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Examen

L’épreuve dure trois heures.
Les quatre exercices sont indépendants.
Ni documents, ni appareils électroniques.
La note finale sera sur 50 points.

Exercice 1
Baréme indicatif : 15 points (3+3+3+3+3)
Toutes les variables aléatoires sont définies sur un espace de probabilités (€2, 7, P).

1. Soit p € [0,1] un réel. Soient n,m > 1 des entiers. Soient A, B des variables aléatoires
indépendantes de lois binomiales, respectivement B(n,p) et B(m, p).

Calculer E[A| A + B].
2. Onnote D = {(z,y) € R? : 0 < y < 1 — |z|}. Soit (X,Y) un couple de variables
aléatoires réelles dont la loi admet par rapport & la mesure de Lebesgue sur R? la densité
fi(@y) = ca®y® 1p(a,y),
ou c¢ est un réel positif.
Calculer E[X | Y] et E[Y | X].

3. Soit T une variable aléatoire de loi exponentielle de parametre 1. Soit U =T — [T la
partie fractionnaire de T'.

Calculer E[T" | U].

4 . Soit (F, G, H) un vecteur aléatoire gaussien centré de matrice de covariance

3 21
2 3 2
1 2 3

Calculer E[FF + G |G + H].

5. Soient K, L, M des variables aléatoires indépendantes et identiquement distribuées, qu’on
suppose intégrables.

Calculer E[K |E[K + L|K + L+ M]| et E[K + L+ M |E[K + L| K]].

Solution de ’exercice 1

1. La variable aléatoire A+ B est de loi binomiale B(n+m, p). Soit g : N — R une fonction
mesurable bornée. On a

E[Ag(A + B)) ZZ()( ) ag(a+b).

a=0 b=0



Réorganisons la somme selon la valeur de la somme s = a + b. Conservons a comme autre
variable. Les contraintes sur a sont que a est un entier compris entre 0 et n, et qui doit étre
plus petit que s et plus grand que m — s. Cette derniere condition équivaut a s — a < m, si

bien que
T e -Eae £ (")

0<a<s
a<n,s—as<m

n—1

a—l) puis en

L’entier s étant fixé, calculons la deuxieme somme en utilisant I'identité a(Z) = n(
faisant le changement de variable c=a — 1 :

Z (ZXSZ)“:” Z (Z:D(@—lﬁ(a—l))

as<n,s—as<m a<n,s—a<m

- Z (ngl) <<s—ﬂf>—c)

ce<n—1,(s—1)—c<m

Dans la derniere somme, on reconnait le nombre de maniére de choisir s — 1 éléments parmi
n +m — 1 dont n — 1 sont bleus et m sont rouges, compté selon le nombre ¢ d’éléments bleus.

Cette somme vaut donc
m+n-—1 B S n—+m
s—1 Cn4+m S ’

si bien que I’espérance que nous sommes en train de calculer vaut

ElAg(A+B)|= —— " (" ' m>pSsg<s> = - EB[(A+ B)g(4 + B)]

s=0
Nous en déduisons que
n
E[A|A+ B = ——(A+ B).
n+m

Autre solution. Le couple (A, B) a méme loi que le couple (X1+...+X,, Xooi1+. . +Xpim),
ou Xy, ..., X, sont des variables aléatoires indépendantes identiquement distribuées de loi
de Bernoulli de parametre p. Ainsi, si nous trouvons une fonction h : R — R telle que

EXi+.. +X, Xi+.. .+ X =h(Xa+ ...+ Xoim),
alors nous pourrons afﬁrmer que
E[A|A+ Bl =h(A+ B).

Or d’une part,

n

EXi+ ...+ X Xi4 . 4 Xppm] = > E[Xi| X1+ ...+ Xogm).
k=1

D’autre part, par symétrie, la loi du couple (X, Xi,..., X,1n) ne dépend pas de l'entier k
compris entre 1 et n + m. Ainsi, il existe une fonction f ne dépendant pas de k telle que

EXy| Xo+...+ X = f(Xa+ .o+ Xogm).



En sommant cette derniere identité pour k£ variant de 1 a n 4+ m, on trouve que

n+m

Xi4 oA Xom =BX 4 A X X+ 4 K] = D F(X 4 4 Xim),
k=1

si bien que
1

X o+ Xpam) = —(X o+ Xoam).
X1+ o+ Xogm) n+m(1+ + Xotm)

On en déduit donc que

n
EX +.. .+ X, X1+ ...+ Xt = +m(X1+...+Xn+m),
si bien que la fonction h(z) = -tz convient.

