E_i sont des espaces métriques de distance d_i , alors la topologie produit n'est autre que celle de l'espace métrique produit, c'est à dire engendrée (entre autres) par la distance d'définie par:

$$\forall x = (x_i)_{i \in I}, y = (y_i)_{i \in I} \in \prod_{i \in I} E_i, d(x, y) = \sum_{i \in I} d_i(x_i, y_i).$$

4. On considère maintenant le cas où $I = \mathbb{N}$ et pour tout $i \in \mathbb{N}$, E_i est un espace métrique de distance d_i . On définie $d: \prod_{i \in \mathbb{N}} E_i \times \prod_{i \in \mathbb{N}} E_i \to \mathbb{R}^+$ par:

$$\forall x = (x_i)_{i \in \mathbb{N}}, y = (y_i)_{i \in \mathbb{N}} \in \prod_{i \in \mathbb{N}} E_i, d(x, y) = \sum_{i \in \mathbb{N}} \frac{1}{2^i} \frac{d_i(x_i, y_i)}{1 + d_i(x_i, y_i)}.$$

- (a) Montrer que d est une distance.
- (b) Montrer que la topologie induite par d coïncide avec la topologie produit.
- (c) Montrer qu'une suite $(x^n)_{n\in\mathbb{N}}$ converge pour d si, et seulement si elle converge composante par composante.
- 5. Montrer que le produit dénombrable d'espaces polonais est polonais.

Exercice 6. Le but de cet exercice est de montrer que tout sous-ensemble fermé ou ouvert d'un espace polonais est polonais. Soit E un espace polonais.

1. Soit $F \subset E$ un fermé. Montrer que F est polonais.

On considère maintenant U un ouvert propre de E. Soit d une distance sur E telle que (E,d) soit complet. On définie $d_0: U \times U \to \mathbb{R}_+$ par:

$$\forall x, y \in U, d_0(x, y) = d(x, y) + \left| \frac{1}{d(x, U^c)} - \frac{1}{d(y, U^c)} \right|.$$

- 2. Montrer que d_0 définie une distance sur U.
- 3. Montrer que d_0 induit sur U la topologie trace de E sur U.
- 4. Montrer que (U, d_0) est un espace métrique complet. Conclure.

Exercice 7. Soit $C[0, +\infty[$ l'ensemble des fonctions réelles continues sur l'intervalle $[0, +\infty[$.

1. On définie sur $C[0, +\infty[\times C[0, +\infty[\ l'application\ d:$

$$\forall f,g \in C[0,+\infty[,d(f,g)=\sup\{1 \wedge |f(t)-g(t)|; t \in [0,+\infty)\}$$

- (a) Montrer que d définie une distance sur $C[0, +\infty[$.
- (b) On suppose que f et f_1, f_2, \ldots appartiennent à $C[0, +\infty[$. Montrer que $(f_k)_{k \in \mathbb{N}^*}$ converge vers f pour d si, et seulement si elle converge uniformément vers f sur $[0, +\infty[$.
- (c) Montrer que $C[0, +\infty[$, muni de d n'est pas séparable et donc n'est pas polonais.
- 2. On définie sur $C[0, +\infty[\times C[0, +\infty[$ l'application D:

$$\forall f, g \in C[0, +\infty[, \sum_{n=1}^{+\infty} \frac{1}{2^n} \sup\{1 \land |f(t) - g(t)|; t \in [0, n]\}$$

- (a) Montrer que D est une distance.
- (b) On suppose que f et f_1, f_2, \ldots appartiennent à $C[0, +\infty[$. Montrer que $(f_k)_{k\in\mathbb{N}^*}$ converge vers f pour D si, et seulement si elle converge uniformément vers f sur tout les sous-ensembles compacts de $[0, +\infty[$.
- (c) Montrer que munit de D, $C[0, +\infty[$ est polonais.

Exercice 8. Soient (E, τ_E) et (F, τ_F) deux espaces polonais, et $f : E \to F$ une fonction continue. Montrer que $\Lambda : \mathcal{M}(E) \to \mathcal{M}(F)$ définie par:

$$\forall \mu \in \mathcal{M}(E), \Lambda(\mu) = \mu \circ f^{-1}$$

est continue.

