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Examen

L’épreuve dure trois heures.
Les quatre exercices sont indépendants.
Ni documents, ni appareils électroniques.

La note finale sera sur 50 points.

Exercice 1

Barème indicatif : 15 points (3+3+3+3+3)

Toutes les variables aléatoires sont définies sur un espace de probabilités (Ω,F ,P).

1. Soit p ∈ [0, 1] un réel. Soient n,m ⩾ 1 des entiers. Soient A,B des variables aléatoires
indépendantes de lois binomiales, respectivement B(n, p) et B(m, p).

Calculer E[A |A+B].

2. On note D = {(x, y) ∈ R2 : 0 ⩽ y ⩽ 1 − |x|}. Soit (X, Y ) un couple de variables
aléatoires réelles dont la loi admet par rapport à la mesure de Lebesgue sur R2 la densité

f : (x, y) 7→ c x2y2 1D(x, y),

où c est un réel positif.

Calculer E[X |Y ] et E[Y |X].

3. Soit T une variable aléatoire de loi exponentielle de paramètre 1. Soit U = T − ⌊T ⌋ la
partie fractionnaire de T .

Calculer E[T |U ].

4 . Soit (F,G,H) un vecteur aléatoire gaussien centré de matrice de covariance3 2 1
2 3 2
1 2 3


Calculer E[F +G |G+H].

5. Soient K,L,M des variables aléatoires indépendantes et identiquement distribuées, qu’on
suppose intégrables.

Calculer E
[
K

∣∣E[K + L |K + L+M ]
]
et E

[
K + L+M

∣∣E[K + L |K]
]
.

Solution de l’exercice 1

1. La variable aléatoire A+B est de loi binomiale B(n+m, p). Soit g : N → R une fonction
mesurable bornée. On a

E[Ag(A+B)] =
n∑

a=0

m∑
b=0

(
n

a

)(
m

b

)
pa+ba g(a+ b).



Réorganisons la somme selon la valeur de la somme s = a + b. Conservons a comme autre
variable. Les contraintes sur a sont que a est un entier compris entre 0 et n, et qui doit être
plus petit que s et plus grand que m − s. Cette dernière condition équivaut à s − a ⩽ m, si
bien que

E[Ag(A+B)] =
n+m∑
s=0

psg(s)
∑
0⩽a⩽s

a⩽n,s−a⩽m

(
n

a

)(
m

s− a

)
a

L’entier s étant fixé, calculons la deuxième somme en utilisant l’identité a
(
n
a

)
= n

(
n−1
a−1

)
puis en

faisant le changement de variable c = a− 1 :∑
0⩽a⩽s

a⩽n,s−a⩽m

(
n

a

)(
m

s− a

)
a = n

∑
1⩽a⩽s

a⩽n,s−a⩽m

(
n− 1

a− 1

)(
m

(s− 1)− (a− 1)

)

= n
∑

0⩽c⩽s−1
c⩽n−1,(s−1)−c⩽m

(
n− 1

c

)(
m

(s− 1)− c

)

Dans la dernière somme, on reconnâıt le nombre de manière de choisir s − 1 éléments parmi
n+m− 1 dont n− 1 sont bleus et m sont rouges, compté selon le nombre c d’éléments bleus.
Cette somme vaut donc (

m+ n− 1

s− 1

)
=

s

n+m

(
n+m

s

)
,

si bien que l’espérance que nous sommes en train de calculer vaut

E[Ag(A+B)] =
n

n+m

n+m∑
s=0

(
n+m

s

)
pss g(s) =

n

n+m
E[(A+B)g(A+B)].

Nous en déduisons que

E[A |A+B] =
n

n+m
(A+B).

Autre solution. Le couple (A,B) a même loi que le couple (X1+. . .+Xn, Xn+1+. . .+Xn+m),
où X1, . . . , Xn+m sont des variables aléatoires indépendantes identiquement distribuées de loi
de Bernoulli de paramètre p. Ainsi, si nous trouvons une fonction h : R → R telle que

E[X1 + . . .+Xn | X1 + . . .+Xn+m] = h(X1 + . . .+Xn+m),

alors nous pourrons affirmer que

E[A |A+B] = h(A+B).