Cette question n’est pas tres facile, et n’a pas été bien traitée en général. La deuxieme solution
demandait moins de calcul que la premiere, mais nécessitait d’intoduire des variables aléatoires qui

n’étaient pas données par ’énoncé.

2. La premiere chose a faire est de dessiner le domaine D :

T

\J

Calculons la loi de X. Elle admet une densité par rapport a la mesure de Lebesgue sur R,
qu’on peut calculer en intégrtant par rapport a y la densité de la loi du couple (X,Y’). On
trouve

1—|z| c
fx(z) = . f(x,y) dy = 11 (96)/0 ?y? dy = 51’2(1 — |2)? 1oy (2).

Soit maintenant ¢ : R — R une fonction mesurable bornée. Calculons E[Y g(X)]. On a

E[Y¢(X)] = /D yg(a) (. ) dady

:c/_llg(m?(/ol_lx % dy> dz

=4[ g1~ fa) da

—c [ 0~ lehgla)x(@) da
= ZE[(1 - [X])g(X)],

si bien que
B[Y|X] = 4(1 - X))

Considérons une fonction mesurable bornée g : R — R et calculons E[Xg(Y')]. Puisque la
fonction f vérifie f(—xz,y) = f(z,y), la loi du couple (X,Y) est la méme que celle du couple
(—X,Y), donc

E[Xg(Y)] = E[-Xg(Y)] = —E[Xg(Y)]



et cette espérance est nulle, si bien que

E[X]Y] = 0.

Cette question a été assez bien traitée en général. Faire le dessin permet de ne pas étre surpris du

fait qu’une des deux espérances conditionnelles est nulle, et éventuellement méme de le prévoir.

3. Calculons la loi de U. Si g : R — R est une fonction mesurable positive, on a
BloU)] = | gle = lo))e

o n+1

= Z/ e *g(x —n)de
n=0"v"
S|

= Z/ e " g(x) dx
n=0"v0

1
= /0 - 6_19(1:) dx.

Calculons maintenant E[T'g(U)]. Nous avons

E[Tg(U)] = / " rgla — ))e da
= /o e "g(x) Z(n +a)e " dx

n=0

On utilise le fait que ) _nt" = ﬁ pour tout ¢ tel que |t| < 1 et on trouve

= f (i ) o

/ T (.7:+L1) dx
E[(U %) ).

si bien que
1
E[T|U| =U + 1

Cette question a été assez peu traitée, alors qu’elle était tres proche de questions figurant dans des
examens passés, et ne posait pas de difficulté particuliere.

4. Calculons la matrice de covariance du vecteur gaussien (F'+ G,G + H). On a
Var(F +G) =Var(G+ H)=3+3+4=10

et
Cov(F+G,G+H)=2+1+34+2=28.



On a donc

cov((F+G)—§(G+H),G+H) ~0.
On en déduit que (F + G) — 3(G + H) est indépendant de G + H, donc
E[(F+G) -G+ H)|G+ H]=E[(F+G)—+(G+ H)]=0.

Or cette espérance conditionnelle vaut
4
E[F +G|G+ H] — g(G + H),

si bien que A
E[F +G|G+ H] = g(G + H).

Aux erreurs de calcul pres, cette question a été la mieux traitée de ’exercice. J’aimerais qu’écrire

% provoque chez la plupart des étudiantes et étudiants, par réflexe, un besoin de simplifier la fraction

en % mais force est de constater que ce n’est pas le cas. On peut en rire, et aussi réfléchir au fait que

laisser % ne donne pas un bon signal de maturité mathématique, et peut influencer négativement la

suite de la correction.
5. Commencgons par calculer la deuxieme espérance conditionnelle. On a
EK + L|K| =E[K|K|+ E[L|K| = K + E[L].

La tribu engendrée par la variable aléatoire K + E[L] est la méme que la tribu engendrée par
K, donc

E[K+ L+ M|EK+ L|IK||=E[K+ L+ M|K|]=K+E[L] +E[M] = K+ 2E[K].

