

# Martin Boundary of a degenerate Reflected Brownian Motion in a wedge

Maxence Petit, supervised by Irina Kourkova and Sandro Franceschi

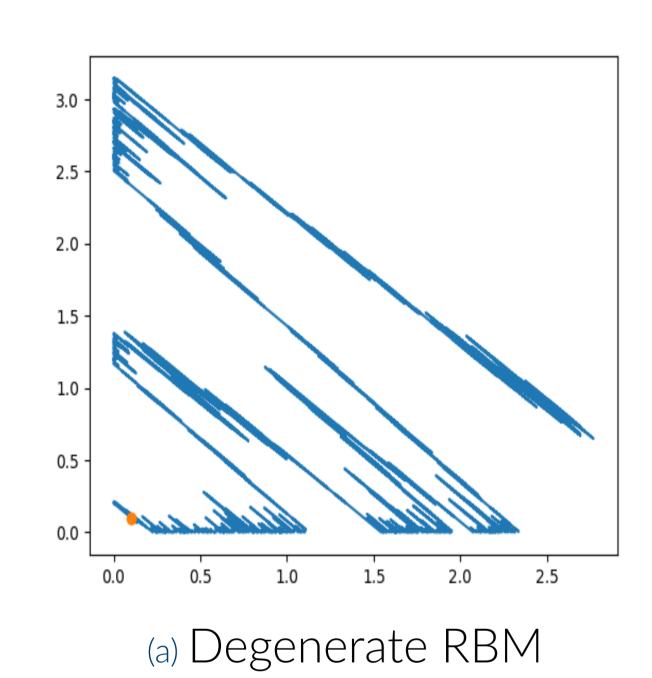
Sorbonne Université

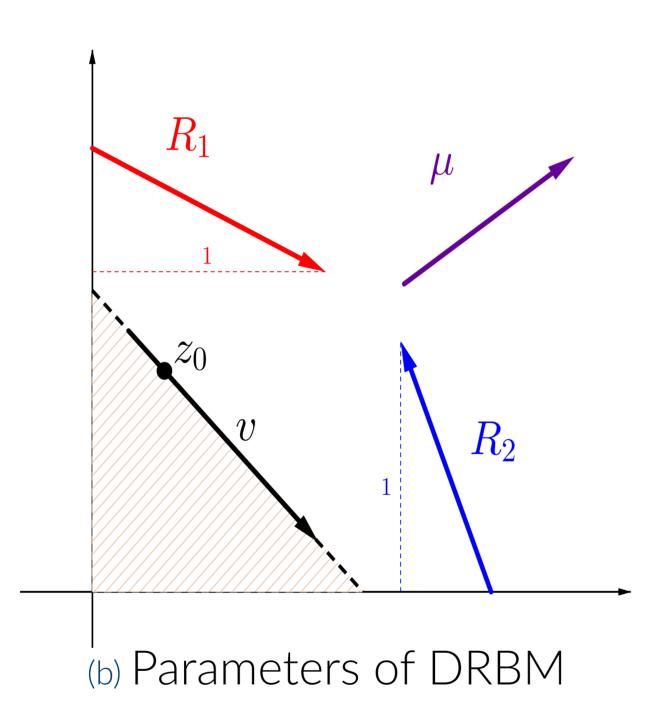


# The degenerate reflected Brownian motion (DRBM)

A such process is defined as  $Z_t = z_0 + vB_t + \mu t + RL_t$  where

- $(B_t)_{t\geq 0}$  is a **one dimensional** Brownian motion and  $v=(v_1,v_2)$  is the **Brownian direction**
- $(L_t^1, L_t^2)_{t \geq 0}$  is the local time on the axes: it increases only when  $Z_t$  touches the boundary and  $R = (R_1, R_2) = \begin{pmatrix} 1 & r_2 \\ r_1 & 1 \end{pmatrix}$  is the reflexion matrix
- $\mu=(\mu_1,\mu_2)$  is the drift.





