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Motivation 1 of Brownian motion

Recall : Donsker’s Theorem

Brownian Motion is the scale limit of random walks.

(a) Centered random walk (L?)

(discrete time)

(b) Brownian motion (continuous
time)
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Motivation 2 of Brownian motion : Robert Brown the genius

Pollen grain on the water surface : does not have a C! trajectory !

Figure 2 — Brownian motion dimension 2
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Properties of Brownian motion

Proposition
A Brownian motion is (almost surely) everywhere continuous
and nowhere differentiable.
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Properties of Brownian motion

Proposition
A Brownian motion is (almost surely) everywhere continuous
and nowhere differentiable.

Proposition
If (Bt)t=0 is a Brownian motion, then it is a Markov process : it
forgets the past.
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Reflecting a Brownian motion : naive approach

Naive approach : consider (|Bt|)=0
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(Source : Brownian Motions on Metric Graphs : Feller Brownian
Motions on Intervals Revisited)
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Reflecting a Brownian motion : local time approach

We define Ly = —min(Bs, 0<s<t)

(@) (Bt)e=o,
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Reflecting a Brownian motion : local time approach

We define Ly = —min(Bs, 0<s<t)
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(@) (Bt)t=o, (—Li)i=o (b) (Bt + Lt)t=0 is a RBM

(Lt)¢=0 is called the local time of the reflected Brownian motion at
0 : it is a pushing process.
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Reflecting a Brownian motion : local time approach

We define Ly = —min(Bs, 0<s<t)
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(@) (Bt)t=o, (—Li)i=o (b) (Bt + Lt)t=0 is a RBM

(Lt)¢=0 is called the local time of the reflected Brownian motion at
0 : it is a pushing process.

Theorem : Tanaka formula

|We| = Be + Lt
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What is it ?

Reflected Brownian motion in Ri : 2y =20+ By + ut + RL;

Ry
/

v
"\

(a) Exemple de trajectoire (b) Drift, Vecteurs de réflexion

- (Bt)¢=0 is a Brownian motion, € R? is the drift
- R = (R1, R>) reflection matrix
- (Lt)¢>0 local time on the axes supp(dL’) = {t, Z! = 0}.
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Existence and uniqueness

Theorem : Weak existence and uniqueness
Existence and uniqueness in law at all positive times if and only if

rni1 >0, o >0, and [det(R) >0 or mi, rnp> 0]

Rl
Rl
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Figure 6 — Not defined Defined for all time
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Existence and uniqueness

Theorem : Weak existence and uniqueness
Existence and uniqueness in law at all positive times if and only if

rni1 >0, o >0, and [det(R) >0 or mi, rnp> 0]
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Figure 6 — Not defined Defined for all time

Figure 7 — From quadrant to cone : linear transformation /
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Recurrent - Transient

Definition : Recurrent or Transient process
A Markov process is recurrent if it comes back almost surely in

any open set. Otherwise, such a process is called transient.

= Drifted Brownian motion (B; + pt)e=o (p # 0) is transient in
Rd

= Brownian motion in dimension d > 3 is transient in RY
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Recurrence and transience : competition drift/reflection

Theorem : Conditions for transience (Hobson-Rogers, 1993)
(Z:)t=0 is transient if and only if

rnip — rify =0 or riopy — ropo < 0.
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Recurrence and transience : competition drift/reflection

Theorem : Conditions for transience (Hobson-Rogers, 1993)
(Z:)t=0 is transient if and only if

rnip — rify =0 or riopy — ropo < 0.
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(a) Example where 1, po > 0. (b) Escape along an axis

Assuming p points outward : Z is transient. )
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A last example

= Brownian motion in a ball killed when it reaches ¢D(0, 1)

Motivation
(One) motivation for transient processes : is it possible to define
a "limit at infinity" ?
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Boundary value problem and harmonic fonctions

Ah=0
hlop = f € C(6D)

(a) Analytic problem
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Boundary value problem and harmonic fonctions