Pour la premiere, on commence par calculer E[K + L|K + L 4+ M]. On utilise le méme
argument que dans la question 1. Les couples (K, K+ L+ M), (L, K+L+M) et (M, K+L+M)
ont méme loi, donc

E[K|K +L+ M],E[L|IK+ L+ M] et E]M|K + L+ M|

sont égales, de somme égale a K+ L+ M. Ainsi, ces trois variables aléatoires valent %(K +L+M),
donc

2
E[K + LK+ L+ M] = g(K+L+M).
Cette variable aléatoire engendre la méme tribu que K + L + M, donc
1
3

Cette question a été peu traitée, mais plus que je ne m’y attendais, ce qui a constitué une bonne

EKIEIK+LIK+ L+ M| =E[KIK+L+M]=-(K+L+ M).

surprise.

Globalement, cet exercice, qui était attendu (parce qu’il était annoncé, et tres similaire aux exercices
de la méme nature figurant dans les sujets récents de partiel et d’examen), n’a pas été tres bien traité.
Une erreur de calcul arrive a tout le monde, et on peut ne pas trouver, par exemple, comment mener
le calcul de la premiere question. Mais sur les 15 points proposés ici, en obtenir 10 ou 12 ne devrait
pas constituer ’exception, et permettrait, avec les 10 points de 1’exercice “classique” sur les chaines
de Markov (ici exercice 4), d’obtenir au moins 20 points, et de ne pas étre loin de valider I'UE.



Exercice 2
Baréme indicatif : 20 points (3+3+3+3+2+3+3)

Dans cet exercice, toutes les variables aléatoires sont définies sur un espace de probabilités
filtré (0, F, (Fn)ns0, P).

1. Soit Z une variable aléatoire positive. Montrer d'une part que pour tout w € €2 on a

/ 1iz20)(w) da = Z(w) et / alyzsqy(w) da = %Z2(w),
0 0

et d’autre part que
/ aP(Z > a) da = 1E[Z°).
0

On se donne une martingale (X,,),>o. Pour tout entier n > 0, on pose
Y, =|X,| et M, =max(Yy,...,Y,).

2. Soit a un réel positif. On note 7' = inf{n > 0 : Y,, > a}, avec la convention habituelle
selon laquelle inf @ = co. Montrer que pour tout entier n > 0, on a

aP(M, > a) <> E[Yilg—y].
k=0

3. En déduire que pour tout réel positif a et tout entier n > 0, on a
aP (M, > a) <E[Y, 11,54
4. Montrer que pour tout entier n > 0, on a
E[M] < 4B[X).
On suppose désormais que la martingale (X,,),>0 est bornée dans L?, c’est-a-dire qu’il existe
un réel C' tel que pour tout entier n > 0, on ait E[Xfl] <C.

5. Montrer que la martingale (X,,),>0 est bornée dans L'.

La suite (X,,)n>0 converge donc presque stirement (on ne demande pas de le démontrer) vers
une limite que 'on notera X ..

6. Montrer que la variable aléatoire
M =sup {|X,|,n >0}

est de carré intégrable. Que peut-on en déduire sur la convergence de (X,,)n>0 vers X ?

7. On vient de démontrer que si la martingale (X,,),>0 est bornée dans L?, alors la variable
aléatoire M = sup{|Xn|,n > 0} appartient & L2 Cette assertion reste-t-elle vraie si ’on
remplace L? par L' ?

Autrement dit : est-il vrai que si la martingale (X,,),>0 est bornée dans L', alors la variable
aléatoire M = sup {|X,|,n > 0} appartient & L'?

Si vous pensez que oui, donnez une démonstration, et si vous pensez que non, donnez un
contre-exemple et démontrez que c’en est un.



Solution de ’exercice 2

1. Soit w € 2. La premiere intégrale vaut

Z(w)
/ da = Z(w)
0

Z(w)
/ ada=1Z(w)
0

L’espérance de %Z 2 vaut donc l'espérance de la deuxieme intégrale, et le théoréme de Fubini
permet d’intervertir I'intégrale et 1’espérance, pour trouver

et la seconde

1E[Z?] :/ aE[l{z>q] da :/ aP(Z > a) da.
0 0

J’ai lu quelques fois pour la premiere égalité le raisonnement faux suivant : on sait (parce que c’est
o]
o 0

que Z = /0 1¢7>4} da. Or deux variables aléatoires peuvent avoir la méme espérance sans étre égales.