Exercice 9. Soit X un espace topologique. Pour $\mu, \nu \in \mathcal{M}(X)$, on définie la distance en variation totale entre μ et ν par :

$$d_{VT}(\mu,\nu) = \sup_{A \in \mathcal{B}(X)} |\mu(A) - \nu(A)|.$$

- 1. Montrer que si $d(\mu_n, \mu) \xrightarrow[n \to \infty]{} 0$ alors $\mu_n \Rightarrow \mu$.
- 2. La réciproque est-elle vraie en génerale ?

3. Montrer que si $X = \mathbb{Z}$ alors cette distance métrise la convergence en loi. Montrer ainsi que dans ce cas:

$$d(\mu, \nu) = \frac{1}{2} \sum_{k \in \mathbb{Z}} |\mu(k) - \nu(k)|.$$

Exercice 10 (Distance de Lévy-Prohorov). Soit X un espace topologique métrisable et séparable. On définie sur $\mathcal{M}(X) \times \mathcal{M}(X)$ l'application suivante:

$$(\mu, \nu) \mapsto d_{LP}(\mu, \nu) = \inf\{\epsilon > 0; \forall A \in \mathcal{B}(X), \mu(A) \le \nu(A^{\epsilon}) + \epsilon \ \text{et } \nu(A) \le \mu(A^{\epsilon}) + \epsilon\},$$

 $où pour A \subset X \ et \ \epsilon \geq 0 \ on \ note$

$$A^{\epsilon} = \{x \in X; \exists y \in X \text{ avec } d(x, y) < \epsilon\}.$$

- 1. Pour $x, y \in X$, calculer $d_{LP}(\delta_x, \delta_y)$.
- 2. Montrer que d_{LP} est une distance sur $\mathcal{M}(X)$.
- 3. Montrer que en fait on a:

$$d_{LP}(\mu, \nu) = \inf\{\epsilon > 0; \forall A \in \mathcal{B}(X), \mu(A) \le \nu(A^{\epsilon}) + \epsilon\}.$$

4. Montrer que si μ, μ_1, μ_2 , sont des éléments de $\mathcal{M}(X)$ telles que $d_{LP}(\mu_n, \mu) \xrightarrow[n \to \infty]{} 0$, alors $\mu_n \Rightarrow \mu$.

On veut montrer maintenant que l'on a réiproquement : si μ, μ_1, μ_2 , sont des éléments de $\mathcal{M}(X)$ telles que $\mu_n \Rightarrow \mu$ alors $d_{LP}(\mu_n, \mu) \xrightarrow[n \to \infty]{} 0$. On fixe un $\epsilon > 0$. Soit \mathcal{U} l'ensemble des ouverts de la forme :

$$\bigcup_{i\in J} B(x_i,\epsilon), I\subset \{1,\ldots,m\}.$$

Pour $A \in \mathcal{B}(X)$, on pose:

$$U(A) = \bigcup_{i=1,\dots,m; A \cap B(x_i,\epsilon) \neq \emptyset} B(x_i,\epsilon).$$

- 5. Montrer que pour n assez grand, on a $\mu(A) \leq \mu_n(U(A)) + 2\epsilon$.
- 6. Conclure que $d_{LP}(\mu_n, \mu) \xrightarrow[n \to \infty]{} 0$.
- 7. En déduire que d_{LP} métrise la topologie de la convergence en loi sur $\mathcal{M}(X)$.

Exercice 11. On travaille sur $([0,1], \mathcal{B}([0,1])$. On définie pour $n \in \mathbb{N}$:

$$\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{\frac{i}{n}}.$$

Montrer que $\mu_n \Rightarrow \lambda$, la mesure de Lebesgue sur [0,1].

Exercice 12. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Sous quelles conditions nécessaires et suffisantes la suite de mesures δ_{u_n} est tendue ?

Exercice 13. Montrer que toute suite de variables aléatoires réelles bornée dans L^1 admet une sous-suite qui converge en loi.

Exercice 14. Soit μ une mesure de probabilité tendue sur un espace métrique (E,d). Montrer qu'il existe un borélien $A \subset E$ tel que (A,d) soit séparable et $\mu(A) = 1$.

Exercice 15. Soient E_1 et E_2 deux espaces topologiques, et Γ une famille de mesure borélienne sur $E_1 \times E_2$. Montrer que Γ est tendue si, et seulement si les deux familles:

$$\{\mu(\cdot \times E_2); \mu \in \Gamma\}\ et\ \{\mu(E_1 \times \cdot); \mu \in \Gamma\}$$

sont tendues.

Exercice 16 ($\mathcal{M}(E)$ compact $\Rightarrow E$ compact.). Soit (E,d) un espace métrique séparable.