Ah=0
hlap = f € C(2D)

(a) Analytic problem (b) Probabilistic interpretation

Theorem : Harmonic functions
If B is a Brownian motion and D is a smooth bounded domain,

h(z) := E,[f(B7)] is a solution where T = inf(t > 0, B; € dD).
In particular, h(z) =f f(u)k(z, u)du
oD

where k(z,u)du = P,(Bt € du)
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Boundary value problem and harmonic fonctions

Ah=0
hlap = f € C(2D)

(a) Analytic problem (b) Probabilistic interpretation

Theorem : Harmonic functions
If B is a Brownian motion and D is a smooth bounded domain,

h(z) := E,[f(B7)] is a solution where T = inf(t > 0, B; € dD).
In particular, h(z) =f f(u)k(z, u)du
oD

where k(z,u)du = P,(Bt € du)

Motivation : find harmonic functions with stochastic approacl36/48
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Green’s measure

Let be (Bt):=0 a transient Brownian motion (or transient process).

Definition : / Proposition : Green measure from z,
The following measure has a density g(zp, -) inside the cone :

G(zo,A):zEzOU0 14( Btdt] H g(z0,

Ti d in A.
(a)Time passed in e



Green functions and harmonicity

Definition : Harmonic functions
A function h is harmonic for a Markov process (Z:):>o if for all z,

E.[h(Z:)] = h(z).

This is equivalent with Ah = 0 for (Z;)=¢ Brownian motion.

Proposition
For zo € RY, g(-,y) is harmonic on R9\{y}
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Martin Kernel and construction

Definition : Martin Kernel and metric
Fix zp in R, For X,y € RY define

g(va) 1
Kry) = { &) V7 (1)
0 if y=2z.

Then, the following expression defines a metric on RY .

p(zl,zz) :f |k(Xazl)*k(X,z2)|

—IxP 4 2
wi 14 [k(x,z1) — k(i z)[© (2)

Remark
We recognize a "pointwise convergence topology" for the family

(k(x;-))xere-
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Martin Boundary

Definition : Martin Boundary
Define I as I = {(Xn)n>0, (k(-, Xa))n converges pointwise}/ ~
where ~ is the equivalent relation caracterising the limit of

(k(+sXn))n

Theorem : Martin compactification

The metric p extends naturally to RY U . Furthermore,
= k(&) = k(-,m) =—n=¢.
= RY UT is compact under p.

» y, — nel < k(-,y,) — k(-,n) pointwise.

n—0o0 n—0o0
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Martin Boundary

Definition : Martin Boundary
Define I as I = {(Xn)n>0, (k(-, Xa))n converges pointwise}/ ~
where ~ is the equivalent relation caracterising the limit of

(k(+sXn))n

Theorem : Martin compactification

The metric p extends naturally to RY U . Furthermore,
= k(&) = k(-,m) =—n=¢.
= RY UT is compact under p.

» y, — nel < k(-,y,) — k(-,n) pointwise.

n—0o0 n—0o0

Proposition
ForneTl, k(-,n) is harmonic on RY.
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Limit at infinity

Theorem : Limit at infinity
Almost surely, B; P Boel

Martin Boundary of drifted Brownian Motion : I ~ S9—1

Remark
The Martin Boundary see more than the limit at infinity
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Representation of nonnegative harmonic functions

Theorem : Representation of nonnegative harmonic function
Let h > 0 be a harmonic function. Then, there is a Radon mesure

wp on [ satisfying

h(z) = fr k(z, ) d (). 3)

Furthermore, every function defined by (3) is harmonic.
For the killed Brownian motion at ¢D(0, 1),

- T =0D(0,1)

- pp is the boundary condition
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Representation of nonnegative harmonic functions

Theorem : Representation of nonnegative harmonic function
Let h > 0 be a harmonic function. Then, there is a Radon mesure

wp on [ satisfying

h(z) = fr k(z, ) d (). 3)

Furthermore, every function defined by (3) is harmonic.