2. On a

une formule qu’on connait) que E[Z] = [ P(Z > a) da, et on en “déduit” (en enlevant 'espérance ?)

aP(M, >a) =aP(T <n) =Y Elalg_y).
k=0

Et puisque sur 1'événement {T' =k} on a Y}, > a, on a

aP(M, > a) <Y E[ilg_y).
k=0

Cette question a été plutot bien traitée en général, quoique souvent avec des arguments un peu

confus et tres longs.

3. La suite (Y},),>0, image par une fonction convexe de la martingale (X,,),>0, est une
sous-martingale. Puisque de plus I'événement {T' = k} appartient a %, on a pour tous k < n
E[Yilir—gy] < BEYo|[Z|1ir—r)] = E[Yalir—g)].

Ainsi, on a

n
aP(M, >a) <> E[Y,lg—n) = EYa 1] = EYaliy,sa)
k=0
Cette question, par contre, n’a preque jamais été traitée correctement. Seule une petite minorité
de copies ont mentionné que la suite (Y},),>0 est une sous-martingale, ce qui est le point clé.
4. Intégrons I'inégalité précédente par rapport a a de 0 a 'infini. En vertu du résultat de la
premiere question, nous trouvons

SO < [ EMgns0) da
0

Le théoreme de Fubini nous permet d’échanger 'intégrale et I'espérance, pour trouver dans le
membre de droite

E{Yn / 1001, 20) da} — E[Y, M,).
0



L’inégalité de Cauchy-Schwarz nous donne alors

[N

1
sEDM] < E[YIRE[M]:.

En élevant au carré et en simplifiant, on obtient I'inégalité souhaitée.

Beaucoup de copies sont arrivées a l'inégalité --- < E[Y,,M,] et, a partir de la, ont essayé sans
trop savoir comment de faire comme si elles parvenaient a en déduire le résultat. Soyez prudent(e)s
lorsque vous démontrez une égalité ou une inégalité qui est donnée : si vous ne savez pas comment
vous trouvez le résultat, c’est probablement que vous n’avez pas vu 'argument a utiliser, et cela se
verra. Il vaut mieux dire : je n’arrive pas a aller plus loin (ou : “non abouti” sans t, soit dit en
passant) que de recopier le résultat souhaité comme s’il s’en déduisait par magie.

5. Pour tout n > 0, on a, par I'inégalité de Jensen ou par l'inégalité de Cauchy—Schwarz
appliquée a | X,| et 1,
E[|X,[] < E[X]? < VC.

La martingale (X,,),>0 est donc bornée dans L.

Cette question a été souvent bien traitée. Attention : il n’est pas vrai, pour une variable positive Z,

qu’on ait I'inégalité E[Z] < E[Z?], considérez par exemple le cas ot Z est constante égale & %

6. La suite (M,,),>o est croissante, et converge presque surement vers M. Du résultat de la
question 4, nous déduisons que pour tout n > 0,

E[M7] < 4C,
et du théoreme de convergence monotone appliqué a la suite (M?),>o, nous déduisons que

E[M?] = lim E[M?] < 4C < <.
n—o0
La variable aléatoire M est donc de carré intégrable.
Or la convergence presque stre de (X,,),>0 vers X est dominée par M. Cette convergence

a donc lieu dans L?, ce quun résultat du cours assurait, mais au terme d’'une démonstration
différente.

Cette question n’a pas été bien traitée et a souvent révélé des confusions entre “suite de variables
aléatoires de carré intégrable” et “suite de variables aléatoires bornée dans L?”.
Par ailleurs, lorsque 1’énoncé demande a la question 6 de déduire quelque chose de ce qui précede, en
I'occurrence de tout ce qui précede, le but n’est pas de vous faire appliquer un théoreme du cours.
C’est bien de savoir qu'une martingale bornée dans L? converge dans L?, mais le but ici est de le
redémontrer, autrement que dans le cours.

7. Considérons la marche aléatoire simple symétrique sur Z issue de 1 et arrétée lorsqu’elle
touche 0. Nous savons que cette martingale (X,,),>0 converge presque sirement vers 0, mais pas
dans L'. Par ailleurs, pour tout n > 0, nous avons E[|X,,|] = E[X,,] = 1, donc cette martingale
est bornée dans L'.