Or d’une part,

E[X1 + . . .+Xn | X1 + . . .+Xn+m] =
n∑

k=1

E[Xk | X1 + . . .+Xn+m].

D’autre part, par symétrie, la loi du couple (Xk, X1, . . . , Xn+m) ne dépend pas de l’entier k
compris entre 1 et n+m. Ainsi, il existe une fonction f ne dépendant pas de k telle que

E[Xk | X1 + . . .+Xn+m] = f(X1 + . . .+Xn+m).



En sommant cette dernière identité pour k variant de 1 à n+m, on trouve que

X1 + . . .+Xn+m = E[X1 + . . .+Xn+m|X1 + . . .+Xn+m] =
n+m∑
k=1

f(X1 + . . .+Xn+m),

si bien que

f(X1 + . . .+Xn+m) =
1

n+m
(X1 + . . .+Xn+m).

On en déduit donc que

E[X1 + . . .+Xn|X1 + . . .+Xn+m] =
n

n+m
(X1 + . . .+Xn+m),

si bien que la fonction h(x) = n
n+m

x convient.

Cette question n’est pas très facile, et n’a pas été bien traitée en général. La deuxième solution

demandait moins de calcul que la première, mais nécessitait d’intoduire des variables aléatoires qui

n’étaient pas données par l’énoncé.

2. La première chose à faire est de dessiner le domaine D :

Calculons la loi de X. Elle admet une densité par rapport à la mesure de Lebesgue sur R,
qu’on peut calculer en intégrtant par rapport à y la densité de la loi du couple (X,Y ). On
trouve

fX(x) =

∫
R2

f(x, y) dy = c1[−1,1](x)

∫ 1−|x|

0

x2y2 dy =
c

3
x2(1− |x|)3 1[−1,1](x).

Soit maintenant g : R → R une fonction mesurable bornée. Calculons E[Y g(X)]. On a

E[Y g(X)] =

∫
D

yg(x)f(x, y) dxdy

= c

∫ 1

−1

g(x)x2

(∫ 1−|x|

0

y3 dy

)
dx

=
c

4

∫ 1

−1

g(x)x2(1− |x|)4 dx

= c

∫
R

3

4
(1− |x|)g(x)fX(x) dx

=
3

4
E[(1− |X|)g(X)],

si bien que
E[Y |X] = 3

4
(1− |X|).

Considérons une fonction mesurable bornée g : R → R et calculons E[Xg(Y )]. Puisque la
fonction f vérifie f(−x, y) = f(x, y), la loi du couple (X, Y ) est la même que celle du couple
(−X, Y ), donc

E[Xg(Y )] = E[−Xg(Y )] = −E[Xg(Y )]



et cette espérance est nulle, si bien que

E[X|Y ] = 0.

Cette question a été assez bien traitée en général. Faire le dessin permet de ne pas être surpris du

fait qu’une des deux espérances conditionnelles est nulle, et éventuellement même de le prévoir.

3. Calculons la loi de U . Si g : R → R est une fonction mesurable positive, on a

E[g(U)] =

∫ ∞

0

g(x− ⌊x⌋)e−x dx

=
∞∑
n=0

∫ n+1

n

e−xg(x− n) dx

=
∞∑
n=0

∫ 1

0

e−n−xg(x) dx

=

∫ 1

0

e−x

1− e−1
g(x) dx.

Calculons maintenant E[Tg(U)]. Nous avons

E[Tg(U)] =

∫ ∞

0

xg(x− ⌊x⌋)e−x dx

=

∫ 1

0

e−xg(x)
∞∑
n=0

(n+ x)e−n dx.

On utilise le fait que
∑

n⩾0 nt
n = t

(1−t)2
pour tout t tel que |t| < 1 et on trouve

E[Tg(F )] =

∫ 1

0

e−xg(x)

(
x

1− e−1
+

e−1

(1− e−1)2

)
dx

=

∫ 1

0

e−x

1− e−1
g(x)

(
x+

1

e− 1

)
dx

= E
[(
U + 1

e−1

)
g(U)

]
,

si bien que

E[T |U ] = U +
1

e− 1
.

Cette question a été assez peu traitée, alors qu’elle était très proche de questions figurant dans des

examens passés, et ne posait pas de difficulté particulière.