# **Hypothesis**

- $\mu_1, \mu_2 > 0$ : transient Markov process
- $r_1>\frac{v_2}{v_1}, \quad r_2>\frac{v_1}{v_2}$  :  $(Z_t)_{t\geq 0}$  can't go back to the origin

#### Harmonic functions

A function h is harmonic if for any t > 0 and  $z_0$ ,

$$h(z_0) = \mathbb{E}_{z_0}[h(Z_t)].$$

Equivalently, h is harmonic if it satisfies the Boundary value problem:

$$\begin{cases} (H_0) & \mathcal{G}h = 0 & \text{on } (0, +\infty)^2 \\ (H_1) & \partial_{R_1}h(0, y) = 0, \quad y \ge 0 \\ (H_2) & \partial_{R_2}h(x, 0) = 0, \quad x \ge 0 \end{cases}$$
 (1)

where  $\mathcal{G}=(\partial_v)^2+\mu\nabla$ .

# Compensation method

Note that a function  $(x,y) \mapsto e^{ax+by}$  satisfies  $(H_0)$  if and only if  $\mathcal{G}e^{ax+by} = \gamma(a,b)e^{ax+by} = 0$  i.e.  $(a,b) \in \mathcal{P}$  where

$$\mathcal{P} := \{(x,y) \in \mathbb{R}^2, \gamma(x,y) := (v_1x + v_2y)^2 + \mu_1x + \mu_2y = 0\}.$$