Si la variable aléatoire M était intégrable, alors la martingale (X,,),>o serait dominée dans
L', et sa convergence presque siire vers 0 aurait aussi lieu dans L', ce qui n’est pas le cas. Donc
dans ce cas, la variable aléatoire M n’est pas intégrable.

La réponse est donc négative.

Dans plusieurs réponses s’est la aussi manifestée la confusion entre “suite de v.a. intégrables” et

“suite de v.a. bornée dans L'”.



Exercice 3
Baréme indicatif : 20 points (2+3+3+3+3+3+3)

Soit E' un espace d’états, dont on suppose qu’il a au moins deux éléments. Soit P un noyau
de transition irréductible sur F.
Pour tout x € E, on définit P(x,z) = 0, et pour tout y € E tel que y # =z,

Pla,y) =1 iD(J;C(’g,)sc)'

1. Montrer que P est un noyau de transition sur E.
On considere la chaine de Markov canonique (EN, %, (6)n>0, (P2)zer, X = (X,)ns0) as-
sociée au noyau P. On définit les variables aléatoires Ty = 0 et, pour tout k£ > 0,

Tiy1 =inf {n > T} : X, # X, 1}

2. Montrer que pour tout x € E, la variable aléatoire T} est finie P,-presque stirement.

3. Montrer que pour tout k£ > 0, la variable aléatoire T} est un temps d’arrét. On pourra
commencer par montrer que si S est un temps d’arrét, alors T = inf{n > S : X, # X,,_1} est
un temps d’arrét.

4. Soit x € E. En admettant la relation
V20, Tipr= Tk +Ti007,) i, <00 + 00 1i1,—cc},

montrer que pour tout k > 0, la variable aléatoire T} est finie P, -presque strement.

5. Soit € E. Montrer que sous P, la suite (X7, )x>0 est une chaine de Markov sur E issue
de x et de noyau de transition P.

6. Montrer que si P est transient, alors P est transient.

7. Soit d > 3 un entier. On suppose que E = Z? et que le noyau de transition P est celui
de la marche aléatoire simple symétrique, défini en posant, pour tous x,y € Z¢,

1
P(z,y) = %4 si [lx—yll=1, et P(z,y)=0 sinon,

ot la norme est la norme euclidienne usuelle. On admettra que P est irréductible.

On définit application 7 : Z¢ — Z3 en posant, pour tout z = (z*, ..., 2%) € Z,
m(zt, .. 2t = (ab, 2%, 2.

On admettra que pour tout x € F, la suite (7(X,,))n>0 est sous P, une chaine de Markov
sur Z3, dont le noyau de transition, noté @, ne dépend pas de x.

Calculer le noyau @) puis le noyau @ Que peut-on en conclure ?

Solution de ’exercice 3

1. Notons d’abord que pour tout x € FE, on ne peut avoir P(z,x) = 1, sans quoi x ne
menerait a aucun autre élément que lui-méme, et serait donc le seul élément de sa classe de



communication, ce qui contredirait les hypotheses. La définition de P a donc un sens. De plus,
puisque P est un noyau, la fonction P est a valeurs positives, et pour tout z € F,

> P(z,y) = %(M) > P(x,y) = %(m)u — P(z,2)) = 1.

yeE y#

La fonction P est donc un noyau de transition sur E.

Peu de copies ont justifié clairement le fait que P(x,z) < 1. Dans beaucoup de copies, j’ai un

raisonnement qui aboutissait a la conclusion que P(z,z) = 0, ce qui n’est pas le cas.

2. Soit n > 0 un entier. On a
P.(Ty >n)=P,(Xo=...=X,) =P.(Xo==,..., X, =2) = P(z,2)".

Ainsi, T} suit sous P, une loi géométrique de parametre P(z,x) (la convention étant que cette
loi est la masse de Dirac en 1 si P(x,z) = 0). En particulier, T} est fini presque surement, ce
qu’on retrouve en écrivant

P, (T = c0) = lim P,(T} > n) = lim P(z,2)" =0,

n—oo n—oo

puisque comme nous I'avons déja observé, P(x,z) < 1.
J’ai lu beaucoup de réponses vagues et assez verbeuses a cette question, qui soulignaient quand
meéme, dans les bons cas, I'importance du fait que la chaine soit irréductible et que E ait au moins

deux éléments.