4. Calculons la matrice de covariance du vecteur gaussien (F +G,G+H). On a

Var(F +G) = Var(G+H) = 3 + 3 + 4 = 10

et
Cov(F +G,G+H) = 2 + 1 + 3 + 2 = 8.



On a donc
Cov

(
(F +G)− 4

5
(G+H), G+H

)
= 0.

On en déduit que (F +G)− 4
5
(G+H) est indépendant de G+H, donc

E[(F +G)− 4
5
(G+H)|G+H] = E[(F +G)− 4

5
(G+H)] = 0.

Or cette espérance conditionnelle vaut

E[F +G|G+H]− 4

5
(G+H),

si bien que

E[F +G|G+H] =
4

5
(G+H).

Aux erreurs de calcul près, cette question a été la mieux traitée de l’exercice. J’aimerais qu’écrire
8
10 provoque chez la plupart des étudiantes et étudiants, par réflexe, un besoin de simplifier la fraction

en 4
5 , mais force est de constater que ce n’est pas le cas. On peut en rire, et aussi réfléchir au fait que

laisser 8
10 ne donne pas un bon signal de maturité mathématique, et peut influencer négativement la

suite de la correction.

5. Commençons par calculer la deuxième espérance conditionnelle. On a

E[K + L|K] = E[K|K] + E[L|K] = K + E[L].

La tribu engendrée par la variable aléatoire K + E[L] est la même que la tribu engendrée par
K, donc

E[K + L+M |E[K + L|K]] = E[K + L+M |K] = K + E[L] + E[M ] = K + 2E[K].

Pour la première, on commence par calculer E[K + L|K + L + M ]. On utilise le même
argument que dans la question 1. Les couples (K,K+L+M), (L,K+L+M) et (M,K+L+M)
ont même loi, donc

E[K|K + L+M ],E[L|K + L+M ] et E[M |K + L+M ]

sont égales, de somme égale àK+L+M . Ainsi, ces trois variables aléatoires valent 1
3
(K+L+M),

donc

E[K + L|K + L+M ] =
2

3
(K + L+M).

Cette variable aléatoire engendre la même tribu que K + L+M , donc

E[K|E[K + L|K + L+M ]] = E[K|K + L+M ] =
1

3
(K + L+M).

Cette question a été peu traitée, mais plus que je ne m’y attendais, ce qui a constitué une bonne

surprise.

Globalement, cet exercice, qui était attendu (parce qu’il était annoncé, et très similaire aux exercices

de la même nature figurant dans les sujets récents de partiel et d’examen), n’a pas été très bien traité.

Une erreur de calcul arrive à tout le monde, et on peut ne pas trouver, par exemple, comment mener

le calcul de la première question. Mais sur les 15 points proposés ici, en obtenir 10 ou 12 ne devrait

pas constituer l’exception, et permettrait, avec les 10 points de l’exercice “classique” sur les châınes

de Markov (ici exercice 4), d’obtenir au moins 20 points, et de ne pas être loin de valider l’UE.



Exercice 2

Barème indicatif : 20 points (3+3+3+3+2+3+3)

Dans cet exercice, toutes les variables aléatoires sont définies sur un espace de probabilités
filtré (Ω,F , (Fn)n⩾0,P).

1. Soit Z une variable aléatoire positive. Montrer d’une part que pour tout ω ∈ Ω on a∫ ∞

0

1{Z⩾a}(ω) da = Z(ω) et

∫ ∞

0

a1{Z⩾a}(ω) da = 1
2
Z2(ω),

et d’autre part que ∫ ∞

0

aP(Z ⩾ a) da = 1
2
E[Z2].

On se donne une martingale (Xn)n⩾0. Pour tout entier n ⩾ 0, on pose

Yn = |Xn| et Mn = max(Y0, . . . , Yn).

2. Soit a un réel positif. On note T = inf{n ⩾ 0 : Yn ⩾ a}, avec la convention habituelle
selon laquelle inf ∅ = ∞. Montrer que pour tout entier n ⩾ 0, on a

aP(Mn ⩾ a) ⩽
n∑

k=0

E
[
Yk1{T=k}

]
.

3. En déduire que pour tout réel positif a et tout entier n ⩾ 0, on a

aP(Mn ⩾ a) ⩽ E
[
Yn1{Mn⩾a}

]
.