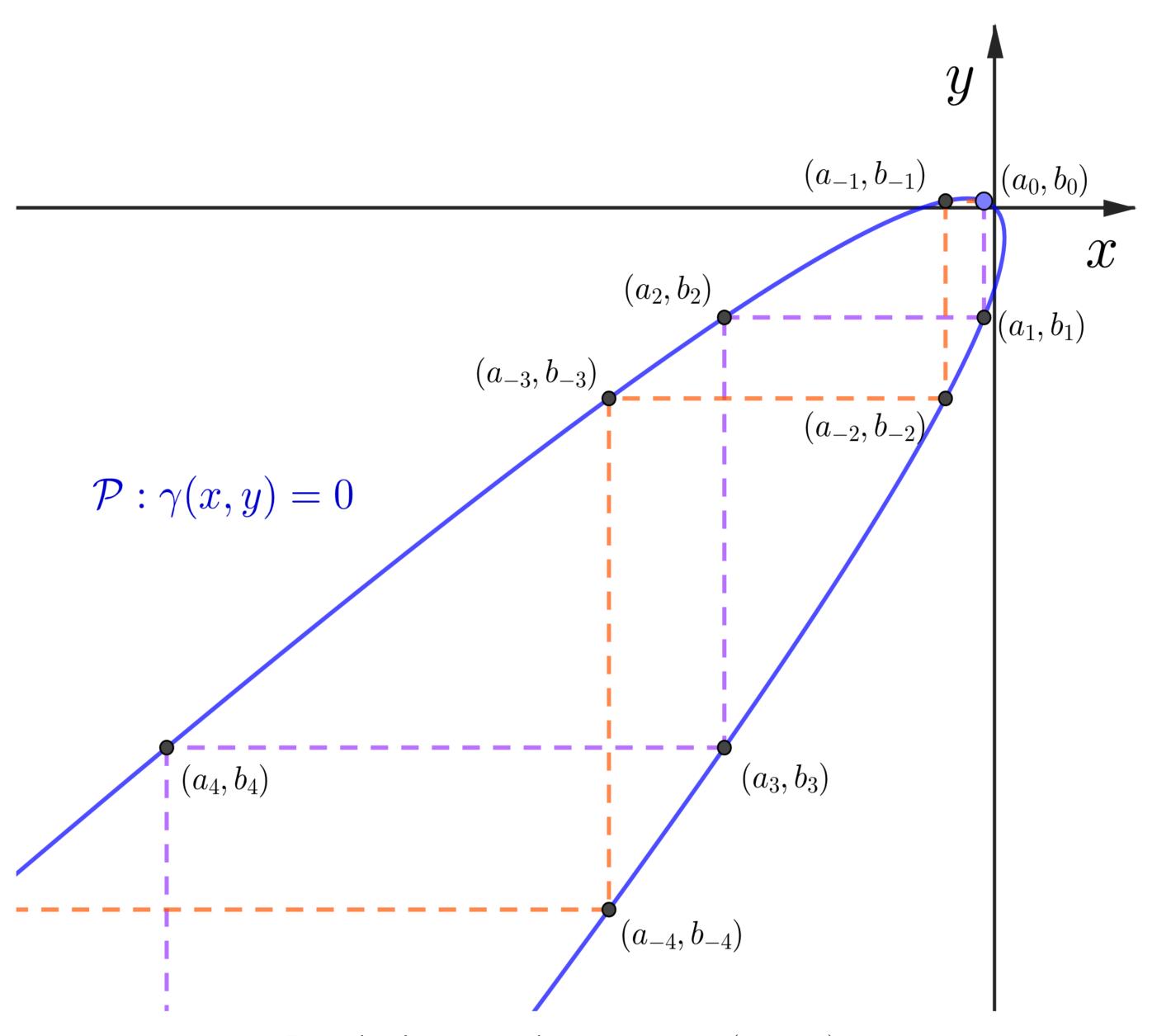


Figure 2. Parabola  $\mathcal{P}$  and sequence  $(a_n, b_n), n \in \mathbb{Z}$ .

$$h(x,y) = \dots + \underbrace{c_{-1}e^{a_{-1}x + b_{-1}y}}_{\in (H_1)} + \underbrace{c_0e^{a_0x + b_0y}}_{\in (H_1)} + \underbrace{c_1e^{a_1x + b_1y}}_{\in (H_1)} + c_2e^{a_2x + b_2y} + \dots$$

# Harmonic functions from the compensation method

Every point  $(a_0, b_0) \in \mathcal{P}$  corresponds to a harmonic function :

$$h(x,y) = \dots + \underbrace{c_{-1}e^{a_{-1}x + b_{-1}y}}_{\in (H_1)} + \underbrace{c_0e^{a_0x + b_0y}}_{\in (H_1)} + \underbrace{c_1e^{a_1x + b_1y}}_{\in (H_1)} + c_2e^{a_2x + b_2y} + \dots$$
 where  $(c_n)_{n \in \mathbb{Z}}$  are adjusted to fulfill  $(H_1)$  and  $(H_2)$ .

We index those harmonic function  $(h_{\alpha})_{\alpha \in [0,\pi/2]}$  taking  $(a_0,b_0)=z(\alpha)$ 