3. Montrons que si S est un temps d’arrét, alors
T=inf{n > S5: X, # X1}

est un temps d’arrét. Puisque Ty = 0 est un temps d’arréet, le résultat s’ensuivra immédiatement
par récurrence sur k.
Soit n > 0 un entier. L’écriture

n—1

{T>n}:{S>n}UU({S:k:}ﬂ{Xk:XkH:...:Xn})

k=0

montre que 'événement {T" > n}, et donc son complémentaire {T" < n}, appartiennent a %,.
La variable aléatoire T' est donc bien un temps d’arrét.

J’ai souvent lu des tentatives d’écrire I’événement {T" > n} ou {T' = n} sous une forme qui
permette de déterminer a quelle tribu il appartient, et c¢’est une bonne chose. Souvent toutefois, cette

écriture faisait intervenir S dans les bornes d’une union ou d’une intersection, ce qui n’a pas de sens.

4. Montrons par récurrence sur k que T}, est fini P -presque surement. Pour k = 0 c’est vrai
par définition et pour 77, nous 'avons établi a la question 2.
Supposons maintenant établi que 7} est fini P, -presque stirement pour un entier £ > 1.
Alors d’une part,
{Tk-Jrl < OO} = {Tk < OO} N {Tk+1 -1 < OO}

D’autre part, on a I’égalité P -presque stire

Tk+1 — Tk = T1 (¢] QTk.



On a donc
Pa:(Tk+1 < OO) = Px(Tk—i—l — Tk < OO) = Px(Tl o GTk < OO) = Ex[lRJr(Tl o QTk)]

La propriété de Markov forte au temps 7} nous permet de calculer cette espérance comme
P, (Ti1 < o0) = By Bx, [1e. (1))

Or

EXTk [1R+ (TI)] - Z 1{XT,c:y}Ey[1R+ (TI)]

yeLl

- Z 1{XTk=y}Py(T1 < 00)
yeE

= 2_ Lo
yelr

=1,

donc
Px(Tk+1 < OO) =1.

Cette question a parfois été bien traitée. Outre le fait qu’il faut utiliser la propriété de Markov
forte, le point clé est que dans la récurrence, on a besoin de savoir que 77 est fini P,-presque stirement
pour tout y.

J’ai vu plusieurs fois des confusions entre “I est fini presque stirement” et “I est d’espérance finie”.
Enfin, notons que dans les copies qui avaient abouti & la conclusion que P(z,x) = 0 pour tout z, je

n’ai jamais vu tirée la conclusion qui devrait en découler, a savoir que T} = k pour tout k.

5. Donnons-nous un état x € £, un entier n > 0 et xy,...,x, € E, et calculons

Pz(XTO = IL'(),XTl = T1,... ,XT = xn)

n

Par définition des temps d’arrét Ty, s'il existe ¢ € {0,...,n — 1} tel que x; = x;41, alors cette
probabilité est nulle. Sinon, elle vaut

Z P:r(XTO :{EO’Tl :klaXTl :xl,...,TnIk1+...+kn,XTn IZEn)

k11'~~>kn>1

= Z PZ<X0:"':Xk1—1:xO7Xk1:"':Xk)1+k2—1:x17"‘7
k1yeoykn>1
Xk1+...+kn,1 =...= Xk1+..,+kn71 = Tp-1, Xk1+..,+kn = SEn)
= Z Oz,20 P (0, xo)krlp(%, x1)P(x1, 9131)k271p(1‘1, Tg) ... P(zn-1, xnfl)knilp(xnfla Tn)
k1yeekn>1

qui vaut exactement

Oz o P (0, 21) ... P(Tp1, Tn).
6. Supposons P transient. Soit z € F un état. Alors, par définition du fait que z est
transient, et puisque la suite (X7, )r=o est sous P, une chaine de Markov issue de x de noyau

de transition P,
P,.(Vk > 1, X1, #x)>0.



Or sur I'événement {Vk > 1, Xy, # x}, la chaine (X,,),>0 ne passe que 7} fois en z. Ainsi,
P.(N, < ) >0,

ce qui implique que x est transient pour la chaine (X,,),>ode noyau P. Puisque le noyau P est
irréductible, il est transient.