4. Montrer que pour tout entier n ⩾ 0, on a

E
[
M2

n

]
⩽ 4E

[
X2

n

]
.

On suppose désormais que la martingale (Xn)n⩾0 est bornée dans L
2, c’est-à-dire qu’il existe

un réel C tel que pour tout entier n ⩾ 0, on ait E
[
X2

n

]
⩽ C.

5. Montrer que la martingale (Xn)n⩾0 est bornée dans L1.

La suite (Xn)n⩾0 converge donc presque sûrement (on ne demande pas de le démontrer) vers
une limite que l’on notera X∞.

6. Montrer que la variable aléatoire

M = sup
{
|Xn|, n ⩾ 0

}
est de carré intégrable. Que peut-on en déduire sur la convergence de (Xn)n⩾0 vers X∞ ?

7. On vient de démontrer que si la martingale (Xn)n⩾0 est bornée dans L
2, alors la variable

aléatoire M = sup
{
|Xn|, n ⩾ 0

}
appartient à L2. Cette assertion reste-t-elle vraie si l’on

remplace L2 par L1 ?
Autrement dit : est-il vrai que si la martingale (Xn)n⩾0 est bornée dans L

1, alors la variable
aléatoire M = sup

{
|Xn|, n ⩾ 0

}
appartient à L1 ?

Si vous pensez que oui, donnez une démonstration, et si vous pensez que non, donnez un
contre-exemple et démontrez que c’en est un.



Solution de l’exercice 2

1. Soit ω ∈ Ω. La première intégrale vaut∫ Z(ω)

0

da = Z(ω)

et la seconde ∫ Z(ω)

0

a da = 1
2
Z(ω)2.

L’espérance de 1
2
Z2 vaut donc l’espérance de la deuxième intégrale, et le théorème de Fubini

permet d’intervertir l’intégrale et l’espérance, pour trouver

1
2
E[Z2] =

∫ ∞

0

aE[1{Z⩾a}] da =

∫ ∞

0

aP(Z ⩾ a) da.

J’ai lu quelques fois pour la première égalité le raisonnement faux suivant : on sait (parce que c’est

une formule qu’on connâıt) que E[Z] =
∫∞
0 P(Z ⩾ a) da, et on en “déduit” (en enlevant l’espérance ?)

que Z =
∫∞
0 1{Z⩾a} da. Or deux variables aléatoires peuvent avoir la même espérance sans être égales.

2. On a

aP(Mn ⩾ a) = aP(T ⩽ n) =
n∑

k=0

E[a1{T=k}].

Et puisque sur l’événement {T = k} on a Yk ⩾ a, on a

aP(Mn ⩾ a) ⩽
n∑

k=0

E[Yk1{T=k}].

Cette question a été plutôt bien traitée en général, quoique souvent avec des arguments un peu

confus et très longs.

3. La suite (Yn)n⩾0, image par une fonction convexe de la martingale (Xn)n⩾0, est une
sous-martingale. Puisque de plus l’événement {T = k} appartient à Fk, on a pour tous k ⩽ n

E[Yk1{T=k}] ⩽ E[E[Yn|Fk]1{T=k}] = E[Yn1{T=k}].

Ainsi, on a

aP(Mn ⩾ a) ⩽
n∑

k=0

E[Yn1{T=k}] = E[Yn1{T⩽n}] = E[Yn1{Mn⩾a}].

Cette question, par contre, n’a preque jamais été traitée correctement. Seule une petite minorité

de copies ont mentionné que la suite (Yn)n⩾0 est une sous-martingale, ce qui est le point clé.

4. Intégrons l’inégalité précédente par rapport à a de 0 à l’infini. En vertu du résultat de la
première question, nous trouvons

1
2
E[M2

n] ⩽
∫ ∞

0

E[Yn1{Mn⩾a}] da.

Le théorème de Fubini nous permet d’échanger l’intégrale et l’espérance, pour trouver dans le
membre de droite

E

[
Yn

∫ ∞

0

1{Mn⩾a} da

]
= E[YnMn].



L’inégalité de Cauchy–Schwarz nous donne alors

1
2
E[M2

n] ⩽ E[Y 2
n ]

1
2E[M2

n]
1
2 .

En élevant au carré et en simplifiant, on obtient l’inégalité souhaitée.

