Reflected Brownian motion, transient case and asymptotics of Green functions
Maxence Petit, joint work with Irina Kourkova and Sandro Franceschi
Sorbonne Université

Reflected Brownian Motion : Transient case

Let $\left(Z_{t}\right)_{t \geq 0}$ be a planar reflected Brownian motion in \mathbb{R}_{+}^{2} of covariance matrix Σ, of drift μ and reflection matrix R. Thanks to [1], we can establish the theorem

Theorem : existence and transience
A such process $Z_{t}=z_{0}+B_{t}+\mu t+R L_{t}$ exists if and only if

$$
\left[r_{12}>0 \text { and } r_{21}>0\right] \text { or }\left[\operatorname{det}(R)=r_{11} r_{22}-r_{12} r_{21}>0\right] .
$$

Where

- B is a Brownian motion of covariance Σ
- L is a a Local Time : continuous non-decreasing process, that increases only when the process touches the boundary.

Furthermore, the process is transient if and only if

$$
r_{11} \mu_{1}-r_{21} \mu_{2}^{-}>0 \text { or } r_{12} \mu_{1}^{-}-r_{22} \mu_{2}>0
$$

In facts, there is two possibilites to go to infinity. For the rest of the poster, we focus on the case (b) where $\mu_{1}, \mu_{2}>0$.

(b) Both coordinates tend to infinity

Laplace inverse and functional equation

Defintion : Green measures and Laplace transforms

- Green measure inside G and its Laplace transform :

$$
G\left(z_{0}, A\right):=\mathbb{E}_{z_{0}}\left[\int_{0}^{\infty} \mathbb{1}_{A}\left(Z_{t}\right) d t\right], \quad \varphi(w):=\mathbb{E}_{z_{0}}\left[\int_{0}^{\infty} e^{w \cdot Z_{t}} d t\right]
$$

- Green measures on sides H_{i} and its Laplace transforms: for $i \in\{1,2\}$,

$$
H_{i}\left(z_{0}, A\right)=\mathbb{E}_{z_{0}}\left[\int_{0}^{\infty} \mathbb{1}_{A}\left(Z_{t}\right) d L_{t}^{i}\right], \quad \varphi_{i}(w):=\mathbb{E}_{z_{0}}\left[\int_{0}^{\infty} e^{w \cdot Z_{t}} d L_{t}^{i}\right]
$$

The Ito formula, a sign argue and methods of [3] and [2] give the : Theorem : functional equation

$$
\begin{align*}
& \text { For } w=(x, y) \in \mathbb{C}^{2} \text { satisfying } \Re(x)<0 \text { and } \Re(y)<0, \\
& \quad-\gamma(w) \varphi(w)=\gamma_{1}(w) \varphi_{1}(y)+\gamma_{2}(w) \varphi_{2}(x)+e^{w \cdot z_{0}} \tag{1}\\
& \text { where } \gamma(w)=\frac{1}{2} w \cdot \Sigma w+w \cdot \mu, \gamma_{1}(w)=R^{1} \cdot w, \gamma_{2}(w)=R^{2} \cdot w .
\end{align*}
$$

By vanishing γ in (1) φ_{2} can be meromorphically extended on $\mathbb{C} \backslash\left[x_{\text {max }},+\infty\left[\right.\right.$ (same for φ_{1}, with $y_{\max }$ instead).

Residue theorem : from double

 integral to simple integral.$$
\begin{aligned}
& I_{1}=\frac{1}{2 i \pi} \int_{-\varepsilon-i \infty}^{-\varepsilon+i \infty} \frac{\gamma_{2}\left(x, Y^{+}(x)\right) \varphi_{2}(x)}{\partial_{y} \gamma\left(x, Y^{+}(x)\right)} e^{-a x-b Y^{+}(x)} d x \\
& \text { (same for } \left.I_{2}, I_{3}\right) . \\
& \text { Saddle point method }
\end{aligned}
$$

Now that we have a simple integral with an exponential, we use the saddle point method.

Figure 4. Graphic representation of the Saddle point $w(\alpha)$

Expected results

- If there is no pole coming from the saddle point method,

$$
g(r \cos (\alpha), r \sin (\alpha)) \underset{r \rightarrow \infty}{\sim} \frac{c\left(\alpha_{0}\right)}{\sqrt{r}} e^{-r\left\langle w(\alpha), e_{\alpha}\right\rangle} .
$$

- If there is a pole

$$
g(r \cos (\alpha), r \sin (\alpha)) \underset{r \rightarrow \infty}{\sim} d e^{-r\left\langle\tilde{w}(\alpha), e_{\alpha}\right\rangle}
$$

where $e_{\alpha}=(\cos (\alpha), \sin (\alpha))$.

References

 References- By Laplace inverse formula, if g denotes the density of G

