Reflected Brownian motion in a cone and Martin boundary.

Maxence Petit, supervised by Irina Kourkova and Sandro Franceschi. Sorbonne Université

- I. Reflected Brownian motion
 - A. The Brownian motion
 - B. Reflection of Brownian motion in dimension 1
 - C. The two-dimensional reflected Brownian motion
 - D. Condition for transience and recurrence
- II. Martin Boundary
 - A. Motivation
 - B. Construction and theorem
 - C. Harmonic function and Doob's transform
- III. Martin Boundary of Reflected Brownian Motior

- I. Reflected Brownian motion
 - A. The Brownian motion
 - B. Reflection of Brownian motion in dimension 1
 - C. The two-dimensional reflected Brownian motion
 - D. Condition for transience and recurrence
- II. Martin Boundary
 - A. Motivation
 - B. Construction and theorem
 - C. Harmonic function and Doob's transform
- III. Martin Boundary of Reflected Brownian Motion

Motivation 1 of Brownian motion

Recall: Donsker's Theorem

Brownian Motion is the scale limit of random walks.

(a) Centered random walk (L^2) (discrete time)

(b) Brownian motion (continuous time)

Motivation 2 of Brownian motion : Robert Brown the genius

Pollen grain on the water surface : does not have a C^1 trajectory!

Figure 2 - Brownian motion dimension 2

Properties of Brownian motion

Proposition

A Brownian motion is (almost surely) everywhere **continuous** and nowhere differentiable.

Properties of Brownian motion

Proposition

A Brownian motion is (almost surely) everywhere **continuous** and nowhere differentiable.

Proposition

If $(B_t)_{t\geqslant 0}$ is a Brownian motion, then it is a **Markov** process : it forgets the past.

- I. Reflected Brownian motion
 - A. The Brownian motion
 - B. Reflection of Brownian motion in dimension 1
 - C. The two-dimensional reflected Brownian motion
 - D. Condition for transience and recurrence
- II. Martin Boundary
 - A. Motivation
 - B. Construction and theorem
 - C. Harmonic function and Doob's transform
- III. Martin Boundary of Reflected Brownian Motion

Reflecting a Brownian motion : naive approach

Naive approach : consider $(|B_t|)_{t\geqslant 0}$

(Source : Brownian Motions on Metric Graphs : Feller Brownian Motions on Intervals Revisited)

Reflecting a Brownian motion : local time approach

We define $L_t = -\min(B_s, 0 \le s \le t)$

(a)
$$(B_t)_{t\geqslant 0}$$
, $(-L_t)_{t\geqslant 0}$

Reflecting a Brownian motion : local time approach

We define $L_t = -\min(B_s, 0 \le s \le t)$

 $(L_t)_{t\geq 0}$ is called the local time of the reflected Brownian motion at 0 : it is a pushing process.

Reflecting a Brownian motion: local time approach

We define $L_t = -\min(B_s, 0 \le s \le t)$

 $(L_t)_{t\geq 0}$ is called the local time of the reflected Brownian motion at 0: it is a pushing process.

Theorem: Tanaka formula

$$|W_t| = B_t + L_t$$

- I. Reflected Brownian motion
 - A. The Brownian motion
 - B. Reflection of Brownian motion in dimension 1
 - C. The two-dimensional reflected Brownian motion
 - D. Condition for transience and recurrence
- II. Martin Boundary
 - A. Motivation
 - B. Construction and theorem
 - C. Harmonic function and Doob's transform
- III. Martin Boundary of Reflected Brownian Motion

What is it?

Reflected Brownian motion in \mathbb{R}^2_+ : $Z_t = z_0 + B_t + \mu t + RL_t$

- $(B_t)_{t\geqslant 0}$ is a Brownian motion, $\mu\in\mathbb{R}^2$ is the drift
- $R = (R_1, R_2)$ reflection matrix
- $(L_t)_{t\geqslant 0}$ local time on the axes $\operatorname{supp}(dL^i)\subset \{t,Z^i_t=0\}.$

Existence and uniqueness

Theorem: Weak existence and uniqueness

Existence and uniqueness in law at all positive times if and only if

$$r_{11} > 0$$
, $r_{22} > 0$, and $[det(R) > 0$ or r_{21} , $r_{12} > 0]$.

