Contrôle continu nº 2

Jeudi 25 novembre — durée : 1 heure

Les réponses doivent être justifiées. On portera une attention particulière à la rédaction. Les documents, téléphones portables et autres appareils électroniques sont interdits.

Questions de cours. (2 points) On fixe E un ensemble dénombrable.

- 1. Donner la définition de « matrice de transition » (ou de « noyau de transition », c'est pareil).
- 2. Soit Q une matrice de transition sur E. Donner la définition de « chaîne de Markov de matrice de transition Q ».

Exercice. (8 points) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes identiquement distribuées. On suppose que $\mathbb{P}(X_1=3)=\frac{1}{4}$ et $\mathbb{P}(X_1=-1)=\frac{3}{4}$. On définit la filtration $(\mathcal{F}_n)_{n\geq 0}$ en posant \mathcal{F}_0 la tribu triviale et $\mathcal{F}_n=\sigma(X_1,\ldots,X_n)$ pour $n\geq 1$. Soit $(a_n)_{n\geq 0}$ une suite de nombres réels. On définit $(M_n)_{n\geq 0}$ en posant $M_0=0$ et, pour tout $n\geq 1$, $M_n=\sum_{k=1}^n a_k X_k$.

- 1. Montrer soigneusement que (M_n) est une martingale pour la filtration (\mathcal{F}_n) .
- 2. Soit $T = \inf\{n \in \mathbb{N} : |M_n| > 1000\}$. Montrer que T est un temps d'arrêt pour la filtration (\mathcal{F}_n) .

À partir de maintenant, on suppose que pour tout n, on a $\frac{1}{10} \le a_n \le 10$.

- 3. Montrer que $M_{T \wedge n}$ converge presque sûrement. On rappelle la notation $x \wedge y = \min(x, y)$.
- 4. En déduire que T est fini presque sûrement.
- 5. Démontrer que $\mathbb{E}[M_T] = 0$. Sur l'événement de probabilité nulle $\{T = \infty\}$, on pose $M_\infty = 0$.
- 6. Montrer que $M_n^2 300n$ est une surmartingale pour la filtration (\mathcal{F}_n) .

M1 – Probabilités Approfondies

Sorbonne Université 2021-2022

Contrôle continu nº 2

Jeudi 25 novembre — durée : 1 heure

Les réponses doivent être justifiées. On portera une attention particulière à la rédaction. Les documents, téléphones portables et autres appareils électroniques sont interdits.

Questions de cours. (2 points) On fixe E un ensemble dénombrable.

- 1. Donner la définition de « matrice de transition » (ou de « noyau de transition », c'est pareil).
- 2. Soit Q une matrice de transition sur E. Donner la définition de « chaîne de Markov de matrice de transition Q ».

Exercice. (8 points) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes identiquement distribuées. On suppose que $\mathbb{P}(X_1=3)=\frac{1}{4}$ et $\mathbb{P}(X_1=-1)=\frac{3}{4}$. On définit la filtration $(\mathcal{F}_n)_{n\geq 0}$ en posant \mathcal{F}_0 la tributriviale et $\mathcal{F}_n=\sigma(X_1,\ldots,X_n)$ pour $n\geq 1$. Soit $(a_n)_{n\geq 0}$ une suite de nombres réels. On définit $(M_n)_{n\geq 0}$ en posant $M_0=0$ et, pour tout $n\geq 1$, $M_n=\sum_{k=1}^n a_k X_k$.

- 1. Montrer soigneusement que (M_n) est une martingale pour la filtration (\mathcal{F}_n) .
- 2. Soit $T = \inf\{n \in \mathbb{N} : |M_n| > 1000\}$. Montrer que T est un temps d'arrêt pour la filtration (\mathcal{F}_n) .

À partir de maintenant, on suppose que pour tout n, on a $\frac{1}{10} \le a_n \le 10$.

- 3. Montrer que $M_{T \wedge n}$ converge presque sûrement. On rappelle la notation $x \wedge y = \min(x, y)$.
- 4. En déduire que T est fini presque sûrement.
- 5. Démontrer que $\mathbb{E}[M_T] = 0$. Sur l'événement de probabilité nulle $\{T = \infty\}$, on pose $M_\infty = 0$.
- 6. Montrer que $M_n^2 300n$ est une surmartingale pour la filtration (\mathcal{F}_n) .