Beaucoup de copies sont arrivées à l’inégalité · · · ⩽ E[YnMn] et, à partir de là, ont essayé sans

trop savoir comment de faire comme si elles parvenaient à en déduire le résultat. Soyez prudent(e)s

lorsque vous démontrez une égalité ou une inégalité qui est donnée : si vous ne savez pas comment

vous trouvez le résultat, c’est probablement que vous n’avez pas vu l’argument à utiliser, et cela se

verra. Il vaut mieux dire : je n’arrive pas à aller plus loin (ou : “non abouti” — sans t, soit dit en

passant) que de recopier le résultat souhaité comme s’il s’en déduisait par magie.

5. Pour tout n ⩾ 0, on a, par l’inégalité de Jensen ou par l’inégalité de Cauchy–Schwarz
appliquée à |Xn| et 1,

E[|Xn|] ⩽ E[X2
n]

1
2 ⩽

√
C.

La martingale (Xn)n⩾0 est donc bornée dans L1.

Cette question a été souvent bien traitée. Attention : il n’est pas vrai, pour une variable positive Z,

qu’on ait l’inégalité E[Z] ⩽ E[Z2], considérez par exemple le cas où Z est constante égale à 1
2 .

6. La suite (Mn)n⩾0 est croissante, et converge presque sûrement vers M . Du résultat de la
question 4, nous déduisons que pour tout n ⩾ 0,

E[M2
n] ⩽ 4C,

et du théorème de convergence monotone appliqué à la suite (M2
n)n⩾0, nous déduisons que

E[M2] = lim
n→∞

E[M2
n] ⩽ 4C < ∞.

La variable aléatoire M est donc de carré intégrable.
Or la convergence presque sûre de (Xn)n⩾0 vers X est dominée par M . Cette convergence

a donc lieu dans L2, ce qu’un résultat du cours assurait, mais au terme d’une démonstration
différente.

Cette question n’a pas été bien traitée et a souvent révélé des confusions entre “suite de variables

aléatoires de carré intégrable” et “suite de variables aléatoires bornée dans L2”.

Par ailleurs, lorsque l’énoncé demande à la question 6 de déduire quelque chose de ce qui précède, en

l’occurrence de tout ce qui précède, le but n’est pas de vous faire appliquer un théorème du cours.

C’est bien de savoir qu’une martingale bornée dans L2 converge dans L2, mais le but ici est de le

redémontrer, autrement que dans le cours.

7. Considérons la marche aléatoire simple symétrique sur Z issue de 1 et arrêtée lorsqu’elle
touche 0. Nous savons que cette martingale (Xn)n⩾0 converge presque sûrement vers 0, mais pas
dans L1. Par ailleurs, pour tout n ⩾ 0, nous avons E[|Xn|] = E[Xn] = 1, donc cette martingale
est bornée dans L1.

Si la variable aléatoire M était intégrable, alors la martingale (Xn)n⩾0 serait dominée dans
L1, et sa convergence presque sûre vers 0 aurait aussi lieu dans L1, ce qui n’est pas le cas. Donc
dans ce cas, la variable aléatoire M n’est pas intégrable.

La réponse est donc négative.
Dans plusieurs réponses s’est là aussi manifestée la confusion entre “suite de v.a. intégrables” et

“suite de v.a. bornée dans L1”.



Exercice 3

Barème indicatif : 20 points (2+3+3+3+3+3+3)

Soit E un espace d’états, dont on suppose qu’il a au moins deux éléments. Soit P un noyau
de transition irréductible sur E.

Pour tout x ∈ E, on définit P̃ (x, x) = 0, et pour tout y ∈ E tel que y ̸= x,

P̃ (x, y) =
P (x, y)

1− P (x, x)
.

1. Montrer que P̃ est un noyau de transition sur E.

On considère la châıne de Markov canonique (EN,C , (Cn)n⩾0, (Px)x∈E, X = (Xn)n⩾0) as-
sociée au noyau P . On définit les variables aléatoires T0 = 0 et, pour tout k ⩾ 0,

Tk+1 = inf
{
n > Tk : Xn ̸= Xn−1

}
.