Figure 6 – Not defined Defined for all time

Existence and uniqueness

Theorem: Weak existence and uniqueness

Existence and uniqueness in law at all positive times if and only if

$$r_{11} > 0$$
, $r_{22} > 0$, and $[det(R) > 0$ or r_{21} , $r_{12} > 0]$.

Figure 6 – Not defined Defined for all time

Figure 7 – From quadrant to cone : linear transformation

- I. Reflected Brownian motion
 - A. The Brownian motion
 - B. Reflection of Brownian motion in dimension 1
 - C. The two-dimensional reflected Brownian motion
 - D. Condition for transience and recurrence
- II. Martin Boundary
 - A. Motivation
 - B. Construction and theorem
 - C. Harmonic function and Doob's transform
- III. Martin Boundary of Reflected Brownian Motion

Recurrent - Transient

Definition: Recurrent or Transient process

A Markov process is **recurrent** if it comes back almost surely in any open set. Otherwise, such a process is called **transient**.

Example:

- Drifted Brownian motion $(B_t + \mu t)_{t \geqslant 0}$ $(\mu \neq 0)$ is transient in \mathbb{R}^d
- Brownian motion in dimension $d \ge 3$ is transient in \mathbb{R}^d

Recurrence and transience : competition drift/reflection

Theorem: Conditions for transience (Hobson-Rogers, 1993)

 $(Z_t)_{t\geqslant 0}$ is transient if and only if

$$r_{11}\mu_1 - r_{21}\mu_2^- \geqslant 0$$
 or $r_{12}\mu_1^- - r_{22}\mu_2 \leqslant 0$.

Recurrence and transience : competition drift/reflection

Theorem: Conditions for transience (Hobson-Rogers, 1993)

 $(Z_t)_{t\geqslant 0}$ is transient if and only if

$$r_{11}\mu_1 - r_{21}\mu_2^- \geqslant 0$$
 or $r_{12}\mu_1^- - r_{22}\mu_2 \leqslant 0$.

(a) Example where $\mu_1, \mu_2 > 0$.

(b) Escape along an axis

Assuming μ points outward : Z is transient.

A last example

■ Brownian motion in a ball killed when it reaches $\partial D(0,1)$

Motivation

(One) motivation for transient processes : is it possible to define a "limit at infinity"?

- I. Reflected Brownian motion
 - A. The Brownian motion
 - B. Reflection of Brownian motion in dimension 1
 - C. The two-dimensional reflected Brownian motion
 - D. Condition for transience and recurrence
- II. Martin Boundary
 - A. Motivation
 - B. Construction and theorem
 - C. Harmonic function and Doob's transform
- III. Martin Boundary of Reflected Brownian Motion

- I. Reflected Brownian motion
 - A. The Brownian motion
 - B. Reflection of Brownian motion in dimension 1
 - C. The two-dimensional reflected Brownian motion
 - D. Condition for transience and recurrence

II. Martin Boundary

- A. Motivation
- B. Construction and theorem
- C. Harmonic function and Doob's transform
- III. Martin Boundary of Reflected Brownian Motion

Boundary value problem and harmonic fonctions

$$\begin{cases} \Delta h = 0 \\ h|_{\partial D} = f \in C(\partial D) \end{cases}$$

(a) Analytic problem

Boundary value problem and harmonic fonctions

$$\begin{cases} \Delta h = 0 \\ h|_{\partial D} = f \in C(\partial D) \end{cases}$$