For the killed Brownian motion at ¢D(0, 1),
- T =0D(0,1)
- pp is the boundary condition

Remark
It works only for nonnegative harmonic function
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Harmonic functions

Theorem : Doob Transform

If his nonnegative harmonic, then P'(A) = E [h(zt) IA] defines a

h(Zo)
probability under which (Z;):=0 remains a Markov process.

37/48



Harmonic functions

Theorem : Doob Transform

If his nonnegative harmonic, then P'(A) = E [ZE;S%IA] defines a

probability under which (Z;):=0 remains a Markov process.

Proposition
If T is minimal, for all pe T, P)lf("”)(XOO =n)=1.

For u e S9~1 [Condition by k(-, u)] = [Converge in direction u]
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Reflected Brownian motion in a cone

Figure 10 — Notations in the cone
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Theorem

Theorem : Asymptotics of the Green’s Density
Let w* =0 — 2 and w** = 6 + 2¢. We have the asymptotics for
g®) (pcos(w), psin(w)), p — o, w — wp ¢ {0,w*,w**, B} :

g@)(p cos(w), psin(w)) ~ ...

—2p|i| sin®(w+6—0)
'

(a) 0 < w* < W™ <3
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Remarks

- According to the angles of the parameters, we have 4
configurations

.
(w=e=0) 1
—e

P

20l sin® (43¢)

[ 20l sin’ (w+3-0) [ 20l sin®(w+d-6)

(a) 0 < w* <w** < (b) 0 < w* < B < w**

L opisint(s52)

(c) w* <0< w** <p (d) w* <0< B < w**
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Remarks

- According to the angles of the parameters, we have 4
configurations

(e 20l sin® (w+3-0) [ 20l sin®(w+d-6)

(a) 0 < w* <w™* < (b) 0 <w* < B < w**

(c) w* <0 <w* <3 (d) w* <0< g <w**

- Asymptotic expansion (middle zone :)

corwoy 1 &
g(pcosw, psinw) e e—2P|M|S|n2(Tg)7 Z ck((:)
w—wo \/ﬁ k=0 P
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Proof Strategy

We consider the R? quadrant.

> Definition of Green measures on the boundaries

>> Laplace transforms, ’functional equation | and extension of

Laplace transforms

> ’Laplace inversion‘

> Residue theorem

> ’Saddle point method‘
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Corresponding Martin Boundary

C**,ZOE*T(CO )z +sin(a)y*)

(v, zg)eT(cos(@)e(@)Fsin(a)y(a)

Figure 13 — Asymptotics of
g®)(rcos(a), rsin(a)) as r — o
Remark

ek

o
a”

Figure 14 — Shape of Martin Boundary of
the process : [ = [a*, a™**]

Constants c(«, zp) are the harmonic functions k(zp, ) relative to

Martin kernel
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Degenerate Model - Link to particles ?

Three particles X1 < X, < X3 colliding with each other, and the
middle one is a Brownian motion : gapping process
(X3 — Xa, X2 — X1) is a reflected Brownian motion.

(a) System of 3 particles (b) Degenerate reflected Brownian
(Karatzas Ichiba paper) motion
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Thank you for listening !
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References and existence

Survey : SRBM in the orthant - Williams (1995)

Existence and uniqueness of semimartingale reflecting
Brownian motions in an orthant - Taylor and Williams (1992)

- Otbher...

Tomoyuki Ichiba, loannis Karatzas - Degenerate Competing
Three-Particle Systems (2021)

48 /48



	I. Reflected Brownian motion
	A. The Brownian motion
	B. Reflection of Brownian motion in dimension 1
	C. The two-dimensional reflected Brownian motion
	D. Condition for transience and recurrence

	II. Martin Boundary
	A. Motivation
	B. Construction and theorem
	C. Harmonic function and Doob's transform

	III. Martin Boundary of Reflected Brownian Motion