2. Montrer que pour tout x ∈ E, la variable aléatoire T1 est finie Px-presque sûrement.

3. Montrer que pour tout k ⩾ 0, la variable aléatoire Tk est un temps d’arrêt. On pourra
commencer par montrer que si S est un temps d’arrêt, alors T = inf{n > S : Xn ̸= Xn−1} est
un temps d’arrêt.

4. Soit x ∈ E. En admettant la relation

∀k ⩾ 0, Tk+1 = (Tk + T1 ◦ θTk
) 1{Tk<∞} +∞ 1{Tk=∞},

montrer que pour tout k ⩾ 0, la variable aléatoire Tk est finie Px-presque sûrement.

5. Soit x ∈ E. Montrer que sous Px, la suite (XTk
)k⩾0 est une châıne de Markov sur E issue

de x et de noyau de transition P̃ .

6. Montrer que si P̃ est transient, alors P est transient.

7. Soit d ⩾ 3 un entier. On suppose que E = Zd et que le noyau de transition P est celui
de la marche aléatoire simple symétrique, défini en posant, pour tous x, y ∈ Zd,

P (x, y) =
1

2d
si ∥x− y∥ = 1, et P (x, y) = 0 sinon,

où la norme est la norme euclidienne usuelle. On admettra que P est irréductible.

On définit l’application π : Zd → Z3 en posant, pour tout x = (x1, . . . , xd) ∈ Zd,

π(x1, . . . , xd) = (x1, x2, x3).

On admettra que pour tout x ∈ E, la suite (π(Xn))n⩾0 est sous Px une châıne de Markov
sur Z3, dont le noyau de transition, noté Q, ne dépend pas de x.

Calculer le noyau Q puis le noyau Q̃. Que peut-on en conclure ?

Solution de l’exercice 3

1. Notons d’abord que pour tout x ∈ E, on ne peut avoir P (x, x) = 1, sans quoi x ne
mènerait à aucun autre élément que lui-même, et serait donc le seul élément de sa classe de



communication, ce qui contredirait les hypothèses. La définition de P̃ a donc un sens. De plus,
puisque P est un noyau, la fonction P̃ est à valeurs positives, et pour tout x ∈ E,∑

y∈E

P̃ (x, y) =
1

1− P (x, x)

∑
y ̸=x

P (x, y) =
1

1− P (x, x)
(1− P (x, x)) = 1.

La fonction P̃ est donc un noyau de transition sur E.

Peu de copies ont justifié clairement le fait que P (x, x) < 1. Dans beaucoup de copies, j’ai un

raisonnement qui aboutissait à la conclusion que P (x, x) = 0, ce qui n’est pas le cas.

2. Soit n ⩾ 0 un entier. On a

Px(T1 > n) = Px(X0 = . . . = Xn) = Px(X0 = x, . . . , Xn = x) = P (x, x)n.

Ainsi, T1 suit sous Px une loi géométrique de paramètre P (x, x) (la convention étant que cette
loi est la masse de Dirac en 1 si P (x, x) = 0). En particulier, T1 est fini presque sûrement, ce
qu’on retrouve en écrivant

Px(T1 = ∞) = lim
n→∞

Px(T1 > n) = lim
n→∞

P (x, x)n = 0,

puisque comme nous l’avons déjà observé, P (x, x) < 1.

J’ai lu beaucoup de réponses vagues et assez verbeuses à cette question, qui soulignaient quand

même, dans les bons cas, l’importance du fait que la châıne soit irréductible et que E ait au moins

deux éléments.

3. Montrons que si S est un temps d’arrêt, alors

T = inf{n > S : Xn ̸= Xn−1}

est un temps d’arrêt. Puisque T0 = 0 est un temps d’arrêt, le résultat s’ensuivra immédiatement
par récurrence sur k.

Soit n ⩾ 0 un entier. L’écriture

{T > n} = {S ⩾ n} ∪
n−1⋃
k=0

(
{S = k} ∩ {Xk = Xk+1 = . . . = Xn}

)
montre que l’événement {T > n}, et donc son complémentaire {T ⩽ n}, appartiennent à Cn.
La variable aléatoire T est donc bien un temps d’arrêt.

J’ai souvent lu des tentatives d’écrire l’événement {T > n} ou {T = n} sous une forme qui

permette de déterminer à quelle tribu il appartient, et c’est une bonne chose. Souvent toutefois, cette

écriture faisait intervenir S dans les bornes d’une union ou d’une intersection, ce qui n’a pas de sens.