(a) Analytic problem

(b) Probabilistic interpretation

Theorem: Harmonic functions

If B is a Brownian motion and D is a smooth bounded domain, $h(z):=\mathbb{E}_z[f(B_T)] \text{ is a solution where } T=\inf(t\geqslant 0, B_t\in \partial D).$ In particular, $h(z)=\int_{\partial D}f(u)k(z,u)du$ where $k(z,u)du=P_z(B_T\in du)$

Boundary value problem and harmonic fonctions

$$\begin{cases} \Delta h = 0 \\ h|_{\partial D} = f \in C(\partial D) \end{cases}$$

(a) Analytic problem

(b) Probabilistic interpretation

Theorem: Harmonic functions

If B is a Brownian motion and D is a smooth bounded domain, $h(z):=\mathbb{E}_z[f(B_T)] \text{ is a solution where } T=\inf(t\geqslant 0, B_t\in \partial D).$ In particular, $h(z)=\int_{\partial D}f(u)k(z,u)du$ where $k(z,u)du=P_z(B_T\in du)$

Motivation : find harmonic functions with stochastic approach

- I. Reflected Brownian motion
 - A. The Brownian motion
 - B. Reflection of Brownian motion in dimension 1
 - C. The two-dimensional reflected Brownian motion
 - D. Condition for transience and recurrence

II. Martin Boundary

- A. Motivation
- B. Construction and theorem
- C. Harmonic function and Doob's transform
- III. Martin Boundary of Reflected Brownian Motion

Green's measure

Let be $(B_t)_{t\geqslant 0}$ a transient Brownian motion (or transient process).

Definition: / Proposition: Green measure from z_0

The following measure has a density $g(z_0, \cdot)$ inside the cone :

$$G(z_0,A) := \mathbb{E}_{z_0} \left[\int_0^\infty \mathbf{1}_A(B_t) dt \right] = \iint_A g(z_0,z) dz$$

(a) Time passed in A.

Green functions and harmonicity

Definition: Harmonic functions

A function h is harmonic for a Markov process $(Z_t)_{t\geqslant 0}$ if for all z,

$$\mathbb{E}_{z}[h(Z_{t})] = h(z).$$

Example:

This is equivalent with $\Delta h = 0$ for $(Z_t)_{t \ge 0}$ Brownian motion.

Proposition

For $z_0 \in \mathbb{R}^d$, $g(\cdot, y)$ is harmonic on $\mathbb{R}^d \setminus \{y\}$

Martin Kernel and construction

Definition: Martin Kernel and metric

Fix z_0 in \mathbb{R}^d . For $x, y \in \mathbb{R}^d$, define

$$k(x,y) = \begin{cases} \frac{g(x,y)}{g(z_0,y)} & \text{if} \quad y \neq z_0\\ 0 & \text{if} \quad y = z_0. \end{cases}$$
 (1)

Then, the following expression defines a metric on \mathbb{R}^d :

$$\rho(z_1, z_2) = \int_{\mathbb{R}^d} \frac{|k(x, z_1) - k(x, z_2)|}{1 + |k(x, z_1) - k(x, z_2)|} e^{-|x|^2} dx.$$
 (2)

Remark

We recognize a "pointwise convergence topology" for the family $(k(x,\cdot))_{x\in\mathbb{R}^d}$.

Martin Boundary

Definition: Martin Boundary

Define Γ as $\Gamma = \{(x_n)_{n \geq 0}, (k(\cdot, x_n))_n \text{ converges pointwise}\}/\sim$ where \sim is the equivalent relation caracterising the limit of $(k(\cdot, x_n))_n$

Theorem: Martin compactification

The metric ρ extends naturally to $\mathbb{R}^d \cup \Gamma$. Furthermore,

- $k(\cdot,\xi) = k(\cdot,\eta) \Longrightarrow \eta = \xi$.
- $\mathbb{R}^d \cup \Gamma$ is **compact** under ρ .
- $y_n \xrightarrow[n \to \infty]{} \eta \in \Gamma \iff k(\cdot, y_n) \xrightarrow[n \to \infty]{} k(\cdot, \eta)$ pointwise.