1. Montrer que l'application $F: x \mapsto \delta_x$ est un homéomorphisme de E sur $E_0 = \{\delta_y, y \in E\} \subset M(E)$.

Soit $\mu_n = \delta_{x_n}$ une suite de E_0 qui converge étroitement vers μ .

- 2. On suppose que $(x_n)_{n\geq 1}$ n'admet aucune sous-suite convergente. Montrer que $\{x_n\}_{n\geq 1}$ est un fermé, ainsi que toutes ses parties.
- 3. Montrer que cela est contradictoire avec la convergence étroite de $(\mu_n)_{n\in\mathbb{N}}$, et en déduire que $(x_n)_{n\geq 1}$ admet une sous-suite convergente.
- 4. En déduire que E_0 est un fermé de $\mathcal{M}(E)$, et puis que si $\mathcal{M}(E)$ est compact, alors E est compact.

Exercice 17 (Le Théorème de Paul Lévy). Soit μ une mesure borélienne de probabilité sur \mathbb{R} . On définie sa transformée de Fourier par:

$$\mathcal{F}(\mu): t \in \mathbb{R} \mapsto \int_{\mathbb{R}} \exp(itx)\mu(dx)$$

On veut montrer le théorème de Paul Lévy suivant:

Théorème. Soient μ et μ_1, μ_2, \ldots des mesures de probabilité boréliennes sur \mathbb{R} . Alors la suite $(\mu_n)_{n\in\mathbb{N}}$ converge faiblement vers μ si, et seulement si la suite $\mathcal{F}(\mu_n)$ converge simplement vers $\mathcal{F}(\mu_n)$.

- 1. Montrer le sens "facile" du théorème.
- 2. Soient ν une mesure de probabilité borélienne et $\epsilon>0$,
 - (a) Montrer que:

$$\int_{-\epsilon}^{\epsilon} \mathcal{F}(\nu)(t)dt = \int_{\mathbb{R}} \frac{2\sin(\epsilon x)}{x} \nu(dx)$$

(b) En déduire que:

$$\nu\left(\left\{x \in \mathbb{R} : |x| \ge \frac{2}{\epsilon}\right\}\right) \le \frac{1}{\varepsilon} \int_{-\epsilon}^{\epsilon} \left(1 - \mathcal{F}(\nu)(t)\right) dt.$$

- 3. Montrer que $(\mu_n)_{n\in\mathbb{N}}$ est tendue.
- 4. Conclure la preuve du théorème.

Exercice 18. On considère la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ donnée par:

$$\forall n \in \mathbb{N}, \forall t \in [0, \infty[, f_n(t) = \sin\left(\sqrt{t + 4(n\pi)^2}\right)]$$

- 1. Montrer qu'il s'agit d'une suite de fonctions équicontinues convergent simplement vers 0.
- 2. La suite $(f_n)_{n\in\mathbb{N}}$ admet-elle une sous-suite qui converge uniformément? Commenter.

Exercice 19. Soit $K: C([a,b]) \to C([a,b])$ donnée par:

$$\forall s \in [a, b], (Kf)(s) = \int_a^b k(s, t) f(t) dt,$$

où $k \in C([a,b] \times [a,b])$, et soit (f_n) une suite bornée de $X = (C([a,b]), \|\cdot\|_{\infty})$. Montrer que (Kf_n) admet une sous-suite uniformément convergente.

Exercice 20. Dans le cours, on a définie la tribu cylindrique sur C([0,1], E) comme la tribu engendrée par les applications évaluations. En fait, cette même définition nous donne une tribu sur l'espace de toutes les fonctions de [0,1] dans E appelée la tribu produit. Montrer que, par exemple si $E = \mathbb{R}$, $C([0,1],\mathbb{R})$ n'est pas mesurable pour la tribu produit.

Exercice 21. Soit (E, d) un espace polonais dans lequel les fermés bornés sont compacts. Soit Γ une partie de $\mathcal{M}(E)$. On suppose que:

- 1. $\{\mu^0; \mu \in \Gamma\}$ est tendue.
- 2. Pour tous $\epsilon > 0$ et $\eta > 0$, il existe un $\delta > 0$ tel que:

$$\forall \mu \in \Gamma, \mu \left(\left\{ x \in \mathcal{W}(E); \omega(x, \delta) \leq \eta \right\} \right) \geq 1 - \epsilon$$

Montrer que pour tout $t \in [0,1]$, $\{\mu^t; \mu \in \Gamma\}$ est tendue.