4. Montrons par récurrence sur k que Tk est fini Px-presque sûrement. Pour k = 0 c’est vrai
par définition et pour T1, nous l’avons établi à la question 2.

Supposons maintenant établi que Tk est fini Px-presque sûrement pour un entier k ⩾ 1.
Alors d’une part,

{Tk+1 < ∞} = {Tk < ∞} ∩ {Tk+1 − Tk < ∞}.

D’autre part, on a l’égalité Px-presque sûre

Tk+1 − Tk = T1 ◦ θTk
.



On a donc

Px(Tk+1 < ∞) = Px(Tk+1 − Tk < ∞) = Px(T1 ◦ θTk
< ∞) = Ex[1R+(T1 ◦ θTk

)].

La propriété de Markov forte au temps Tk nous permet de calculer cette espérance comme

Px(Tk+1 < ∞) = Ex

[
EXTk

[1R+(T1)]
]
.

Or

EXTk
[1R+(T1)] =

∑
y∈E

1{XTk
=y}Ey[1R+(T1)]

=
∑
y∈E

1{XTk
=y}Py(T1 < ∞)

=
∑
y∈E

1{XTk
=y}

= 1,

donc
Px(Tk+1 < ∞) = 1.

Cette question a parfois été bien traitée. Outre le fait qu’il faut utiliser la propriété de Markov

forte, le point clé est que dans la récurrence, on a besoin de savoir que T1 est fini Py-presque sûrement

pour tout y.

J’ai vu plusieurs fois des confusions entre “T1 est fini presque sûrement” et “T1 est d’espérance finie”.

Enfin, notons que dans les copies qui avaient abouti à la conclusion que P (x, x) = 0 pour tout x, je

n’ai jamais vu tirée la conclusion qui devrait en découler, à savoir que Tk = k pour tout k.

5. Donnons-nous un état x ∈ E, un entier n ⩾ 0 et x0, . . . , xn ∈ E, et calculons

Px(XT0 = x0, XT1 = x1, . . . , XTn = xn).

Par définition des temps d’arrêt Tk, s’il existe i ∈ {0, . . . , n − 1} tel que xi = xi+1, alors cette
probabilité est nulle. Sinon, elle vaut∑
k1,...,kn⩾1

Px(XT0 = x0, T1 = k1, XT1 = x1, . . . , Tn = k1 + . . .+ kn, XTn = xn)

=
∑

k1,...,kn⩾1

Px(X0 = . . . = Xk1−1 = x0, Xk1 = . . . = Xk1+k2−1 = x1, . . . ,

Xk1+...+kn−1 = . . . = Xk1+...+kn−1 = xn−1, Xk1+...+kn = xn)

=
∑

k1,...,kn⩾1

δx,x0P (x0, x0)
k1−1P (x0, x1)P (x1, x1)

k2−1P (x1, x2) . . . P (xn−1, xn−1)
kn−1P (xn−1, xn)

qui vaut exactement
δx,x0P̃ (x0, x1) . . . P̃ (xn−1, xn).

6. Supposons P̃ transient. Soit x ∈ E un état. Alors, par définition du fait que x est
transient, et puisque la suite (XTk

)k⩾0 est sous Px une châıne de Markov issue de x de noyau

de transition P̃ ,
Px(∀k ⩾ 1, XTk

̸= x) > 0.



Or sur l’événement {∀k ⩾ 1, XTk
̸= x}, la châıne (Xn)n⩾0 ne passe que T1 fois en x. Ainsi,

Px(Nx < ∞) > 0,

ce qui implique que x est transient pour la châıne (Xn)n⩾0de noyau P . Puisque le noyau P est
irréductible, il est transient.

7. Pour déterminer le noyau Q, il suffit de calculer, pour tous u, v ∈ Z3,

Pu(π(X1) = v).

Si u et v ne sont pas égaux ou voisins, cette probabilité est nulle. Si u et v sont voisins, alors

Pu(π(X1) = v) =
1

2d
.

Enfin, si u = v, cette probabilité vaut

Pu(π(X1) = u) = 1− 6

2d
,

puisque u admet 6 voisins dans Z3.
Finalement, Q(u, v) est nul si ∥u− v∥ > 1, vaut 1

2d
si ∥u− v∥ = 1, et vaut 1− 3

d
si u = v.