Martin Boundary

Definition: Martin Boundary

Define Γ as $\Gamma = \{(x_n)_{n \geq 0}, (k(\cdot, x_n))_n \text{ converges pointwise}\}/\sim$ where \sim is the equivalent relation caracterising the limit of $(k(\cdot, x_n))_n$

Theorem: Martin compactification

The metric ρ extends naturally to $\mathbb{R}^d \cup \Gamma$. Furthermore,

- $k(\cdot,\xi) = k(\cdot,\eta) \Longrightarrow \eta = \xi$.
- $\mathbb{R}^d \cup \Gamma$ is **compact** under ρ .
- $y_n \xrightarrow[n \to \infty]{} \eta \in \Gamma \iff k(\cdot, y_n) \xrightarrow[n \to \infty]{} k(\cdot, \eta)$ pointwise.

Proposition

For $\eta \in \Gamma$, $k(\cdot, \eta)$ is harmonic on \mathbb{R}^d .

Limit at infinity

Theorem: Limit at infinity

Almost surely, $B_t \xrightarrow[t \to \infty]{} B_{\infty} \in \Gamma$

Example:

Martin Boundary of **drifted** Brownian Motion : $\Gamma \sim \mathbb{S}^{d-1}$

Remark

The Martin Boundary see more than the limit at infinity

Representation of nonnegative harmonic functions

<u>Theorem</u>: Representation of nonnegative harmonic function

Let $h\geqslant 0$ be a harmonic function. Then, there is a Radon mesure μ_h on Γ satisfying

$$h(z) = \int_{\Gamma} k(z, \eta) d\mu_h(\eta). \tag{3}$$

Furthermore, every function defined by (3) is harmonic.

Example:

For the killed Brownian motion at $\partial D(0,1)$,

- $\Gamma = \partial D(0,1)$
- μ_h is the boundary condition

Representation of nonnegative harmonic functions

<u>Theorem</u>: Representation of nonnegative harmonic function

Let $h\geqslant 0$ be a harmonic function. Then, there is a Radon mesure μ_h on Γ satisfying

$$h(z) = \int_{\Gamma} k(z, \eta) d\mu_h(\eta). \tag{3}$$

Furthermore, every function defined by (3) is harmonic.

Example:

For the killed Brownian motion at $\partial D(0,1)$,

- $\Gamma = \partial D(0,1)$
- μ_h is the boundary condition

Remark

It works only for nonnegative harmonic function

- I. Reflected Brownian motion
 - A. The Brownian motion
 - B. Reflection of Brownian motion in dimension 1
 - C. The two-dimensional reflected Brownian motion
 - D. Condition for transience and recurrence

II. Martin Boundary

- A. Motivation
- B. Construction and theorem
- C. Harmonic function and Doob's transform
- III. Martin Boundary of Reflected Brownian Motion

Harmonic functions

Theorem: Doob Transform

If h is nonnegative harmonic, then $P^h(A) = \mathbb{E}\left[\frac{h(Z_t)}{h(Z_0)}\mathbf{1}_A\right]$ defines a probability under which $(Z_t)_{t\geqslant 0}$ remains a Markov process.

Harmonic functions

Theorem: Doob Transform

If h is nonnegative harmonic, then $P^h(A) = \mathbb{E}\left[\frac{h(Z_t)}{h(Z_0)}\mathbf{1}_A\right]$ defines a probability under which $(Z_t)_{t\geqslant 0}$ remains a Markov process.

Proposition

If Γ is minimal, for all $\eta \in \Gamma$, $P_x^{k(\cdot,\eta)}(X_\infty = \eta) = 1$.