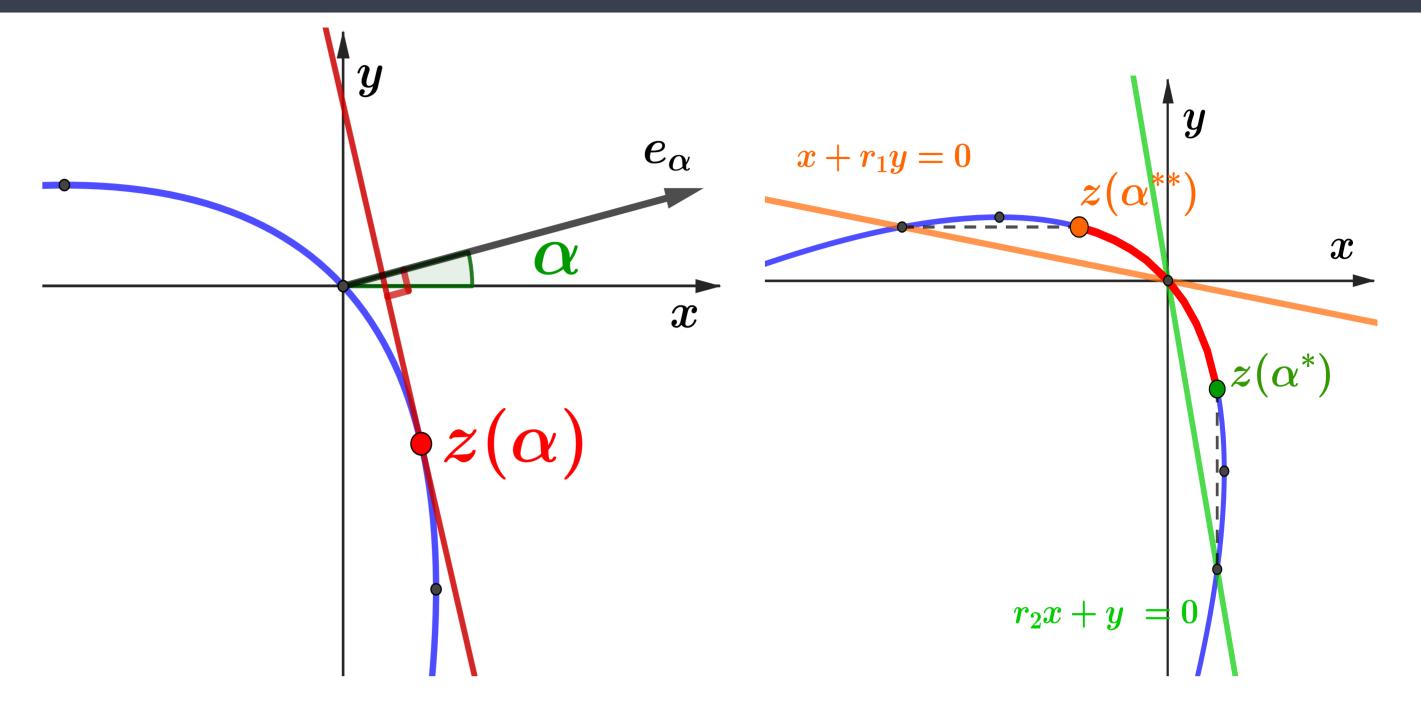


Figure 3. Definition of  $z(\alpha)$ ,  $\alpha^*$  and  $\alpha^{**}$ .

# **Asymptotics of Green's functions and Martin Boundary**

Defintion : Green's measure  $\mathbf{G}(\mathbf{z_0},\cdot)$  and Green's function  $\mathbf{g}(\mathbf{z_0},\mathbf{z})$ 

$$G(z_0,A) := \mathbb{E}_{z_0} \left[ \int_0^\infty \mathbb{1}_A(Z_t) dt \right] = \iint_A g(z_0,z) dz.$$

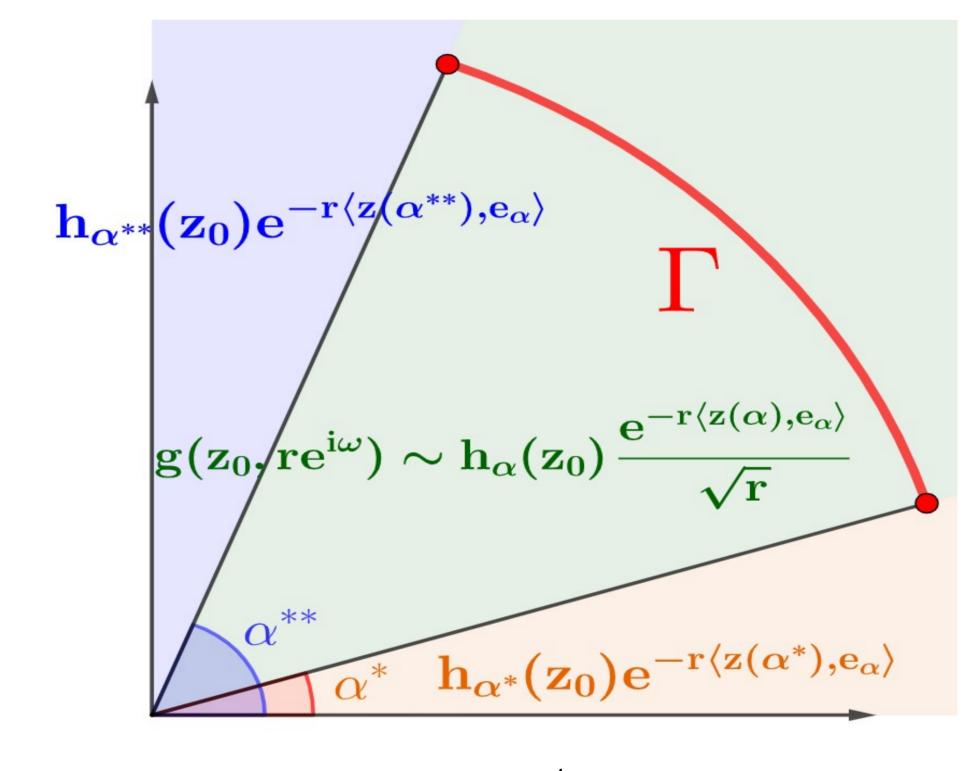


Figure 4. Asymptotics of  $g(z_0, re^{i\omega})$  as  $r \to \infty, \omega \to \alpha$ .

### Corollary

The (minimal) Martin Boundary  $\Gamma$  is given by  $[\alpha^*, \alpha^{**}]$ . Every nonnegative harmonic function can be uniquely written as

$$h(z) = \int_{[\alpha^*, \alpha^{**}]} h_{\alpha}(z) d\mu(\alpha).$$