Le noyau Q̃ est donc donné par

Q̃(u, v) =
1

6

si ∥u − v∥ = 1, et 0 sinon. Autrement dit, Q̃ est le noyau de la marche aléatoire symétrique
simple sur Z3.

Cette marche est transiente, donc, d’après ce qui précède, la châıne de Markov (π(Xn))n⩾0

est transiente. La châıne (Xn)n⩾0 est donc elle-même transiente, sinon elle passerait un nombre
infini de fois en chaque état de Zd, donc (π(Xn))n⩾0 passerait une infinité de fois en chaque état
de Z3, ce qui serait une contradiction.

Ces trois dernières questions ont été très peu traitées.



Exercice 4

Barème indicatif : 10 points (2+2+2+2+2).

On étudie la marche aléatoire sur le graphe représenté ci-dessous.

a b c d e

f g h i j

k
l m n

o

1. Montrer que cette marche aléatoire admet une unique mesure de probabilité invariante,
qu’on notera π, et calculer π(a), π(l) et π(m).

2. On fait partir la marche aléatoire de l’état n. Après combien de temps en moyenne la
marche aléatoire revient-elle en n pour la première fois ?

3. On fait partir la marche aléatoire de l’état k. Combien de fois en moyenne la marche
visite-t-elle le sommet l avant de revenir pour la première fois à son point de départ ?

4. Notons (Xn)n⩾0 la marche aléatoire issue de c. Posons M = {l,m, n}. La quantité

1

t

t−1∑
i=0

1M(Xi)

admet-elle sous Pc une limite presque sûre lorsque t tend vers l’infini, et si oui laquelle ?

5. Soit u une fonction à valeurs réelles sur l’ensemble des sommets de notre graphe. La
quantité

Ea[u(Xt)]

admet-elle une limite lorsque t tend vers l’infini, et si oui, laquelle ?

Solution de l’exercice 4

1. Le graphe est connexe, donc la marche aléatoire sur ce graphe est une châıne de Markov
irréductible. Tous les états sont donc de même nature (récurrents ou transients), et comme
l’espace d’états est fini, l’un d’entre eux est récurrent, donc ils sont tous récurrents. La châıne
admet donc une mesure invariante unique à multiplication près par une constante strictement
positive, donc une unique mesure de probabilité invariante.

Pour déterminer cette probabilité invariante, on utilise le fait que la mesure qui à chaque
sommet associe son nombre de voisins est réversible, donc invariante, pour la marche aléatoire
sur le graphe. Cette mesure associe respectivement les masses 3, 6 et 4 aux sommets a, l et m.

La masse totale de cette mesure est 52 (c’est deux fois le nombre d’arêtes). Ainsi, les masses
des sommets a, l, m pour l’unique probabilité invariante π sont

π(a) =
3

52
, π(l) =

3

26
, π(m) =

1

13
.

2. Le temps moyen de retour est donné par l’inverse de la masse attribuée par la probabilité
invariante :

En[Tn] =
1

π(n)
=

26

3
.



3. L’unique mesure invariante ν qui associe à k la masse 1 associe à chaque autre sommet une
masse égale au nombre moyen de visites en ce sommet entre deux visites en k. On a ν = π/π(k),
donc le nombre moyen de visites en l entre deux visites en k vaut

ν(o) =
π(l)

π(k)
= 2.

4. Puisque la châıne est irréductible et récurrente, le théorème ergodique assure que la
quantité considérée converge Pa-presque sûrement vers

π(M) =
4

13
.

5. Partant de a, on peut y revenir en 2 pas ou en 3 pas. L’état a, et donc tout la châıne,
est donc apériodique. Le théorème de convergence vers l’équilibre s’applique donc, et on a la
convergence

lim
n→∞

Ea[f(Xn)] =

∫
{a,...,o}

f dπ.

Les valeurs numériques n’étaient pas particulièrement agréables, mais il s’agit de la seule “diffi-

culté” de cet exercice, puisqu’il est entièrement annoncé, dans le moindre détail. Il est dommage de

perdre des points sur cet exercice parce qu’on l’a traité trop rapidement. Par ailleurs, il est là aussi

bienvenu de réduire les fractions.

Fin du sujet