7. Pour déterminer le noyau @, il suffit de calculer, pour tous u,v € Z3,
P.(m(X1) = v).

Si u et v ne sont pas égaux ou voisins, cette probabilité est nulle. Si u et v sont voisins, alors

1
P,(r(Xy) =v) = —.
Sr(X0) =) = o
Enfin, si u = v, cette probabilité vaut
Pu(r(X)) =u) =1
i = Uu) = - —,
R 2d
puisque v admet 6 voisins dans Z3.
Finalement, Q(u,v) est nul si lu — v| > 1, vaut o si [|u —v|| =1, et vaut 1 — 3 si u = v.
Le noyau @) est donc donné par
~ 1
u,v) = =
Qw0 = 2
si ||u —v|| = 1, et 0 sinon. Autrement dit, Q est le noyau de la marche aléatoire symétrique

simple sur Z3.

Cette marche est transiente, donc, d’apres ce qui précede, la chaine de Markov (7(X,,))n>0
est transiente. La chaine (X,,),>0 est donc elle-méme transiente, sinon elle passerait un nombre
infini de fois en chaque état de Z¢, donc (7(X,,))n=0 passerait une infinité de fois en chaque état
de Z3, ce qui serait une contradiction.

Ces trois dernieres questions ont été tres peu traitées.



Exercice 4
Baréme indicatif : 10 points (2+2+2+2+2).
On étudie la marche aléatoire sur le graphe représenté ci-dessous.

a b c d e

f g h i J

1. Montrer que cette marche aléatoire admet une unique mesure de probabilité invariante,
qu’on notera 7, et calculer 7(a), w(l) et w(m).

2. On fait partir la marche aléatoire de ’état n. Apres combien de temps en moyenne la
marche aléatoire revient-elle en n pour la premiere fois?

3. On fait partir la marche aléatoire de 1’état k. Combien de fois en moyenne la marche
visite-t-elle le sommet [ avant de revenir pour la premiere fois a son point de départ ?

4. Notons (X, )n>0 la marche aléatoire issue de c¢. Posons M = {l,m,n}. La quantité

admet-elle sous P, une limite presque sture lorsque ¢t tend vers l'infini, et si oui laquelle ?

5. Soit u une fonction a valeurs réelles sur ’ensemble des sommets de notre graphe. La

quantité
Eq [u(X;)]

admet-elle une limite lorsque t tend vers l'infini, et si oui, laquelle ?

Solution de ’exercice 4

1. Le graphe est connexe, donc la marche aléatoire sur ce graphe est une chaine de Markov
irréductible. Tous les états sont donc de méme nature (récurrents ou transients), et comme
I'espace d’états est fini, 'un d’entre eux est récurrent, donc ils sont tous récurrents. La chaine
admet donc une mesure invariante unique a multiplication pres par une constante strictement
positive, donc une unique mesure de probabilité invariante.

Pour déterminer cette probabilité invariante, on utilise le fait que la mesure qui a chaque
sommet associe son nombre de voisins est réversible, donc invariante, pour la marche aléatoire
sur le graphe. Cette mesure associe respectivement les masses 3, 6 et 4 aux sommets a, [ et m.

La masse totale de cette mesure est 52 (c’est deux fois le nombre d’arétes). Ainsi, les masses
des sommets a, [, m pour I'unique probabilité invariante 7 sont
3 3 1

= w(m) = —.
13

2. Le temps moyen de retour est donné par 'inverse de la masse attribuée par la probabilité

invariante :
1 B 26



3. L’unique mesure invariante v qui associe a k la masse 1 associe a chaque autre sommet une
masse égale au nombre moyen de visites en ce sommet entre deux visites en k. On a v = 7/7(k),
donc le nombre moyen de visites en [ entre deux visites en k£ vaut

(1)

v(o) = W = 2.

~—

4. Puisque la chaine est irréductible et récurrente, le théoreme ergodique assure que la
quantité considérée converge P ,-presque stirement vers

4

(M) = L

5. Partant de a, on peut y revenir en 2 pas ou en 3 pas. L’état a, et donc tout la chaine,
est donc apériodique. Le théoreme de convergence vers 1’équilibre s’applique donc, et on a la
convergence

lim B, [f(X,)] = /{ i

n—oo

Les valeurs numériques n’étaient pas particulierement agréables, mais il s’agit de la seule “diffi-
culté” de cet exercice, puisqu’il est entierement annoncé, dans le moindre détail. Il est dommage de
perdre des points sur cet exercice parce qu’on ’a traité trop rapidement. Par ailleurs, il est la aussi

bienvenu de réduire les fractions.

FIN DU SUJET




