Devoir à la maison n°1

On se donne un espace de probabilités $(\Omega, \mathcal{F}, \mathbf{P})$ et une sous-tribu \mathcal{G} de la tribu \mathcal{F} . Toutes les variables aléatoires sont définies sur l'espace $(\Omega, \mathcal{F}, \mathbf{P})$ et sont positives, c'est-à-dire à valeurs dans $([0, \infty], \mathcal{B}_{[0,\infty]})$.

On utilise les conventions habituelles pour l'arithmétique dans $[0, \infty]$ et on convient, pour tout réel s > 0, que $\infty^s = \infty$.

Partie 1 – Enveloppe mesurable d'un événement –

Soit $A \in \mathcal{F}$ un événement sur Ω . On définit la variable aléatoire

$$U = \mathbf{E}[\mathbf{1}_A | \mathscr{G}].$$

1.1. Montrer que $0 \leq U \leq 1$ p.s.

On définit l'événement $B = \{U > 0\}.$

- 1.2. Montrer que $\mathbf{1}_A \mathbf{1}_{B^c} = 0$ p.s. (Indication)
- 1.3. En déduire que $\mathbf{1}_A \leqslant \mathbf{1}_B$ p.s.

L'événement B s'appelle l'enveloppe mesurable de A (ou plus correctement une enveloppe mesurable de A) dans la tribu \mathscr{G} . C'est, en quelque sorte, le plus petit événement de \mathscr{G} qui contient A. Toutefois, strictement parlant, un tel événement n'existe pas toujours (pourquoi?), et l'événement B défini ci-dessus en est, en général, le meilleur substitut. Il n'est défini qu'à un événement négligeable près. Nous allons maintenant en donner une autre construction.

1.4. Montrer que l'infimum

$$p = \inf\{\mathbf{P}(G) : G \in \mathcal{G}, \mathbf{1}_A \leqslant \mathbf{1}_G \text{ p.s.}\}$$

est atteint, c'est-à-dire qu'il existe $C \in \mathcal{G}$ tel que $\mathbf{1}_A \leqslant \mathbf{1}_C$ p.s. et $\mathbf{P}(C) = p$. (Indication)

Choisissons et fixons un événement $C \in \mathcal{G}$ tel que $\mathbf{1}_A \leqslant \mathbf{1}_C$ p.s. et $\mathbf{P}(C) = p$.

- **1.5.** Montrer que $\mathbf{1}_C = \mathbf{1}_B$ p.s., si bien que C est également une enveloppe mesurable de A dans la tribu \mathscr{G} .
- **1.6.** Soit C' un événement de la tribu \mathscr{G} . Montrer que C' satisfait les deux propriétés suivantes :
 - 1. $\mathbf{1}_{A} \leqslant \mathbf{1}_{C'}$ p.s.
 - 2. si $G \in \mathcal{G}$ et si $\mathbf{1}_A \leqslant \mathbf{1}_G$ p.s., alors $\mathbf{1}_{C'} \leqslant \mathbf{1}_G$ p.s.

si et seulement si $\mathbf{1}_C = \mathbf{1}_{C'}$ p.s.

Partie 2 – Supremum essentiel conditionnel d'une variable aléatoire –

Soit X une variable aléatoire positive sur $(\Omega, \mathcal{F}, \mathbf{P})$.

- **2.1.** Montrer que pour tout $a \in [0, \infty]$, on a $X \geqslant a\mathbf{1}_{\{X \geqslant a\}}$ p.s.
- **2.2.** Soit $a \in [0, \infty]$. Montrer que si $\mathbf{P}(X \ge a) > 0$, alors

$$\underline{\lim_{n\to\infty}} \mathbf{E}[X^n]^{\frac{1}{n}} \geqslant a.$$

On appelle $supremum \ essentiel \ de \ X$ le nombre

$$\operatorname{ess\,sup} X = \inf\{a \in [0, \infty] : \mathbf{P}(X \geqslant a) = 0\}.$$

2.3. Montrer que $\lim_{n\to\infty} \mathbf{E}[X^n]^{\frac{1}{n}} = \operatorname{ess\,sup} X$.

Nous venons de montrer que lorsque n tend vers l'infini, le nombre $\mathbf{E}[X^n]^{\frac{1}{n}}$ tend vers le supremum essentiel de X. Nous allons maintenant démontrer une version conditionnelle de ce résultat, sachant la tribu \mathscr{G} .

Pour tout entier $n \ge 1$, posons

$$Y_n = \mathbf{E}[X^n | \mathscr{G}]^{\frac{1}{n}}.$$

- **2.4.** On suppose, dans cette question uniquement, que la tribu \mathscr{G} est engendrée par une partition $\{A_1, \ldots, A_n\}$ de Ω par des éléments de \mathscr{F} de probabilités strictement positives. Montrer que la suite $(Y_n)_{n\geqslant 0}$ converge presque sûrement et donner une expression de sa limite.
- **2.5.** On ne suppose plus que \mathscr{G} soit engendrée par une partition. Montrer que la suite $(Y_n)_{n\geqslant 0}$ est croissante et en déduire qu'elle converge presque sûrement. (Indication)

On note désormais

$$Y = \lim_{n \to \infty} Y_n = \lim_{n \to \infty} \mathbf{E}[X^n | \mathscr{G}]^{\frac{1}{n}}.$$

- **2.6.** Calculer Y lorsque X est l'indicatrice d'un événement de \mathscr{F} .
- **2.7.** Montrer que pour tout $a \in [0, \infty]$, on a $a\mathbf{1}_{\{X \geqslant a\}} \leqslant Y$ p.s. En déduire que $X \leqslant Y$ p.s.
- **2.8.** Montrer que si Z est une variable \mathscr{G} -mesurable et si $X \leq Z$ p.s., alors $Y \leq Z$ p.s.
- **2.9.** Montrer que si Y' est une variable aléatoire positive \mathcal{G} -mesurable qui satisfait les deux propriétés suivantes :
 - 1. $X \leqslant Y'$ p.s.
- 2. si Z est une variable ${\mathscr G}$ -mesurable et si $X\leqslant Z$ p.s., alors $Y'\leqslant Z$ p.s. alors Y=Y' p.s.

La variable aléatoire Y, définie presque sûrement, est donc la plus petite variable aléatoire \mathscr{G} -mesrable supérieure ou égale à X.

⁻ Indications -

^{1.2.} On pourra calculer l'espérance de cette variable aléatoire, en utilisant un conditionnement sachant la sous-tribu \mathscr{G} .

^{1.4.} On pourra considérer une suite d'événements de \mathcal{G} qui contiennent A et dont les probabilités s'approchent de p.

^{2.5.} On pourra utiliser l'inégalité de Jensen conditionnelle, en prenant soin de traiter séparément les cas où des variables aléatoires ne sont pas intégrables.