Example:

For $u \in \mathbb{S}^{d-1}$, [Condition by $k(\cdot, u)$] = [Converge in direction u]

Sommaire

- I. Reflected Brownian motion
 - A. The Brownian motion
 - B. Reflection of Brownian motion in dimension 1
 - C. The two-dimensional reflected Brownian motion
 - D. Condition for transience and recurrence
- II. Martin Boundary
 - A. Motivation
 - B. Construction and theorem
 - C. Harmonic function and Doob's transform
- III. Martin Boundary of Reflected Brownian Motion

Reflected Brownian motion in a cone

Figure 10 – Notations in the cone

Theorem

Theorem: Asymptotics of the Green's Density

Let $\omega^* = \theta - 2\delta$ and $\omega^{**} = \theta + 2\varepsilon$. We have the asymptotics for $g^{(z_0)}(\rho\cos(\omega), \rho\sin(\omega))$, $\rho \to \infty$, $\omega \to \omega_0 \notin \{0, \omega^*, \omega^{**}, \beta\}$:

$$g^{(z_0)}(\rho\cos(\omega),\rho\sin(\omega))\sim\dots$$

(a)
$$0 < \omega^* < \omega^{**} < \beta$$

Remarks

- According to the angles of the parameters, we have 4 configurations

(a)
$$0 < \omega^* < \omega^{**} < \beta$$

(b)
$$0 < \omega^* < \beta < \omega^{**}$$

$$\frac{1}{\sqrt{\rho}}e^{-2\rho|\widetilde{\rho}|\sin^2(\frac{c-\delta}{2})}$$

$$\beta$$

(c)
$$\omega^* < 0 < \omega^{**} < \beta$$

(d)
$$\omega^* < 0 < \beta < \omega^{**}$$

Remarks

- According to the angles of the parameters, we have 4 configurations

(a)
$$0 < \omega^* < \omega^{**} < \beta$$

(b)
$$0 < \omega^* < \beta < \omega^{**}$$

$$\frac{1}{\sqrt{\rho}} e^{-2\rho |\tilde{p}| \sin^2(\frac{\nu^2}{2})}$$

$$\beta$$

(c)
$$\omega^* < 0 < \omega^{**} < \beta$$
 (d) $\omega^* < 0 < \beta < \omega^{**}$

d)
$$\omega^* < 0 < \beta < \omega^{**}$$

Asymptotic expansion (middle zone :)

$$g(\rho\cos\omega,\rho\sin\omega) \underset{\stackrel{\rho\to\infty}{\omega\to\omega_0}}{\sim} e^{-2\rho|\mu|\sin^2\left(\frac{\omega-\theta}{2}\right)} \frac{1}{\sqrt{\rho}} \sum_{k=0}^n \frac{c_k(\omega)}{\rho^k}$$

Proof Strategy

We consider the \mathbb{R}^2_+ quadrant.

- > Definition of Green measures on the boundaries
- □ Laplace transforms, functional equation and extension of Laplace transforms
- > Laplace inversion
- > Saddle point method

Corresponding Martin Boundary

Figure 13 – Asymptotics of $g^{(z_0)}(r\cos(\alpha),r\sin(\alpha))$ as $r\to\infty$

Figure 14 – Shape of Martin Boundary of the process : $\Gamma = [\alpha^*, \alpha^{**}]$

Remark

Constants $c(\alpha, z_0)$ are the harmonic functions $k(z_0, \alpha)$ relative to Martin kernel

Degenerate Model - Link to particles?

Three particles $X_1 \leq X_2 \leq X_3$ colliding with each other, and the middle one is a Brownian motion : **gapping process** $(X_3 - X_2, X_2 - X_1)$ is a reflected Brownian motion.

(a) System of 3 particles (Karatzas Ichiba paper)

(b) Degenerate reflected Brownian motion

Thank you for listening!

References and existence

- Survey: SRBM in the orthant Williams (1995)
- Existence and uniqueness of semimartingale reflecting
 Brownian motions in an orthant Taylor and Williams (1992)
- Other...
- Tomoyuki Ichiba, Ioannis Karatzas Degenerate Competing Three-Particle Systems (2021)