Exercice 22. Soient X_n , $n \ge 0$, et X des processus croissants, continus, de [0,1] dans \mathbb{R} . Montrer que X_n converge en loi vers X pour la topologie uniforme sur C si et seulement si X_n converge vers X au sens des marginales de dimension finie.

Exercice 23. Montrer le théorème de Donsker dans le cas où les variables aléatoires ont un moment d'ordre 4.

Exercice 24. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires i.i.d. centrées et de variance 1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue. Montrer que:

$$\frac{1}{n} \sum_{i=1}^{n} f\left(\frac{X_1 + \cdots X_i}{\sqrt{i}}\right) \Rightarrow \int_0^1 f(B_s) ds,$$

où B est un mouvement brownien standard.

Exercice 25. Soient $(X_n)_{n\geq 1}$ une suite de variables aléatoires i.i.d. centrées et de variance 1. On pose:

$$S_n = X_1 + \dots + X_n \text{ et } M_n = \max_{1 \le i \le n} S_i$$

On définie $g: C([0,1]) \to \mathbb{R}$ par:

$$\forall f \in C([0,1]), g(f) = \sup_{t \in [0,1]} f(t).$$

- 1. Montrer que g est mesurable.
- 2. Montrer que:

$$\frac{M_n}{\sqrt{n}} \Rightarrow g(B),$$

où B est un mouvement Brownien standard.

Ce résultat nous dit que si l'on connaît la loi de $\sup_{t\in[0,1]} B_t$, on connaît la distribution limite de $\left(\frac{M_n}{\sqrt{n}}\right)_{n\geq 1}$ quelle que soit la suite de variable i.i.d. $(X_n)_{n\geq 1}$ correspondante. Dans la suite de l'exercice, on se propose de calculer la loi de $\sup_{t\in[0,1]} B_t$. On se place alors dans le cas particulier où $\mathbb{P}(X_1=1)=\mathbb{P}(X_1=-1)=\frac{1}{2}$.

3. Montrer que pour tout entier positif a:

$$\mathbb{P}(M_n \ge a) = 2\mathbb{P}(S_n > a) + \mathbb{P}(S_n = a).$$

4. En déduire que $\sup_{t \in [0,1]} B(t) \sim |N|$ où $N \sim \mathcal{N}(0,1)$.

Exercice 26 (Loi des grands nombres fonctionnelle.). Soit $(X_i)_{i\geq 1}$ des variables aléatoires i.i.d. réelles ayant un moment d'ordre 1. Pour $n\geq 1$, on considère le processus aléatoire:

$$S_n(t) = \frac{X_1 + X_2 + \ldots + X_{[nt]} + (nt - \lfloor nt \rfloor) X_{\lfloor nt \rfloor + 1}}{n}, t \in [0, 1].$$

Montrer que:

$$(S_n(t))_{0 \le t \le 1} \xrightarrow{p.s.} (t \mapsto E[X_1]t)_{0 < t < 1} \quad \text{lorsque } n \to 1.$$

Exercice 27. On se place sur l'espace de Banach C([0,1]) des fonctions continues de [0,1] dans \mathbb{R} , muni de sa tribu borélienne. On munit l'espace M(C([0,1])) des mesures de probabilités boréliennes sur C([0,1]) de la topologie de la convergence faible.

Pour tout réel $H \in]0,1[$, on admettra l'existence et l'unicité d'un élément P_H de M(C([0,1])) tel que sous P_H , le processus canonique $(W_t)_{t\in[0,1]}$ soit gaussien et centré, de covariance donnée par la formule suivante:

$$\forall s, t \in [0, 1], \quad E^{P_H}[W_s W_t] = \frac{1}{2} \left(s^{2H} + t^{2H} - |s - t|^{2H} \right).$$

On peut noter que pour $H = \frac{1}{2}$, P_H est la mesure de Wiener. Un processus de loi P_H s'appelle un mouvement brownien fractionnaire d'exposant de Hurst H.

- 1. Montrer que si Z est une variable aléatoire gaussienne centrée, alors $E[Z^4] = 3E[Z^2]^2$.
- 2. Montrer que l'application $H \mapsto P_H$ de]0,1[dans M(C([0,1])) est continue.
- 3. Soit $H \in]0,1[$ et soit $X=(X_t)_{t\in[0,1]}$ un processus de loi P_H . Montrer que pour tout $\alpha \in]0,H[$, les trajectoires de X sont presque sûrement Höldériennes d'exposant α .